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Abstract

A graph G is edge-L-colorable if for a given edge assignment L = {L(e) :
e ∈ E(G)}, there exists a proper edge-coloring ϕ of G such that ϕ(e) ∈ L(e)
for all e ∈ E(G). If G is edge-L-colorable for every edge assignment L such
that |L(e)| ≥ k for all e ∈ E(G), then G is said to be edge-k-choosable. In
this paper, we prove that if G is a planar graph without 6-cycles with two
chords, then G is edge-k-choosable, where k = max{7,∆(G) + 1}, and is
edge-t-choosable, where t = max{9,∆(G)}.
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1. Introduction

Graphs considered in this paper are finite, simple and undirected. The termi-
nologies and notations used but undefined in this paper can be found in [2]. Let
G = (V,E) be a graph. We use V (G), E(G), ∆(G) and δ(G) (or simply V , E,
∆ and δ) to denote the vertex set, the edge set, the maximum degree and the
minimum degree of G, respectively. A cycle C of length k is called a k-cycle in
the graph G. If xy ∈ E(G)\E(C) and x, y ∈ V (C), xy is called to be a chord of
C in the graph G.
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An edge coloring of a graph G is a mapping ϕ from E(G) to the set of
colors {1, 2, . . . , k} for some positive integer k. An edge coloring is called proper
if every two adjacent edges receive different colors. The edge chromatic number
χ′(G) is the smallest integer k such that G has a proper edge-coloring into the
set {1, 2, . . . , k}.

We say that L is an edge assignment for the graph G if it assigns a list L(e)
of possible colors to each edge e of G. If G has a proper edge-coloring ϕ such
that ϕ(e) ∈ L(e) for each edge e of G, then we say that G is edge-L-colorable
or ϕ is an edge-L-coloring of G. The graph G is edge-k-choosable if it is edge-
L-colorable for every edge assignment L satisfying |L(e)| ≥ k for all e ∈ E(G).
The list edge chromatic number χ′

list(G) of G is the smallest k such that G is
edge-k-choosable.

On the list edge coloring of a graph, there is a celebrated conjecture known as
the list edge coloring conjecture, which was formulated independently by Vizing,
by Gupta, by Alberson and Collins, and by Bollobás and Harris (see [8, 13]).

Conjecture 1 [9]. If G is a multigraph, then χ′

list(G) = χ′(G).

The conjecture has been proved for a few classes of graphs, such as graphs
with ∆(G) ≥ 12 which can be embedded in a surface of non-negative character-
istic [4], outerplanar graphs [19], bipartite multigraphs [4, 7], complete graphs of
odd order [9]. Vizing [15] proposed a weaker conjecture than Conjecture 1.

Conjecture 2 [9]. Every graph G is edge-(∆(G) + 1)-choosable.

Harris [10] showed that χ′

list(G) ≤ 2∆(G)− 2 if G is a graph with ∆(G) ≥ 3.
This implies Conjecture 2 for the case ∆(G) = 3. Juvan et al. [14] settled the
case for ∆(G) = 4 in 1999. And there are some other special cases of Conjecture
2 which have been confirmed, such as complete graphs [8], graphs with girth at
least 8∆(G)(ln∆(G)(G)+1.1) [15], planar graphs with ∆(G) ≥ 8 [1], and planar
graphs with ∆(G) 6= 5 and without intersecting 3-cycles [20]. Suppose that G is
a planar graph without k-cycles for some fixed integer 3 ≤ k ≤ 6. Then it was
proved that Conjecture 2 holds if G satisfies one of the four following conditions:

(i) either k = 3 or k = 4 and ∆(G) 6= 5 [22],

(ii) k = 4 [17],

(iii) k = 5 [20],

(iv) k = 6 and ∆(G) 6= 5 [18].

Other related known results on this topic can be found in [5, 11, 12, 16].
Cai [6] proved that if G is a planar graph without chordal 6-cycles, then G is

edge-k-choosable, where k = max{8,∆(G)+1}. In this paper, we will strengthen
this result and obtain that if G is a planar graph and each 6-cycle of G contains at
most one chord, then χ′

list(G) ≤ max{7,∆(G)+1} and χ′

list(G) ≤ max{9,∆(G)}.
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2. Main Results and Their Proofs

In the section, we always assume that all graphs are planar graphs that have
been embedded in the plane and G is a planar graph without 6-cycles with two
chords. We use dG(x), or simply d(x), to denote the degree of a vertex x in G.
For f ∈ F (G), if u1, u2, . . . , un are the vertices on the boundary walk, then we
write f = u1u2 · · ·unu1. The degree of a f , denoted by d(f) , is the number of
edges incident with f , where each cut-edge is counted twice. We denote by δ(f)
the minimum degree of vertices incident with the face f . A vertex (face) x is
called to be a k-vertex (k-face), k+-vertex (k+-face) and k−-vertex (k−-face), if
d(x) = k, d(x) ≥ k and d(x) ≤ k, respectively. fi(v) is the number of i-faces
incident with v for each v ∈ V (G).

First, we give some properties on G.

Lemma 3. If v is a 5+-vertex of G, then f3(v) ≤
⌊

3
4d(v)

⌋

.

Proof. Since G contains no 6-cycles with two chords, v is not incident with four
consecutive 3-faces. So f3(v) ≤

⌊

3
4d(v)

⌋

.

Lemma 4. Let u be a 4-vertex of G.

(1) If f3(u) = 3, then f4(u) = 0, that is, u is incident with a 5+-face.

(2) If f3(u) = 2, then f4(u) ≤ 1.

Proof. Let neighbors of u be u1, u2, u3, u4 and faces incident with u be f1, f2, f3,
f4 in the clockwise order, where f1 is incident with u1, u2.

(1) Without loss of generality, we assume that f1, f2, f3 are 3-faces. If f4 is a
4-face uu1vu4u, then the 6-cycle uu2u3u4vu1u contains two chords uu3 and uu4,
a contradiction. So d(f4) ≥ 5, that is, f5+(u) = 1.

(2) Suppose that two 3-faces incident with u are not adjacent, without loss
of generality, we assume that f1, f3 are 3-faces. If f2 is a 4-face uu2vu3u, then
the 6-cycle uu1u2vu3u4u contains two chords uu2 and uu3, a contradiction. So
d(f2) ≥ 5. By the same argument, we have d(f4) ≥ 5.

Suppose that two 3-faces incident with u are adjacent, without loss of gener-
ality, we assume that f1, f2 are 3-faces. If f3 is a 4-face uu3vu4u, then we must
have v = u1. Since d(u) = 4, d(u4) ≥ 5. Thus if f4 is a 4-face uu1wu4u, then
we also have w = u3, it is impossible. So d(f4) ≥ 5. By the same argument, if
d(f4) = 4, then d(f3) ≥ 5. Hence f4(u) ≤ 1.

Lemma 5. G satisfies at least one of the following conditions.

(1) G has an edge uv with d(u) + d(v) ≤ max{8,∆(G) + 2}.

(2) G has an even cycle C = v1v2 · · · v2nv1 with d(v1) = d(v3) = · · · = d(v2n−1)
= 3.
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(3) G has a 6-vertex u with five neighbors v, w, x, y, z such that d(v) = d(y) = 3
and vw, xy, yz ∈ E(G) (see Figure 1).

v

x w

u
y

z

v'

Figure 1. The subgraph for Lemma 5(3).

Proof. Let G be a minimal counterexample to the lemma. It is easy to check
that G is connected. By the choice of G, we have the following observations.

(P1) For any edge uv, d(u) + d(v) ≥ max{9,∆(G) + 3} by (1). Then δ(G) ≥ 3
and all neighbors of a i-vertex must be (9− i)+-vertices, where i = 3, 4 or 5.

(P2) Let G3 be the subgraph induced by the edges incident with 3-vertices of G.
Then G3 is a forest.

By (P1), every two 3-vertices are not adjacent, and it follows that G3 is a
bipartite subgraph. By (2), G3 contains no even cycles. So G3 is a forest and
(P2) holds. Let V1 be the set of 3-vertices of G. Thus for any component of
G3, we select a vertex u 6∈ V1 as a root of the tree. Then every 3-vertex has
exactly two children. If uv ∈ E(G3), u ∈ V1 and v is a child of u, then v is called
a 3-master of u. Note that each 3-vertex has exactly two 3-masters and each
vertex of degree at least 6 can be the 3-master of at most one 3-vertex.

According to the Euler’s formula |V (G)| − |E(G)| + |F (G)| = 2 of a planar
graph G, we have

∑

v∈V (G)

(3d(v)−10)+
∑

f∈F (G)

(2d(f)−10) = −10(|V (G)|−|E(G)|+|F (G)|) = −20 < 0.

Now we define the initial weight function on V (G) ∪ F (G) by letting w(x) =
3d(x)− 10 for any x ∈ V (G) and w(x) = 2d(x)− 10 for any x ∈ F (G). Thus the
total sum of weights is the negative number −20. We use the following rules to
redistribute the initial charge that leads to a new charge w′(x).

R1. Every 3-vertex v receives 1
2 from each of its 3-masters.

R2. Let f = uu′vv′u be a 4-face in G with d(u) ≤ min{d(u′), d(v), d(v′)}. If
d(u) ≥ 4, then f receives 1

2 from each of its incident vertices. Otherwise, f
receives nothing from u, receives 1

2 from v, 3
4 from u′ and 3

4 from v′.
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R3. Let f be a 3-face incident with a 4+-vertex v. Then f receives a from v.

R3.1. If d(v) = 4, then

a =























1
2 if f4−(v) = 4 or if f3(v) = 3 and f is located in the middle

of three consecutive 3-faces incident with v,
3
4 if f3(v) = 2 and f4(v) = 1, or if f3(v) = 3 and f is located

in one side of three consecutive 3-faces incident with v,
1 otherwise.

R3.2. If d(v) = 5, then

a =































3
2 if f3(v) = 3 and one of the following conditions holds:

(i) f4(v) = 1,
(ii) f4(v) = 0 and f is located in the middle of three

consecutive 3-faces incident with v,
(iii) two faces adjacent to f at v are 5+-faces.

7
4 otherwise.

R3.3. If d(v) ≥ 6, then

a =















3
2 if f is adjacent to two non-adjacent (3, 6, 6+)-faces at v

and d(v) = 6,
if f is incident with a 3-vertex,

7
4 otherwise.

In the following, we will check that w′(x) ≥ 0 for all elements x ∈ V (G)∪F (G)
to obtain the following obvious contradiction.

0 ≤
∑

v∈V ∪F

w′(x) =
∑

v∈V ∪F

w(x) = −20.

First, we consider the final charge of any face f . If d(f) ≥ 5, then it retains
its initial charge and it follows that w′(f) = w(f) = 2d(f)−10 ≥ 0. Suppose that
d(f) = 4. Then w(f) = 8−10 = −2. If δ(f) = 3, then w′(f) = w(f)+ 3

4+
1
2+

3
4 = 0

by R2. Otherwise w′(f) = w(f) + 4× 1
2 = 0. So w′(f) ≥ 0 if d(f) = 4.

Suppose that d(f) = 3. Then w(f) = 6 − 10 = −4. If δ(f) = 3, then f is
incident with two 6+-vertices by (P1) and it follows that w′(f) = w(f)+2+2 = 0
by R3.3. If δ(f) ≥ 5, then f receives at least 3

2 from each of its incident vertices
by R3.2 and R3.3, so w′(f) ≥ w(f) + 3 × 3

2 > 0. In the following, we assume
that δ(f) = 4. Let f be a 3-face uvwu such that d(u) = 4. Then d(v) ≥ 5 and
d(w) ≥ 5 by (P1). According to R3.1, we consider the following three cases.

Case 1. f receives 1
2 from u, that is, f4−(u) = 4 or f3(u) = 3 and f is located

in the middle of three consecutive 3-faces incident with u.
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It suffices to check that f receives at least 7
4 from each of v and w. Thus

w′(f) ≥ w(f) + 1
2 + 7

4 + 7
4 = 0, a contradiction.

Subcase 1.1. f4−(u) = 4, that is, u is incident with four faces of degree at
most 4. Then f3(u) = 4 or f3(u) = 1 by Lemma 4. If f3(u) = 1, then all faces
adjacent to f are 4+-faces, and it follows from R3.2 and R3.3 that f receives at
least 7

4 from v, w respectively. If f3(u) = 4, then any 3-face incident with u must
be adjacent to a 5+-face and it follows from R3.2 and R3.3 that f receives at
least 7

4 from v, w respectively.

Subcase 1.2. f3(u) = 3 and f is located in the middle of three consecutive
3-faces incident with u. If d(v) ≥ 6, then two faces adjacent to f at v are not
(3, 6, 6+)-faces (since d(u) = 4 and uv is incident with two (4, 5+, 6+)-faces) and
it follows from R3.3 that f receives at least 7

4 from v. Suppose that d(v) = 5. Let
five faces incident with v be f, f1, . . . , f4 in clockwise order, where uv is incident
with f and f1(see Figure 2). Then d(f4) ≥ 5 since G contains no 6-cycles with
two chords. If f3(v) = 3, then f4(v) = 0, and f is not located in the middle
of three consecutive 3-faces incident with v(since d(f4) ≥ 5), and only one face
adjacent to f at v is a 5+-face (since d(f1) = 3). So f receives at least 7

4 from v

by R3.2. By symmetry, f receives at least 7
4 from w.

u

f
v

wf2
f3 f4

f1

Figure 2. d(u) = 4, f3(u) = 3 and f is located in the middle of three consecutive 3-faces

incident with u.

Case 2. f receives 3
4 from u. Then f3(u) = 2 and f4(u) = 1, or f3(v) = 3 and

f is located in the one side of these 3-faces by R3.1. Suppose that f3(u) = 2 and
f4(u) = 1. Then the induced subgraph of u and its neighbors must be isomorphic
to a configuration as Figure 3, where w = x or w = y. If vx is incident with
two 3-faces uvxu and vxx′v, then the 6-cycle xx′vyzux contains two chords uv
and uy, a contradiction. If vx is incident with a 4-face vxx′x′′v, then the 6-
cycle xx′x′′vyux contains two chords uv and xv, a contradiction, too. So vx is
incident with a 5+-face. By the same argument, vy is incident with a 5+-face,
too. By R3.2 and R3.3, f receives at least 7

4 from v, at least 3
2 from w. So

w′(f) ≥ w(f) + 3
4 + 3

2 + 7
4 = 0 by R3.
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u

vx y
z

Figure 3. w = x or w = y.

Suppose that u is incident with three 3-faces and f is located in the one side
of these 3-faces. Then u is incident with a 5+-face by Lemma 4. Without loss
of generality, we assume that uv is incident with two 3-faces. By the similar
arguments with Subcase 1.2, v sends at least 7

4 to f . So w′(f) ≥ w(f) + 3
4 + 3

2+
7
4 = 0.

Case 3. f receives 1 from u. Since d(v) ≥ 5, v sends at least 3
2 to f by R3.2

and R3.3. Similarly, w sends at least 3
2 to f . So w′(f) ≥ w(f) + 1 + 3

2 + 3
2 = 0.

Till now, we have checked that w′(f) ≥ 0 for any face f ∈ F (G). Next,
we begin to check the new charge of all vertices of G. Let v be a vertex of G.
If d(v) = 3, then w′(v) ≥ w(v) + 2 × 1

2 = 0 by R1 since v has exactly two 3-
masters. Suppose that d(v) = 4. If f4−(v) ≤ 2, then w′(v) = w(v) − 2 × 1 = 0
by R3.1. If f4−(v) = 4, then w′(v) = w(v) − 4 × 1

2 = 0 by R3.1. If f4−(v) = 3,
then f3(v) = 3 and f4(v) = 0, or f4(v) = 1 and f3(v) = 2 by Lemma 4. So
w′(v) ≥ w(v)− 1

2 − 2× 3
4 = 0.

Suppose that d(v) = 5. Then w(v) = 15 − 10 = 5 and f3(v) ≤ 3 by Lemma
3. If f3(v) ≤ 2, then w′(v) ≥ w(v) − 2 × 7

4 − 3 × 1
2 = 0 by R2 and R3.2.

Suppose that f3(v) = 3. If f4(v) = 1, then f5+(v) ≥ 1 and it follows that
w′(v) ≥ w(v) − 3 × 3

2 − 1
2 = 0 by R2 and R3.2. Otherwise f5+(v) = 2 and it

follows that w′(v) ≥ w(v)− 2× 7
4 − 3

2 = 0 by R3.2.

Suppose that d(v) = 6. Then w(v) = 18 − 10 = 8 and f3(v) ≤
⌊

3
4 × 6

⌋

= 4
by Lemma 3. It follows from (P2) that it may be the 3-master of some 3-vertex
u, that is, v needs to send at most 1

2 to its neighbors by R1. If f3(v) ≤ 2,
then w′(v) ≥ w(v) − 2 × 2 − 4 × 3

4 − 1
2 > 0 by R1–R3. If f3(v) = 3, then

f5+(v) ≥ 1 and it follows that w′(v) ≥ w(v) − 3 × 2 − 2 × 3
4 − 1

2 = 0. Suppose
that f3(v) = 4. Then f4(v) = 0. If v is incident with at most two (3, 6, 6+)-
faces, then w′(v) ≥ w(v) − 2 × 2 − 2 × 7

4 − 1
2 = 0. Otherwise, v is incident with

three (3, 6, 6+)-faces by (P2) and (3) of the lemma, and v is incident with three
consecutive 3-faces in which the middle 3-face is incident with two non-adjacent
(3, 6, 6+)-faces. So w′(v) ≥ w(v)− 3× 2− 3

2 − 1
2 = 0 by R1 and R3.3.

Suppose that d(v) = 7. Then f3(v) ≤ 5 by Lemma 3. If f3(v) = 5, then
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f4(v) = 0 and w′(v) ≥ w(v) − 5 × 2 − 1
2 > 0. If f3(v) = 4, then f4(v) ≤ 1 and

w′(v) ≥ w(v)−4×2− 3
4 −

1
2 > 0. If f3(v) ≤ 3, then w′(v) ≥ w(v)−3×2−4× 3

4−
1
2 > 0.

If d(v) ≥ 8, then f3(v) ≤
⌊

3d(v)
4

⌋

by Lemma 3, and it follows that w′(v) ≥

w(v)− 2×
⌊

3d(v)
4

⌋

− 3
4

(

d(v)−
⌊

3d(v)
4

⌋)

− 1
2 = 21(d(v)−8)

16 ≥ 0.

Hence, we complete the proof of Lemma 5.

Theorem 6. G is edge-k-choosable, where k = max{7,∆(G) + 1}.

Proof. Let G be a minimal counterexample to the theorem. Then there is an
edge assignment L with |L(e)| ≥ k for all e ∈ E(G), where k = max{7,∆(G)+1},
such that G is not edge-L-colorable. By Lemma 5, we consider three cases as
follows.

Case 1. G contains an edge uv with d(u) + d(v) ≤ max{8,∆(G) + 2}. Let
G′ = G − uv. Then G′ has an edge-L-coloring ψ. Since there exist at most
max{6,∆(G)} edges adjacent to uv and |L(uv)| ≥ max{7,∆(G) + 1}, we can
color uv with some color from L(uv) that was not used by ψ on the edges adjacent
to uv. It is easy to show that any edge-L-coloring of G′ can be extended to an
edge-L-coloring of G. This contradicts the choice of the graph G.

Case 2. G contains an even cycle C = v1v2 · · · v2nv1 with d(v1) = d(v3) =
· · · = d(v2n−1) = 3. Let G′ be the subgraph of G obtained by deleting the edges
of C. Then G′ has an edge-L-coloring ψ. We define an edge assignment L′ of
C such that L′(e) = L(e)\{ψ(e′)| e′ ∈ E(G′) is adjacent to e in G} for each
e ∈ E(C). It is easy to see that L′(e) ≥ 2 for each e ∈ E(C). It is showed in [3]
that any even cycle is edge-2-choosable. So C is edge-L′-colorable and it follows
that G is edge-L-colorable, a contradiction.

Case 3. G has a 6-vertex u with five neighbors v, w, x, y, z such that d(v) =
d(y) = 3 and vw, xy, yz ∈ E(G). Let v′ ∈ N(v)\{u,w}. According to Case 1, we
assume that d(v1) + d(v2) ≥ max{9,∆(G) + 3} for any edge v1v2 ∈ E(G). Since
d(u) + d(v) = 6 + 3, ∆(G) = 6 and d(w) = d(x) = d(z) = d(v′) = 6. Without
loss of generality, we consider the worst case that |L(e)| = 7 for all e ∈ E(G). By
minimality of G, G′ = G− {y, v} has an edge-L-coloring ψ. For each e ∈ E(G),
let L′(e) = L(e)\{ψ(e′)|e′ ∈ E(G′) is adjacent to e in G}.

If |L′(xy)| ≥ 3, then we can color vv′, vw,vu, yu, yz and xy successively
to obtain an edge-L-coloring of G, a contradiction. So |L′(xy)| = 2. By the
same argument, we have |L′(yz)| = |L′(vw)| = |L′(vv′)| = 2. If |L′(uy)| ≥ 4,
then we can color vv′, vw,vu, xy, yz and uy successively, a contradiction. So
|L′(uy)| = 3. By the same argument, we have |L′(uv)| = 3. Hence |L′(xy)| =
|L′(yz)| = |L′(vw)| = |L′(vv′)| = 2 and |L′(uy)| = |L′(uv)| = 3.
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If L′(xy) 6= L′(yz), without loss of generality, we assume that there is a color
a ∈ L′(xy)\L′(yz), then we color xy with a firstly, and then color vv′, vw, vu, yu
and yz successively, a contradiction. So L′(xy) = L′(yz). By the same argument,
we have L′(vw) = L′(vv′).

Without loss of generality, we assume that ψ(ux) = 1, ψ(uz) = 2, ψ(uw) = 3,
L′(xy) = L′(yz) = {α, β}. Then 1 ∈ L(xy) and 2 ∈ L(yz) for otherwise |L′(xy)| ≥
3 or |L′(yz)| ≥ 3. Thus the colors 1, 2, α, β are all distinct. At the same time,
we have that L′(ux) ⊆ {1, 2, 3} for otherwise we can recolor ux with a color in
L′(ux)\{1, 2, 3}, color xy with 1, and color vv′, vw,vu, yu and yz successively to
obtain an edge-L-coloring of G, a contradiction. By the same argument, we have
L′(uz) ⊆ {1, 2, 3} and L′(uw) ⊆ {1, 2, 3}. So L′(ux)∪L′(uz)∪L′(uw) = {1, 2, 3}.

Now if 1 ∈ L′(uz) and 2 ∈ L′(ux), that is, {1, 2} ⊆ L′(uz) ∩ L′(ux), then we
recolor ux with 2, and uz with 1 to obtain a contradiction. So {1, 2} 6⊆ L′(uz) ∩
L′(ux). Similarly, we have {1, 3} 6⊆ L′(ux)∩L′(uw) and {2, 3} 6⊆ L′(uz)∩L′(uw).
These three results imply that |L′(ux)| = |L′(uz)| = |L′(uw)| = 2. Let a ∈
L′(ux)\{1}, b ∈ L′(uz)\{2} and c ∈ L′(uw)\{3}. Then {a, b, c} = {1, 2, 3}. Thus
we recolor ux with a, uz with b and uw with c to obtain a final contradiction.

This completes the proof of Theorem 6.

According to the theorem, it is easy to obtain the following corollary.

Corollary 7. If ∆(G) ≥ 6, then χ′

list(G) ≤ ∆(G) + 1.

The following result is about edge-∆-choosable of embedded planar graphs
without 6-cycles with two chords.

Theorem 8. G is edge-k-choosable if k = max{9,∆(G)}.

This theorem implies that if G is a planar graph G with ∆(G) ≥ 9 and every
6-cycle of G contains at most one chord, then G is edge-∆-choosable.

Proof. Suppose that there is an edge assignment L with |L(e)| ≥ k for all e ∈
E(G) such that G is not edge-L-colorable, but all subgraphs of G are edge-L-
colorable.

Lemma 9 [4]. The graph G has the following properties.

(1) G is connected and δ(G) ≥ 2.

(2) G contains no edges uv with d(u) + d(v) ≤ 10.

(3) G contains no 2-alternating cycles, that is, G does not contain an even cycle

C = v1v2 · · · v2nv1 with d(v1) = d(v3) = · · · = d(v2n−1) = 2.

Suppose G2 be the subgraph induced by the edges incident with the 2-vertices
of G. By Lemma 9(2), any two 2-vertices are not adjacent in G, so G2 does not
contain any odd cycle. By Lemma 9(3), G2 contains no even cycle. So G2 is a
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forest. It follows that G2 contains a matching M such that all 2-vertices in G2

are saturated. If uv ∈ M and d(u) = 2, then v is called the 2-master of u. It is
easy to see that each 2-vertex has one exactly 2-master and each 9+-vertex can
be the 2-master of at most one 2-vertex.

Lemma 10 [21]. Let X = {x ∈ V (G) | dG(x) ≤ 3} and Y =
⋃

x∈X N(x). If

X 6= ∅, then there exists a bipartite subgraph M ′ of G with partite sets X and Y

such that dM ′(x) = 1 for any x ∈ X and dM ′(y) ≤ 2 for any y ∈ Y . Here, we

call w the 3-master of u if uw ∈M ′ and u ∈ X.

Now we use the method of redistribution of charge in order to obtain a
contradiction. We assign an “initial charge” c(x) to each element x ∈ V (G) ∪
F (G), where c(x) = 3d(x) − 10 if x ∈ V (G) and c(x) = 2d(x) − 10 if x ∈ F (G).
Then

∑

x∈V (G)∪F (G)

c(x) =
∑

v∈V (G)

(3d(v)− 10) +
∑

f∈F (G)

(2d(f)− 10) < 0.(1)

Our discharging rules are defined as follows.

R1. Let v be a 2-vertex. If v is incident with a 3-face and a 6+-face f , then
v receives 2 from f and 2 from its 2-master. Otherwise, v receives 2 from its
2-master and 2 from its 3-master.

R2. Every 3-vertex v receives 1 from its 3-master.

R3. Let f be a 3-face and v be a 4+-vertex incident with f . Then f receives a
from v, where

a =



















1
2 if d(v) = 4,
3
2 if 5 ≤ d(v) ≤ 6,
7
4 if d(v) = 7,

2 if d(v) ≥ 8.

R4. Let f be a 4-face incident with a 4+-vertex v. Then f receives a from v,
where

a =











1
2 if 4 ≤ d(v) ≤ 5,
3
4 if 6 ≤ d(v) ≤ 7,

1 if 8 ≤ d(v).

Let c′(x) be the final charge on x ∈ V (G)∪F (G). Then
∑

x∈V (G)∪F (G) c
′(x) =

∑

x∈V (G)∪F (G) c(x) < 0. In the following, we will check that c′(x) ≥ 0 for all
x ∈ V (G) ∪ F (G) to get a contradiction.

Let f be a face of G. If d(f) ≥ 6, then f is incident with at most (d(f)− 5)
2-vertices each of which is incident with a 3-face, and it follows that c′(f) ≥
c(f)− 2(d(f)− 5) = 0. If d(f) = 5, then f retains its initial charge and we have
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c′(f) = c(f) = 2d(f) − 10 ≥ 0. Suppose that d(f) = 4. If δ(f) ≤ 3, then f is
incident with at least two 8+-vertices by Lemma 9(2) and it follows from R4 that
c′(f) ≥ c(f) + 2 × 1 = 0. Otherwise c′(f) ≥ c(f) + 2 × 1

2 + 2 × 3
4 > 0. Suppose

that d(f) = 3. If δ(f) ≤ 3, then f is incident with two 8+-vertices by Lemma
9(2) and it follows from R3 that c′(f) = c(f) + 2 + 2 = 0. If δ(f) = 4, then f is
incident with two 7+-vertices by Lemma 9(2). Note that any 4-vertex sends at
least 1

2 to each of its incident 3-face. So c′(f) ≥ c(f)+ 1
2 +2× 7

4 = 0. If δ(f) ≥ 5,
then c′(f) ≥ c(f) + 3× 3

2 > 0. So c′(f) ≥ 0 if d(f) = 3.
Let v be a vertex of G. If d(v) = 2, then c′(v) = c(v) + 2 + 2 = 0 by R1. If

d(v) = 3, then c′(v) = c(v)+1 = 0 by R2. If d(v) = 4, then c′(v) ≥ c(v)− 1
2×4 = 0

by R3 and R4. Suppose that d(v) = 5. Then c(v) = 15 − 10 = 5 and f3(v) ≤ 3
by Lemma 3. If f3(v) = 3, then f4(v) ≤ 1 and it follows from R3 and R4 that
c′(v) ≥ c(v) − 3 × 3

2 − 1 × 1
2 = 0. If f3(v) ≤ 2, then c′(v) ≥ c(v) − 2 × 3

2 −
3 × 1

2 ≥ 0 by R3 and R4. If d(v) = 6, then f3(v) ≤ 4 by Lemma 3 and we
have c′(v) ≥ c(v) − 4 × 3

2 − 2 × 3
4 > 0. If d(v) = 7, then f3(v) ≤ 5 and we have

c′(v) ≥ c(v)−5× 7
4−2× 3

4 > 0. Suppose that d(v) = 8. Then f3(v) ≤ 6 by Lemma
3, and it may be the 3-master of two 3-vertices by Lemma 10. If f3(v) = 6, then
f4(v) = 0 and it follows that c′(v) ≥ c(v) − 6 × 2 − 2 = 0. If f3(v) = 5, then
f4(v) ≤ 1 and it follows that c′(v) ≥ c(v)− 5× 2− 1− 2 > 0. If f3(v) ≤ 4, then
c′(f) ≥ c(v)− 4× 2− 4× 1− 2 = 0 by R3 and R4. So c′(v) ≥ 0 if d(v) = 8.

Now we assume that d(v) ≥ 9. By Lemmas 9 and 10, v may be the 3-
master of two 3−-vertices and the 2-master of a 2-vertex, that is, v sends at
most 5 to its incident 3−-vertices. Suppose that d(v) = 9. Then f3(v) ≤ 6. If
f3(v) ≤ 3, then c′(v) ≥ c(v)− 3× 2− 6× 1− 5 = 0. If f3(v) = 4, then f4(v) ≤ 4
and c′(v) ≥ c(v) − 4 × 2 − 4 × 1 − 5 = 0. If f3(v) = 5, then f4(v) ≤ 2 and
c′(v) ≥ c(v) − 5 × 2 − 2 × 1 − 5 = 0. For f3(v) = 6, we have f4(v) ≤ 1. If
f4(v) = 0, then c′(v) ≥ c(v)− 6× 2− 5 = 0. Otherwise, v and its neighbors must
induce a configuration isomorphic to Figure 4. Thus, if d(w) = 2 or d(x) = 2,
then f1 is a 6+-face. If d(y) = 2 or d(z) = 2, then f2 is a 6+-face. By R1, v sends
at most 2 to its adjacent 2-vertices. By R2, v sends at most 2× 1 to its adjacent
3-vertices. So c′(v) ≥ c(v)− 6× 2− 1− 4 = 0.

Suppose that d(v) = 10. Then f3(v) ≤ 7. If f3(v) = 7, then f4(v) ≤ 1 and
it follows that c′(v) ≥ c(v)− 7× 2− 1− 5 = 0. If f3(v) = 6, then f4(v) ≤ 2 and
it follows that c′(v) ≥ c(v) − 6 × 2 − 2 × 1 − 5 > 0. If f3(v) ≤ 5, then c′(v) ≥
c(v)−5×2−5×1−5 = 0. Suppose that d(v) = 11. Then c(v) = 3×11−10 = 22
and f3(v) ≤ 8. If 7 ≤ f3(v) ≤ 8, then f4(v) ≤ 1 and it follows that c′(v) ≥
22−8×2−1−5 = 0. If f3(v) ≤ 6, then c′(v) ≥ 22−6×2−5×1−5 = 0. If d(v) ≥ 12,

then c′(v) ≥ c(v)−
⌊

3d(v)
4

⌋

×2−
(

d(v)−
⌊

3d(v)
4

⌋)

×1−5 = 2d(v)−
⌊

3d(v)
4

⌋

−15 ≥ 0.

Till now, we have checked that c′(x) ≥ 0 for all x ∈ V (G) ∪ F (G). This
contradiction completes the proof of Theorem 8.
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Figure 4. d(v) = 9, f3(v) = 6 and f4(v) = 1.
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