LIST EDGE COLORING OF PLANAR GRAPHS WITHOUT 6-CYCLES WITH TWO CHORDS

Linna Hu ${ }^{a}$, Lei Sun ${ }^{b}$
AND
Jian-LiANG WU ${ }^{a, 1}$
${ }^{a}$ School of Mathematics, Shandong University, Jinan, 250100, China
${ }^{b}$ School of Mathematics, Shandong Normal University, Jinan, 250358, China
e-mail: jlwu@sdu.edu.cn.

Abstract

A graph G is edge- L-colorable if for a given edge assignment $L=\{L(e)$: $e \in E(G)\}$, there exists a proper edge-coloring φ of G such that $\varphi(e) \in L(e)$ for all $e \in E(G)$. If G is edge- L-colorable for every edge assignment L such that $|L(e)| \geq k$ for all $e \in E(G)$, then G is said to be edge- k-choosable. In this paper, we prove that if G is a planar graph without 6 -cycles with two chords, then G is edge- k-choosable, where $k=\max \{7, \Delta(G)+1\}$, and is edge- t-choosable, where $t=\max \{9, \Delta(G)\}$.

Keywords: planar graph, edge choosable, list edge chromatic number, chord.
2010 Mathematics Subject Classification: 05C15.

1. InTRODUCTION

Graphs considered in this paper are finite, simple and undirected. The terminologies and notations used but undefined in this paper can be found in [2]. Let $G=(V, E)$ be a graph. We use $V(G), E(G), \Delta(G)$ and $\delta(G)$ (or simply V, E, Δ and δ) to denote the vertex set, the edge set, the maximum degree and the minimum degree of G, respectively. A cycle C of length k is called a k-cycle in the graph G. If $x y \in E(G) \backslash E(C)$ and $x, y \in V(C), x y$ is called to be a chord of C in the graph G.

[^0]An edge coloring of a graph G is a mapping φ from $E(G)$ to the set of colors $\{1,2, \ldots, k\}$ for some positive integer k. An edge coloring is called proper if every two adjacent edges receive different colors. The edge chromatic number $\chi^{\prime}(G)$ is the smallest integer k such that G has a proper edge-coloring into the set $\{1,2, \ldots, k\}$.

We say that L is an edge assignment for the graph G if it assigns a list $L(e)$ of possible colors to each edge e of G. If G has a proper edge-coloring φ such that $\varphi(e) \in L(e)$ for each edge e of G, then we say that G is edge-L-colorable or φ is an edge-L-coloring of G. The graph G is edge- k-choosable if it is edge-L-colorable for every edge assignment L satisfying $|L(e)| \geq k$ for all $e \in E(G)$. The list edge chromatic number $\chi_{\text {list }}^{\prime}(G)$ of G is the smallest k such that G is edge- k-choosable.

On the list edge coloring of a graph, there is a celebrated conjecture known as the list edge coloring conjecture, which was formulated independently by Vizing, by Gupta, by Alberson and Collins, and by Bollobás and Harris (see [8, 13]).

Conjecture 1 [9]. If G is a multigraph, then $\chi_{\text {list }}^{\prime}(G)=\chi^{\prime}(G)$.
The conjecture has been proved for a few classes of graphs, such as graphs with $\Delta(G) \geq 12$ which can be embedded in a surface of non-negative characteristic [4], outerplanar graphs [19], bipartite multigraphs [4, 7], complete graphs of odd order [9]. Vizing [15] proposed a weaker conjecture than Conjecture 1.

Conjecture 2 [9]. Every graph G is edge- $(\Delta(G)+1)$-choosable.
Harris [10] showed that $\chi_{\text {list }}^{\prime}(G) \leq 2 \Delta(G)-2$ if G is a graph with $\Delta(G) \geq 3$. This implies Conjecture 2 for the case $\Delta(G)=3$. Juvan et al. [14] settled the case for $\Delta(G)=4$ in 1999. And there are some other special cases of Conjecture 2 which have been confirmed, such as complete graphs [8], graphs with girth at least $8 \Delta(G)(\ln \Delta(G)(G)+1.1)$ [15], planar graphs with $\Delta(G) \geq 8$ [1], and planar graphs with $\Delta(G) \neq 5$ and without intersecting 3 -cycles [20]. Suppose that G is a planar graph without k-cycles for some fixed integer $3 \leq k \leq 6$. Then it was proved that Conjecture 2 holds if G satisfies one of the four following conditions:
(i) either $k=3$ or $k=4$ and $\Delta(G) \neq 5$ [22],
(ii) $k=4$ [17],
(iii) $k=5$ [20],
(iv) $k=6$ and $\Delta(G) \neq 5[18]$.

Other related known results on this topic can be found in [5, 11, 12, 16].
Cai [6] proved that if G is a planar graph without chordal 6 -cycles, then G is edge- k-choosable, where $k=\max \{8, \Delta(G)+1\}$. In this paper, we will strengthen this result and obtain that if G is a planar graph and each 6 -cycle of G contains at most one chord, then $\chi_{\text {list }}^{\prime}(G) \leq \max \{7, \Delta(G)+1\}$ and $\chi_{\text {list }}^{\prime}(G) \leq \max \{9, \Delta(G)\}$.

2. Main Results and Their Proofs

In the section, we always assume that all graphs are planar graphs that have been embedded in the plane and G is a planar graph without 6 -cycles with two chords. We use $d_{G}(x)$, or simply $d(x)$, to denote the degree of a vertex x in G. For $f \in F(G)$, if $u_{1}, u_{2}, \ldots, u_{n}$ are the vertices on the boundary walk, then we write $f=u_{1} u_{2} \cdots u_{n} u_{1}$. The degree of a f, denoted by $d(f)$, is the number of edges incident with f, where each cut-edge is counted twice. We denote by $\delta(f)$ the minimum degree of vertices incident with the face f. A vertex (face) x is called to be a k-vertex (k-face), k^{+}-vertex (k^{+}-face) and k^{-}-vertex (k^{-}-face), if $d(x)=k, d(x) \geq k$ and $d(x) \leq k$, respectively. $f_{i}(v)$ is the number of i-faces incident with v for each $v \in V(G)$.

First, we give some properties on G.
Lemma 3. If v is a 5^{+}-vertex of G, then $f_{3}(v) \leq\left\lfloor\frac{3}{4} d(v)\right\rfloor$.
Proof. Since G contains no 6 -cycles with two chords, v is not incident with four consecutive 3 -faces. So $f_{3}(v) \leq\left\lfloor\frac{3}{4} d(v)\right\rfloor$.

Lemma 4. Let u be a 4-vertex of G.
(1) If $f_{3}(u)=3$, then $f_{4}(u)=0$, that is, u is incident with a 5^{+}-face.
(2) If $f_{3}(u)=2$, then $f_{4}(u) \leq 1$.

Proof. Let neighbors of u be $u_{1}, u_{2}, u_{3}, u_{4}$ and faces incident with u be f_{1}, f_{2}, f_{3}, f_{4} in the clockwise order, where f_{1} is incident with u_{1}, u_{2}.
(1) Without loss of generality, we assume that f_{1}, f_{2}, f_{3} are 3 -faces. If f_{4} is a 4 -face $u u_{1} v u_{4} u$, then the 6 -cycle $u u_{2} u_{3} u_{4} v u_{1} u$ contains two chords $u u_{3}$ and $u u_{4}$, a contradiction. So $d\left(f_{4}\right) \geq 5$, that is, $f_{5^{+}}(u)=1$.
(2) Suppose that two 3 -faces incident with u are not adjacent, without loss of generality, we assume that f_{1}, f_{3} are 3 -faces. If f_{2} is a 4 -face $u u_{2} v u_{3} u$, then the 6 -cycle $u u_{1} u_{2} v u_{3} u_{4} u$ contains two chords $u u_{2}$ and $u u_{3}$, a contradiction. So $d\left(f_{2}\right) \geq 5$. By the same argument, we have $d\left(f_{4}\right) \geq 5$.

Suppose that two 3 -faces incident with u are adjacent, without loss of generality, we assume that f_{1}, f_{2} are 3 -faces. If f_{3} is a 4 -face $u u_{3} v u_{4} u$, then we must have $v=u_{1}$. Since $d(u)=4, d\left(u_{4}\right) \geq 5$. Thus if f_{4} is a 4 -face $u u_{1} w u_{4} u$, then we also have $w=u_{3}$, it is impossible. So $d\left(f_{4}\right) \geq 5$. By the same argument, if $d\left(f_{4}\right)=4$, then $d\left(f_{3}\right) \geq 5$. Hence $f_{4}(u) \leq 1$.

Lemma 5. G satisfies at least one of the following conditions.
(1) G has an edge uv with $d(u)+d(v) \leq \max \{8, \Delta(G)+2\}$.
(2) G has an even cycle $C=v_{1} v_{2} \cdots v_{2 n} v_{1}$ with $d\left(v_{1}\right)=d\left(v_{3}\right)=\cdots=d\left(v_{2 n-1}\right)$ $=3$.
(3) G has a 6-vertex u with five neighbors v, w, x, y, z such that $d(v)=d(y)=3$ and $v w, x y, y z \in E(G)$ (see Figure 1).

Figure 1. The subgraph for Lemma 5(3).

Proof. Let G be a minimal counterexample to the lemma. It is easy to check that G is connected. By the choice of G, we have the following observations.
(P1) For any edge $u v, d(u)+d(v) \geq \max \{9, \Delta(G)+3\}$ by (1). Then $\delta(G) \geq 3$ and all neighbors of a i-vertex must be $(9-i)^{+}$-vertices, where $i=3,4$ or 5 .
(P2) Let G_{3} be the subgraph induced by the edges incident with 3 -vertices of G. Then G_{3} is a forest.

By (P 1), every two 3 -vertices are not adjacent, and it follows that G_{3} is a bipartite subgraph. By (2), G_{3} contains no even cycles. So G_{3} is a forest and (P2) holds. Let V_{1} be the set of 3 -vertices of G. Thus for any component of G_{3}, we select a vertex $u \notin V_{1}$ as a root of the tree. Then every 3 -vertex has exactly two children. If $u v \in E\left(G_{3}\right), u \in V_{1}$ and v is a child of u, then v is called a 3 -master of u. Note that each 3 -vertex has exactly two 3 -masters and each vertex of degree at least 6 can be the 3 -master of at most one 3 -vertex.

According to the Euler's formula $|V(G)|-|E(G)|+|F(G)|=2$ of a planar graph G, we have
$\sum_{v \in V(G)}(3 d(v)-10)+\sum_{f \in F(G)}(2 d(f)-10)=-10(|V(G)|-|E(G)|+|F(G)|)=-20<0$.
Now we define the initial weight function on $V(G) \cup F(G)$ by letting $w(x)=$ $3 d(x)-10$ for any $x \in V(G)$ and $w(x)=2 d(x)-10$ for any $x \in F(G)$. Thus the total sum of weights is the negative number -20 . We use the following rules to redistribute the initial charge that leads to a new charge $w^{\prime}(x)$.
R1. Every 3-vertex v receives $\frac{1}{2}$ from each of its 3-masters.
R2. Let $f=u u^{\prime} v v^{\prime} u$ be a 4-face in G with $d(u) \leq \min \left\{d\left(u^{\prime}\right), d(v), d\left(v^{\prime}\right)\right\}$. If $d(u) \geq 4$, then f receives $\frac{1}{2}$ from each of its incident vertices. Otherwise, f receives nothing from u, receives $\frac{1}{2}$ from $v, \frac{3}{4}$ from u^{\prime} and $\frac{3}{4}$ from v^{\prime}.

R3. Let f be a 3 -face incident with a 4^{+}-vertex v. Then f receives a from v.
R3.1. If $d(v)=4$, then
$a= \begin{cases}\frac{1}{2} & \text { if } f_{4}-(v)=4 \text { or if } f_{3}(v)=3 \text { and } f \text { is located in the middle } \\ \text { of three consecutive } 3 \text {-faces incident with } v, \\ \frac{3}{4} & \text { if } f_{3}(v)=2 \text { and } f_{4}(v)=1, \text { or if } f_{3}(v)=3 \text { and } f \text { is located } \\ \text { in one side of three consecutive } 3 \text {-faces incident with } v, \\ 1 & \text { otherwise. }\end{cases}$
R3.2. If $d(v)=5$, then

R3.3. If $d(v) \geq 6$, then
$a= \begin{cases}\frac{3}{2} & \text { if } f \text { is adjacent to two non-adjacent }\left(3,6,6^{+}\right) \text {-faces at } v \\ \text { and } d(v)=6, \\ \text { if } f \text { is incident with a 3-vertex, } \\ \frac{7}{4} & \text { otherwise. }\end{cases}$
In the following, we will check that $w^{\prime}(x) \geq 0$ for all elements $x \in V(G) \cup F(G)$ to obtain the following obvious contradiction.

$$
0 \leq \sum_{v \in V \cup F} w^{\prime}(x)=\sum_{v \in V \cup F} w(x)=-20 .
$$

First, we consider the final charge of any face f. If $d(f) \geq 5$, then it retains its initial charge and it follows that $w^{\prime}(f)=w(f)=2 d(f)-10 \geq 0$. Suppose that $d(f)=4$. Then $w(f)=8-10=-2$. If $\delta(f)=3$, then $w^{\prime}(f)=w(f)+\frac{3}{4}+\frac{1}{2}+\frac{3}{4}=0$ by R2. Otherwise $w^{\prime}(f)=w(f)+4 \times \frac{1}{2}=0$. So $w^{\prime}(f) \geq 0$ if $d(f)=4$.

Suppose that $d(f)=3$. Then $w(f)=6-10=-4$. If $\delta(f)=3$, then f is incident with two 6^{+}-vertices by $(P 1)$ and it follows that $w^{\prime}(f)=w(f)+2+2=0$ by R3.3. If $\delta(f) \geq 5$, then f receives at least $\frac{3}{2}$ from each of its incident vertices by R3.2 and R3.3, so $w^{\prime}(f) \geq w(f)+3 \times \frac{3}{2}>0$. In the following, we assume that $\delta(f)=4$. Let f be a 3 -face uvwu such that $d(u)=4$. Then $d(v) \geq 5$ and $d(w) \geq 5$ by ($P 1$). According to R3.1, we consider the following three cases.

Case 1. f receives $\frac{1}{2}$ from u, that is, $f_{4^{-}}(u)=4$ or $f_{3}(u)=3$ and f is located in the middle of three consecutive 3 -faces incident with u.

It suffices to check that f receives at least $\frac{7}{4}$ from each of v and w. Thus $w^{\prime}(f) \geq w(f)+\frac{1}{2}+\frac{7}{4}+\frac{7}{4}=0$, a contradiction.

Subcase 1.1. $f_{4^{-}}(u)=4$, that is, u is incident with four faces of degree at most 4. Then $f_{3}(u)=4$ or $f_{3}(u)=1$ by Lemma 4. If $f_{3}(u)=1$, then all faces adjacent to f are 4^{+}-faces, and it follows from R3.2 and R3.3 that f receives at least $\frac{7}{4}$ from v, w respectively. If $f_{3}(u)=4$, then any 3 -face incident with u must be adjacent to a 5^{+}-face and it follows from R 3.2 and R 3.3 that f receives at least $\frac{7}{4}$ from v, w respectively.

Subcase 1.2. $f_{3}(u)=3$ and f is located in the middle of three consecutive 3 -faces incident with u. If $d(v) \geq 6$, then two faces adjacent to f at v are not $\left(3,6,6^{+}\right)$-faces (since $d(u)=4$ and $u v$ is incident with two $\left(4,5^{+}, 6^{+}\right)$-faces) and it follows from R3.3 that f receives at least $\frac{7}{4}$ from v. Suppose that $d(v)=5$. Let five faces incident with v be f, f_{1}, \ldots, f_{4} in clockwise order, where $u v$ is incident with f and f_{1} (see Figure 2). Then $d\left(f_{4}\right) \geq 5$ since G contains no 6 -cycles with two chords. If $f_{3}(v)=3$, then $f_{4}(v)=0$, and f is not located in the middle of three consecutive 3 -faces incident with v (since $d\left(f_{4}\right) \geq 5$), and only one face adjacent to f at v is a 5^{+}-face (since $d\left(f_{1}\right)=3$). So f receives at least $\frac{7}{4}$ from v by R3.2. By symmetry, f receives at least $\frac{7}{4}$ from w.

Figure 2. $d(u)=4, f_{3}(u)=3$ and f is located in the middle of three consecutive 3 -faces incident with u.

Case 2. f receives $\frac{3}{4}$ from u. Then $f_{3}(u)=2$ and $f_{4}(u)=1$, or $f_{3}(v)=3$ and f is located in the one side of these 3 -faces by R3.1. Suppose that $f_{3}(u)=2$ and $f_{4}(u)=1$. Then the induced subgraph of u and its neighbors must be isomorphic to a configuration as Figure 3, where $w=x$ or $w=y$. If $v x$ is incident with two 3 -faces $u v x u$ and $v x x^{\prime} v$, then the 6 -cycle $x x^{\prime} v y z u x$ contains two chords $u v$ and $u y$, a contradiction. If $v x$ is incident with a 4 -face $v x x^{\prime} x^{\prime \prime} v$, then the 6 cycle $x x^{\prime} x^{\prime \prime} v y u x$ contains two chords $u v$ and $x v$, a contradiction, too. So $v x$ is incident with a 5^{+}-face. By the same argument, $v y$ is incident with a 5^{+}-face, too. By R3.2 and R3.3, f receives at least $\frac{7}{4}$ from v, at least $\frac{3}{2}$ from w. So $w^{\prime}(f) \geq w(f)+\frac{3}{4}+\frac{3}{2}+\frac{7}{4}=0$ by R 3 .

Figure 3. $w=x$ or $w=y$.
Suppose that u is incident with three 3 -faces and f is located in the one side of these 3 -faces. Then u is incident with a 5^{+}-face by Lemma 4 . Without loss of generality, we assume that $u v$ is incident with two 3 -faces. By the similar arguments with Subcase $1.2, v$ sends at least $\frac{7}{4}$ to f. So $w^{\prime}(f) \geq w(f)+\frac{3}{4}+\frac{3}{2}+$ $\frac{7}{4}=0$.

Case 3. f receives 1 from u. Since $d(v) \geq 5, v$ sends at least $\frac{3}{2}$ to f by R3.2 and R3.3. Similarly, w sends at least $\frac{3}{2}$ to f. So $w^{\prime}(f) \geq w(f)+1+\frac{3}{2}+\frac{3}{2}=0$.

Till now, we have checked that $w^{\prime}(f) \geq 0$ for any face $f \in F(G)$. Next, we begin to check the new charge of all vertices of G. Let v be a vertex of G. If $d(v)=3$, then $w^{\prime}(v) \geq w(v)+2 \times \frac{1}{2}=0$ by R1 since v has exactly two 3 masters. Suppose that $d(v)=4$. If $f_{4^{-}}(v) \leq 2$, then $w^{\prime}(v)=w(v)-2 \times 1=0$ by R3.1. If $f_{4^{-}}(v)=4$, then $w^{\prime}(v)=w(v)-4 \times \frac{1}{2}=0$ by R3.1. If $f_{4^{-}}(v)=3$, then $f_{3}(v)=3$ and $f_{4}(v)=0$, or $f_{4}(v)=1$ and $f_{3}(v)=2$ by Lemma 4. So $w^{\prime}(v) \geq w(v)-\frac{1}{2}-2 \times \frac{3}{4}=0$.

Suppose that $d(v)=5$. Then $w(v)=15-10=5$ and $f_{3}(v) \leq 3$ by Lemma 3. If $f_{3}(v) \leq 2$, then $w^{\prime}(v) \geq w(v)-2 \times \frac{7}{4}-3 \times \frac{1}{2}=0$ by R2 and R3.2. Suppose that $f_{3}(v)=3$. If $f_{4}(v)=1$, then $f_{5^{+}}(v) \geq 1$ and it follows that $w^{\prime}(v) \geq w(v)-3 \times \frac{3}{2}-\frac{1}{2}=0$ by R2 and R3.2. Otherwise $f_{5^{+}}(v)=2$ and it follows that $w^{\prime}(v) \geq w(v)-2 \times \frac{7}{4}-\frac{3}{2}=0$ by R3.2.

Suppose that $d(v)=6$. Then $w(v)=18-10=8$ and $f_{3}(v) \leq\left\lfloor\frac{3}{4} \times 6\right\rfloor=4$ by Lemma 3. It follows from ($P 2$) that it may be the 3 -master of some 3 -vertex u, that is, v needs to send at most $\frac{1}{2}$ to its neighbors by R1. If $f_{3}(v) \leq 2$, then $w^{\prime}(v) \geq w(v)-2 \times 2-4 \times \frac{3}{4}-\frac{1}{2}>0$ by R1-R3. If $f_{3}(v)=3$, then $f_{5^{+}}(v) \geq 1$ and it follows that $w^{\prime}(v) \geq w(v)-3 \times 2-2 \times \frac{3}{4}-\frac{1}{2}=0$. Suppose that $f_{3}(v)=4$. Then $f_{4}(v)=0$. If v is incident with at most two $\left(3,6,6^{+}\right)$faces, then $w^{\prime}(v) \geq w(v)-2 \times 2-2 \times \frac{7}{4}-\frac{1}{2}=0$. Otherwise, v is incident with three $\left(3,6,6^{+}\right)$-faces by $(P 2)$ and (3) of the lemma, and v is incident with three consecutive 3 -faces in which the middle 3 -face is incident with two non-adjacent $\left(3,6,6^{+}\right)$-faces. So $w^{\prime}(v) \geq w(v)-3 \times 2-\frac{3}{2}-\frac{1}{2}=0$ by R1 and R3.3.

Suppose that $d(v)=7$. Then $f_{3}(v) \leq 5$ by Lemma 3 . If $f_{3}(v)=5$, then
$f_{4}(v)=0$ and $w^{\prime}(v) \geq w(v)-5 \times 2-\frac{1}{2}>0$. If $f_{3}(v)=4$, then $f_{4}(v) \leq 1$ and $w^{\prime}(v) \geq w(v)-4 \times 2-\frac{3}{4}-\frac{1}{2}>0$. If $f_{3}(v) \leq 3$, then $w^{\prime}(v) \geq w(v)-3 \times 2-4 \times \frac{3}{4}-$ $\frac{1}{2}>0$.

If $d(v) \geq 8$, then $f_{3}(v) \leq\left\lfloor\frac{3 d(v)}{4}\right\rfloor$ by Lemma 3, and it follows that $w^{\prime}(v) \geq$ $w(v)-2 \times\left\lfloor\frac{3 d(v)}{4}\right\rfloor-\frac{3}{4}\left(d(v)-\left\lfloor\frac{3 d(v)}{4}\right\rfloor\right)-\frac{1}{2}=\frac{21(d(v)-8)}{16} \geq 0$.

Hence, we complete the proof of Lemma 5.

Theorem 6. G is edge- k-choosable, where $k=\max \{7, \Delta(G)+1\}$.
Proof. Let G be a minimal counterexample to the theorem. Then there is an edge assignment L with $|L(e)| \geq k$ for all $e \in E(G)$, where $k=\max \{7, \Delta(G)+1\}$, such that G is not edge- L-colorable. By Lemma 5 , we consider three cases as follows.

Case 1. G contains an edge $u v$ with $d(u)+d(v) \leq \max \{8, \Delta(G)+2\}$. Let $G^{\prime}=G-u v$. Then G^{\prime} has an edge- L-coloring ψ. Since there exist at most $\max \{6, \Delta(G)\}$ edges adjacent to $u v$ and $|L(u v)| \geq \max \{7, \Delta(G)+1\}$, we can color $u v$ with some color from $L(u v)$ that was not used by ψ on the edges adjacent to $u v$. It is easy to show that any edge- L-coloring of G^{\prime} can be extended to an edge- L-coloring of G. This contradicts the choice of the graph G.

Case 2. G contains an even cycle $C=v_{1} v_{2} \cdots v_{2 n} v_{1}$ with $d\left(v_{1}\right)=d\left(v_{3}\right)=$ $\cdots=d\left(v_{2 n-1}\right)=3$. Let G^{\prime} be the subgraph of G obtained by deleting the edges of C. Then G^{\prime} has an edge- L-coloring ψ. We define an edge assignment L^{\prime} of C such that $L^{\prime}(e)=L(e) \backslash\left\{\psi\left(e^{\prime}\right) \mid e^{\prime} \in E\left(G^{\prime}\right)\right.$ is adjacent to e in $\left.G\right\}$ for each $e \in E(C)$. It is easy to see that $L^{\prime}(e) \geq 2$ for each $e \in E(C)$. It is showed in [3] that any even cycle is edge-2-choosable. So C is edge- L^{\prime}-colorable and it follows that G is edge- L-colorable, a contradiction.

Case 3. G has a 6 -vertex u with five neighbors v, w, x, y, z such that $d(v)=$ $d(y)=3$ and $v w, x y, y z \in E(G)$. Let $v^{\prime} \in N(v) \backslash\{u, w\}$. According to Case 1, we assume that $d\left(v_{1}\right)+d\left(v_{2}\right) \geq \max \{9, \Delta(G)+3\}$ for any edge $v_{1} v_{2} \in E(G)$. Since $d(u)+d(v)=6+3, \Delta(G)=6$ and $d(w)=d(x)=d(z)=d\left(v^{\prime}\right)=6$. Without loss of generality, we consider the worst case that $|L(e)|=7$ for all $e \in E(G)$. By minimality of $G, G^{\prime}=G-\{y, v\}$ has an edge- L-coloring ψ. For each $e \in E(G)$, let $L^{\prime}(e)=L(e) \backslash\left\{\psi\left(e^{\prime}\right) \mid e^{\prime} \in E\left(G^{\prime}\right)\right.$ is adjacent to e in $\left.G\right\}$.

If $\left|L^{\prime}(x y)\right| \geq 3$, then we can color $v v^{\prime}, v w, v u, y u, y z$ and $x y$ successively to obtain an edge- L-coloring of G, a contradiction. So $\left|L^{\prime}(x y)\right|=2$. By the same argument, we have $\left|L^{\prime}(y z)\right|=\left|L^{\prime}(v w)\right|=\left|L^{\prime}\left(v v^{\prime}\right)\right|=2$. If $\left|L^{\prime}(u y)\right| \geq 4$, then we can color $v v^{\prime}, v w, v u, x y, y z$ and $u y$ successively, a contradiction. So $\left|L^{\prime}(u y)\right|=3$. By the same argument, we have $\left|L^{\prime}(u v)\right|=3$. Hence $\left|L^{\prime}(x y)\right|=$ $\left|L^{\prime}(y z)\right|=\left|L^{\prime}(v w)\right|=\left|L^{\prime}\left(v v^{\prime}\right)\right|=2$ and $\left|L^{\prime}(u y)\right|=\left|L^{\prime}(u v)\right|=3$.

If $L^{\prime}(x y) \neq L^{\prime}(y z)$, without loss of generality, we assume that there is a color $a \in L^{\prime}(x y) \backslash L^{\prime}(y z)$, then we color $x y$ with a firstly, and then color $v v^{\prime}, v w, v u, y u$ and $y z$ successively, a contradiction. So $L^{\prime}(x y)=L^{\prime}(y z)$. By the same argument, we have $L^{\prime}(v w)=L^{\prime}\left(v v^{\prime}\right)$.

Without loss of generality, we assume that $\psi(u x)=1, \psi(u z)=2, \psi(u w)=3$, $L^{\prime}(x y)=L^{\prime}(y z)=\{\alpha, \beta\}$. Then $1 \in L(x y)$ and $2 \in L(y z)$ for otherwise $\left|L^{\prime}(x y)\right| \geq$ 3 or $\left|L^{\prime}(y z)\right| \geq 3$. Thus the colors $1,2, \alpha, \beta$ are all distinct. At the same time, we have that $L^{\prime}(u x) \subseteq\{1,2,3\}$ for otherwise we can recolor $u x$ with a color in $L^{\prime}(u x) \backslash\{1,2,3\}$, color $x y$ with 1 , and color $v v^{\prime}, v w, v u, y u$ and $y z$ successively to obtain an edge- L-coloring of G, a contradiction. By the same argument, we have $L^{\prime}(u z) \subseteq\{1,2,3\}$ and $L^{\prime}(u w) \subseteq\{1,2,3\}$. So $L^{\prime}(u x) \cup L^{\prime}(u z) \cup L^{\prime}(u w)=\{1,2,3\}$.

Now if $1 \in L^{\prime}(u z)$ and $2 \in L^{\prime}(u x)$, that is, $\{1,2\} \subseteq L^{\prime}(u z) \cap L^{\prime}(u x)$, then we recolor $u x$ with 2 , and $u z$ with 1 to obtain a contradiction. So $\{1,2\} \nsubseteq L^{\prime}(u z) \cap$ $L^{\prime}(u x)$. Similarly, we have $\{1,3\} \nsubseteq L^{\prime}(u x) \cap L^{\prime}(u w)$ and $\{2,3\} \nsubseteq L^{\prime}(u z) \cap L^{\prime}(u w)$. These three results imply that $\left|L^{\prime}(u x)\right|=\left|L^{\prime}(u z)\right|=\left|L^{\prime}(u w)\right|=2$. Let $a \in$ $L^{\prime}(u x) \backslash\{1\}, b \in L^{\prime}(u z) \backslash\{2\}$ and $c \in L^{\prime}(u w) \backslash\{3\}$. Then $\{a, b, c\}=\{1,2,3\}$. Thus we recolor $u x$ with $a, u z$ with b and $u w$ with c to obtain a final contradiction.

This completes the proof of Theorem 6.
According to the theorem, it is easy to obtain the following corollary.
Corollary 7. If $\Delta(G) \geq 6$, then $\chi_{l i s t}^{\prime}(G) \leq \Delta(G)+1$.
The following result is about edge- Δ-choosable of embedded planar graphs without 6 -cycles with two chords.

Theorem 8. G is edge- k-choosable if $k=\max \{9, \Delta(G)\}$.
This theorem implies that if G is a planar graph G with $\Delta(G) \geq 9$ and every 6 -cycle of G contains at most one chord, then G is edge- Δ-choosable.

Proof. Suppose that there is an edge assignment L with $|L(e)| \geq k$ for all $e \in$ $E(G)$ such that G is not edge- L-colorable, but all subgraphs of G are edge- L colorable.

Lemma 9 [4]. The graph G has the following properties.
(1) G is connected and $\delta(G) \geq 2$.
(2) G contains no edges uv with $d(u)+d(v) \leq 10$.
(3) G contains no 2-alternating cycles, that is, G does not contain an even cycle $C=v_{1} v_{2} \cdots v_{2 n} v_{1}$ with $d\left(v_{1}\right)=d\left(v_{3}\right)=\cdots=d\left(v_{2 n-1}\right)=2$.
Suppose G_{2} be the subgraph induced by the edges incident with the 2-vertices of G. By Lemma $9(2)$, any two 2 -vertices are not adjacent in G, so G_{2} does not contain any odd cycle. By Lemma $9(3), G_{2}$ contains no even cycle. So G_{2} is a
forest. It follows that G_{2} contains a matching M such that all 2 -vertices in G_{2} are saturated. If $u v \in M$ and $d(u)=2$, then v is called the 2-master of u. It is easy to see that each 2 -vertex has one exactly 2 -master and each 9^{+}-vertex can be the 2 -master of at most one 2 -vertex.

Lemma 10 [21]. Let $X=\left\{x \in V(G) \mid d_{G}(x) \leq 3\right\}$ and $Y=\bigcup_{x \in X} N(x)$. If $X \neq \emptyset$, then there exists a bipartite subgraph M^{\prime} of G with partite sets X and Y such that $d_{M^{\prime}}(x)=1$ for any $x \in X$ and $d_{M^{\prime}}(y) \leq 2$ for any $y \in Y$. Here, we call w the 3 -master of u if $u w \in M^{\prime}$ and $u \in X$.

Now we use the method of redistribution of charge in order to obtain a contradiction. We assign an "initial charge" $c(x)$ to each element $x \in V(G) \cup$ $F(G)$, where $c(x)=3 d(x)-10$ if $x \in V(G)$ and $c(x)=2 d(x)-10$ if $x \in F(G)$. Then

$$
\begin{equation*}
\sum_{x \in V(G) \cup F(G)} c(x)=\sum_{v \in V(G)}(3 d(v)-10)+\sum_{f \in F(G)}(2 d(f)-10)<0 . \tag{1}
\end{equation*}
$$

Our discharging rules are defined as follows.
R1. Let v be a 2 -vertex. If v is incident with a 3 -face and a 6^{+}-face f, then v receives 2 from f and 2 from its 2 -master. Otherwise, v receives 2 from its 2 -master and 2 from its 3 -master.

R2. Every 3 -vertex v receives 1 from its 3 -master.
R3. Let f be a 3 -face and v be a 4^{+}-vertex incident with f. Then f receives a from v, where

$$
a= \begin{cases}\frac{1}{2} & \text { if } d(v)=4, \\ \frac{3}{2} & \text { if } 5 \leq d(v) \leq 6, \\ \frac{7}{4} & \text { if } d(v)=7, \\ 2 & \text { if } d(v) \geq 8\end{cases}
$$

R4. Let f be a 4 -face incident with a 4^{+}-vertex v. Then f receives a from v, where

$$
a= \begin{cases}\frac{1}{2} & \text { if } 4 \leq d(v) \leq 5 \\ \frac{3}{4} & \text { if } 6 \leq d(v) \leq 7 \\ 1 & \text { if } 8 \leq d(v)\end{cases}
$$

Let $c^{\prime}(x)$ be the final charge on $x \in V(G) \cup F(G)$. Then $\sum_{x \in V(G) \cup F(G)} c^{\prime}(x)=$ $\sum_{x \in V(G) \cup F(G)} c(x)<0$. In the following, we will check that $c^{\prime}(x) \geq 0$ for all $x \in V(G) \cup F(G)$ to get a contradiction.

Let f be a face of G. If $d(f) \geq 6$, then f is incident with at most $(d(f)-5)$ 2 -vertices each of which is incident with a 3 -face, and it follows that $c^{\prime}(f) \geq$ $c(f)-2(d(f)-5)=0$. If $d(f)=5$, then f retains its initial charge and we have
$c^{\prime}(f)=c(f)=2 d(f)-10 \geq 0$. Suppose that $d(f)=4$. If $\delta(f) \leq 3$, then f is incident with at least two 8^{+}-vertices by Lemma $9(2)$ and it follows from R4 that $c^{\prime}(f) \geq c(f)+2 \times 1=0$. Otherwise $c^{\prime}(f) \geq c(f)+2 \times \frac{1}{2}+2 \times \frac{3}{4}>0$. Suppose that $d(f)=3$. If $\delta(f) \leq 3$, then f is incident with two 8^{+}-vertices by Lemma $9(2)$ and it follows from R 3 that $c^{\prime}(f)=c(f)+2+2=0$. If $\delta(f)=4$, then f is incident with two 7^{+}-vertices by Lemma $9(2)$. Note that any 4 -vertex sends at least $\frac{1}{2}$ to each of its incident 3 -face. So $c^{\prime}(f) \geq c(f)+\frac{1}{2}+2 \times \frac{7}{4}=0$. If $\delta(f) \geq 5$, then $c^{\prime}(f) \geq c(f)+3 \times \frac{3}{2}>0$. So $c^{\prime}(f) \geq 0$ if $d(f)=3$.

Let v be a vertex of G. If $d(v)=2$, then $c^{\prime}(v)=c(v)+2+2=0$ by R1. If $d(v)=3$, then $c^{\prime}(v)=c(v)+1=0$ by R2. If $d(v)=4$, then $c^{\prime}(v) \geq c(v)-\frac{1}{2} \times 4=0$ by R3 and R4. Suppose that $d(v)=5$. Then $c(v)=15-10=5$ and $f_{3}(v) \leq 3$ by Lemma 3. If $f_{3}(v)=3$, then $f_{4}(v) \leq 1$ and it follows from R3 and R4 that $c^{\prime}(v) \geq c(v)-3 \times \frac{3}{2}-1 \times \frac{1}{2}=0$. If $f_{3}(v) \leq 2$, then $c^{\prime}(v) \geq c(v)-2 \times \frac{3}{2}-$ $3 \times \frac{1}{2} \geq 0$ by R 3 and R4. If $d(v)=6$, then $f_{3}(v) \leq 4$ by Lemma 3 and we have $c^{\prime}(v) \geq c(v)-4 \times \frac{3}{2}-2 \times \frac{3}{4}>0$. If $d(v)=7$, then $f_{3}(v) \leq 5$ and we have $c^{\prime}(v) \geq c(v)-5 \times \frac{7}{4}-2 \times \frac{3}{4}>0$. Suppose that $d(v)=8$. Then $f_{3}(v) \leq 6$ by Lemma 3 , and it may be the 3 -master of two 3 -vertices by Lemma 10 . If $f_{3}(v)=6$, then $f_{4}(v)=0$ and it follows that $c^{\prime}(v) \geq c(v)-6 \times 2-2=0$. If $f_{3}(v)=5$, then $f_{4}(v) \leq 1$ and it follows that $c^{\prime}(v) \geq c(v)-5 \times 2-1-2>0$. If $f_{3}(v) \leq 4$, then $c^{\prime}(f) \geq c(v)-4 \times 2-4 \times 1-2=0$ by R3 and R4. So $c^{\prime}(v) \geq 0$ if $d(v)=8$.

Now we assume that $d(v) \geq 9$. By Lemmas 9 and $10, v$ may be the 3 master of two 3^{-}-vertices and the 2 -master of a 2 -vertex, that is, v sends at most 5 to its incident 3^{-}-vertices. Suppose that $d(v)=9$. Then $f_{3}(v) \leq 6$. If $f_{3}(v) \leq 3$, then $c^{\prime}(v) \geq c(v)-3 \times 2-6 \times 1-5=0$. If $f_{3}(v)=4$, then $f_{4}(v) \leq 4$ and $c^{\prime}(v) \geq c(v)-4 \times 2-4 \times 1-5=0$. If $f_{3}(v)=5$, then $f_{4}(v) \leq 2$ and $c^{\prime}(v) \geq c(v)-5 \times 2-2 \times 1-5=0$. For $f_{3}(v)=6$, we have $f_{4}(v) \leq 1$. If $f_{4}(v)=0$, then $c^{\prime}(v) \geq c(v)-6 \times 2-5=0$. Otherwise, v and its neighbors must induce a configuration isomorphic to Figure 4. Thus, if $d(w)=2$ or $d(x)=2$, then f_{1} is a 6^{+}-face. If $d(y)=2$ or $d(z)=2$, then f_{2} is a 6^{+}-face. By R1, v sends at most 2 to its adjacent 2 -vertices. By R2, v sends at most 2×1 to its adjacent 3 -vertices. So $c^{\prime}(v) \geq c(v)-6 \times 2-1-4=0$.

Suppose that $d(v)=10$. Then $f_{3}(v) \leq 7$. If $f_{3}(v)=7$, then $f_{4}(v) \leq 1$ and it follows that $c^{\prime}(v) \geq c(v)-7 \times 2-1-5=0$. If $f_{3}(v)=6$, then $f_{4}(v) \leq 2$ and it follows that $c^{\prime}(v) \geq c(v)-6 \times 2-2 \times 1-5>0$. If $f_{3}(v) \leq 5$, then $c^{\prime}(v) \geq$ $c(v)-5 \times 2-5 \times 1-5=0$. Suppose that $d(v)=11$. Then $c(v)=3 \times 11-10=22$ and $f_{3}(v) \leq 8$. If $7 \leq f_{3}(v) \leq 8$, then $f_{4}(v) \leq 1$ and it follows that $c^{\prime}(v) \geq$ $22-8 \times 2-1-5=0$. If $f_{3}(v) \leq 6$, then $c^{\prime}(v) \geq 22-6 \times 2-5 \times 1-5=0$. If $d(v) \geq 12$, then $c^{\prime}(v) \geq c(v)-\left\lfloor\frac{3 d(v)}{4}\right\rfloor \times 2-\left(d(v)-\left\lfloor\frac{3 d(v)}{4}\right\rfloor\right) \times 1-5=2 d(v)-\left\lfloor\frac{3 d(v)}{4}\right\rfloor-15 \geq 0$.

Till now, we have checked that $c^{\prime}(x) \geq 0$ for all $x \in V(G) \cup F(G)$. This contradiction completes the proof of Theorem 8.

Figure 4. $d(v)=9, f_{3}(v)=6$ and $f_{4}(v)=1$.

References

[1] M. Bonamy, Planar graphs with $\Delta \geq 8$ are $(\Delta+1)$-edge-choosable, SIAM J. Discrete Math. 29 (2015) 1735-1763.
doi:10.1137/130927449
[2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (North-Holland, New York, 1976).
[3] O.V. Borodin, An extension of Kotzig's theorem and the list edge coloring of planar graphs, Mat. Zametki 48 (1990) 22-48.
[4] O.V. Borodin, A.V. Kostochka and D.R. Woodall, List edge and list total colourings of multigraphs, J. Combin. Theory Ser. B 71 (1997) 184-204. doi:10.1006/jctb.1997.1780
[5] J.S. Cai, J.F. Hou, X. Zhang and G.Z. Liu, Edge-choosability of planar graphs without non-induced 5-cycles, Inform. Process. Lett. 109 (2009) 343-346. doi:10.1016/j.ipl.2008.12.001
[6] J.S. Cai, List edge coloring of planar graphs without non-induced 6-cycles, Graphs Combin. 31 (2015) 827-832.
doi:10.1007/s00373-014-1420-6
[7] F. Galvin, The list chromatic index of a bipartite multigraph, J. Combin. Theory Ser. B 63 (1995) 153-158. doi:10.1006/jctb.1995.1011
[8] R. Hägkvist and J. Janssen, New bounds on the list-chromatic index of the complete graph and other simple graphs, Combin. Probab. Comput. 6 (1997) 295-313. doi:10.1017/S0963548397002927
[9] R. Hägkvist and A. Chetwynd, Some upper bounds on the total and list chromatic numbers of multigraphs, J. Graph Theory 16 (1992) 503-516. doi:10.1002/jgt. 3190160510
[10] A.J. Harris, Problems and conjectures in extrema graph theory, Ph.D. Dissertation (Cambridge University, UK, 1984).
[11] J.F. Hou, G.Z. Liu and J.S. Cai, List edge and list total colorings of planar graphs without 4-cycles, Theoret. Comput. Sci. 369 (2006) 250-255. doi:10.1016/j.tcs.2006.08.043
[12] J.F. Hou, G.Z. Liu and J.S. Cai, Edge-choosability of planar graphs without adjacent triangles or without 7-cycles, Discrete Math. 309 (2009) 77-84. doi:10.1016/j.disc.2007.12.046
[13] T.R. Jensen and B. Toft, Graph Coloring Problems (Wiley, New York, 1995).
[14] M. Juvan, B. Mohar and R. Šrekovski, Graphs of degree 4 are 5-choosable, J. Graph Theory 32 (1999) 250-262. doi:10.1002/(SICI)1097-0118(199911)32:3〈250::AID-JGT5 $>3.0 . \mathrm{CO} ; 2-\mathrm{R}$
[15] A.V. Kostochka, List edge chromatic number of graphs with large girth, Discrete Math. 101 (1992) 189-201. doi:10.1016/0012-365X(92)90602-C
[16] B. Liu, J.F. Hou and G.Z. Liu, List edge and list total colorings of planar graphs without short cycles, Inform. Process. Lett. 108 (2008) 347-351. doi:10.1016/j.ipl.2008.07.003
[17] Y. Shen, G. Zheng, W. He and Y. Zhao, Structural properties and edge choosability of planar graphs without 4-cycles, Discrete Math. 308 (2008) 5789-5794. doi:10.1016/j.disc.2007.09.048
[18] W.F. Wang and K.W. Lih, Structural properties and edge choosability of planar graphs without 6-cycles, Combin. Probab. Comput. 10 (2001) 267-276.
[19] W.F. Wang and K.W. Lih, Choosability, edge choosability and total choosability of outerplanar graphs, European J. Combin. 22 (2001) 71-78. doi:10.1006/eujc.2000.0430
[20] W.F. Wang and K.W. Lih, Choosability and edge choosability of planar graphs without five cycles, Appl. Math. Lett. 15 (2002) 561-565. doi:10.1016/S0893-9659(02)80007-6
[21] J.L. Wu and P. Wang, List-edge and list-total colorings of graphs embedded on hyperbolic surfaces, Discrete Math. 308 (2008) 6210-6215. doi:10.1016/j.disc.2007.11.044
[22] L. Zhang and B. Wu, Edge choosability of planar graphs without small cycles, Discrete Math. 283 (2004) 289-293.
doi:10.1016/j.disc.2004.01.001
Received 22 May 2017
Revised 10 September 2018 Accepted 10 September 2018

[^0]: ${ }^{1}$ Corresponding author.

