ON ACCURATE DOMINATION IN GRAPHS

Joanna Cyman
Faculty of Applied Physics and Mathematics Gdańsk University of Technology, 80-233 Gdańsk, Poland
e-mail: joanna.cyman@pg.edu.pl
Michael A. Henning
Department of Pure and Applied Mathematics
University of Johannesburg
Auckland Park 2006, South Africa
e-mail: mahenning@uj.ac.za
AND
Jerzy Topp
Faculty of Mathematics, Physics and Informatics
University of Gdańsk, 80-952 Gdańsk, Poland
e-mail: jtopp@inf.ug.edu.pl

Abstract

A dominating set of a graph G is a subset $D \subseteq V_{G}$ such that every vertex not in D is adjacent to at least one vertex in D. The cardinality of a smallest dominating set of G, denoted by $\gamma(G)$, is the domination number of G. The accurate domination number of G, denoted by $\gamma_{\mathrm{a}}(G)$, is the cardinality of a smallest set D that is a dominating set of G and no $|D|$-element subset of $V_{G} \backslash D$ is a dominating set of G. We study graphs for which the accurate domination number is equal to the domination number. In particular, all trees G for which $\gamma_{\mathrm{a}}(G)=\gamma(G)$ are characterized. Furthermore, we compare the accurate domination number with the domination number of different coronas of a graph.

Keywords: domination number, accurate domination number, tree, corona.
2010 Mathematics Subject Classification: 05C69, 05C05, 05C75, 05C76.

1. Introduction and Notation

We generally follow the notation and terminology of [1] and [9]. Let $G=$ $\left(V_{G}, E_{G}\right)$ be a graph with vertex set V_{G} of order $n(G)=\left|V_{G}\right|$ and edge set E_{G} of size $m(G)=\left|E_{G}\right|$. If v is a vertex of G, then the open neighborhood of v is the set $N_{G}(v)=\left\{u \in V_{G}: u v \in E_{G}\right\}$, while the closed neighborhood of v is the set $N_{G}[v]=N_{G}(v) \cup\{v\}$. For a subset X of V_{G} and a vertex x in X, the set $\operatorname{pn}_{G}(x, X)=\left\{v \in V_{G}: N_{G}[v] \cap X=\{x\}\right\}$ is called the X-private neighborhood of the vertex x, and it consists of those vertices of $N_{G}[x]$ which are not adjacent to any vertex in $X \backslash\{x\}$; that is, $\operatorname{pn}_{G}(x, X)=N_{G}[x] \backslash N_{G}[X \backslash\{x\}]$. The degree $d_{G}(v)$ of a vertex v in G is the number of vertices in $N_{G}(v)$. A vertex of degree one is called a leaf and its neighbor is called a support vertex. The set of leaves of a graph G is denoted by L_{G}, while the set of support vertices by S_{G}. For a set $S \subseteq V_{G}$, the subgraph induced by S is denoted by $G[S]$, while the subgraph induced by $V_{G} \backslash S$ is denoted by $G-S$. Thus the graph $G-S$ is obtained from G by deleting the vertices in S and all edges incident with S. Let $\kappa(G)$ denote the number of components of G.

A dominating set of a graph G is a subset D of V_{G} such that every vertex not in D is adjacent to at least one vertex in D, that is, $N_{G}(x) \cap D \neq \emptyset$ for every $x \in V_{G} \backslash D$. The domination number of G, denoted by $\gamma(G)$, is the cardinality of a smallest dominating set of G. An accurate dominating set of G is a dominating set D of G such that no $|D|$-element subset of $V_{G} \backslash D$ is a dominating set of G. The accurate domination number of G, denoted by $\gamma_{\mathrm{a}}(G)$, is the cardinality of a smallest accurate dominating set of G. We call a dominating set of G of cardinality $\gamma(G)$ a γ-set of G, and an accurate dominating set of G of cardinality $\gamma_{\mathrm{a}}(G)$ a γ_{a}-set of G. Since every accurate dominating set of G is a dominating set of G, we note that $\gamma(G) \leq \gamma_{\mathrm{a}}(G)$. The accurate domination in graphs was introduced by Kulli and Kattimani [11], and further studied in a number of papers (see, for example, $[3,6,7,10,12-14,16,17]$). A comprehensive survey of concepts and results on domination in graphs can be found in [9].

We denote the path and cycle on n vertices by P_{n} and C_{n}, respectively. We denote by K_{n} the complete graph on n vertices, and by $K_{m, n}$ the complete bipartite graph with partite sets of size m and n. The accurate domination numbers of some common graphs are given by the following formulas.

Observation 1. The following holds.
(a) For $n \geq 1, \gamma_{\mathrm{a}}\left(K_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor+1$ and $\gamma_{\mathrm{a}}\left(K_{n, n}\right)=n+1$.
(b) For $n>m \geq 1$, $\gamma_{\mathrm{a}}\left(K_{m, n}\right)=m$.
(c) For $n \geq 3$, $\gamma_{\mathrm{a}}\left(C_{n}\right)=\left\lfloor\frac{n}{3}\right\rfloor-\left\lfloor\frac{3}{n}\right\rfloor+2$.
(d) For $n \geq 1$, $\gamma_{\mathrm{a}}\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$ unless $n \in\{2,4\}$ when $\gamma_{\mathrm{a}}\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil+1$ (see Corollary 6).

In this paper we study graphs for which the accurate domination number is equal to the domination number. In particular, all trees G for which $\gamma_{\mathrm{a}}(G)=\gamma(G)$ are characterized. Furthermore, we compare the accurate domination number with the domination number of different coronas of a graph. Throughout the paper, we use the symbol $\mathcal{A}_{\gamma}(G)$ (respectively, $\mathcal{A}_{\gamma_{\mathrm{a}}}(G)$) to denote the set of all minimum dominating sets (respectively, minimum accurate dominating sets) of G.

2. Graphs with γ_{a} Equal to γ

We are interested in determining the structure of graphs for which the accurate domination number is equal to the domination number. The question about such graphs has been stated in [12]. We begin with the following general property of the graphs G for which $\gamma_{\mathrm{a}}(G)=\gamma(G)$.

Lemma 2. Let G be a graph. Then $\gamma_{\mathrm{a}}(G)=\gamma(G)$ if and only if there exists a set $D \in \mathcal{A}_{\gamma}(G)$ such that $D \cap D^{\prime} \neq \emptyset$ for every set $D^{\prime} \in \mathcal{A}_{\gamma}(G)$.

Proof. First assume that $\gamma_{a}(G)=\gamma(G)$, and let D be a minimum accurate dominating set of G. Since D is a dominating set of G and $|D|=\gamma_{\mathrm{a}}(G)=\gamma(G)$, we note that $D \in \mathcal{A}_{\gamma}(G)$. Now let D^{\prime} be an arbitrary minimum dominating set of G. If $D \cap D^{\prime}=\emptyset$, then $D^{\prime} \subseteq V_{G} \backslash D$, implying that D^{\prime} would be a $|D|$-element dominating set of G, contradicting the fact that D is an accurate dominating set of G. Hence, $D \cap D^{\prime} \neq \emptyset$.

Now assume that there exists a set $D \in \mathcal{A}_{\gamma}(G)$ such that $D \cap D^{\prime} \neq \emptyset$ for every set $D^{\prime} \in \mathcal{A}_{\gamma}(G)$. Then, D is an accurate dominating set of G, implying that $\gamma_{\mathrm{a}}(G) \leq|D|=\gamma(G) \leq \gamma_{\mathrm{a}}(G)$. Consequently, we must have equality throughout this inequality chain, and so $\gamma_{\mathrm{a}}(G)=\gamma(G)$.

It follows from Lemma 2 that if G is a disconnected graph, then $\gamma_{\mathrm{a}}(G)=\gamma(G)$ if and only if $\gamma_{\mathrm{a}}(H)=\gamma(H)$ for at least one component H of G. In particular, if G has an isolated vertex, then $\gamma_{\mathrm{a}}(G)=\gamma(G)$. It also follows from Lemma 2 that for a graph $G, \gamma_{\mathrm{a}}(G)=\gamma(G)$ if G has one of the following properties: (1) G has a unique minimum dominating set (see, for example, [4] or [8] for some characterizations of such graphs); (2) G has a vertex which belongs to every minimum dominating set of G (see [15]); (3) G has a vertex adjacent to at least two leaves. Consequently, there is no forbidden subgraph characterization for the class of graphs G for which $\gamma_{\mathrm{a}}(G)=\gamma(G)$, as for any graph H, we can add an isolated vertex (or two leaves to one vertex of H), and in this way form a graph H^{\prime} for which $\gamma_{\mathrm{a}}\left(H^{\prime}\right)=\gamma\left(H^{\prime}\right)$.

The corona $F \circ K_{1}$ of a graph F is the graph formed from F by adding a new vertex v^{\prime} and edge $v v^{\prime}$ for each vertex $v \in V(F)$. A graph G is said to be
a corona graph if $G=F \circ K_{1}$ for some connected graph F. We note that each vertex of a corona graph G is a leaf or it is adjacent to exactly one leaf of G. Recall that we denote the set of all leaves in a graph G by L_{G}, and set of support vertices in G by S_{G}.

Lemma 3. If G is a corona graph, then $\gamma_{\mathrm{a}}(G)>\gamma(G)$.
Proof. Assume that G is a corona graph. If $G=K_{1} \circ K_{1}$, then $G=K_{2}$ and $\gamma_{\mathrm{a}}(G)=2$ and $\gamma(G)=1$. Hence, we may assume that $G=F \circ K_{1}$ for some connected graph F of order $n(F) \geq 2$. If $v \in V_{G} \backslash L_{G}$, then let \bar{v} denote the unique leaf-neighbor of v in G. Now let D be an arbitrary minimum dominating set of G, and so $D \in \mathcal{A}_{\gamma}(G)$. Then, $|D \cap\{v, \bar{v}\}|=1$ for every $v \in V_{G} \backslash L_{G}$. Consequently, D and its complement $V_{G} \backslash D$ are minimum dominating sets of G. Thus, D is not an accurate dominating set of G. This is true for every minimum dominating set of G, implying that $\gamma_{\mathrm{a}}(G)>\gamma(G)$.

Lemma 4. If T is a tree of order at least three, then there exists a set $D \in \mathcal{A}_{\gamma}(T)$ such that the following hold.
(a) $S_{T} \subseteq D$.
(b) $N_{T}(v) \subseteq V_{T} \backslash D$ or $\left|\mathrm{pn}_{T}(v, D)\right| \geq 2$ for every $v \in D \backslash S_{T}$.

Proof. Let T be a tree of order $n(T) \geq 3$. Among all minimum dominating sets of T, let $D \in \mathcal{A}_{\gamma}(T)$ be chosen that
(1) D contains as many support vertices as possible.
(2) Subject to (1), the number of components $\kappa(T[D])$ is as large as possible. If the set D contains a leaf v of T, then we can simply replace v in D with the support vertex adjacent to v to produce a new minimum dominating set with more support vertices than D, a contradiction. Hence, the set D contains no leaves, implying that $S_{T} \subseteq D$. Suppose, next, that there exists a vertex v in D that is not a support vertex of T and such that $N_{T}(v) \nsubseteq V_{T} \backslash D$. Thus, v has at least one neighbor in D; that is, $N_{T}(v) \cap D \neq \emptyset$. By the minimality of the set D, we therefore note that $\mathrm{pn}_{T}(v, D) \neq \emptyset$. If $\left|\mathrm{pn}_{T}(v, D)\right|=1$, say $\operatorname{pn}_{T}(v, D)=\{u\}$, then letting $D^{\prime}=(D \backslash\{v\}) \cup\{u\}$, the set $D^{\prime} \in \mathcal{A}_{\gamma}(T)$ and satisfies $S_{T} \subseteq D \backslash\{v\} \subset D^{\prime}$ and $\kappa\left(T\left[D^{\prime}\right]\right)>\kappa(T[D])$, which contradicts the choice of D. Hence, if $v \in D$ is not a support vertex of T and $N_{T}(v) \nsubseteq V_{T} \backslash D$, then $\left|\mathrm{pn}_{T}(v, D)\right| \geq 2$.

We are now in a position to present the following equivalent characterizations of trees for which the accurate domination number is equal to the domination number.

Theorem 5. If T is a tree of order at least two, then the following statements are equivalent.
(1) T is not a corona graph.
(2) There exists a set $D \in \mathcal{A}_{\gamma}(T)$ such that $\kappa(T-D)>|D|$.
(3) $\gamma_{\mathrm{a}}(T)=\gamma(T)$.
(4) There exists a set $D \in \mathcal{A}_{\gamma}(T)$ such that $D \cap D^{\prime} \neq \emptyset$ for every $D^{\prime} \in \mathcal{A}_{\gamma}(T)$.

Proof. The statements (3) and (4) are equivalent by Lemma 2. The implication $(3) \Rightarrow(1)$ follows from Lemma 3. To prove the implication $(2) \Rightarrow(3)$, let us assume that $D \in \mathcal{A}_{\gamma}(T)$ and $\kappa(T-D)>|D|$. Thus, $\gamma(T-D) \geq \kappa(T-D)>$ $|D|=\gamma(T)$. This proves that D is an accurate dominating set of T, and therefore $\gamma_{\mathrm{a}}(T)=\gamma(T)$.

Thus it suffices to prove that (1) implies (2). The proof is by induction on the order of a tree. The implication $(1) \Rightarrow(2)$ is obvious for trees of order two, three, and four. Thus assume that T is a tree of order at least five and T is not a corona graph. Let $D \in \mathcal{A}_{\gamma}(T)$ and assume that $S_{T} \subseteq D$. Since T is not a corona graph, the tree T has a vertex which is neither a leaf nor adjacent to exactly one leaf. We consider two cases, depending on whether $d_{T}(v) \geq 3$ for some vertex $v \in S_{T}$ or $d_{T}(v)=2$ for every vertex $v \in S_{T}$.

Case 1. $d_{T}(v) \geq 3$ for some $v \in S_{T}$. Let v^{\prime} be a leaf of T adjacent to v. Let T^{\prime} be a component of $T-\left\{v, v^{\prime}\right\}$. Now let T_{1} and T_{2} be the subtrees of T induced on the vertex sets $V_{T^{\prime}} \cup\left\{v, v^{\prime}\right\}$ and $V_{T} \backslash V_{T^{\prime}}$, respectively. We note that both trees T_{1} and T_{2} have order strictly less than $n(T)$. Further, $V\left(T_{1}\right) \cap V\left(T_{2}\right)=\left\{v, v^{\prime}\right\}$, $E\left(T_{1}\right) \cap E\left(T_{2}\right)=\left\{v v^{\prime}\right\}$, and at least one of T_{1} and T_{2}, say T_{1}, is not a corona graph. Applying the induction hypothesis to T_{1}, there exists a set $D_{1} \in \mathcal{A}_{\gamma}\left(T_{1}\right)$ such that $\kappa\left(T_{1}-D_{1}\right)>\left|D_{1}\right|$. If T_{2} is a corona graph, then choosing D_{2} to be the set of support vertices in T_{2} we note that $D_{2} \in \mathcal{A}_{\gamma}\left(T_{2}\right)$ and $\kappa\left(T_{2}-D_{2}\right)=\left|D_{2}\right|$. If T_{2} is not a corona graph, then applying the induction hypothesis to T_{2}, there exists a set $D_{2} \in \mathcal{A}_{\gamma}\left(T_{2}\right)$ such that $\kappa\left(T_{2}-D_{2}\right)>\left|D_{2}\right|$. In both cases, there exists a set $D_{2} \in \mathcal{A}_{\gamma}\left(T_{2}\right)$ such that $\kappa\left(T_{2}-D_{2}\right) \geq\left|D_{2}\right|$. We may assume that all support vertices of T_{1} and T_{2} are in D_{1} and D_{2}, respectively. Thus, $v \in D_{1} \cap D_{2}$, the union $D_{1} \cup D_{2}$ is a γ-set of T, and $\kappa\left(T-\left(D_{1} \cup D_{2}\right)\right)=\kappa\left(T_{1}-D_{1}\right)+\kappa\left(T_{2}-D_{2}\right)-1>$ $\left|D_{1}\right|+\left|D_{2}\right|-1=\left|D_{1} \cup D_{2}\right|$.

Case 2. $d_{T}(v)=2$ for every $v \in S_{T}$. We distinguish two subcases, depending on whether $D \backslash S_{T} \neq \emptyset$ or $D \backslash S_{T}=\emptyset$.

Case 2.1. $D \backslash S_{T} \neq \emptyset$. Let v be an arbitrary vertex belonging to $D \backslash S_{T}$. It follows from the second part of Lemma 4 that there are two vertices v_{1} and v_{2} belonging to $N_{T}(v) \backslash D$. Let R be the tree obtained from T by adding a new vertex v^{\prime} and the edge $v v^{\prime}$. We note that D is a minimum dominating set of R and $S_{R} \subseteq D$. Let R^{\prime} be the component of $R-\left\{v, v^{\prime}\right\}$ containing v_{1}. Now let R_{1} and R_{2} be the subtrees of R induced by the vertex sets $V_{R^{\prime}} \cup\left\{v, v^{\prime}\right\}$ and $V_{R} \backslash V_{R^{\prime}}$, respectively. We note that both trees R_{1} and R_{2} have order strictly
less than $n(T)$. Further, $V\left(R_{1}\right) \cap V\left(R_{2}\right)=\left\{v, v^{\prime}\right\}, E\left(R_{1}\right) \cap E\left(R_{2}\right)=\left\{v v^{\prime}\right\}$, and neither R_{1} nor R_{2} is a corona graph. By the induction hypothesis, there exists a set $D_{1} \in \mathcal{A}_{\gamma}\left(R_{1}\right)$ and a set $D_{2} \in \mathcal{A}_{\gamma}\left(R_{2}\right)$ such that $\kappa\left(R_{1}-D_{1}\right)>\left|D_{1}\right|$ and $\kappa\left(R_{2}-D_{2}\right)>\left|D_{2}\right|$. We may assume that all support vertices of R_{1} and R_{2} are in D_{1} and D_{2}, respectively. Thus, $v \in D_{1} \cap D_{2}$, the union $D_{1} \cup D_{2}$ is a γ-set of R, and

$$
\begin{aligned}
\kappa\left(T-\left(D_{1} \cup D_{2}\right)\right) & =\kappa\left(R-\left(D_{1} \cup D_{2}\right)\right)-1=\left(\kappa\left(R_{1}-D_{1}\right)+\kappa\left(R_{2}-D_{2}\right)-1\right)-1 \\
& =\left(\kappa\left(R_{1}-D_{1}\right)-\left|D_{1}\right|+\kappa\left(R_{2}-D_{2}\right)-\left|D_{2}\right|\right)-2+\left|D_{1}\right|+\left|D_{2}\right| \\
& \geq\left|D_{1}\right|+\left|D_{2}\right|=\left|D_{1} \cup D_{2}\right|+1>\left|D_{1} \cup D_{2}\right| .
\end{aligned}
$$

Case 2.2. $D \backslash S_{T}=\emptyset$. In this case, we note that $D=S_{T}$. Let v be an arbitrary vertex belonging to D and assume that $N_{T}(v)=\{u, w\}$, where $u \in L_{T}$. If $w \in L_{T}$, then $T=K_{1,2}$, contradicting the assumption that $n(T) \geq 5$. If $w \in S_{T}$, then $T=P_{4}=K_{2} \circ K_{1}$, contradicting the assumption that T is not a corona graph (and the assumption that $n(T) \geq 5$). Therefore, $w \in V_{T} \backslash\left(L_{T} \cup S_{T}\right)$. Thus, $V_{T} \backslash\left(L_{T} \cup S_{T}\right)$ is nonempty and $T-D$ has $|D|$ one-element components induced by leaves of T and at least one component induced by $V_{T} \backslash\left(L_{T} \cup S_{T}\right)$. Consequently, $\kappa(T-D) \geq|D|+1>|D|$. This completes the proof of Theorem 5 .

The equivalence of the statements (1) and (3) of Theorem 5 shows that the trees T for which $\gamma_{\mathrm{a}}(T)=\gamma(T)$ are easy to recognize. From Theorem 5 and from the well-known fact that $\gamma\left(P_{n}\right)=\lceil n / 3\rceil$ for every positive integer n, we also immediately have the following corollary which provides a slight improvement on Proposition 3 in [12].
Corollary 6. For $n \geq 1, \gamma_{\mathrm{a}}\left(P_{n}\right)=\gamma\left(P_{n}\right)=\lceil n / 3\rceil$ if and only if $n \in \mathbb{N} \backslash\{2,4\}$.

3. Domination of General Coronas of a Graph

Let G be a graph, and let $\mathcal{F}=\left\{F_{v}: v \in V_{G}\right\}$ be a family of nonempty graphs indexed by the vertices of G. By $G \circ \mathcal{F}$ we denote the graph with vertex set

$$
V_{G \circ \mathcal{F}}=\left(V_{G} \times\{0\}\right) \cup \bigcup_{v \in V_{G}}\left(\{v\} \times V_{F_{v}}\right)
$$

and edge set determined by open neighborhoods defined in such a way that

$$
N_{G \circ \mathcal{F}}((v, 0))=\left(N_{G}(v) \times\{0\}\right) \cup\left(\{v\} \times V_{F_{v}}\right)
$$

for every $v \in V_{G}$, and

$$
N_{G \circ \mathcal{F}}((v, x))=\{(v, 0)\} \cup\left(\{v\} \times N_{F_{v}}(x)\right)
$$

if $v \in V_{G}$ and $x \in V_{F_{v}}$. The graph $G \circ \mathcal{F}$ is said to be the \mathcal{F}-corona of G. Informally, $G \circ \mathcal{F}$ is the graph obtained by taking a disjoint copy of G and all the graphs of \mathcal{F} with additional edges joining each vertex v of G to every vertex in the copy of F_{v}. If all the graphs of the family \mathcal{F} are isomorphic to one and the same graph F (as it was defined by Frucht and Harary [5]), then we simply write $G \circ F$ instead of $G \circ \mathcal{F}$. Recall that a graph G is said to be a corona graph if $G=F \circ K_{1}$ for some connected graph F.

The 2-subdivided graph $S_{2}(G)$ of a graph G is the graph with vertex set

$$
V_{S_{2}(G)}=V_{G} \cup \bigcup_{v u \in E_{G}}\{(v, v u),(u, v u)\}
$$

and the adjacency is defined in such a way that

$$
N_{S_{2}(G)}(x)=\left\{(x, x y): y \in N_{G}(x)\right\}
$$

if $x \in V_{G} \subseteq V_{S_{2}(G)}$, while

$$
N_{S_{2}(G)}((x, x y))=\{x\} \cup\{(y, x y)\}
$$

if $(x, x y) \in \bigcup_{v u \in E_{G}}\{(v, v u),(u, v u)\} \subseteq V_{S_{2}(G)}$. Less formally, $S_{2}(G)$ is the graph obtained from G by subdividing every edge with two new vertices; that is, by replacing edges $v u$ of G with disjoint paths $(v,(v, v u),(u, v u), u)$.

For a graph G and a family $\mathcal{P}=\left\{\mathcal{P}(v): v \in V_{G}\right\}$, where $\mathcal{P}(v)$ is a partition of the neighborhood $N_{G}(v)$ of the vertex v, by $G \circ \mathcal{P}$ we denote the graph with vertex set

$$
V_{G \circ \mathcal{P}}=\left(V_{G} \times\{1\}\right) \cup \bigcup_{v \in V_{G}}(\{v\} \times \mathcal{P}(v))
$$

and edge set

$$
E_{G \circ \mathcal{P}}=\bigcup_{v \in V_{G}}\{(v, 1)(v, A): A \in \mathcal{P}(v)\} \cup \bigcup_{u v \in E_{G}}\{(v, A)(u, B):(u \in A) \wedge(v \in B)\} .
$$

The graph $G \circ \mathcal{P}$ is called the \mathcal{P}-corona of G and was defined by Dettlaff et al. in [2]. It follows from this definition that if $\mathcal{P}(v)=\left\{N_{G}(v)\right\}$ for every $v \in V_{G}$, then $G \circ \mathcal{P}$ is isomorphic to the corona $G \circ K_{1}$. On the other hand, if $\mathcal{P}(v)=\left\{\{u\}: u \in N_{G}(v)\right\}$ for every $v \in V_{G}$, then $G \circ \mathcal{P}$ is isomorphic to the 2-subdivided graph $S_{2}(G)$ of G. Examples of $G \circ K_{1}, G \circ \mathcal{F}, G \circ \mathcal{P}$, and $S_{2}(G)$ are shown in Figure 1. In this case G is the graph $\left(K_{2} \cup K_{1}\right)+K_{1}$ with vertex set $V_{G}=\{v, u, w, z\}$ and edge set $E_{G}=\{v u, v w, u w, w z\}$, where the family \mathcal{F} consists of the graphs $F_{v}=F_{w}=K_{1}, F_{z}=K_{2}$, and $F_{u}=K_{2} \cup K_{1}$, while $\mathcal{P}=\left\{\mathcal{P}(x): x \in V_{G}\right\}$ is the family in which $\mathcal{P}(v)=\{\{u, w\}\}, \mathcal{P}(u)=\{\{v\},\{w\}\}$, $\mathcal{P}(w)=\{\{u, v\},\{z\}\}$, and $\mathcal{P}(z)=\{\{w\}\}$.

Figure 1. Coronas of $G=\left(K_{2} \cup K_{1}\right)+K_{1}$.

We now study relations between the domination number and the accurate domination number of different coronas of a graph. Our first theorem specifies when these two numbers are equal for the \mathcal{F}-corona $G \circ \mathcal{F}$ of a graph G and a family \mathcal{F} of nonempty graphs indexed by the vertices of G.

Theorem 7. If G is a graph and $\mathcal{F}=\left\{F_{v}: v \in V_{G}\right\}$ is a family of nonempty graphs indexed by the vertices of G, then the following holds.
(1) $\gamma(G \circ \mathcal{F})=\left|V_{G}\right|$.
(2) $\gamma_{\mathrm{a}}(G \circ \mathcal{F})=\gamma(G \circ \mathcal{F})$ if and only if $\gamma\left(F_{v}\right)>1$ for some vertex v of G.
(3) $\left|V_{G}\right| \leq \gamma_{\mathrm{a}}(G \circ \mathcal{F}) \leq\left|V_{G}\right|+\min \left\{\left|V_{F_{v}}\right|: v \in V_{G}\right\}$.

Proof. (1) It is obvious that $V_{G} \times\{0\}$ is a minimum dominating set of $G \circ \mathcal{F}$ and therefore $\gamma(G \circ \mathcal{F})=\left|V_{G} \times\{0\}\right|=\left|V_{G}\right|$.
(2) If $\gamma\left(F_{v}\right)>1$ for some vertex v of G, then
$\gamma\left(G \circ \mathcal{F}-\left(V_{G} \times\{0\}\right)\right)=\sum_{v \in V_{G}} \gamma\left((G \circ \mathcal{F})\left[\{v\} \times V_{F_{v}}\right]\right)=\sum_{v \in V_{G}} \gamma\left(F_{v}\right)>\left|V_{G}\right|=\left|V_{G} \times\{0\}\right|$
and this proves that no subset of $V_{G \circ \mathcal{F}} \backslash\left(V_{G} \times\{0\}\right)$ of cardinality $\left|V_{G} \times\{0\}\right|$ is a dominating set of $G \circ \mathcal{F}$. Consequently $V_{G} \times\{0\}$ is a minimum accurate dominating set of $G \circ \mathcal{F}$ and therefore $\gamma_{\mathrm{a}}(G \circ \mathcal{F})=\gamma(G \circ \mathcal{F})$.

Assume now that G and \mathcal{F} are such that $\gamma_{\mathrm{a}}(G \circ \mathcal{F})=\gamma(G \circ \mathcal{F})$. We claim that $\gamma\left(F_{v}\right)>1$ for some vertex v of G. Suppose, contrary to our claim, that $\gamma\left(F_{v}\right)=1$ for every vertex v of G. Then the set $U_{v}=\left\{x \in V_{F_{v}}: N_{F_{v}}[x]=V_{F_{v}}\right\}$, the set of universal vertices of F_{v}, is nonempty for every $v \in V_{G}$. Now, let D be any minimum dominating set of $G \circ \mathcal{F}$. Then, $|D|=\gamma(G \circ \mathcal{F})=\left|V_{G} \times\{0\}\right|=$ $\left|V_{G}\right|,\left|D \cap\left(\{(v, 0)\} \cup\left(\{v\} \times U_{v}\right)\right)\right|=1$, and the set $\left(\{(v, 0)\} \cup\left(\{v\} \times U_{v}\right)\right) \backslash D$ is nonempty for every $v \in V_{G}$. Now, if \bar{D} is a system of representatives of the family $\left\{\left(\{(v, 0)\} \cup\left(\{v\} \times U_{v}\right)\right) \backslash D: v \in V_{G}\right\}$, then \bar{D} is a minimum dominating set of $G \circ \mathcal{F}$. Since \bar{D} and D are disjoint, D is not an accurate dominating set of $G \circ \mathcal{F}$. Consequently, no minimum dominating set of $G \circ \mathcal{F}$ is an accurate dominating set and therefore $\gamma(G \circ \mathcal{F})<\gamma_{\mathrm{a}}(G \circ \mathcal{F})$, a contradiction.
(3) The lower bound is obvious as $\left|V_{G}\right|=\gamma(G \circ \mathcal{F}) \leq \gamma_{\mathrm{a}}(G \circ \mathcal{F})$. Since $\left(V_{G} \times\{0\}\right) \cup\left(\{v\} \times V_{F_{v}}\right)$ is an accurate dominating set of $G \circ \mathcal{F}$ (for every $\left.v \in V_{G}\right)$, we also have the inequality $\gamma_{\mathrm{a}}(G \circ \mathcal{F}) \leq\left|V_{G}\right|+\min \left\{\left|V_{F_{v}}\right|: v \in V_{G}\right\}$. This completes the proof of Theorem 7.

As a consequence of Theorem 7, we have the following result.
Corollary 8. If G is a graph, then $\gamma_{\mathrm{a}}\left(G \circ K_{1}\right)=\gamma\left(G \circ K_{1}\right)+1=\left|V_{G}\right|+1$.
Proof. Since $\gamma\left(K_{1}\right)=1$, it follows from Theorem 7 that $\gamma_{\mathrm{a}}\left(G \circ K_{1}\right) \geq \gamma(G \circ$ $\left.K_{1}\right)+1=\left|V_{G}\right|+1$. On the other hand, the set $\left(V_{G} \times\{0\}\right) \cup\{(v, 1)\}$ is an accurate dominating set of $G \circ K_{1}$ and therefore $\gamma_{\mathrm{a}}\left(G \circ K_{1}\right) \leq\left|\left(V_{G} \times\{0\}\right) \cup\{(v, 1)\}\right|=$ $\left|V_{G}\right|+1$. Consequently, $\gamma_{\mathrm{a}}\left(G \circ K_{1}\right)=\gamma\left(G \circ K_{1}\right)=\left|V_{G}\right|+1$.

From Theorem 7 we know that $\gamma_{\mathrm{a}}(G \circ \mathcal{F})=\gamma(G \circ \mathcal{F})=\left|V_{G}\right|$ if and only if the family \mathcal{F} is such that $\gamma\left(F_{v}\right)>1$ for some $F_{v} \in \mathcal{F}$, but we do not know any general formula for $\gamma_{\mathrm{a}}(G \circ \mathcal{F})$ if $\gamma\left(F_{v}\right)=1$ for every $F_{v} \in \mathcal{F}$. The following theorem shows a formula for the domination number and general bounds for the accurate domination number of a \mathcal{P}-corona of a graph.
Theorem 9. If G is a graph and $\mathcal{P}=\left\{\mathcal{P}(v): v \in V_{G}\right\}$ is a family of partitions of the vertex neighborhoods of G, then the following holds.
(1) $\gamma(G \circ \mathcal{P})=\left|V_{G}\right|$.
(2) $\gamma_{\mathrm{a}}(G \circ \mathcal{P}) \geq\left|V_{G}\right|$.
(3) $\gamma_{\mathrm{a}}(G \circ \mathcal{P}) \leq\left|V_{G}\right|+\min \left\{\min \left\{|\mathcal{P}(v)|: v \in V_{G}\right\}, 1+\min \left\{|A|: A \in \bigcup_{v \in V_{G}} \mathcal{P}(v)\right\}\right\}$.

Proof. It follows from the definition of $G \circ \mathcal{P}$ that $V_{G} \times\{1\}$ is a dominating set of $G \circ \mathcal{P}$, and therefore $\gamma(G \circ \mathcal{P}) \leq\left|V_{G} \times\{1\}\right|=\left|V_{G}\right|$. On the other hand, let $D \in \mathcal{A}_{\gamma}(G \circ \mathcal{P})$. Then $D \cap N_{G \circ \mathcal{P}}[(v, 1)] \neq \emptyset$ for every $v \in V_{G}$, and, since the sets $N_{G \circ \mathcal{P}}[(v, 1)]$ form a partition of $V_{G \circ \mathcal{P}}$, we have

$$
\gamma(G \circ \mathcal{P})=|D|=\left|\bigcup_{v \in V_{G}}\left(D \cap N_{G \circ \mathcal{P}}[(v, 1)]\right)\right|=\sum_{v \in V_{G}}\left|D \cap N_{G \circ \mathcal{P}}[(v, 1)]\right| \geq\left|V_{G}\right| .
$$

Consequently, we have $\left|V_{G}\right|=\gamma(G \circ \mathcal{P}) \leq \gamma_{\mathrm{a}}(G \circ \mathcal{P})$, which proves (1) and (2).
From the definition of $G \circ \mathcal{P}$ it also follows that each of the sets $\left(V_{G} \times\{1\}\right) \cup$ $N_{G \circ \mathcal{P}}[(v, 1)]$ (for every $\left.v \in V_{G}\right)$ and $\left(V_{G} \times\{1\}\right) \cup N_{G \circ \mathcal{P}}[(v, A)]$ (for every $v \in V_{G}$ and $A \in \mathcal{P}(v))$ is an accurate dominating set of $G \circ \mathcal{P}$. Hence,

$$
\begin{aligned}
\left|\left(V_{G} \times\{1\}\right) \cup N_{G \circ \mathcal{P}}[(v, 1)]\right| & =\left|V_{G} \times\{1\}\right|+\left|N_{G \circ \mathcal{P}}((v, 1))\right|=\left|V_{G}\right|+|\mathcal{P}(v)| \\
& \geq\left|V_{G}\right|+\min \left\{|\mathcal{P}(v)|: v \in V_{G}\right\} \geq \gamma_{\mathrm{a}}(G \circ \mathcal{P}),
\end{aligned}
$$

and similarly

$$
\begin{aligned}
\left|\left(V_{G} \times\{1\}\right) \cup N_{G \circ \mathcal{P}}[(v, A)]\right| & =\left|\left(V_{G} \times\{1\}\right) \cup\{(v, 1)\} \cup N_{G \circ \mathcal{P}}((v, A))\right| \\
& =\left|V_{G}\right|+1+|A| \\
& \geq\left|V_{G}\right|+1+\min \left\{|A|: A \in \bigcup_{v \in V_{G}} \mathcal{P}(v)\right\}
\end{aligned}
$$

Therefore,
$\gamma_{\mathrm{a}}(G \circ \mathcal{P}) \leq\left|V_{G}\right|+\min \left\{\min \left\{|\mathcal{P}(v)|: v \in V_{G}\right\}, 1+\min \left\{|A|: A \in \bigcup_{v \in V_{G}} \mathcal{P}(v)\right\}\right\}$.
This completes the proof of Theorem 9.
We do not know all the pairs (G, \mathcal{P}) achieving equality in the upper bound for the accurate domination number of a \mathcal{P}-corona of a graph, but Theorem 10 and Corollaries 11 and 12 show that the bounds in Theorem 9 are best possible. The next theorem also shows that the domination number and the accurate domination number of a 2 -subdivided graph are easy to compute.

Theorem 10. If G is a connected graph, then the following holds.
(1) $\gamma\left(S_{2}(G)\right)=\left|V_{G}\right|$.
(2) $\left|V_{G}\right| \leq \gamma_{\mathrm{a}}\left(S_{2}(G)\right) \leq\left|V_{G}\right|+2$.
(3) $\gamma_{\mathrm{a}}\left(S_{2}(G)\right)=\left\{\begin{aligned}\left|V_{G}\right|+2, & \text { if } G \text { is a cycle, } \\ \left|V_{G}\right|+1, & \text { if } G=K_{2}, \\ \left|V_{G}\right|, & \text { otherwise. }\end{aligned}\right.$

Proof. The statement (1) follows from Theorem 9 (1).
(2) The inequalities $\left|V_{G}\right| \leq \gamma_{\mathrm{a}}\left(S_{2}(G)\right) \leq\left|V_{G}\right|+2$ are obvious if $G=K_{1}$. Thus assume that G is a connected graph of order at least two. Let u and v be adjacent vertices of G. Then, $V_{G} \cup\{(v, v u),(u, v u)\}$ is an accurate dominating set of $S_{2}(G)$ and we have $\left|V_{G}\right|=\gamma\left(S_{2}(G)\right) \leq \gamma_{\mathrm{a}}\left(S_{2}(G)\right) \leq\left|V_{G} \cup\{(v, v u),(u, v u)\}\right|=\left|V_{G}\right|+2$.
(3) The connectivity of G implies that there are three cases to consider.

Case 1. $\left|E_{G}\right|>\left|V_{G}\right|$. In this case $S_{2}(G)-V_{G}$ has $\left|E_{G}\right|$ components and therefore no $\left|V_{G}\right|$-element subset of $V_{S_{2}(G)} \backslash V_{G}$ dominates $S_{2}(G)$. Hence, V_{G} is an accurate dominating set of $S_{2}(G)$ and $\gamma_{\mathrm{a}}\left(S_{2}(G)\right)=\left|V_{G}\right|$.

Case 2. $\left|E_{G}\right|=\left|V_{G}\right|$. In this case, G is a unicyclic graph. First, if G is a cycle, say $G=C_{n}$, then $S_{2}(G)=C_{3 n}$ and $\gamma_{\mathrm{a}}\left(S_{2}(G)\right)=\gamma_{\mathrm{a}}\left(C_{3 n}\right)=n+2=\left|V_{G}\right|+2$ (see Proposition 3 in [12]). Thus assume that G is a unicyclic graph which is not a cycle. Then G has a leaf, say v. Now, if u is the only neighbor of v, then $\left(V_{G} \backslash\{v\}\right) \cup\{(v, v u)\}$ is a minimum dominating set of $S_{2}(G)$. Since $S_{2}(G)-\left(\left(V_{G} \backslash\right.\right.$ $\{v\}) \cup\{(v, v u)\})$ has $\left|V_{G}\right|+1$ components, $\left(V_{G} \backslash\{v\}\right) \cup\{(v, v u)\}$ is a minimum accurate dominating set of $S_{2}(G)$ and $\gamma_{\mathrm{a}}\left(S_{2}(G)\right)=\left|\left(V_{G} \backslash\{v\}\right) \cup\{(v, v u)\}\right|=\left|V_{G}\right|$.

Case 3. $\left|E_{G}\right|=\left|V_{G}\right|-1$. In this case, G is a tree. Now, if $G=K_{1}$, then $S_{2}(G)=K_{1}$ and $\gamma_{\mathrm{a}}\left(S_{2}(G)\right)=\gamma_{\mathrm{a}}\left(K_{1}\right)=1=\left|V_{G}\right|$. If $G=K_{2}$, then $S_{2}(G)=P_{4}$ and $\gamma_{\mathrm{a}}\left(S_{2}(G)\right)=\gamma_{\mathrm{a}}\left(P_{4}\right)=3=2+1=\left|V_{G}\right|+1$. Finally, if G is a tree of order at least three, then the tree $S_{2}(G)$ is not a corona graph and by (1) and Theorem 5 we have $\gamma_{\mathrm{a}}\left(S_{2}(G)\right)=\gamma\left(S_{2}(G)\right)=\left|V_{G}\right|$.

As a consequence of Theorem 10, we have the following results.
Corollary 11. If T is a tree and $\mathcal{P}=\left\{\mathcal{P}(v): v \in V_{T}\right\}$ is a family of partitions of the vertex neighborhoods of T, then

$$
\gamma_{\mathrm{a}}(T \circ \mathcal{P})=\left\{\begin{array}{cl}
\left|V_{T}\right|+1, & \text { if }|\mathcal{P}(v)|=1 \text { for every } v \in V_{T}, \\
\left|V_{T}\right|, & \text { if }|\mathcal{P}(v)|>1 \text { for some } v \in V_{T} .
\end{array}\right.
$$

Proof. If $|\mathcal{P}(v)|=1$ for every $v \in V_{T}$, then $T \circ \mathcal{P}=T \circ K_{1}$ and the result follows from Corollary 8. If $|\mathcal{P}(v)|>1$ for some $v \in V_{T}$, then the tree $T \circ \mathcal{P}$ is not a corona and the result follows from Theorem 5 and Theorem 9 (1).

Corollary 12. For $n \geq 3$, if $\mathcal{P}=\left\{\mathcal{P}(v): v \in V_{C_{n}}\right\}$ is a family of partitions of the vertex neighborhoods of C_{n}, then

$$
\gamma_{\mathrm{a}}\left(C_{n} \circ \mathcal{P}\right)=\left\{\begin{array}{cl}
n+1, & \text { if }|\mathcal{P}(v)|=1 \text { for every } v \in V_{C_{n}}, \\
n+2, & \text { if }|\mathcal{P}(v)|=2 \text { for every } v \in V_{C_{n}}, \\
n, & \text { otherwise. }
\end{array}\right.
$$

Proof. If $|\mathcal{P}(v)|=1$ for every $v \in V_{C_{n}}$, then $C_{n} \circ \mathcal{P}=C_{n} \circ K_{1}$. Thus, by Theorem 8, we have $\gamma_{\mathrm{a}}\left(C_{n} \circ \mathcal{P}\right)=\gamma_{\mathrm{a}}\left(C_{n} \circ K_{1}\right)=\gamma\left(C_{n} \circ K_{1}\right)=\left|V_{C_{n}}\right|+1=n+1$.

If $|\mathcal{P}(v)|>1$ (and therefore $|\mathcal{P}(v)|=2$) for every $v \in V_{C_{n}}$, then $C_{n} \circ \mathcal{P}=$ $S_{2}\left(C_{n}\right)=C_{3 n}$. Now, since $\gamma_{\mathrm{a}}\left(C_{3 n}\right)=n+2$ (as it was observed in [12]), we have $\gamma_{\mathrm{a}}\left(C_{n} \circ \mathcal{P}\right)=\gamma_{\mathrm{a}}\left(C_{3 n}\right)=n+2$.

Finally assume that there are vertices u and v in C_{n} such that $|\mathcal{P}(v)|=1$ and $|\mathcal{P}(u)|=2$. Then the sets

$$
V_{C_{n}}^{1}=\left\{x \in V_{C_{n}}:|\mathcal{P}(x)|=1\right\} \quad \text { and } \quad V_{C_{n}}^{2}=\left\{y \in V_{C_{n}}:|\mathcal{P}(y)|=2\right\}
$$

form a partition of $V_{C_{n}}$. Without loss of generality we may assume that x_{1}, x_{2}, $\ldots, x_{k}, y_{1}, y_{2}, \ldots, y_{\ell}, \ldots, z_{1}, z_{2}, \ldots, z_{p}, t_{1}, t_{2}, \ldots, t_{q}$ are the consecutive vertices of C_{n}, where

$$
\begin{gathered}
x_{1}, x_{2}, \ldots, x_{k} \in V_{C_{n}}^{1}, y_{1}, y_{2}, \ldots, y_{\ell} \in V_{C_{n}}^{2}, \ldots, z_{1}, z_{2}, \ldots, z_{p} \in V_{C_{n}}^{1} \\
t_{1}, t_{2}, \ldots, t_{q} \in V_{C_{n}}^{2}
\end{gathered}
$$

and $k+\ell+\cdots+p+q=n$. It is easy to observe that $D=\left\{\left(x_{i}, N_{C_{n}}\left(x_{i}\right)\right): i=\right.$ $1, \ldots, k\} \cup\left\{\left(y_{j}, 1\right): j=1, \ldots, \ell\right\} \cup \cdots \cup\left\{\left(z_{i}, N_{C_{n}}\left(z_{i}\right)\right): i=1, \ldots, p\right\} \cup\left\{\left(t_{j}, 1\right):\right.$ $j=1, \ldots, q\}$ is a dominating set of $C_{n} \circ \mathcal{P}$. Since the set D is of cardinality $n=\left|V_{C_{n}}\right|$ and $n=\gamma\left(C_{n} \circ \mathcal{P}\right.$) (by Theorem $9(1)$), D is a minimum dominating set of $C_{n} \circ \mathcal{P}$. In addition, since $C_{n} \circ \mathcal{P}-D$ has $k+(2+(\ell-1))+\cdots+p+(2+$ $(q-1))>k+\ell+\cdots+p+q=n$ components, that is, since $\kappa\left(C_{n} \circ \mathcal{P}-D\right)>n$, no n-element subset of $V_{C_{n} \circ \mathcal{P}} \backslash D$ is a dominating set of $C_{n} \circ \mathcal{P}$. Thus, D is an accurate dominating set of $C_{n} \circ \mathcal{P}$ and therefore $\gamma\left(C_{n} \circ \mathcal{P}\right)=n$.

4. Closing Open Problems

We close with the following list of open problems that we have yet to settle.
Problem 13. Find a formula for the accurate domination number $\gamma_{\mathrm{a}}(G \circ \mathcal{F})$ of the \mathcal{F}-corona of a graph G depending only on the family $\mathcal{F}=\left\{F_{v}: v \in V_{G}\right\}$ such that $\gamma\left(F_{v}\right)=1$ for every $v \in V_{G}$.

Problem 14. Characterize the graphs G and the families $\mathcal{P}=\left\{\mathcal{P}(v): v \in V_{G}\right\}$ for which $\gamma_{\mathrm{a}}(G \circ \mathcal{P})=\left|V_{G}\right|+\min \left\{\min \left\{|\mathcal{P}(v)|: v \in V_{G}\right\}, 1+\min \{|A|: A \in\right.$ $\left.\left.\bigcup_{v \in V_{G}} \mathcal{P}(v)\right\}\right\}$.
Problem 15. It is a natural question to ask if there exists a nonnegative integer k such that $\gamma_{\mathrm{a}}(G \circ \mathcal{P}) \leq\left|V_{G}\right|+k$ for every graph G and every family $\mathcal{P}=$ $\left\{\mathcal{P}(v): v \in V_{G}\right\}$ of partitions of the vertex neighborhoods of G.

References

[1] G. Chartrand, L. Lesniak and P. Zhang, Graphs and Digraphs (CRC Press, Boca Raton, 2016).
[2] M. Dettlaff, M. Lemańska, J. Topp and P. Żyliński, Coronas and domination subdivision number of a graph, Bull. Malays. Math. Sci. Soc. 41 (2018) 1717-1724. doi:10.1007/s40840-016-0417-0
[3] K. Dhanalakshmi and B. Maheswari, Accurate and total accurate dominating sets of interval graphs, Int. J. Comput. Eng. Tech. 5 (2014) 85-93.
[4] M. Fischermann, Block graphs with unique minimum dominating sets, Discrete Math. 240 (2001) 247-251. doi:10.1016/S0012-365X(01)00196-0
[5] R. Frucht and F. Harary, On the corona of two graphs, Aequationes Math. 4 (1970) 322-324. doi:10.1007/BF01844162
[6] V.M. Goudar, S.H. Venkatesh, Venkatesha and K.M. Tejaswini, Accurate connected edge domination number in graphs, J. Ultra Sci. Phys. Sci. Ser. A 29 (2017) 290-301. doi:10.22147/jusps-A/290708
[7] V.M. Goudar, S.H. Venkatesh, Venkatesha and K.M. Tejaswini, Total accurate edge domination number in graphs, Int. J. Math. Sci. Eng. Appl. 11 (2017) 9-18.
[8] G. Gunther, B. Hartnell, L.R. Markus and D. Rall, Graphs with unique minimum dominating sets, Congr. Numer. 101 (1994) 55-63.
[9] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker Inc., New York, 1998).
[10] I. Kelkar and B. Maheswari, Accurate domination number of butterfly graphs, Chamchuri J. Math. 1 (2009) 35-43.
[11] V.R. Kulli and M.B. Kattimani, The accurate domination number of a graph, Technical Report 2000:01, (Dept. Math., Gulbarga University, Gulbarga, 2000).
[12] V.R. Kulli and M.B. Kattimani, Accurate domination in graphs, in: Advances in Domination Theory I, V.R. Kulli (Ed.), (Vishwa International Publications, 2012) 1-8.
[13] V.R. Kulli and M.B. Kattimani, Global accurate domination in graphs, Int. J. Sci. Res. Pub. 3 (2013) 1-3.
[14] V.R. Kulli and M.B. Kattimani, Connected accurate domination in graphs, J. Comput. Math. Sci. 6 (2015) 682-687.
[15] C.M. Mynhardt, Vertices contained in every minimum dominating set of a tree, J. Graph Theory 31 (1999) 163-177. doi:10.1002/(SICI)1097-0118(199907)31:3〈163::AID-JGT2 2 3.0.CO;2-T
[16] S.H. Venkatesh, V.M. Goudar and Venkatesha, Operations on accurate edge domination number in graphs, Glob. J. Pure Appl. Math. 13 (2017) 5611-5623.
[17] S.H. Venkatesh, V.R. Kulli, V.M. Goudar and Venkatesha, Results on accurate edge domination number in graphs, J. Ultra Sci. Phys. Sci. Ser. A 29 (2017) 21-29. doi:10.22147/jusps-A/290104

