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Abstract

A dominating set of a graph G is a subset D ⊆ VG such that every vertex
not in D is adjacent to at least one vertex in D. The cardinality of a smallest
dominating set of G, denoted by γ(G), is the domination number of G. The
accurate domination number of G, denoted by γa(G), is the cardinality of a
smallest set D that is a dominating set of G and no |D|-element subset of
VG \ D is a dominating set of G. We study graphs for which the accurate
domination number is equal to the domination number. In particular, all
trees G for which γa(G) = γ(G) are characterized. Furthermore, we compare
the accurate domination number with the domination number of different
coronas of a graph.
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1. Introduction and Notation

We generally follow the notation and terminology of [1] and [9]. Let G =
(VG, EG) be a graph with vertex set VG of order n(G) = |VG| and edge set
EG of size m(G) = |EG|. If v is a vertex of G, then the open neighborhood of v
is the set NG(v) = {u ∈ VG : uv ∈ EG}, while the closed neighborhood of v is
the set NG[v] = NG(v) ∪ {v}. For a subset X of VG and a vertex x in X, the set
pnG(x,X) = {v ∈ VG : NG[v] ∩ X = {x}} is called the X-private neighborhood

of the vertex x, and it consists of those vertices of NG[x] which are not adjacent
to any vertex in X \ {x}; that is, pnG(x,X) = NG[x] \NG[X \ {x}]. The degree

dG(v) of a vertex v in G is the number of vertices in NG(v). A vertex of degree
one is called a leaf and its neighbor is called a support vertex. The set of leaves
of a graph G is denoted by LG, while the set of support vertices by SG. For a
set S ⊆ VG, the subgraph induced by S is denoted by G[S], while the subgraph
induced by VG \ S is denoted by G− S. Thus the graph G− S is obtained from
G by deleting the vertices in S and all edges incident with S. Let κ(G) denote
the number of components of G.

A dominating set of a graph G is a subset D of VG such that every vertex
not in D is adjacent to at least one vertex in D, that is, NG(x)∩D 6= ∅ for every
x ∈ VG \D. The domination number of G, denoted by γ(G), is the cardinality of
a smallest dominating set of G. An accurate dominating set of G is a dominating
set D of G such that no |D|-element subset of VG \ D is a dominating set of
G. The accurate domination number of G, denoted by γa(G), is the cardinality
of a smallest accurate dominating set of G. We call a dominating set of G of
cardinality γ(G) a γ-set of G, and an accurate dominating set of G of cardinality
γa(G) a γa-set of G. Since every accurate dominating set of G is a dominating
set of G, we note that γ(G) ≤ γa(G). The accurate domination in graphs was
introduced by Kulli and Kattimani [11], and further studied in a number of papers
(see, for example, [3, 6, 7, 10, 12–14, 16, 17]). A comprehensive survey of concepts
and results on domination in graphs can be found in [9].

We denote the path and cycle on n vertices by Pn and Cn, respectively. We
denote byKn the complete graph on n vertices, and byKm,n the complete bipartite

graph with partite sets of size m and n. The accurate domination numbers of
some common graphs are given by the following formulas.

Observation 1. The following holds.

(a) For n ≥ 1, γa(Kn) =
⌊

n
2

⌋

+ 1 and γa(Kn,n) = n+ 1.

(b) For n > m ≥ 1, γa(Km,n) = m.

(c) For n ≥ 3, γa(Cn) =
⌊

n
3

⌋

−
⌊

3
n

⌋

+ 2.

(d) For n ≥ 1, γa(Pn) =
⌈

n
3

⌉

unless n ∈ {2, 4} when γa(Pn) =
⌈

n
3

⌉

+ 1 (see
Corollary 6).
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In this paper we study graphs for which the accurate domination num-
ber is equal to the domination number. In particular, all trees G for which
γa(G) = γ(G) are characterized. Furthermore, we compare the accurate dom-
ination number with the domination number of different coronas of a graph.
Throughout the paper, we use the symbol Aγ(G) (respectively, Aγa(G)) to de-
note the set of all minimum dominating sets (respectively, minimum accurate
dominating sets) of G.

2. Graphs with γa Equal to γ

We are interested in determining the structure of graphs for which the accurate
domination number is equal to the domination number. The question about such
graphs has been stated in [12]. We begin with the following general property of
the graphs G for which γa(G) = γ(G).

Lemma 2. Let G be a graph. Then γa(G) = γ(G) if and only if there exists a set

D ∈ Aγ(G) such that D ∩D′ 6= ∅ for every set D′ ∈ Aγ(G).

Proof. First assume that γa(G) = γ(G), and let D be a minimum accurate
dominating set of G. Since D is a dominating set of G and |D| = γa(G) = γ(G),
we note that D ∈ Aγ(G). Now let D′ be an arbitrary minimum dominating set
of G. If D ∩D′ = ∅, then D′ ⊆ VG \D, implying that D′ would be a |D|-element
dominating set of G, contradicting the fact that D is an accurate dominating set
of G. Hence, D ∩D′ 6= ∅.

Now assume that there exists a set D ∈ Aγ(G) such that D ∩ D′ 6= ∅ for
every set D′ ∈ Aγ(G). Then, D is an accurate dominating set of G, implying that
γa(G) ≤ |D| = γ(G) ≤ γa(G). Consequently, we must have equality throughout
this inequality chain, and so γa(G) = γ(G).

It follows from Lemma 2 that if G is a disconnected graph, then γa(G) = γ(G)
if and only if γa(H) = γ(H) for at least one component H of G. In particular,
if G has an isolated vertex, then γa(G) = γ(G). It also follows from Lemma 2
that for a graph G, γa(G) = γ(G) if G has one of the following properties: (1)
G has a unique minimum dominating set (see, for example, [4] or [8] for some
characterizations of such graphs); (2) G has a vertex which belongs to every
minimum dominating set of G (see [15]); (3) G has a vertex adjacent to at least
two leaves. Consequently, there is no forbidden subgraph characterization for the
class of graphs G for which γa(G) = γ(G), as for any graph H, we can add an
isolated vertex (or two leaves to one vertex of H), and in this way form a graph
H ′ for which γa(H

′) = γ(H ′).
The corona F ◦ K1 of a graph F is the graph formed from F by adding a

new vertex v′ and edge vv′ for each vertex v ∈ V (F ). A graph G is said to be
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a corona graph if G = F ◦K1 for some connected graph F . We note that each
vertex of a corona graph G is a leaf or it is adjacent to exactly one leaf of G.
Recall that we denote the set of all leaves in a graph G by LG, and set of support
vertices in G by SG.

Lemma 3. If G is a corona graph, then γa(G) > γ(G).

Proof. Assume that G is a corona graph. If G = K1 ◦ K1, then G = K2 and
γa(G) = 2 and γ(G) = 1. Hence, we may assume that G = F ◦ K1 for some
connected graph F of order n(F ) ≥ 2. If v ∈ VG \ LG, then let v denote the
unique leaf-neighbor of v in G. Now let D be an arbitrary minimum dominating
set of G, and so D ∈ Aγ(G). Then, |D ∩ {v, v}| = 1 for every v ∈ VG \ LG.
Consequently, D and its complement VG \D are minimum dominating sets of G.
Thus, D is not an accurate dominating set of G. This is true for every minimum
dominating set of G, implying that γa(G) > γ(G).

Lemma 4. If T is a tree of order at least three, then there exists a set D ∈ Aγ(T )
such that the following hold.

(a) ST ⊆ D.

(b) NT (v) ⊆ VT \D or |pnT (v,D)| ≥ 2 for every v ∈ D \ ST .

Proof. Let T be a tree of order n(T ) ≥ 3. Among all minimum dominating sets
of T , let D ∈ Aγ(T ) be chosen that

(1) D contains as many support vertices as possible.
(2) Subject to (1), the number of components κ(T [D]) is as large as possible.
If the set D contains a leaf v of T , then we can simply replace v in D with

the support vertex adjacent to v to produce a new minimum dominating set with
more support vertices than D, a contradiction. Hence, the set D contains no
leaves, implying that ST ⊆ D. Suppose, next, that there exists a vertex v in
D that is not a support vertex of T and such that NT (v) 6⊆ VT \ D. Thus, v
has at least one neighbor in D; that is, NT (v) ∩ D 6= ∅. By the minimality
of the set D, we therefore note that pnT (v,D) 6= ∅. If |pnT (v,D)| = 1, say
pnT (v,D) = {u}, then letting D′ = (D \ {v}) ∪ {u}, the set D′ ∈ Aγ(T ) and
satisfies ST ⊆ D\{v} ⊂ D′ and κ(T [D′]) > κ(T [D]), which contradicts the choice
of D. Hence, if v ∈ D is not a support vertex of T and NT (v) 6⊆ VT \ D, then
|pnT (v,D)| ≥ 2.

We are now in a position to present the following equivalent characterizations
of trees for which the accurate domination number is equal to the domination
number.

Theorem 5. If T is a tree of order at least two, then the following statements

are equivalent.
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(1) T is not a corona graph.

(2) There exists a set D ∈ Aγ(T ) such that κ(T −D) > |D|.

(3) γa(T ) = γ(T ).

(4) There exists a set D ∈ Aγ(T ) such that D ∩D′ 6= ∅ for every D′ ∈ Aγ(T ).

Proof. The statements (3) and (4) are equivalent by Lemma 2. The implication
(3) ⇒ (1) follows from Lemma 3. To prove the implication (2) ⇒ (3), let us
assume that D ∈ Aγ(T ) and κ(T − D) > |D|. Thus, γ(T − D) ≥ κ(T − D) >
|D| = γ(T ). This proves that D is an accurate dominating set of T , and therefore
γa(T ) = γ(T ).

Thus it suffices to prove that (1) implies (2). The proof is by induction on
the order of a tree. The implication (1) ⇒ (2) is obvious for trees of order two,
three, and four. Thus assume that T is a tree of order at least five and T is not a
corona graph. Let D ∈ Aγ(T ) and assume that ST ⊆ D. Since T is not a corona
graph, the tree T has a vertex which is neither a leaf nor adjacent to exactly one
leaf. We consider two cases, depending on whether dT (v) ≥ 3 for some vertex
v ∈ ST or dT (v) = 2 for every vertex v ∈ ST .

Case 1. dT (v) ≥ 3 for some v ∈ ST . Let v
′ be a leaf of T adjacent to v. Let

T ′ be a component of T −{v, v′}. Now let T1 and T2 be the subtrees of T induced
on the vertex sets VT ′ ∪{v, v′} and VT \VT ′ , respectively. We note that both trees
T1 and T2 have order strictly less than n(T ). Further, V (T1) ∩ V (T2) = {v, v′},
E(T1) ∩ E(T2) = {vv′}, and at least one of T1 and T2, say T1, is not a corona
graph. Applying the induction hypothesis to T1, there exists a set D1 ∈ Aγ(T1)
such that κ(T1−D1) > |D1|. If T2 is a corona graph, then choosing D2 to be the
set of support vertices in T2 we note that D2 ∈ Aγ(T2) and κ(T2 −D2) = |D2|.
If T2 is not a corona graph, then applying the induction hypothesis to T2, there
exists a set D2 ∈ Aγ(T2) such that κ(T2−D2) > |D2|. In both cases, there exists
a set D2 ∈ Aγ(T2) such that κ(T2−D2) ≥ |D2|. We may assume that all support
vertices of T1 and T2 are in D1 and D2, respectively. Thus, v ∈ D1∩D2, the union
D1 ∪D2 is a γ-set of T , and κ(T − (D1 ∪D2)) = κ(T1 −D1) + κ(T2 −D2)− 1 >
|D1|+ |D2| − 1 = |D1 ∪D2|.

Case 2. dT (v) = 2 for every v ∈ ST . We distinguish two subcases, depending
on whether D \ ST 6= ∅ or D \ ST = ∅.

Case 2.1. D \ ST 6= ∅. Let v be an arbitrary vertex belonging to D \ ST .
It follows from the second part of Lemma 4 that there are two vertices v1 and
v2 belonging to NT (v) \D. Let R be the tree obtained from T by adding a new
vertex v′ and the edge vv′. We note that D is a minimum dominating set of
R and SR ⊆ D. Let R′ be the component of R − {v, v′} containing v1. Now
let R1 and R2 be the subtrees of R induced by the vertex sets VR′ ∪ {v, v′} and
VR \ VR′ , respectively. We note that both trees R1 and R2 have order strictly
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less than n(T ). Further, V (R1) ∩ V (R2) = {v, v′}, E(R1) ∩ E(R2) = {vv′}, and
neither R1 nor R2 is a corona graph. By the induction hypothesis, there exists
a set D1 ∈ Aγ(R1) and a set D2 ∈ Aγ(R2) such that κ(R1 − D1) > |D1| and
κ(R2 −D2) > |D2|. We may assume that all support vertices of R1 and R2 are
in D1 and D2, respectively. Thus, v ∈ D1 ∩D2, the union D1 ∪D2 is a γ-set of
R, and

κ(T − (D1 ∪D2)) = κ(R− (D1 ∪D2))− 1 = (κ(R1−D1) + κ(R2−D2)− 1)−1

= (κ(R1 −D1)− |D1|+ κ(R2−D2)− |D2|)− 2 + |D1|+ |D2|

≥ |D1|+ |D2| = |D1 ∪D2|+ 1 > |D1 ∪D2|.

Case 2.2. D\ST = ∅. In this case, we note thatD = ST . Let v be an arbitrary
vertex belonging to D and assume that NT (v) = {u,w}, where u ∈ LT . If
w ∈ LT , then T = K1,2, contradicting the assumption that n(T ) ≥ 5. If w ∈ ST ,
then T = P4 = K2 ◦ K1, contradicting the assumption that T is not a corona
graph (and the assumption that n(T ) ≥ 5). Therefore, w ∈ VT \(LT ∪ST ). Thus,
VT \(LT ∪ST ) is nonempty and T−D has |D| one-element components induced by
leaves of T and at least one component induced by VT \ (LT ∪ST ). Consequently,
κ(T −D) ≥ |D|+ 1 > |D|. This completes the proof of Theorem 5.

The equivalence of the statements (1) and (3) of Theorem 5 shows that the
trees T for which γa(T ) = γ(T ) are easy to recognize. From Theorem 5 and
from the well-known fact that γ(Pn) = ⌈n/3⌉ for every positive integer n, we also
immediately have the following corollary which provides a slight improvement on
Proposition 3 in [12].

Corollary 6. For n ≥ 1, γa(Pn) = γ(Pn) = ⌈n/3⌉ if and only if n ∈ N \ {2, 4}.

3. Domination of General Coronas of a Graph

Let G be a graph, and let F = {Fv : v ∈ VG} be a family of nonempty graphs
indexed by the vertices of G. By G ◦ F we denote the graph with vertex set

VG◦F = (VG × {0}) ∪
⋃

v∈VG

(

{v} × VFv

)

and edge set determined by open neighborhoods defined in such a way that

NG◦F ((v, 0)) = (NG(v)× {0}) ∪
(

{v} × VFv

)

for every v ∈ VG, and

NG◦F ((v, x)) = {(v, 0)} ∪
(

{v} ×NFv
(x)

)
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if v ∈ VG and x ∈ VFv
. The graph G ◦ F is said to be the F-corona of G.

Informally, G ◦ F is the graph obtained by taking a disjoint copy of G and all
the graphs of F with additional edges joining each vertex v of G to every vertex
in the copy of Fv. If all the graphs of the family F are isomorphic to one and
the same graph F (as it was defined by Frucht and Harary [5]), then we simply
write G ◦ F instead of G ◦ F . Recall that a graph G is said to be a corona graph

if G = F ◦K1 for some connected graph F .
The 2-subdivided graph S2(G) of a graph G is the graph with vertex set

VS2(G) = VG ∪
⋃

vu∈EG

{(v, vu), (u, vu)}

and the adjacency is defined in such a way that

NS2(G)(x) = {(x, xy) : y ∈ NG(x)}

if x ∈ VG ⊆ VS2(G), while

NS2(G)((x, xy)) = {x} ∪ {(y, xy)}

if (x, xy) ∈
⋃

vu∈EG
{(v, vu), (u, vu)} ⊆ VS2(G). Less formally, S2(G) is the graph

obtained from G by subdividing every edge with two new vertices; that is, by
replacing edges vu of G with disjoint paths (v, (v, vu), (u, vu), u).

For a graph G and a family P = {P(v) : v ∈ VG}, where P(v) is a partition
of the neighborhood NG(v) of the vertex v, by G ◦ P we denote the graph with
vertex set

VG◦P = (VG × {1}) ∪
⋃

v∈VG

({v} × P(v))

and edge set

EG◦P =
⋃

v∈VG

{(v, 1)(v,A) : A ∈ P(v)} ∪
⋃

uv∈EG

{(v,A)(u,B) : (u ∈ A) ∧ (v ∈ B)}.

The graph G ◦ P is called the P-corona of G and was defined by Dettlaff
et al. in [2]. It follows from this definition that if P(v) = {NG(v)} for every
v ∈ VG, then G ◦ P is isomorphic to the corona G ◦ K1. On the other hand, if
P(v) = {{u} : u ∈ NG(v)} for every v ∈ VG, then G ◦ P is isomorphic to the
2-subdivided graph S2(G) of G. Examples of G ◦K1, G ◦ F , G ◦ P, and S2(G)
are shown in Figure 1. In this case G is the graph (K2 ∪K1) +K1 with vertex
set VG = {v, u, w, z} and edge set EG = {vu, vw, uw,wz}, where the family F
consists of the graphs Fv = Fw = K1, Fz = K2, and Fu = K2 ∪ K1, while
P = {P(x) : x ∈ VG} is the family in which P(v) = {{u,w}}, P(u) = {{v}, {w}},
P(w) = {{u, v}, {z}}, and P(z) = {{w}}.
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(v, 0)

(w, 0) (z, 0)

(u, 0)(v, 1)

(w, 1) (z, 1)

(u, 1)

G ◦K1

(v, 0)

(w, 0) (z, 0)

(u, 0)
Fv

Fw

Fu

Fz

G ◦ F

(v,{u,w})

(w,{u,v})

(w,{z})

(z,{w})

(u,{v})

(u,{w})(v, 1)

(w, 1) (z, 1)

(u, 1)

G ◦ P

(v,{w})

(v,{u})
(w,{v})

(w,{z})
(w,{u})

(z,{w})

(u,{v})

(u,{w})(v, 1)

(w, 1) (z, 1)

(u, 1)

S2(G)

Figure 1. Coronas of G = (K2 ∪K1) +K1.

We now study relations between the domination number and the accurate
domination number of different coronas of a graph. Our first theorem specifies
when these two numbers are equal for the F-corona G ◦ F of a graph G and
a family F of nonempty graphs indexed by the vertices of G.

Theorem 7. If G is a graph and F = {Fv : v ∈ VG} is a family of nonempty

graphs indexed by the vertices of G, then the following holds.

(1) γ(G ◦ F) = |VG|.

(2) γa(G ◦ F) = γ(G ◦ F) if and only if γ(Fv) > 1 for some vertex v of G.

(3) |VG| ≤ γa(G ◦ F) ≤ |VG|+min{|VFv
| : v ∈ VG}.

Proof. (1) It is obvious that VG × {0} is a minimum dominating set of G ◦ F
and therefore γ(G ◦ F) = |VG × {0}| = |VG|.

(2) If γ(Fv) > 1 for some vertex v of G, then

γ(G◦F−(VG×{0})) =
∑

v∈VG

γ((G◦F)[{v}×VFv
]) =

∑

v∈VG

γ(Fv) > |VG| = |VG×{0}|

and this proves that no subset of VG◦F\(VG × {0}) of cardinality |VG × {0}|
is a dominating set of G ◦ F . Consequently VG × {0} is a minimum accurate
dominating set of G ◦ F and therefore γa(G ◦ F) = γ(G ◦ F).
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Assume now that G and F are such that γa(G ◦ F) = γ(G ◦ F). We claim
that γ(Fv) > 1 for some vertex v of G. Suppose, contrary to our claim, that
γ(Fv) = 1 for every vertex v of G. Then the set Uv = {x ∈ VFv

: NFv
[x] = VFv

},
the set of universal vertices of Fv, is nonempty for every v ∈ VG. Now, let D be
any minimum dominating set of G ◦ F . Then, |D| = γ(G ◦ F) = |VG × {0}| =
|VG|, |D ∩ ({(v, 0)} ∪ ({v} × Uv))| = 1, and the set ({(v, 0)} ∪ ({v} × Uv))\D is
nonempty for every v ∈ VG. Now, if D is a system of representatives of the family
{({(v, 0)} ∪ ({v} × Uv))\D : v ∈ VG}, then D is a minimum dominating set of
G◦F . Since D and D are disjoint, D is not an accurate dominating set of G◦F .
Consequently, no minimum dominating set of G ◦ F is an accurate dominating
set and therefore γ(G ◦ F) < γa(G ◦ F), a contradiction.

(3) The lower bound is obvious as |VG| = γ(G ◦ F) ≤ γa(G ◦ F). Since
(VG × {0}) ∪ ({v} × VFv

) is an accurate dominating set of G ◦ F (for every
v ∈ VG), we also have the inequality γa(G◦F) ≤ |VG|+min{|VFv

| : v ∈ VG}. This
completes the proof of Theorem 7.

As a consequence of Theorem 7, we have the following result.

Corollary 8. If G is a graph, then γa(G ◦K1) = γ(G ◦K1) + 1 = |VG|+ 1.

Proof. Since γ(K1) = 1, it follows from Theorem 7 that γa(G ◦ K1) ≥ γ(G ◦
K1)+1 = |VG|+1. On the other hand, the set (VG×{0})∪{(v, 1)} is an accurate
dominating set of G ◦ K1 and therefore γa(G ◦ K1) ≤ |(VG × {0}) ∪ {(v, 1)}| =
|VG|+ 1. Consequently, γa(G ◦K1) = γ(G ◦K1) = |VG|+ 1.

From Theorem 7 we know that γa(G ◦ F) = γ(G ◦ F) = |VG| if and only
if the family F is such that γ(Fv) > 1 for some Fv ∈ F , but we do not know
any general formula for γa(G ◦ F) if γ(Fv) = 1 for every Fv ∈ F . The following
theorem shows a formula for the domination number and general bounds for the
accurate domination number of a P-corona of a graph.

Theorem 9. If G is a graph and P = {P(v) : v ∈ VG} is a family of partitions

of the vertex neighborhoods of G, then the following holds.

(1) γ(G ◦ P) = |VG|.

(2) γa(G ◦ P) ≥ |VG|.

(3) γa(G◦P) ≤ |VG|+min
{

min{|P(v)| : v ∈ VG}, 1+min
{

|A| : A∈
⋃

v∈VG
P(v)

}}

.

Proof. It follows from the definition of G ◦ P that VG × {1} is a dominating set
of G ◦ P, and therefore γ(G ◦ P) ≤ |VG × {1}| = |VG|. On the other hand, let
D ∈ Aγ(G ◦ P). Then D ∩NG◦P [(v, 1)] 6= ∅ for every v ∈ VG, and, since the sets
NG◦P [(v, 1)] form a partition of VG◦P , we have

γ(G ◦ P) = |D| =

∣

∣

∣

∣

∣

⋃

v∈VG

(D ∩NG◦P [(v, 1)])

∣

∣

∣

∣

∣

=
∑

v∈VG

|D ∩NG◦P [(v, 1)]| ≥ |VG|.
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Consequently, we have |VG| = γ(G ◦ P) ≤ γa(G ◦ P), which proves (1) and (2).

From the definition of G ◦P it also follows that each of the sets (VG×{1})∪
NG◦P [(v, 1)] (for every v ∈ VG) and (VG × {1}) ∪NG◦P [(v,A)] (for every v ∈ VG

and A ∈ P(v)) is an accurate dominating set of G ◦ P. Hence,

|(VG × {1}) ∪NG◦P [(v, 1)]| = |VG × {1}|+ |NG◦P((v, 1))| = |VG|+ |P(v)|

≥ |VG|+min{|P(v)| : v ∈ VG} ≥ γa(G ◦ P),

and similarly

|(VG × {1}) ∪NG◦P [(v,A)]| = |(VG × {1}) ∪ {(v, 1)} ∪NG◦P((v,A))|

= |VG|+ 1 + |A|

≥ |VG|+ 1 +min{|A| : A ∈
⋃

v∈VG
P(v)}.

Therefore,

γa(G ◦ P) ≤ |VG|+min

{

min{|P(v)| : v ∈ VG}, 1+min

{

|A| : A ∈
⋃

v∈VG

P(v)

}}

.

This completes the proof of Theorem 9.

We do not know all the pairs (G,P) achieving equality in the upper bound
for the accurate domination number of a P-corona of a graph, but Theorem 10
and Corollaries 11 and 12 show that the bounds in Theorem 9 are best possi-
ble. The next theorem also shows that the domination number and the accurate
domination number of a 2-subdivided graph are easy to compute.

Theorem 10. If G is a connected graph, then the following holds.

(1) γ(S2(G)) = |VG|.

(2) |VG| ≤ γa(S2(G)) ≤ |VG|+ 2.

(3) γa(S2(G)) =











|VG|+ 2, if G is a cycle,

|VG|+ 1, if G = K2,

|VG|, otherwise.

Proof. The statement (1) follows from Theorem 9 (1).

(2) The inequalities |VG| ≤ γa(S2(G)) ≤ |VG|+2 are obvious if G = K1. Thus
assume that G is a connected graph of order at least two. Let u and v be adjacent
vertices of G. Then, VG∪{(v, vu), (u, vu)} is an accurate dominating set of S2(G)
and we have |VG| = γ(S2(G)) ≤ γa(S2(G)) ≤ |VG ∪ {(v, vu), (u, vu)}| = |VG|+ 2.

(3) The connectivity of G implies that there are three cases to consider.
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Case 1. |EG| > |VG|. In this case S2(G) − VG has |EG| components and
therefore no |VG|-element subset of VS2(G) \ VG dominates S2(G). Hence, VG is
an accurate dominating set of S2(G) and γa(S2(G)) = |VG|.

Case 2. |EG| = |VG|. In this case, G is a unicyclic graph. First, if G is a cycle,
say G = Cn, then S2(G) = C3n and γa(S2(G)) = γa(C3n) = n + 2 = |VG| + 2
(see Proposition 3 in [12]). Thus assume that G is a unicyclic graph which is
not a cycle. Then G has a leaf, say v. Now, if u is the only neighbor of v, then
(VG\{v})∪{(v, vu)} is a minimum dominating set of S2(G). Since S2(G)−((VG\
{v}) ∪ {(v, vu)}) has |VG| + 1 components, (VG \ {v}) ∪ {(v, vu)} is a minimum
accurate dominating set of S2(G) and γa(S2(G)) = |(VG\{v})∪{(v, vu)}| = |VG|.

Case 3. |EG| = |VG| − 1. In this case, G is a tree. Now, if G = K1, then
S2(G) = K1 and γa(S2(G)) = γa(K1) = 1 = |VG|. If G = K2, then S2(G) = P4

and γa(S2(G)) = γa(P4) = 3 = 2+1 = |VG|+1. Finally, if G is a tree of order at
least three, then the tree S2(G) is not a corona graph and by (1) and Theorem 5
we have γa(S2(G)) = γ(S2(G)) = |VG|.

As a consequence of Theorem 10, we have the following results.

Corollary 11. If T is a tree and P = {P(v) : v ∈ VT } is a family of partitions

of the vertex neighborhoods of T , then

γa(T ◦ P) =

{

|VT |+ 1, if |P(v)| = 1 for every v ∈ VT ,

|VT |, if |P(v)| > 1 for some v ∈ VT .

Proof. If |P(v)| = 1 for every v ∈ VT , then T ◦P = T ◦K1 and the result follows
from Corollary 8. If |P(v)| > 1 for some v ∈ VT , then the tree T ◦ P is not
a corona and the result follows from Theorem 5 and Theorem 9 (1).

Corollary 12. For n ≥ 3, if P = {P(v) : v ∈ VCn
} is a family of partitions of

the vertex neighborhoods of Cn, then

γa(Cn ◦ P) =











n+ 1, if |P(v)| = 1 for every v ∈ VCn
,

n+ 2, if |P(v)| = 2 for every v ∈ VCn
,

n, otherwise.

Proof. If |P(v)| = 1 for every v ∈ VCn
, then Cn ◦ P = Cn ◦ K1. Thus, by

Theorem 8, we have γa(Cn ◦P) = γa(Cn ◦K1) = γ(Cn ◦K1) = |VCn
|+1 = n+1.

If |P(v)| > 1 (and therefore |P(v)| = 2) for every v ∈ VCn
, then Cn ◦ P =

S2(Cn) = C3n. Now, since γa(C3n) = n+ 2 (as it was observed in [12]), we have
γa(Cn ◦ P) = γa(C3n) = n+ 2.
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Finally assume that there are vertices u and v in Cn such that |P(v)| = 1
and |P(u)| = 2. Then the sets

V 1
Cn

=
{

x ∈ VCn
: |P(x)| = 1

}

and V 2
Cn

=
{

y ∈ VCn
: |P(y)| = 2

}

form a partition of VCn
. Without loss of generality we may assume that x1, x2,

. . . , xk, y1, y2, . . . , yℓ, . . . , z1, z2, . . . , zp, t1, t2, . . . , tq are the consecutive vertices of
Cn, where

x1, x2, . . . , xk ∈ V 1
Cn

, y1, y2, . . . , yℓ ∈ V 2
Cn

, . . . , z1, z2, . . . , zp ∈ V 1
Cn

,

t1, t2, . . . , tq ∈ V 2
Cn

,

and k + ℓ + · · · + p + q = n. It is easy to observe that D = {(xi, NCn
(xi)) : i =

1, . . . , k} ∪ {(yj , 1) : j = 1, . . . , ℓ} ∪ · · · ∪ {(zi, NCn
(zi)) : i = 1, . . . , p} ∪ {(tj , 1) :

j = 1, . . . , q} is a dominating set of Cn ◦ P. Since the set D is of cardinality
n = |VCn

| and n = γ(Cn ◦ P) (by Theorem 9 (1)), D is a minimum dominating
set of Cn ◦ P. In addition, since Cn ◦ P −D has k+ (2+ (ℓ− 1)) + · · ·+ p+ (2+
(q − 1)) > k + ℓ+ · · ·+ p+ q = n components, that is, since κ(Cn ◦ P −D) > n,
no n-element subset of VCn◦P \D is a dominating set of Cn ◦ P. Thus, D is an
accurate dominating set of Cn ◦ P and therefore γ(Cn ◦ P) = n.

4. Closing Open Problems

We close with the following list of open problems that we have yet to settle.

Problem 13. Find a formula for the accurate domination number γa(G ◦ F) of
the F-corona of a graph G depending only on the family F = {Fv : v ∈ VG} such
that γ(Fv) = 1 for every v ∈ VG.

Problem 14. Characterize the graphs G and the families P = {P(v) : v ∈ VG}
for which γa(G ◦ P) = |VG| + min

{

min{|P(v)| : v ∈ VG}, 1 + min
{

|A| : A ∈
⋃

v∈VG
P(v)

}}

.

Problem 15. It is a natural question to ask if there exists a nonnegative integer
k such that γa(G ◦ P) ≤ |VG| + k for every graph G and every family P =
{P(v) : v ∈ VG} of partitions of the vertex neighborhoods of G.
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