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Abstract

Thomassen, [Edge-disjoint Hamiltonian paths and cycles in tournaments,
J. Combin. Theory Ser. B 28 (1980) 142–163] proved that every strong
tournament has a pair of arc-disjoint Hamiltonian paths with distinct initial
vertices and distinct terminal vertices if and only if it is not an almost tran-
sitive tournament of odd order. As a subclass of local tournaments, Li et al.
[Arc-disjoint Hamiltonian cycles in round decomposable local tournaments,
Discuss. Math. Graph Theory 38 (2018) 477–490] confirmed the existence
of such two paths in 2-strong round decomposable local tournaments. In
this paper, we show that every strong, but not 2-strong, round decompos-
able local tournament contains a pair of arc-disjoint Hamiltonian paths with
distinct initial vertices and distinct terminal vertices except for three classes
of digraphs. Thus Thomassen’s result is partly extended to round decom-
posable local tournaments. In addition, we also characterize strong round
digraphs which contain a pair of arc-disjoint Hamiltonian paths with distinct
initial vertices and distinct terminal vertices.

Keywords: local tournament, round-decomposable, arc-disjoint Hamilto-
nian paths.
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1. Terminology and Introduction

In this article all digraphs are finite without loops or multiple arcs. The vertex
set and the arc set of a digraph D are denoted by V (D) and A(D), respectively.
If xy is an arc of a digraph D, then we say that x dominates y and write x → y.
For a subset X of V (D), the subdigraph induced by X in D is denoted by D〈X〉
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and D − X is the subdigraph obtained by deleting X. A subdigraph H of D
with V (H) = V (D) is called a spanning subdigraph of D. Let H1, H2, . . . , Hℓ be
subdigraphs of D, then the new subdigraph induced by V (H1) ∪ V (H2) ∪ · · · ∪
V (Hℓ) in D is denoted by D〈H1, H2, . . . , Hℓ〉.

The out-set N+(x) of a vertex x is the set of vertices dominated by x in D,
and the in-set N−(x) is the set of vertices dominating x in D. The numbers
d+(x) = |N+(x)| and d−(x) = |N−(x)| are called outdegree and indegree of x,
respectively.

By a cycle (respectively, path) we mean a directed cycle (respectively, di-
rected path). A path in a digraph D is Hamiltonian if it includes all the vertices
of D. A path from u to v is called a (u, v)-path. A chord of a cycle C in a digraph
D is an arc in A(D) \A(C), whose two ends lie on C.

The underlying graph ofD is the graph obtained by ignoring the orientation of
arcs in D and deleting parallel edges. We say that D is connected if its underlying
graph is connected.

A digraph D is strong, if for any two vertices x, y ∈ V (D), the digraph D
contains a path from x to y and a path from y to x. A digraph D is k-strong
if |V (D)| ≥ k + 1 and for any set X of at most k − 1 vertices, the subdigraph
D−X is strong. If D is k-strong, but not (k+1)-strong, then we call k the strong
connectivity number of D, denoted by κ(D) = k. If D is strong and x is a vertex
of D such that D − {x} is not strong, then we say that x is a cut-vertex of D.

A digraph D is semicomplete if for any two different vertices x and y, there
is at least one arc between them. A semicomplete digraph without a 2-cycle is a
tournament. An acyclic tournament is called transitive. It is easy to see that, for
a transitive tournament T , there is a unique vertex ordering v1, v2, . . . , vn of T ,
such that vi → vj for all 1 ≤ i < j ≤ n. A tournament is almost transitive if it
is obtained from the transitive tournament T by reversing the arc v1vn. In this
paper, if we say that T is an almost transitive tournament with the vertex set
{v1, v2, . . . , vn}, it will be always assumed that vi → vj for all 1 ≤ i < j ≤ n− 1,
vk → vn for k = 2, 3, . . . , n− 1 and vn → v1.

We call a digraph D locally semicomplete, if D〈N+(x)〉 and D〈N−(x)〉 are
both semicomplete for every vertex x of D. A locally semicomplete digraph
containing no cycle of length 2 is called a local tournament. It is clear that every
tournament is a local tournament.

A digraph on n vertices is called a round digraph if we can label its vertices
x1, . . . , xn such that for each i, N+(xi) = {xi+1, . . . , xi+d+(xi)} and N−(xi) =
{xi−d−(xi), . . . , xi−1}, where the subscripts are taken modulo n, and the sequence
x1, . . . , xn is called a round sequence of D.

The second power of a cycle Cn, denoted by C2
n, is the digraph obtained from

Cn by adding the arcs {xixi+2 | i = 1, 2, . . . , n}, where Cn = x1x2 · · ·xnx1 and
the subscripts are taken modulo n. Clearly, C2

n is a round digraph.
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Let D be a digraph with V (D) = {v1, v2, . . . , vr} and let H1, H2, . . . , Hr be a
collection of digraphs. Then D[H1, H2, . . . , Hr] is the new digraph obtained from
D by replacing each vertex vi of D with Hi and by adding the arcs from every
vertex of Hi to every vertex of Hj if vivj is an arc of D for all i and j satisfying
1 ≤ i 6= j ≤ r.

A locally semicomplete digraph D is round decomposable, if there exists a
round local tournament R on r ≥ 2 vertices such that D = R[D1, D2, . . . , Dr],
where each Di is a strong semicomplete digraph for i = 1, 2, . . . , r. We call
R[D1, D2, . . . , Dr] a round decomposition of D. Especially, when D is a round
decomposable local tournament, each component Di is a strong tournament. In
this paper, if we say that D is a round decomposable local tournament, it will
be always assumed that R[D1, D2, . . . , Dr] is a round decomposition of D, where
V (R) =

{

u11, u
2
1, . . . , u

r
1

}

with ui1 ∈ V (Di) for i = 1, 2, . . . , r, and u11, u
2
1, . . . , u

r
1 is

a round sequence of R.

In the following, we shall use the abbreviations RD’s to denote round di-
graphs, RDLT’s to denote round decomposable local tournaments and ATTOO’s
to denote almost transitive tournaments with odd order at least three.

In 1980, Thomassen characterized the tournaments with two arc-disjoint
Hamiltonian paths.

Theorem 1 [11]. Every strong tournament T has a pair of arc-disjoint Hamilto-

nian paths with distinct initial vertices and distinct terminal vertices if and only

if T is not an almost transitive tournament of odd order.

It is an interesting problem whether this result can be extended to local
tournaments. Since Bang-Jensen [1] introduced the class of locally semicomplete
digraphs in 1990, it has been intensively studied and the most interesting re-
sults can be found in [3–5, 8]. In 1997, Bang-Jensen, Guo, Gutin and Volkmann
presented a full classification of locally semicomplete digraphs.

Theorem 2 [2]. Let D be a connected locally semicomplete digraph. Then exactly

one of the following possibilities holds:

(a) D is round decomposable with a unique decomposition R[D1, D2, . . . , Dr],
where R is a round local tournament on r ≥ 2 vertices and Di is a strong

semicomplete digraph for i = 1, 2, . . . , r;

(b) D is not round decomposable and not semicomplete;

(c) D is a not round decomposable, semicomplete digraph.

Based on the above, many nice properties of semicomplete digraphs (tourna-
ments) were extended to locally semicomplete digraphs (local tournaments), such
as universal arcs, out-arc pancyclicity, kings and so on, see [9, 10, 12]. Recently,
Li et al. proved the following result.
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Theorem 3 [7]. Every 2-strong round decomposable local tournament has a pair

of arc-disjoint Hamiltonian paths with distinct initial vertices and distinct termi-

nal vertices.

In this paper we further characterize the strong, but not 2-strong, round
decomposable local tournaments containing such a pair of paths. In addition, we
also present a characterization of strong round digraphs which contain a pair of
arc-disjoint Hamiltonian paths with distinct initial vertices and distinct terminal
vertices which is a correction of a result in [6].

2. Arc-Disjoint Hamiltonian Paths in RD’s

In [6] the authors presented a characterization of the round digraphs which have
a pair of arc-disjoint Hamiltonian paths with distinct initial vertices and distinct
terminal vertices. According to this a strong round digraph D has a pair of such
paths if and only if C2

n − e is a spanning subdigraph of D when n is odd, or
C2
n − {e1, e2} is a spanning subdigraph of D when n is even, where e is a chord

of C2
n when n is odd, or e1, e2 are two chords with no common end-vertex in

C2
n when n is even. But this characterization is not correct (see the following

example) and a new characterization is given in Theorem 9.

Example 4. Let D = C2
8 − {e1, e2}, where C8 = u1u2 · · ·u8u1, e1 = u8u2 and

e2 = u4u6. Then D is a strong round digraph of even order and e1, e2 are two
chords with no common end-vertex in C2

8 . Note that D has exactly two cut-
vertices u1 and u5. Then by the proof of Claim 2 in the proof of Theorem 9,
where r = 8 and ℓ = 2, there do not exist two arc-disjoint Hamiltonian paths
with distinct initial vertices and distinct terminal vertices.

To present a revised version of the above characterization, we need the fol-
lowing lemmas, where all subscripts are taken modulo r.

Lemma 5. Let D be a strong round digraph with a round sequence u1, u2, . . . , ur.
If ui and uj (1 ≤ i < j ≤ r) are two cut-vertices and D has two arc-disjoint

Hamiltonian paths, then such two paths must start at ui+1 and uj+1 and end at

ui−1 and uj−1.

Proof. Since N−(ui+1) = {ui}, one of such two paths must start at ui+1, as
otherwise uiui+1 is a common arc of such two paths, a contradiction. Similarly,
the other path must start at uj+1 since N−(uj+1) = {uj}. Moreover, such two
paths must end at ui−1 and uj−1 due to N+(ui−1)={ui} and N+(uj−1)={uj}.

Lemma 6. Let D be a strong round digraph of odd order. If D has two consec-

utive cut-vertices with respect to the round sequence, then there do not exist two

arc-disjoint Hamiltonian paths in D.
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Proof. Let u1, u2, . . . , ur be a round sequence of D and assume without loss of
generality that u1, u2 are two cut-vertices. If D has two arc-disjoint Hamiltonian
paths, then r ≥ 5 and by Lemma 5, such two paths must start at u2 and u3 and
end at ur and u1. Since N−(u2) = {u1}, no (u3, u1)-path can contain the vertex
u2. So there is no Hamiltonian (u3, u1)-path, and thus, such two paths must be a
(u3, ur)-path P1 and a (u2, u1)-path P2. It is easy to see that P2 = u2u3 · · ·uru1.
Hence, there is at least one common arc in P1 and P2, since r is odd. This yields
a contradiction. So there do not exist two arc-disjoint Hamiltonian paths in D.

Lemma 7. Let D be a strong round digraph with a round sequence u1, u2, . . . , ur.
If ui and uj are two non-consecutive cut-vertices of D, then D has no Hamiltonian

(ui+1, ui−1)-path and no Hamiltonian (uj+1, uj−1)-path.

Proof. If there is a Hamiltonian (ui+1, ui−1)-path P , then it must pass through
the vertex ui. Since uj is a cut vertex, both of the subpaths P [ui+1, ui] and
P [ui, ui−1] must contain the vertex uj , which is impossible. So there is no Hamil-
tonian (ui+1, ui−1)-path. Similarly, there is no Hamiltonian (uj+1, uj−1)-path.

Lemma 8. Let D be a strong round digraph with a round sequence u1, u2, . . . , ur.
If ui and ui+2 are two cut-vertices of D for some i ∈ {1, 2, . . . , r}, then there do

not exist two arc-disjoint Hamiltonian paths in D.

Proof. Assume for contradiction that D has two arc-disjoint Hamiltonian paths
P1 and P2. Since N+(ui+1) = {ui+2} and N−(ui+1) = {ui}, one of such two
paths must start at ui+1, say P1, and the other path P2 must end at ui+1. By
Lemma 5, P1 is a (ui+1, ui−1)-path and P2 is a (ui+3, ui+1)-path. This contradicts
Lemma 7.

Theorem 9. Let D be a strong round digraph with a round sequence u1, u2, . . . , ur.
Then D has a pair of arc-disjoint Hamiltonian paths with distinct initial vertices

and distinct terminal vertices if and only if either D has at most one cut-vertex,

or D has exactly two cut-vertices whose subscripts are of different parity and r is

even.

Proof. (Sufficiency) First we consider the case that D has at most one cut-
vertex. Then C2

r − {e} is a spanning subdigraph of D, where Cr = u1u2 · · ·uru1
and e is a chord of Cr in C2

r . Assume without loss of generality that e = u1u3.
When r is odd, u3u5 · · ·uru2u4 · · ·ur−1u1 and u1u2 · · ·ur are the desired two
arc-disjoint Hamiltonian paths. When r is even, u3u5 · · ·ur−1u1u2u4 · · ·ur and
u2u3 · · ·uru1 are the desired two arc-disjoint Hamiltonian paths.

Now we consider the case that r is even and D has exactly two cut-vertices
whose subscripts are of different parity. Assume without loss of generality that
they are u1 and u2ℓ, where ℓ ∈ {1, 2, . . . , r/2}. If ℓ = 1, then u3u5 · · ·ur−1u1u2u4
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· · ·ur and u2u3 · · ·uru1 are the desired two arc-disjoint Hamiltonian paths. If ℓ ∈
{2, 3, . . . , r/2 − 1}, then u2u4 · · ·u2ℓu2ℓ+1 · · ·uru1u3 · · ·u2ℓ−1 and u2ℓ+1u2ℓ+3 · · ·
u1u2 · · ·u2ℓu2ℓ+2 · · ·ur are the desired two paths. If ℓ = r/2, then it is covered
by renaming u2ℓ as u1.

(Necessity) Suppose D has a pair of arc-disjoint Hamiltonian paths with
distinct initial vertices and distinct terminal vertices.

If D has at least three cut-vertices and two of them are consecutive, then we
may assume without loss of generality that they are u1, u2 and ui. By Lemma 8
we know that 5 ≤ i ≤ r−2. Since u1 and ui are two non-consecutive cut-vertices,
then by Lemmas 5 and 7 one of such two paths is a (u2, ui−1)-path and the other is
a (ui+1, ur)-path. But u1 cannot lie on the (u2, ui−1)-path since N+(u1) = {u2}.
This yields a contradiction.

If D has at least three cut-vertices and none of them are consecutive, then we
may assume that they are u1, ui and uj (4 ≤ i+1 < j ≤ r−1). By Lemma 8, we
know that 7 ≤ i+ 3 ≤ j ≤ r − 2 and r ≥ 9. Since u1 and ui are cut-vertices, by
Lemmas 5 and 7 such two paths must be a (ui+1, ur)-path and a (u2, ui−1)-path.
But they have a common arc uj−1uj since N

+(uj−1) = {uj}. It is a contradiction.
From the discussion above we know that D has at most two cut-vertices. If

D contains at most one cut-vertex, then we are done. Assume in the following
that D has exactly two cut-vertices, say u1 and ui, where 2 ≤ i ≤ r. It follows
from Lemmas 5 and 7 that one of such two paths is a (u2, ui−1)-path P1 and the
other is a (ui+1, ur)-path P2.

Since u1 and ui are cut-vertices, the path P1 contains P ′

1 = uiui+1 · · ·uru1 as
a subpath and P2 contains P ′

2 = u1u2 · · ·ui as a subpath. If the round sequence
from u2 to ui−1 contains an odd number of vertices, then P1 contains at least one
common arc on P ′

2. Similarly, if the round sequence from ui+1 to ur contains an
odd number of vertices, then P2 contains at least one common arc on P ′

1. So i
and r are both even. That is to say the subscripts of such two cut-vertices are of
different parity.

Altogether, we have shown that D has at most one cut-vertex or D has
exactly two cut-vertices whose subscripts are of different parity and r is even.

3. Structure of RDLT’s

In this section we only consider RDLT’s with strong connectivity number 1 in
view of Theorem 3. First we give the following definition which will be used to
construct two arc-disjoint Hamiltonian paths in our main result (Theorem 15).

Definition 10. Let D be a round decomposable local tournament with a round
decomposition D = R[D1, D2, . . . , Dr] and let i ∈ {1, 2, . . . , r}.

(1) If Di is a single vertex, say x, then define P i
1 = P i

2 = P i = P i′ = x.
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(2) If Di is an ATTOO with the vertex set {x1, x2, . . . , xt}, then define P i
1 =

xtx1x3 · · ·xt−2, P
i
2 = x2x4 · · ·xt−1 and P i′ = x1x2 · · ·xt (Figure 1 gives an

example, where Di is an ATTOO with order five, P i
1 = x5x1x3, P

i
2 = x2x4

and P i′ = x1x2x3x4x5).

(3) If Di is not an ATTOO and |V (Di)| ≥ 3, then |V (Di)| ≥ 4 and define P i,
P i′ to be the two arc-disjoint Hamiltonian paths with distinct initial vertices
and distinct terminal vertices in Di (Theorem 1 guarantees the existence of
such two paths).

q q q q q
- - -

- -

- - - -

�

x1 x2 x3 x4 x5

Figure 1. Di

Proposition 11. Let P i = x1x2 · · ·xt and P i′ = y1y2 · · · yt be the two paths

in Definition 10(3), where t = |V (Di)|, x1 6= y1 and xt 6= yt. Then P i can be

partitioned into an (x1, xk)-subpath P i
1 and an (xk+1, xt)-subpath P i

2 such that

1 ≤ k ≤ t− 1, xk+1 6= y1 and xk 6= yt.

Proof. Recall that t ≥ 4. If x1 6= yt and x2 6= y1, then P i
1 = x1 and P i

2 =
x2x3 · · ·xt are the desired two subpaths of P i. Assume in the following that
x1 = yt or x2 = y1.

If x1 = yt and x3 6= y1, then x2 6= yt and P i
1 = x1x2, P

i
2 = x3 · · ·xt are the

desired two subpaths of P i.

If x1 = yt and x3 = y1, then x3 6= yt and x4 6= y1. So P i
1 = x1x2x3 and

P i
2 = x4 · · ·xt are the desired two subpaths of P i.

If x2 = y1, then x3 6= y1 and x2 6= yt. So P i
1 = x1x2 and P i

2 = x3x4 · · ·xt are
the desired two subpaths of P i.

Note that if x is a cut-vertex of an RDLT, then the component that x belongs
to contains a single vertex. In order to present the counterexamples of our main
result, we define the following substructures of D.

Definition 12. Let D be an RDLT with a round decomposition D = R[D1, D2,

. . . , Dr] and let uk11 , uk21 , . . . , u
kp
1 be all cut-vertices of D, where p ≥ 1, 1 ≤ k1 <

k2 < · · · < kp ≤ r and V (Dki) =
{

uki1
}

for i = 1, 2, . . . , p. Then the subdigraphs
D〈Dk1 , Dk1+1, . . . , Dk2〉, D〈Dk2 , Dk2+1, . . . , Dk3〉, . . . , D〈Dkp , Dkp+1, . . . , Dkp+1

〉

of D are called p segments of D, where kp+1 , k1 + r and all subscripts are
taken modulo r. Note that when p = 1, the unique segment is D itself.
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(1) A segment D〈Dki , Dki+1, . . . , Dki+1
〉 with at least one |V (Dt)| ≥ 3 for some

t ∈
{

ki + 1, ki + 2, . . . , ki+1 − 1
}

is called a good-type segment of D if none
of the components Dki , Dki+1, . . . , Dki+1

is an ATTOO and no consecutive
components are both a single vertex.

(2) A segment D〈Dki , Dki+1, . . . , Dki+1
〉 with at least one |V (Dt)| ≥ 3 for some

t ∈
{

ki + 1, ki + 2, . . . , ki+1 − 1
}

is called a bad-type-I segment of D if at
least one component Dα is an ATTOO for some α ∈ {ki + 1, . . . , ki+1 − 1}
or at least two consecutive components are a single vertex. The number of
bad-type-I segments in D is denoted by b1(D).

(3) A segment D〈Dki , Dki+1, . . . , Dki+1
〉 is called a bad-type-II segment of D if

ki+1−ki is an even number and each component Dt contains a single vertex
for t = ki, ki + 1, . . . , ki+1. The number of bad-type-II segments in D is
denoted by b2(D).

(4) A segment D〈Dki , Dki+1, . . . , Dki+1
〉 is called a bad-type-III segment of D if

ki+1 − ki is an odd number and each component Dt contains a single vertex
for t = ki, ki + 1, . . . , ki+1. The number of bad-type-III segments in D is
denoted by b3(D).

s
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To illustrate Definition 12, we give an RDLT D in Figure 2, where Di is a
single vertex for i = 1, 3, 5, 6, 7, 8, 9, D2 is a strong tournament with order four
and D4 is a strong tournament with order three. Then D4 is an ATTOO and the
unique vertex in V (Dj) is a cut-vertex of D for j = 1, 3, 5, 7. Thus there are four
segmentsD〈D1, D2, D3〉,D〈D3, D4, D5〉,D〈D5, D6, D7〉,D〈D7, D8, D9, D1〉 inD,
and they are of good-type, bad-type-I, bad-type-II and bad-type-III, respectively.

Remark 13. Any segment of D is either good-type or bad-type-I or bad-type-
II or bad-type-III. The bad-type-I, bad-type-II and bad-type-III segments are
collectively called bad-type segments. Every good-type segment contains two arc-
disjoint Hamiltonian paths, but any bad-type segment does not have this prop-
erty. That is the reason we call it a good-type or bad-type segment.

Now we define three special classes of RDLT’s as follows which are the ex-
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ceptions of our main result.

D1 = {D | D is an RDLT with κ(D) = 1 and b2(D) ≥ 2};

D2 = {D | D is an RDLT with κ(D) = 1, b2(D) = 1 and b3(D) + b1(D) ≥ 1};

D3 = {D | D is an RDLT with κ(D) = 1, b2(D) = 0 and b3(D) + b1(D) ≥ 3}.

It is clear that every round local tournament is an RDLT, where each compo-
nent consists of a single vertex. Moreover, if D is a strong round local tournament
of order r, then D has exactly two cut-vertices whose subscripts are of different
parity and r is even if and only if b2(D) = 0, b3(D) = 2 and b1(D) = 0. Combin-
ing Theorem 9 with the definitions of D1, D2 and D3 we can obtain the following
result.

Corollary 14. A strong round local tournament D has a pair of arc-disjoint

Hamiltonian paths with distinct initial vertices and distinct terminal vertices if

and only if D is not in D1 ∪ D2 ∪ D3.

4. Arc-Disjoint Hamiltonian Paths in RDLT’s

Theorem 15 (Main result). Let D be a round decomposable local tournament

with κ(D) = 1. Then D has a pair of arc-disjoint Hamiltonian paths with distinct

initial vertices and distinct terminal vertices if and only if D is not in D1∪D2∪D3.

Proof. Let R[D1, D2, . . . , Dr] be a round decomposition ofD. If each component
Di is a single vertex, then D is a round local tournament and we are done by
Corollary 14. So assume in the following that at least one component of D is not
a single vertex.

Let uk11 , uk21 , . . . , u
kp
1 be all cut-vertices of D, where p ≥ 1, 1 ≤ k1 < k2 <

· · · < kp ≤ r and V (Dki) = {uki1 } for i = 1, 2, . . . , p. Assume without loss
of generality that k1 = 1. Then divide D into p segments D〈D1, D2, . . . , Dk2〉,
D〈Dk2 , Dk2+1, . . . , Dk3〉,. . ., D〈Dkp , Dkp+1, . . . , Dkp+1

〉, where kp+1 , r + 1 and

Dr+1 , D1. Denote ℓi = |V (Di)| and ui1 ∈ V (Di) for i = 1, 2, . . . , r. The symbols
P i, P i′, P i

1, P
i
2 refer to Definition 10 and Proposition 11.

(Sufficiency) Suppose D is not in D1 ∪ D2 ∪ D3. Then b2(D) ≤ 1, and when
b2(D) = 1, we have b3(D) = b1(D) = 0; when b2(D) = 0, we have b3(D)+b1(D) ≤
2. Consider the following seven cases.

Case 1. b2(D) = 1, b1(D) = b3(D) = 0. In this case p ≥ 2, as otherwise,
the unique segment is bad-type-II, which implies that each component Di con-
sists of a single vertex, a contradiction. Assume without loss of generality that
D〈D1, D2, . . . , Dk2〉 is a bad-type-II segment. Then other segments are all good-
type, and hence, there are two arc-disjoint Hamiltonian

(

uk21 , u11
)

-paths P ∗ and
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P ∗∗ in D〈Dk2 , Dk2+1, . . . , D1〉 by Remark 13. Now u21u
4
1 · · ·u

k2−1
1 P ∗u31u

5
1 · · ·u

k2−2
1

and P ∗∗u21u
3
1 · · ·u

k2−1
1 are the desired two paths.

Case 2. b2(D) = b1(D) = 0, b3(D) = 2. In this case p ≥ 3. Assume that
D〈D1, D2, . . . , Dk2〉 and D〈Dk2 , Dk2+1, . . . , Dk3〉 are bad-type-III segments. If
this is not the case, then we will have two sets of paths instead of P ∗ and P ∗∗,
but the structure is the same, so we only give the proof in the first case and
other cases are similar (just with 2 extra paths). It is clear that k2 is an even
number and k3 is an odd number. Moreover, other segments are all good-type,

and hence, there are two arc-disjoint Hamiltonian
(

uk31 , u11

)

-paths P ∗ and P ∗∗

in D〈Dk3 , Dk3+1, . . . , D1〉. Now u21u
4
1 · · ·u

k2uk2+1 · · ·uk3−1P ∗u31u
5
1 · · ·u

k2−1 and
uk2+1uk2+3 · · ·P ∗∗u21u

3
1 · · ·u

k2
1 uk2+2

1 · · ·uk3−1
1 are the desired two paths.

Case 3. b2(D) = b3(D) = 0, b1(D) = 1. Suppose first that p = 1 and u11 is the
unique cut-vertex. If r is odd, then let P = P 2

1 (P
3
1 )P

4
1 · · ·P 1

1 (P
2
2 )P

3
2 (P

4
2 ) · · ·P

r
2

and P ′ = P 3′P 4′ · · ·P r ′P 1′P 2′, where the symbol (P 3
1 ) denotes that when ℓ3 ≥ 3,

the path P passes through P 3
1 ; when ℓ3 = 1, the path P skips the path P 3

1 . Other
similar symbols express the same meaning. It is not difficult to check that P and
P ′ are the desired two paths.

If r is even, then it is easy to see that P = P 2
1 (P

3
1 )P

4
1 · · ·P r

1P
1
1 (P

2
2 )P

3
2 (P

4
2 ) · · ·

P r−1
2 (P r

2 ) and P ′ = P 1′P 2′P 3′ · · ·P r ′ are the desired two paths.

Suppose now that p ≥ 2 and assume without loss of generality thatD〈D1, D2,
. . . , Dk2〉 is a bad-I-type segment. Then k2 ≥ 3 and other segments are all good-
type. Thus, there are two arc-disjoint Hamiltonian

(

uk21 , u11
)

-paths P ∗ and P ∗∗

in D〈Dk2 , Dk2+1, . . . , D1〉.

If k2 = 3, then D2 is an ATTOO and P = P 2
1P

∗P 2
2 , P

′ = P 2′P ∗∗ are the
desired two paths.

If k2 ≥ 5 is odd, then P = P 2
1 (P

3
1 )P

4
1 · · ·P k2−1

1 P ∗(P 2
2 )P

3
2 · · ·P k2−2

2

(

P k2−1
2

)

and P ′ = P ∗∗P 2′P 3′ · · ·P k2−1′ are the desired two paths.

If k2 ≥ 4 is even, then P = P 2
1 (P

3
1 )P

4
1 · · ·P ∗(P 2

2 )P
3
2 (P

4
2 ) · · ·P

k2−1
2 and P ′ =

P 2′P 3′ · · ·P k2−1′P ∗∗ are the desired two paths.

Case 4. b2(D) = b3(D) = 0, b1(D) = 2. Similarly to Case 2, we may assume
that D〈D1, D2, . . . , Dk2〉 and D〈Dk2 , Dk2+1, . . . , Dk3〉 are bad-type-I segments.
Note that when p ≥ 3, other segments are all good-type. Let s1 = min{2 ≤ j ≤
k2 − 1 | ℓj ≥ 3} and s2 = min{k2 + 1 ≤ j ≤ k3 − 1 | ℓj ≥ 3}. Define the following
paths:

P1 = P 2
1

(

P 3
1

)

P 4
1 · · ·

(

P k2−1
1

)

P k2 ′P k2+1′ · · ·P r ′P 1
(

P 2
2

)

P 3
2 · · ·P k2−1

2 ;

P2 = P k2+1
1

(

P k2+2
1

)

P k2+3
1 · · ·P k3

(

P k3+1 · · ·P rP 1
)

P 2′

· · ·P k2 ′
(

P k2+1
2

)

P k2+2
2

(

P k2+3
2

)

· · ·P k3−1
2 ;
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P3 = P k2+1P k2+3 · · ·P s2
1 P s2+1

1

(

P s2+2
1

)

P s2+3
1 · · ·

(

P k3−1
1

)

P k3
(

P k3+1 · · ·P 1
)

P 2′

· · ·P k2 ′P k2+2 · · ·P s2−1P s2
2

(

P s2+1
2

)

P s2+2
2 · · ·P k3−1

2 ;

P4 = P k2+1P k2+3 · · ·P s2−1P s2
1

(

P s2+1
1

)

P s2+2
1 · · ·P k3

(

P k3+1 · · ·P rP 1′
)

· · ·P k2 ′P k2+2 · · ·P s2
2 P s2+1

2

(

P s2+2
2

)

· · ·P k3−1
2 ;

P5 = P 2P 4 · · ·P s1−1P s1
1

(

P s1+1
1

)

P s1+2
1 · · ·P k2 ′P k2+1′ · · ·P r ′P 1P 3

· · ·P s1
2 P s1+1

2

(

P s1+2
2

)

· · ·P k2−1
2 ;

P6 = P 2P 4 · · ·P s1
1 P s1+1

1

(

P s1+2
1

)

P s1+3
1 · · ·P k2 ′P k2+1′ · · ·P r ′P 1P 3

· · ·P s1−1P s1
2

(

P s1+1
2

)

P s1+2
2 · · ·P k2−1

2 .

If k2 is even and k3 is odd, then P1 and P2 are the desired two paths. An

example is shown in Figure 3, where k2 = 4, k3 = 7, V (Di) = {ui1} for i =

1, 3, 4, 5, Dj is a 3-cycle uj1u
j
2u

j
3u

j
1 for j = 2, 6 and u11, u

4
1 are two cut-vertices.

Then P1 = u23u
2
1u

4
1u

5
1u

6
1u

6
2u

6
3u

1
1u

2
2u

3
1 and P2 = u51u

6
3u

6
1u

1
1u

2
1u

2
2u

2
3u

3
1u

4
1u

6
2 are two

arc-disjoint Hamiltonian paths.

s

s

�
��

s

�
��

s

j

N

/
}

6

3

�

]

D1

D2

D3

D4

D5

D6

Figure 3

If k2 and k3 are both even, then in the case when s2 is odd, P1 and P3 are the
desired paths; in the case when s2 is even, P1 and P4 are the desired two paths.

If k2 is odd and k3 is even, then in the case when s1 is odd, P5 and P2 are
the desired paths; in the case when s1 is even, P6 and P2 are the desired paths.

If k2 and k3 are both odd, then in the case when s1 and s2 are even, P6 and
P3 are the desired paths; in the case when s1 is even and s2 is odd, P6 and P4 are
the desired paths; in the case when s1 and s2 are odd, P5 and P4 are the desired
paths; in the case when s1 is odd and s2 is even, P5 and P3 are the desired paths.

Case 5. b2(D) = 0, b3(D) = b1(D) = 1. Assume without loss of generality
that D〈D1, D2, . . . , Dk2〉 is a bad-type-III segment and D〈Dk2 , Dk2+1, . . . , Dk3〉
is a bad-type-I segment. Note that when p ≥ 3, other segments are all good-type.
Let P = P 2P 4 · · ·P k2P k2+1′ · · ·P r ′P 1P 3 · · ·P k2−1. Then P is a Hamiltonian
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path in D. Now we look for another Hamiltonian path P ′ in D such that P and
P ′ are arc-disjoint.

Subcase 5.1. k3 is an odd number. In this case P ′ = P k2+1
1

(

P k2+2
1

)

P k2+3
1 · · ·

P k3
1

(

P k3+1 · · ·P 1
)

P 2P 3 · · ·P k2
(

P k2+1
2

)

P k2+2
2

(

P k2+3
2

)

· · ·P k3−1
2 is another desired

path.

Subcase 5.2. k3 is an even number. Define s = min{k2 + 1 ≤ j ≤ k3 − 1 |
ℓj ≥ 3}. In the case when s is an odd number, the path P ′ = P k2+1P k2+3 · · ·

P s
1P

s+1
1

(

P s+2
1

)

P s+3
1 · · ·P k3

1

(

P k3+1 · · ·P 1
)

P 2P 3 · · ·P k2P k2+2 · · ·P s−1P s
2

(

P s+1
2

)

P s+2
2

(

P s+3
2

)

· · ·P k3−1
2 is just we desired. In the other case, when s is an even

number, P ′ = P k2+1P k2+3 · · ·P s−1P s
1

(

P s+1
1

)

P s+2
1 · · ·P k3

1

(

P k3+1 · · ·P 1
)

P 2P 3 · · ·

P k2P k2+2 · · ·P s
2P

s+1
2

(

P s+2
2

)

· · ·P k3−1
2 is the desired path.

Case 6. b2(D) = b1(D) = 0, b3(D) = 1. In this case p ≥ 2. Assume without
loss of generality that D〈D1, D2, . . . , Dk2〉 is a bad-type-III segment. Then other
segments are all good-type. So there are two arc-disjoint Hamiltonian

(

uk21 , u11
)

-
paths P ∗ and P ∗∗ inD〈Dk2 , Dk2+1, . . . , D1〉. Now P = P 2P 4 · · ·P k2−2P ∗P 3P 5 · · ·
P k2−1 and P ′ = P ∗∗P 2P 3 · · ·P k2−1 are the desired two paths.

Case 7. b1(D) = b2(D) = b3(D) = 0. In this case all segments of D are
good-type, and then, every segment D〈Dki , Dki+1, . . . , Dki+1

〉 has two arc-dis-
joint Hamiltonian paths Pi and Pi

′ for i = 1, 2, . . . , p. Hence, P1P2 · · ·Pp and
P2

′P3
′ · · ·Pp

′P1
′ are two arc-disjoint Hamiltonian paths with distinct initial ver-

tices and distinct terminal vertices.

(Necessity) Suppose D ∈ D1 ∪ D2 ∪ D3. Then p ≥ 2. In the following we
show that D does not contain two arc-disjoint Hamiltonian paths.

Claim 1. If there is a bad-type-II segment and besides it there is another bad-type
segment in D, then D does not contain two arc-disjoint Hamiltonian paths.

Proof. Assume without loss of generality that D〈D1, D2, . . . , Dk2〉 is a bad-
type-II segment. Then k2 is an odd number. Note that D contains at least two
bad-type segments and any of them does not contain two arc-disjoint Hamiltonian

paths. Since uk11 , uk21 , . . . , u
kp
1 are cut-vertices of D, we deduce that any Hamilto-

nian path of D starting at some one segment must pass through the Hamiltonian
path of any other segment. So if D contains a pair of arc-disjoint Hamiltonian
paths P and P ′, then they must start at different segments, and then, at least
one path, say P , does not start at the segment D〈D1, D2, . . . , Dk2〉. So P must
contain u11u

2
1 · · ·u

k2
1 as a subpath. Since k2 is odd, the path P ′ contains at least

one arc on this subpath, a contradiction. Therefore, D does not contain two
arc-disjoint Hamiltonian paths. �

If D ∈ D1∪D2, then we are done by Claim 1. So we only need to consider the
case that D ∈ D3. This implies that there are at least three bad-type segments in
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D. Note that any Hamiltonian path of D starting at some one segment must pass
through the Hamiltonian path of any other segment and each bad-type segment
does not have two arc-disjoint Hamiltonian paths. So D does not contain two
arc-disjoint Hamiltonian paths.

5. Discussion

Combining Theorem 15 with Theorem 3, we partly extend Theorem 1 from tour-
naments to round decomposable local tournaments. According to the classifi-
cation of local tournaments, it would be interesting whether Theorem 1 can be
further extended to non-round decomposable local tournaments. In [6] it was
proved that every 2-strong non-round decomposable local tournament has a pair
of arc-disjoint Hamiltonian paths with distinct initial vertices and distinct termi-
nal vertices. So it remains to consider the existence of such two paths in strong,
but not 2-strong, non-round decomposable local tournaments. We leave this as
an open problem.
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