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Abstract

A dominating set of a graph G is a subset D C Vi such that every vertex
not in D is adjacent to at least one vertex in D. The cardinality of a smallest
dominating set of G, denoted by v(G), is the domination number of G. The
accurate domination number of G, denoted by v,(G), is the cardinality of a
smallest set D that is a dominating set of G and no |D|-element subset of
Ve \ D is a dominating set of G. We study graphs for which the accurate
domination number is equal to the domination number. In particular, all
trees G for which v,(G) = v(G) are characterized. Furthermore, we compare
the accurate domination number with the domination number of different
coronas of a graph.
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1. INTRODUCTION AND NOTATION

We generally follow the notation and terminology of [1] and [9]. Let G =
(Va, Eg) be a graph with vertex set Vi of order n(G) = |Vi| and edge set
E¢ of size m(G) = |Eg|. If v is a vertex of G, then the open neighborhood of v
is the set Ng(v) = {u € Vi : uwv € Eg}, while the closed neighborhood of v is
the set Ng[v] = Ng(v) U{v}. For a subset X of Vz and a vertex z in X, the set
png(z, X) = {v € Vg : Nglv]N X = {z}} is called the X -private neighborhood
of the vertex z, and it consists of those vertices of Ng[z] which are not adjacent
to any vertex in X \ {z}; that is, png(x, X) = Ng[z] \ Ng[X \ {z}]. The degree
dg(v) of a vertex v in G is the number of vertices in Ng(v). A vertex of degree
one is called a leaf and its neighbor is called a support vertex. The set of leaves
of a graph GG is denoted by L, while the set of support vertices by Sg. For a
set S C Vi, the subgraph induced by S is denoted by G[S], while the subgraph
induced by Vg \ S is denoted by G — S. Thus the graph G — S is obtained from
G by deleting the vertices in S and all edges incident with S. Let x(G) denote
the number of components of G.

A dominating set of a graph G is a subset D of Vi such that every vertex
not in D is adjacent to at least one vertex in D, that is, Ng(x) N D # () for every
x € Vg \ D. The domination number of G, denoted by v(G), is the cardinality of
a smallest dominating set of G. An accurate dominating set of G is a dominating
set D of G such that no |D|-element subset of Vg \ D is a dominating set of
G. The accurate domination number of G, denoted by 7,(G), is the cardinality
of a smallest accurate dominating set of G. We call a dominating set of G of
cardinality 7(G) a y-set of G, and an accurate dominating set of G of cardinality
Ya(G) a ya-set of G. Since every accurate dominating set of G is a dominating
set of G, we note that v(G) < 7,(G). The accurate domination in graphs was
introduced by Kulli and Kattimani [11], and further studied in a number of papers
(see, for example, [3,6,7,10,12-14,16,17]). A comprehensive survey of concepts
and results on domination in graphs can be found in [9].

We denote the path and cycle on n vertices by P, and C),, respectively. We
denote by K, the complete graph on n vertices, and by K, , the complete bipartite
graph with partite sets of size m and n. The accurate domination numbers of
some common graphs are given by the following formulas.

Observation 1. The following holds.
(a) Forn>1, v.(Ky) = L%J +1 and vo(Kpnyn) =n+ 1.
(b) Forn>m>1, ya(Kmpn) =m.
(c) Forn >3, 7 (Cn) = |2] — 2] +2.
)

(d) Forn > 1, va(Py) = [2] unless n € {2,4} when va(P,) = [%] + 1 (see
Corollary 6).
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In this paper we study graphs for which the accurate domination num-
ber is equal to the domination number. In particular, all trees G for which
7a(G) = 7(G) are characterized. Furthermore, we compare the accurate dom-
ination number with the domination number of different coronas of a graph.
Throughout the paper, we use the symbol A,(G) (respectively, A,,(G)) to de-
note the set of all minimum dominating sets (respectively, minimum accurate
dominating sets) of G.

2. GRAPHS WITH v, EQUAL TO 7

We are interested in determining the structure of graphs for which the accurate
domination number is equal to the domination number. The question about such
graphs has been stated in [12]. We begin with the following general property of
the graphs G for which v,(G) = v(G).

Lemma 2. Let G be a graph. Then v,(G) = v(G) if and only if there exists a set
D € A,(G) such that DN D' # 0 for every set D' € A,(G).

Proof. First assume that 7,(G) = ~v(G), and let D be a minimum accurate
dominating set of G. Since D is a dominating set of G and |D| = 7,(G) = v(G),
we note that D € A,(G). Now let D’ be an arbitrary minimum dominating set
of G. If DN D’ = (), then D' C Vi \ D, implying that D’ would be a | D|-element
dominating set of G, contradicting the fact that D is an accurate dominating set
of G. Hence, DN D' # 0.

Now assume that there exists a set D € A,(G) such that D N D" #  for
every set D' € A, (G). Then, D is an accurate dominating set of G, implying that
72(G) < |D| = v(G) < 7a(G). Consequently, we must have equality throughout
this inequality chain, and so 7,(G) = v(G). |

It follows from Lemma 2 that if G is a disconnected graph, then v,(G) = v(G)
if and only if v,(H) = v(H) for at least one component H of G. In particular,
if G has an isolated vertex, then v,(G) = v(G). It also follows from Lemma 2
that for a graph G, 7.(G) = 7(G) if G has one of the following properties: (1)
G has a unique minimum dominating set (see, for example, [4] or [8] for some
characterizations of such graphs); (2) G has a vertex which belongs to every
minimum dominating set of G (see [15]); (3) G has a vertex adjacent to at least
two leaves. Consequently, there is no forbidden subgraph characterization for the
class of graphs G for which 7,(G) = v(G), as for any graph H, we can add an
isolated vertex (or two leaves to one vertex of H), and in this way form a graph
H' for which ~,(H') = ~(H').

The corona F o K of a graph F is the graph formed from F by adding a
new vertex v’ and edge vv’ for each vertex v € V(F'). A graph G is said to be
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a corona graph if G = F o K; for some connected graph F'. We note that each
vertex of a corona graph G is a leaf or it is adjacent to exactly one leaf of G.
Recall that we denote the set of all leaves in a graph GG by L¢, and set of support
vertices in G by Sg.

Lemma 3. If G is a corona graph, then v,(G) > v(G).

Proof. Assume that G is a corona graph. If G = K o K1, then G = K5 and
72(G) = 2 and v(G) = 1. Hence, we may assume that G = F o K; for some
connected graph F' of order n(F) > 2. If v € Vz \ Lg, then let T denote the
unique leaf-neighbor of v in G. Now let D be an arbitrary minimum dominating
set of G, and so D € A,(G). Then, |D N {v,v}| =1 for every v € Vg \ Lg.
Consequently, D and its complement Vi \ D are minimum dominating sets of G.
Thus, D is not an accurate dominating set of G. This is true for every minimum
dominating set of G, implying that v,(G) > v(G). |

Lemma 4. If T is a tree of order at least three, then there exists a set D € A (T)
such that the following hold.

(a) ST - D.
(b) Nr(v) CVp\ D or|pngp(v,D)| > 2 for every v € D\ Sr.

Proof. Let T be a tree of order n(T) > 3. Among all minimum dominating sets
of T, let D € A,(T') be chosen that

(1) D contains as many support vertices as possible.

(2) Subject to (1), the number of components x(T[D]) is as large as possible.

If the set D contains a leaf v of T', then we can simply replace v in D with
the support vertex adjacent to v to produce a new minimum dominating set with
more support vertices than D, a contradiction. Hence, the set D contains no
leaves, implying that S C D. Suppose, next, that there exists a vertex v in
D that is not a support vertex of T'" and such that Np(v) € Vp \ D. Thus, v
has at least one neighbor in D; that is, Np(v) N D # (. By the minimality
of the set D, we therefore note that pnp(v, D) # 0. If |pngp(v, D)| = 1, say
pup(v, D) = {u}, then letting D' = (D \ {v}) U {u}, the set D' € A,(T) and
satisfies S C D\{v} C D" and x(T'[D’]) > w(T[D]), which contradicts the choice
of D. Hence, if v € D is not a support vertex of 7' and Np(v) € Vp \ D, then
pnr(v, D) > 2. .

We are now in a position to present the following equivalent characterizations
of trees for which the accurate domination number is equal to the domination
number.

Theorem 5. If T is a tree of order at least two, then the following statements
are equivalent.
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(1) T is not a corona graph.

(2) There exists a set D € A, (T) such that k(T — D) > |D|.

(3) 7a(T) =~(T).

(4) There exists a set D € A (T) such that DN D' # 0 for every D' € A,(T).

Proof. The statements (3) and (4) are equivalent by Lemma 2. The implication
(3) = (1) follows from Lemma 3. To prove the implication (2) = (3), let us
assume that D € A,(T) and x(T'— D) > |D|. Thus, v(T'— D) > &(T' — D) >
|D| = ~(T'). This proves that D is an accurate dominating set of 7', and therefore
Va(T) = '7(T)'

Thus it suffices to prove that (1) implies (2). The proof is by induction on
the order of a tree. The implication (1) = (2) is obvious for trees of order two,
three, and four. Thus assume that T is a tree of order at least five and T is not a
corona graph. Let D € A,(T") and assume that Sy C D. Since 7' is not a corona
graph, the tree T" has a vertex which is neither a leaf nor adjacent to exactly one
leaf. We consider two cases, depending on whether dr(v) > 3 for some vertex
v € St or dr(v) = 2 for every vertex v € St.

Case 1. dp(v) > 3 for some v € Sp. Let v’ be a leaf of T adjacent to v. Let
T’ be a component of T'—{v,v'}. Now let 77 and T3 be the subtrees of T induced
on the vertex sets Vi U{v,v’'} and Vp\ Vi, respectively. We note that both trees
Ty and T3 have order strictly less than n(7T"). Further, V(T1) NV (Tz) = {v,v'},
E(Th) N E(Ty) = {vv'}, and at least one of T and T, say Ti, is not a corona
graph. Applying the induction hypothesis to 71, there exists a set Dy € A, (T1)
such that k(77 — Dy1) > |Dy|. If Ty is a corona graph, then choosing D to be the
set of support vertices in 75 we note that Dy € A, (T2) and (T3 — D3) = |Da|.
If T5 is not a corona graph, then applying the induction hypothesis to T5, there
exists a set Dy € A, (1) such that k(T — D3) > |Ds|. In both cases, there exists
aset Dy € A,(Ts) such that x(T> — Dy) > |Ds|. We may assume that all support
vertices of 77 and 75 are in D1 and Ds, respectively. Thus, v € D1N D5, the union
Dy U Dy is a y-set of T', and K(T — (D1 @] DQ)) = K,(Tl — Dl) + IQ(TQ — DQ) —1>
‘Dl‘ + ‘Dg‘ —1= ’Dl U DQ‘

Case 2. dp(v) = 2 for every v € Sp. We distinguish two subcases, depending
on whether D\ Sp # 0 or D\ Sp =0

Case 2.1. D\ Sy # (. Let v be an arbitrary vertex belonging to D \ Sr.
It follows from the second part of Lemma 4 that there are two vertices vy and
vy belonging to Np(v) \ D. Let R be the tree obtained from 7' by adding a new
vertex v' and the edge vv’. We note that D is a minimum dominating set of
R and Sgp C D. Let R’ be the component of R — {v,v'} containing v;. Now
let Ry and R2 be the subtrees of R induced by the vertex sets Vz U {v,v'} and
Vr \ Vg, respectively. We note that both trees R; and Ry have order strictly
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less than n(T'). Further, V(R;) NV (R2) = {v,v'}, E(R1) N E(R2) = {vv'}, and
neither R; nor Rs is a corona graph. By the induction hypothesis, there exists
aset D1 € Ay(R;) and a set Dy € A,(Ry) such that k(Ry — D1) > |D;| and
k(Rg — D2) > |Ds|. We may assume that all support vertices of Ry and Ry are
in Dy and Dy, respectively. Thus, v € D1 N Dy, the union Dy U Dy is a ~y-set of
R, and

H(T — (Dl U DQ)) = KZ(R — (D1 U Dg)) —1= (K)(Rl—Dl) + /i(Rg—Dg) — 1) —1
= (k(R1 — D1) — [D1] + £(R2—D3) — [D2]) — 2+ |D1| + | Dy
> |D1| + |D2| = ‘Dl UDQ‘ +1> ’Dl U DQ‘.

Case 2.2. D\St = (). In this case, we note that D = Sp. Let v be an arbitrary
vertex belonging to D and assume that Np(v) = {u,w}, where v € Lp. If
w € Ly, then T = K o, contradicting the assumption that n(T") > 5. If w € S,
then T' = Py = Ky o K, contradicting the assumption that 1" is not a corona
graph (and the assumption that n(7") > 5). Therefore, w € Vp\ (LyUS7). Thus,
Vr\ (L7 UST) is nonempty and 7'— D has |D| one-element components induced by

leaves of T" and at least one component induced by Vr \ (L7 USt). Consequently,
k(T — D) > |D| + 1 > |D|. This completes the proof of Theorem 5. |

The equivalence of the statements (1) and (3) of Theorem 5 shows that the
trees T for which ~,(T) = ~(T) are easy to recognize. From Theorem 5 and
from the well-known fact that v(P,) = [n/3] for every positive integer n, we also
immediately have the following corollary which provides a slight improvement on
Proposition 3 in [12].

Corollary 6. Forn > 1, v.(P,) = v(Pn) = [n/3] if and only if n € N\ {2,4}.

3. DOMINATION OF GENERAL CORONAS OF A GRAPH

Let G be a graph, and let F = {F,: v € Vg} be a family of nonempty graphs
indexed by the vertices of G. By G o F we denote the graph with vertex set

Vaor = (Ve x {0H U | ({v} x Vg,)

veVg

and edge set determined by open neighborhoods defined in such a way that

Neor((v,0)) = (Na(v) x {0}) U ({v} x VE,)

for every v € Vg, and

NGO]‘—((UJCE)) = {(U,O)} U ({U} X NFv(x))
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if v eVgand x € Vg,. The graph G o F is said to be the F-corona of G.
Informally, G o F is the graph obtained by taking a disjoint copy of G and all
the graphs of F with additional edges joining each vertex v of G to every vertex
in the copy of F,. If all the graphs of the family F are isomorphic to one and
the same graph F' (as it was defined by Frucht and Harary [5]), then we simply
write G o F' instead of G o F. Recall that a graph G is said to be a corona graph
if G = F o K; for some connected graph F.
The 2-subdivided graph S2(G) of a graph G is the graph with vertex set

VSQ(G) = VG U U {(Uv UU), (u7vu)}

vu€Eqg

and the adjacency is defined in such a way that

Ngya)(z) = {(z,2y): y € Ng(z)}

ifzxe Vg C V52(G), while

N,y ((z,zy)) = {z} U {(y, zy)}

if (z,2y) € Upuep, (v, vu), (u,vu)} C Vg, (). Less formally, S3(G) is the graph
obtained from G by subdividing every edge with two new vertices; that is, by
replacing edges vu of G with disjoint paths (v, (v, vu), (u,vu), u).

For a graph G and a family P = {P(v): v € Vi }, where P(v) is a partition
of the neighborhood N¢(v) of the vertex v, by G o P we denote the graph with
vertex set

Vaor = (Ve x {1DU | ({0} x P))

veEVg

and edge set

Egop = U {(v,1)(v,A): A€ P(v)}U U {(v,A)(u,B): (ue A)A(veB)}.

veVa webqg

The graph G o P is called the P-corona of G and was defined by Dettlaff
et al. in [2]. Tt follows from this definition that if P(v) = {Ng(v)} for every
v € Vg, then G o P is isomorphic to the corona G o K. On the other hand, if
P(v) = {{u}: u € Ng(v)} for every v € Vg, then G o P is isomorphic to the
2-subdivided graph S2(G) of G. Examples of G o K1, Go F, Go P, and S2(G)
are shown in Figure 1. In this case G is the graph (K3 U K7) + K; with vertex
set Vg = {v,u,w, 2z} and edge set Eg = {vu,vw,uvw,wz}, where the family F
consists of the graphs F,, = F, = K;, F, = Ky, and F, = Ky U Kj, while
P ={P(x): x € Vi} is the family in which P(v) = {{u,w}}, P(u) = {{v},{w}},
P(w) = {{u,v},{z}}, and P(z) = {{w}}.
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(z1)

(w,fu,v}) @ fw))
©:fu,w}) ©:fwh

Figure 1. Coronas of G = (K, U K;) + K.

We now study relations between the domination number and the accurate
domination number of different coronas of a graph. Our first theorem specifies
when these two numbers are equal for the F-corona G o F of a graph G and
a family F of nonempty graphs indexed by the vertices of G.

Theorem 7. If G is a graph and F = {F,: v € Vg} is a family of nonempty
graphs indezxed by the vertices of G, then the following holds.

(1) AG o F) = |Vql.

(2) 7a(G o F) =~(G o F) if and only if v(Fy,) > 1 for some vertex v of G.

(3) Vgl £ 7a(G o F) < |Vg|+ min{|Vg,|: v € Vg}.

Proof. (1) It is obvious that Vi x {0} is a minimum dominating set of G o F

and therefore v(G o F) = |Vz x {0}] = |V
(2) If v(F,) > 1 for some vertex v of G, then

YGoF—(Vax{0}) = D v((GoF){v}xVg]) = D> ¥(F,) > [Va| = [Vax{0}]

veVa veVa

and this proves that no subset of Vgor\(Ve x {0}) of cardinality |V x {0}
is a dominating set of G o F. Consequently Viz x {0} is a minimum accurate
dominating set of G o F and therefore v,(G o F) = v(G o F).
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Assume now that G and F are such that v,(G o F) = v(G o F). We claim
that v(F,) > 1 for some vertex v of G. Suppose, contrary to our claim, that
v(Fy) = 1 for every vertex v of G. Then the set U, = {x € Vi, : Np,[z] = Vg, },
the set of universal vertices of Fy, is nonempty for every v € V5. Now, let D be
any minimum dominating set of G o F. Then, |D| = v(G o F) = |Vg x {0}] =
Val, IDN ({(v,0)} U ({v} x Uy))|] = 1, and the set ({(v,0)} U ({v} x Uy))\D is
nonempty for every v € V. Now, if D is a system of representatives of the family
{{(v,0)} U {v} x U,))\D: v € Vg}, then D is a minimum dominating set of
G o F. Since D and D are disjoint, D is not an accurate dominating set of G o F.
Consequently, no minimum dominating set of G o F is an accurate dominating
set and therefore v(G o F) < 7,(G o F), a contradiction.

(3) The lower bound is obvious as |Vg| = v(G o F) < 7.(G o F). Since
(Ve x {0}) U ({v} x VE,) is an accurate dominating set of G o F (for every
v € Viz), we also have the inequality v,(GoF) < |Vg|+min{|VE,|: v € Viz}. This
completes the proof of Theorem 7. [

As a consequence of Theorem 7, we have the following result.
Corollary 8. If G is a graph, then v,(Go K1) =v(Go K1)+ 1= |Vg| + 1.

Proof. Since y(K;) = 1, it follows from Theorem 7 that v,(G o K1) > ~(G o
K1)+1 = |Vg|+1. On the other hand, the set (Vg x{0})U{(v,1)} is an accurate
dominating set of G o K and therefore v,(G o K1) < |(Vg x {0}) U{(v,1)}| =
|Vg| + 1. Consequently, v,(G o K1) = v(G o K1) = |Vg| + 1. u

From Theorem 7 we know that v,(G o F) = v(G o F) = |V| if and only
if the family F is such that v(F,) > 1 for some F, € F, but we do not know
any general formula for v, (G o F) if v(F,) = 1 for every F, € F. The following
theorem shows a formula for the domination number and general bounds for the
accurate domination number of a P-corona of a graph.

Theorem 9. If G is a graph and P = {P(v): v € Vig} is a family of partitions
of the vertex neighborhoods of G, then the following holds.

(1) 1 (GoP) =Vl

(2) 7a(GoP) > |Val.

(3) 7a(GoP) < \Vd—i—min{min{]?(v)\: v e Vgl 1—|—min{|A]: AGUveVGP(U)}}-
Proof. 1t follows from the definition of G o P that Viz x {1} is a dominating set
of G o P, and therefore (G o P) < |Vig x {1}| = |Vg|. On the other hand, let

D € A,(GoP). Then DN Ngop|(v,1)] # 0 for every v € Vi, and, since the sets
Neopl(v,1)] form a partition of Vigop, we have

YGoP)=|D|=| J (DN Neopl(v,1)])| = > DN Neepl(v,1)]] = |Val-

veEVG veVa
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Consequently, we have [Vg| = 7(G o P) < 7,(G o P), which proves (1) and (2).

From the definition of G o P it also follows that each of the sets (Vg x {1})U
Neopl(v,1)] (for every v € Vi) and (Vg x {1}) U Ngopl(v, A)] (for every v € Vi
and A € P(v)) is an accurate dominating set of G o P. Hence,

|(Ve x {1}) U Ngop[(v, 1)]| = [Vg x {1}| + [Ngop((v,1))| = [Vg| + [P(v)]
> |Vg| +min{|P(v)|: v € VG} > 7a(G o P),

and similarly

(Ve % {1}) U Nawpl(v, A)]| = (Ve x {1}) U {0, 1)} U Nawop((v, A))|
— Val+1+1]4
> Vel + 1+ minf]Al: A € U,ey, P(0)).

Therefore,

Ya(G o P) < |Vg +min{min{]7’(v)]: vE Vg},1+min{|A|: Ae U P(v)}}

veVg
This completes the proof of Theorem 9. [

We do not know all the pairs (G, P) achieving equality in the upper bound
for the accurate domination number of a P-corona of a graph, but Theorem 10
and Corollaries 11 and 12 show that the bounds in Theorem 9 are best possi-
ble. The next theorem also shows that the domination number and the accurate
domination number of a 2-subdivided graph are easy to compute.

Theorem 10. If G is a connected graph, then the following holds.
(1) 7(52(G)) = [Val.
(2) Vol <7a(52(G)) < [Val +2.
Vol +2, if Gisa cycle,
(3) 7a(52(G)) =9 Vel +1, if G=Ks,
|Val|, otherwise.

Proof. The statement (1) follows from Theorem 9 (1).

(2) The inequalities |V| < 7a(52(G)) < |Vg|+2 are obvious if G = K. Thus
assume that G is a connected graph of order at least two. Let u and v be adjacent
vertices of G. Then, Vg U{(v,vu), (u,vu)} is an accurate dominating set of Sa(G)

and we have |Vg| = v(52(GQ)) < 7a(52(G)) < |Vg U {(v,vu), (u,vu)}| = |Vg| + 2.
(3) The connectivity of G implies that there are three cases to consider.
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Case 1. |Eg| > |Vg|. In this case S2(G) — Vg has |Eg| components and
therefore no |V|-element subset of Vg,(q) \ Vo dominates S2(G). Hence, Vi is
an accurate dominating set of S2(G) and ~,(S2(G)) = |Vg|.

Case 2. |Eg| = |Vg|. In this case, G is a unicyclic graph. First, if G is a cycle,
say G = Cp, then S3(G) = Cs,, and 7,(52(G)) = 7a(Csp) = n+2 = |Vg| + 2
(see Proposition 3 in [12]). Thus assume that G is a unicyclic graph which is
not a cycle. Then G has a leaf, say v. Now, if u is the only neighbor of v, then
(Ve \{v})U{(v,vu)} is a minimum dominating set of So(G). Since So(G)— ((Vi\
{v}) U{(v,vu)}) has |Vg| + 1 components, (Vi \ {v}) U{(v,vu)} is a minimum
accurate dominating set of So(G) and v,(S2(G)) = |(Va \{v}) U{(v,vu)}| = |Vg].

Case 3. |Eg| = |Vg| — 1. In this case, G is a tree. Now, if G = Kj, then
52(G) = Ky and 7a(52(G)) = 7a(K1) =1 = [Vg|. If G = Kp, then S3(G) = P4
and 7, (52(G)) = 7a(Ps) =3 =2+1 = |Vg| + 1. Finally, if G is a tree of order at
least three, then the tree S2(G) is not a corona graph and by (1) and Theorem 5
we have %, (S2(G)) = 1(S:(G)) = [V, .

As a consequence of Theorem 10, we have the following results.

Corollary 11. If T is a tree and P = {P(v): v € Vp} is a family of partitions
of the vertex neighborhoods of T, then

\Vr|+1, if |[P(v)| =1 for every v € Vr,

aT P) =
(T oP) { \Vr|, if |P(v)| > 1 for some v € Vp.

Proof. 1f |P(v)| = 1 for every v € Vi, then T'oP = T o K; and the result follows
from Corollary 8. If |P(v)| > 1 for some v € Vp, then the tree T o P is not
a corona and the result follows from Theorem 5 and Theorem 9 (1). [

Corollary 12. Forn > 3, if P = {P(v): v € Vi, } is a family of partitions of
the vertex neighborhoods of C,, then

n+1, if |P(v)| =1 for everyv € Vg,
Ya(CpoP) =< n+2, if |P(v)|=2 for everyv € Vg,

n, otherwise.

Proof. 1f |P(v)| = 1 for every v € Vg, , then C, o P = C, o K;. Thus, by
Theorem 8, we have v,(Cr, 0 P) = 7a(Cpo K1) = y(Cpo K1) = |Vo, |+ 1 =n+1.

If |P(v)] > 1 (and therefore |P(v)| = 2) for every v € V¢, , then C, o P =
S2(Cp) = Csy,. Now, since v,(C3y,) = n + 2 (as it was observed in [12]), we have
Ya(Cn 0 P) = Ya(C3p) = n + 2.
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Finally assume that there are vertices u and v in C), such that |P(v)| =1
and |P(u)| = 2. Then the sets
Ve ={zeVe,:[P@)|=1} and VE ={ye Vo, :|P) =2}

form a partition of Vi,. Without loss of generality we may assume that x, z2,

e Tl Y1, Y2y s Yl ey B, 225 - -+, Zpy L1, T2, ., Tg are the consecutive vertices of
C.,,, where
1 2 1
T1,22, - Tk € Vo Y1, Y2, Y0 EVE Loy 21,22,00,2p €V

t1,ta,. .. tg € VG ,

and k+ ¢+ -+ p+ q=mn. It is easy to observe that D = {(x;, N¢, (x;)): i =
L.k} U{(y;,1):j=1,...,03U---U{(2;,Nc,(z:)): i = 1,...,p} U{(¢;,1):

j =1,...,q} is a dominating set of C, o P. Since the set D is of cardinality
n = |Vg,| and n = v(Cy, o P) (by Theorem 9 (1)), D is a minimum dominating
set of Cj, o P. In addition, since C,o P — D has k+ 24+ ({—1))+---+p+ (2+
(g—1)) >k+£¢+---+p+ q=n components, that is, since K(Cy, o P — D) > n,
no n-element subset of Vg op \ D is a dominating set of C), o P. Thus, D is an
accurate dominating set of C,, o P and therefore v(C,, o P) = n. |

4. CLOSING OPEN PROBLEMS

We close with the following list of open problems that we have yet to settle.

Problem 13. Find a formula for the accurate domination number v,(G o F) of
the F-corona of a graph G depending only on the family F = {F,: v € Vz} such
that v(F,) = 1 for every v € V.

Problem 14. Characterize the graphs G and the families P = {P(v): v € Vg}
for which 7,(G o P) = |[Ve| 4+ min { min{|P(v)|: v € Vg},1 + min{|A]: 4 €
Usere P(0)}}-

Problem 15. It is a natural question to ask if there exists a nonnegative integer

k such that v,(G o P) < |Vg| + k for every graph G and every family P =
{P(v): v € Vg} of partitions of the vertex neighborhoods of G.
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