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Abstract

In this paper, we establish the crossing number of join product of 5-
wheel with n isolated vertices. In addition, the exact values for the crossing
numbers of Cartesian products of the wheels of order at most five with any
tree T are given.
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1. Introduction

Given a graph G, let V (G) and E(G) be, respectively, its vertex and edge set.
A drawing of G is a representation of G in the plane such that its vertices are
represented by distinct points and its edges by simple continuous arcs connecting
the corresponding point pairs. All drawings considered herein are good drawings
meaning that no edge crosses itself, no two edges cross more than once, no two
edges incident with the same vertex cross, no more than two edges cross at a
point of the plane, and no edge meets a vertex, which is not its endpoint. We
denote the number of crossings in a good drawing D of the graph G by crD(G).
A good drawing is said to be optimal if it minimizes the number of crossings. The
crossing number cr(G) of a graph G is the number of crossings in any optimal
drawing of G in the plane. Let G

′

be a subgraph of the graph G. Then we easily
get

cr(G
′

) ≤ cr(G).

1Corresponding author.
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For a graph G, let Ei, Ej and Ek be edge-disjoint subsets of E(G). We denote
by crD(Ei, Ej) the number of crossings between edges of Ei and edges of Ej in
D, and by crD(Ei) the number of crossings among edges of Ei in D. It is easy to
see that

(1.1) crD(Ei ∪ Ej) = crD(Ei) + crD(Ej) + crD(Ei, Ej),

and

(1.2) crD(Ei ∪ Ej , Ek) = crD(Ei, Ek) + crD(Ej , Ek).

In our paper, we use 〈E
′

〉 to represent the edge-induced subgraph of G, where
E

′

⊆ E(G). For more graph theory terminology and the theory of crossing
number, see [1, 5].

The investigation on the crossing numbers of graphs is a classical but very dif-
ficult problem. In fact, computing the crossing number of a graph is NP-complete
[6]. The exact values of crossing numbers are known only for few specific families
of graphs. The complete bipartite graph Km,n is one of them. Zarankiewicz [19]
conjectured that the crossing number of Km,n equals

⌊
m
2

⌋ ⌊
m−1
2

⌋ ⌊
n
2

⌋ ⌊
n−1
2

⌋
. This

conjecture has been verified by Kleitman [10] for min{m,n} ≤ 6, or, equivalently,

cr(Km,n) =
⌊m
2

⌋ ⌊m− 1

2

⌋ ⌊n
2

⌋ ⌊n− 1

2

⌋
, min{m,n} ≤ 6.

For convenience, the number
⌊
m
2

⌋ ⌊
m−1
2

⌋ ⌊
n
2

⌋ ⌊
n−1
2

⌋
is often denoted by Z(m,n)

in our paper. Several authors have been researching the crossing numbers of
complete multipartite graphs. For the graph K1,4,n, the crossing number was
established independently in [7, 8]. The crossing number of the graph K1,5,n was
given in [18].

The join product of two graphs is also what we are interested in. The join
product of two graphs G1 and G2, denoted by G1 +G2, is obtained from vertex-
disjoint copies of G1 and G2 by adding all edges between V (G1) and V (G2).
Particularly, let G2 be a graph on n isolated vertices. The join product of two
graphs G1 and G2 is also referred as the suspension of order n of the graph G1

(denoted by Gn
1 ), where n isolated vertices are called the apices of Gn

1 . Let Cn

be the cycle of length n, Pn be the path on n vertices, and Sn the star K1,n.
The first results on crossing numbers of join of paths and cycles as well as of
two cycles appeared in [12]. Moreover, the exact values for crossing numbers of
G+ Pn and G+Cn for all graphs G of order at most four were given in [12, 14].
Subsequently, several authors have studied the crossing numbers for join of paths
and cycles with some connected graphs of order five [15]. Recently, in [4], the
crossing number of join of a disconnected 5-vertex graph Q (see Figure 1) with
n isolated vertices was given. However, there are only few results concerning
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crossing numbers of join products of discrete graphs, paths and cycles with some
graphs on six vertices, see [13]. Let Wn be the wheel on n+1 (n ≥ 3) vertices. In
the paper, we present the crossing number of join of a connected 6-vertex graph
W5 (see Figure 1) with n isolated vertices.

W3

  

W4

  

W5

  

x
x

x

Figure 1. A disconnected 5-vertex graph Q and the wheels Wj (j = 3, 4, 5).

The richness of repetitive patterns in Cartesian products of graphs reflects in
their drawing and makes Cartesian product one of the few graph classes, for which
exact crossing number results are known. We denote the Cartesian product of two
graphs G1 and G2 by G1�G2. Klešč [11] established the crossing numbers of the
products of all 4-vertex graphs with paths and stars except the crossing number
of K1,3�Pn, which was earlier determined by Jendrǒl and Ščerbová [9], who
conjectured that cr(Sm�Pn) = (n− 1)

⌊
m
2

⌋ ⌊
m−1
2

⌋
for m,n ≥ 1. This conjecture

was proved by Bokal in [2]. In [3], the exact value of crossing number for W3�T

was given, where T is a tree with maximum degree at most three. In our paper,
we extend the result by giving the crossing numbers of Cartesian products of the
wheels Wj (j = 3, 4, 5) with any tree T .

In this paper, let nK1 be the graph on n isolated vertices, we establish the
crossing number of the graph W5 + nK1 (Wn

5 ) in Section 2. Our method is to
construct the relationship between the crossing number of the graph W5 + nK1

and the crossing number of the graph Q+(n+1)K1 (the graph Q is displayed in
Figure 1). Using the zip product operation, in Section 3, we find the exact values
of the crossing numbers of Cartesian products of the wheels Wj (j = 3, 4, 5) with
any tree T . The result complements a recent result [16] by Klešč, who established
the crossing number of any wheel with a tree of maximum degree at most five.
At present, the Zarankiewicz conjecture on the crossing number of Km,n [19] has
not been proved for min{m,n} ≥ 7, which obstruct our research with respect to
the crossing number of Wj �T for j ≥ 6. The main results in this paper are the
following theorems.

Theorem 1. cr(W5 + nK1) = Z(6, n) + n+ 3
⌊
n
2

⌋
for n ≥ 1.
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Theorem 2. Let T be a tree with maximum degree ∆(T ) and let ni be the number

of vertices of degree i in T . Then

cr(Wj �T ) =





∑∆(T )
i=1 ni(Z(4, i) + i), j = 3,

∑∆(T )
i=1 ni

(
Z(5, i) + i+

⌊
i
2

⌋)
, j = 4,

∑∆(T )
i=1 ni

(
Z(6, i) + i+ 3

⌊
i
2

⌋)
, j = 5.

2. The Proof of Theorem 1

Let H be the graph W5 + nK1 with the edge set E and the vertex tripartition
(X,Y, Z), where X = {x} is the center of the wheel, Y = {y1, y2, . . . , y5} are the
rim vertices of the wheel, and Z = {z1, z2, . . . , zn} are the apices added in the
join product. It is easy to see that

(2.1) E = EXY ∪ EXZ ∪ EY Z ∪ EY Y ,

and

(2.2)
5⋃

i=1

Ẽyi = EXY ∪ EY Z ,

where

EXY = {xyi | i = 1, 2, . . . , 5},

EXZ = {xzj | j = 1, 2, . . . , n},

EY Z = {yizj | i = 1, 2, . . . , 5 and j = 1, 2, . . . , n},

EY Y = {y1y2, y2y3, y3y4, y4y5, y5y1},

and Ẽyi is a set of all but the edges yiyi−1 and yiyi+1 of the edges incident with
the vertex yi.

Lemma 3 [16]. If φ is an optimal drawing of H, then crφ(EY Y ) = 0.

Lemma 4. If φ is a good drawing of H, then

5∑

i=1

crφ

(
E\Ẽyi

)
= 4crφ(E) +

5∑

i=1

crφ

(
EXZ , Ẽyi

)
+ crφ(EXZ , EY Y )

+ crφ(EY Y )− crφ (EXY ∪ EXZ ∪ EY Z) .
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Proof. Let (A ∪ B)\Ẽyi be the edge set that arise from the edge set A ∪ B by

deleting the edges of (A∪B)∩ Ẽyi , where A and B are edge subsets of E. Using
(1.1),(1.2) and (2.1), we have

5∑

i=1

crφ(E\Ẽyi) =
5∑

i=1

crφ

((
(EXY ∪ EXZ) ∪ EY Z ∪ EY Y

)
\Ẽyi

)

=
5∑

i=1

crφ

(
(EXY ∪ EXZ)\Ẽyi

)
+

5∑

i=1

crφ

(
EY Z\Ẽyi

)

+
5∑

i=1

crφ

(
EY Y \Ẽyi

)
+

5∑

i=1

crφ

(
EXY \Ẽyi , EY Z\Ẽyi

)
(2.3)

+

5∑

i=1

crφ

(
EXZ\Ẽyi , EY Z\Ẽyi

)
+

5∑

i=1

crφ

(
EXY \Ẽyi , EY Y \Ẽyi

)

+
5∑

i=1

crφ

(
EXZ\Ẽyi , EY Y \Ẽyi

)
+

5∑

i=1

crφ

(
EY Z\Ẽyi , EY Y \Ẽyi

)
.

Since the edge-induced subgraph 〈(EXY ∪ EXZ)\Ẽyi〉 is isomorphic to the star

Sn+4, crφ
(
(EXY ∪ EXZ)\Ẽyi

)
= 0. This, together with (2.3) and the definition

of the edge set Ẽyi , implies that

5∑

i=1

crφ

(
E\Ẽyi

)
=

5∑

i=1

crφ

(
EY Z\Ẽyi

)
+

5∑

i=1

crφ(EY Y )

+
5∑

i=1

crφ

(
EXY \Ẽyi , EY Z\Ẽyi

)
+

5∑

i=1

crφ

(
EXZ , EY Z\Ẽyi

)

+
5∑

i=1

crφ

(
EXY \Ẽyi , EY Y

)
+

5∑

i=1

crφ
(
EXZ , EY Y

)
(2.4)

+

5∑

i=1

crφ

(
EY Z\Ẽyi , EY Y

)
.

It is easy to verify that each crossing involving two edges of EY Z is calculated
three times in

∑5
i=1 crφ(EY Z\Ẽyi). Thus,

5∑

i=1

crφ

(
EY Z\Ẽyi

)
= 3crφ(EY Z).
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Similarly, we have

5∑

i=1

crφ

(
EXY \Ẽyi , EY Z\Ẽyi

)
= 3crφ

(
EXY , EY Z

)
,

5∑

i=1

crφ

(
EXZ , EY Z\Ẽyi

)
= 4crφ

(
EXZ , EY Z

)
,

5∑

i=1

crφ

(
EXY \Ẽyi , EY Y

)
= 4crφ

(
EXY , EY Y

)
,

and

5∑

i=1

crφ

(
EY Z\Ẽyi , EY Y

)
= 4crφ

(
EY Z , EY Y

)
,

which together with (2.4) and (2.1) gives

5∑

i=1

crφ
(
E\Ẽyi

)

= 3crφ
(
EY Z

)
+ 5crφ

(
EY Y

)
+ 3crφ

(
EXY , EY Z

)
+ 4crφ

(
EXZ , EY Z

)

+ 4crφ
(
EXY , EY Y

)
+ 5crφ

(
EXZ , EY Y

)
+ 4crφ

(
EY Z , EY Y

)

= 4crφ(E) + crφ
(
EXZ , EY Z

)
+ crφ

(
EXZ , EY Y

)
+ crφ(EY Y )

− crφ
(
EXY ∪ EXZ ∪ EY Z

)

(
since 〈EXY ∪ EXZ〉 is isomorphic to Sn+5

)

= 4crφ(E) + crφ
(
EXZ , EXY ∪ EY Z

)
+ crφ

(
EXZ , EY Y

)

+ crφ(EY Y )− crφ
(
EXY ∪ EXZ ∪ EY Z

)

(
since φ is a good drawing, crφ

(
EXZ , EXY

)
= 0

)

= 4crφ(E) +
5∑

i=1

crφ
(
EXZ , Ẽyi

)
+ crφ

(
EXZ , EY Y

)
+ crφ(EY Y )

− crφ
(
EXY ∪ EXZ ∪ EY Z

)
(using (2.2)).

This completes the proof.

Lemma 5. If φ is a good drawing of H with crφ(H) = Z(6, n) + n + 3
⌊
n
2

⌋
− a

for some a ≥ 1, then

5∑

i=1

crφ

(
EXZ , Ẽyi

)
≥

{
n2

−n
2 + 4a− crφ(EXZ , EY Y )− crφ(EY Y ), n is even,

n2
−n−6
2 + 4a− crφ(EXZ , EY Y )− crφ(EY Y ), n is odd.
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Proof. Let ei be the edge xyi, i = 1, 2, 3, 4, 5 and fj be the edge xzj , j =
1, 2, . . . , n. Without loss of generality, assume that in the drawing φ, the clockwise
order of these five images φ(ei) around φ(x) is

φ(e1) −→ φ(e2) −→ φ(e3) −→ φ(e4) −→ φ(e5).

We denote a set of all those images φ(fj) by Ai, each of which lies in the angle
αi formed between φ(ei) and φ(ei+1), where the indices are read modulo 5 (see
Figure 3). Obviously,

∑5
i=1 |Ai| = n. In the plane R2, there exists a circular

neighborhood

N
(
φ(x), ǫ

)
= {s ∈ R2 : ‖s− φ(x)‖ < ǫ}

with ǫ being such a sufficiently small positive number that for any edge e of
EXY ∪EXZ , there is no crossing appearing on the segment φ(e)∩N

(
φ(x), ǫ

)
(see

Figure 3), where the circuit C denotes the boundary of N
(
φ(x), ǫ

)
.

In the following, we shall produce the graph H
′

i together with its good draw-
ing φ

′

i for each i ∈ {1, 2, 3, 4, 5}, by the following steps (see Figure 2).

yi+1

Step 1 Step 2

x x

yi+1

yi

yi 1 yi 1

Figure 2. The subdrawing of W5 induced by φ(H) and the subdrawing of W4 induced by
φ′

i(Hi).

Step 1. In the drawing φ(H), remove the vertex yi ∈ Y and all the edges incident
with the vertex yi.

Step 2. Connect yi−1 to yi+1 along the original section of the path φ(yi−1yiyi+1),
i module 5.

Step 3. Successively, remove any crossing that involves edges having a common
end or pairs of crossings involving the same two edges to make sure that the
obtained drawing is a good drawing.

Therefore, we obtain five graphs H
′

1, H
′

2, . . . , H
′

5 with their good drawings

and the local situation of φ
′

1(H
′

1) is displayed in Figure 3. As Ẽyi is a set of all
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C e2

e3

e4

e5

e1

A
2

A
3

A
4

A
5

A
1

x

e2

e3

e4

e5

A
2

A
3

A
4

A
5

A
1

x

C

Figure 3. The local situations of φ(H) and φ
′

1
(H

′

1
).

but the edges yiyi−1 and yiyi+1 of the edges incident with the vertex yi, it is not
difficult to verify that for all i = 1, 2, 3, 4, 5,

cr
φ
′

i

(
H

′

i

)
≤ crφ

(
E\Ẽyi

)
.(2.5)

Taking sum for i on the two sides of (2.5), we have

(2.6)
5∑

i=1

cr
φ
′

i

(
H

′

i

)
≤

5∑

i=1

crφ

(
E\Ẽyi

)
.

For each i ∈ {1, 2, . . . , 5}, in the drawing φ
′

i(H
′

i), we shall produce the graph
H

′′

i , together with its drawing φ
′′

i . Next, we shall only illustrate how to obtain
the graph H

′′

1 with its drawing φ
′′

1 (see Figure 4).

Step 1. In the drawing φ
′

1(H
′

1), for each i ∈ {2, 3, 4, 5}, delete the segment
φ

′

1(ei) ∩N
(
φ

′

1(x), ǫ
)
.

Step 2. Add a new vertex zn+1 to a suitable location on the segment φ
′

1(e4) ∩
N(φ

′

1(x), ǫ).

Step 3. Connect zn+1 to each vertex in {φ
′

1(x), φ
′

1(y2), φ
′

1(y3), φ
′

1(y4), φ
′

1(y5)}
in such a way as described in Figure 4. To be specific, the drawn edge zn+1yi,
i ∈ {2, 3, 4, 5}, consists of a curve (dotted line) in the interior of N

(
φ

′

1(x), ǫ
)
and

a segment of φ
′

1(ei) (solid line) in the outside of N
(
φ

′

1(x), ǫ
)
, and for the drawn

edge zn+1x, connect zn+1 to φ
′

1(x) along the section of φ
′

1(e4) ∩N(φ
′

1(x), ǫ).

This implies that

(2.7) cr
φ
′′

1

(
H

′′

1

)
= cr

φ
′

1

(
H

′

1

)
+ |A4|+ 2|A3|+ |A2|.

We can analogously obtain the graphs H
′′

2 , H
′′

3 , H
′′

4 and H
′′

5 with their drawings,
for example, the local situation of φ

′′

2

(
H

′′

2

)
is displayed in Figure 4. Similarly, we
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C e2

e3

e4

e5

x

x
A

1

A
2

A
3

A
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5 A
5

A
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A
2

A
3

A
4
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e4
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e1

zn+1

zn+1

C

Figure 4. The local situations of φ
′′

1
(H

′′

1
) and φ

′′

2
(H

′′

2
).

respectively obtain

(2.8) cr
φ
′′

2

(
H

′′

2

)
= cr

φ
′

2

(
H

′

2

)
+ |A3|+ 2|A4|+ |A5|,

(2.9) cr
φ
′′

3

(
H

′′

3

)
= cr

φ
′

3

(
H

′

3

)
+ |A1|+ 2|A5|+ |A4|,

(2.10) cr
φ
′′

4

(
H

′′

4

)
= cr

φ
′

4

(
H

′

4

)
+ |A2|+ 2|A1|+ |A5|,

and

(2.11) cr
φ
′′

5

(
H

′′

5

)
= cr

φ
′

5

(
H

′

5

)
+ |A1|+ 2|A2|+ |A3|.

Taking sum for (2.7)–(2.11) and using (2.6) and Lemma 4, we have

5∑

i=1

cr
φ
′′

i

(
H

′′

i

)
=

5∑

i=1

cr
φ
′

i

(
H

′

i

)
+ 4

5∑

i=1

|Ai| ≤
5∑

i=1

crφ

(
E\Ẽyi

)
+ 4n

= 4crφ(E) +
5∑

i=1

crφ

(
EXZ , Ẽyi

)
+ crφ

(
EXZ , EY Y

)

+ crφ(EY Y )− crφ
(
EXY ∪ EXZ ∪ EY Z

)
+ 4n.

Since the edge-induced subgraph 〈EXY ∪EXZ ∪EY Z〉 of H is isomorphic to the
complete tripartite graph K1,5,n with cr(K1,5,n) = Z(6, n) + 4

⌊
n
2

⌋
(see [18]), we

have

(2.12)

5∑

i=1

cr
φ
′′

i

(
H

′′

i

)
≤ 4crφ(E) +

5∑

i=1

crφ

(
EXZ , Ẽyi

)
+ crφ

(
EXZ , EY Y

)

+ crφ(EY Y )− Z(6, n)− 4
⌊n
2

⌋
+ 4n.
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It is straightforward to check that, for each i ∈ {1, 2, . . . , 5}, the graph H
′′

i is
isomorphic to the graph Q + (n + 1)K1 (the graph Q is displayed in Figure 1).
Using the result from [4], we have

cr
φ
′′

i

(H
′′

i ) ≥ cr(Q+ (n+ 1)K1) = Z(5, n+ 1) +

⌊
n+ 1

2

⌋
,

which together with (2.12) and crφ(E) = Z(6, n) + n+ 3
⌊
n
2

⌋
− a, gives

5∑

i=1

crφ

(
EXZ , Ẽyi

)
≥

5∑

i=1

cr
φ
′′

i

(H
′′

i )− 4crφ(E) + Z(6, n) + 4
⌊n
2

⌋
− 4n

− crφ(EXZ , EY Y )− crφ(EY Y )

≥ 5

(
Z(5, n+ 1) +

⌊
n+ 1

2

⌋)
− 4

(
Z(6, n) + n+ 3

⌊n
2

⌋
− a

)

+ Z(6, n) + 4
⌊n
2

⌋
− 4n− crφ(EXZ , EY Y )− crφ(EY Y )

=

{
n2

−n
2 + 4a− crφ(EXZ , EY Y )− crφ(EY Y ), n is even,

n2
−n−6
2 + 4a− crφ(EXZ , EY Y )− crφ(EY Y ), n is odd.

This completes the proof.

2.1. Proof of Theorem 1

We can easily find a good drawing φ0 with

crφ0
(H) = Z(6, n) + n+ 3

⌊n
2

⌋
.

The required drawing φ0 (see Figure 5(1)) is given as follows.

(1) φ0(x) = (ǫ,−ǫ), where ǫ is a sufficiently small positive number, φ0(y1) =
(0, 3), φ0(y2) = (0, 2), φ0(y3) = (0, 1), φ0(y4) = (0,−1) and φ0(y5) = (0,−2);

(2) φ0(zj) = ((−1)j
⌊
j+1
2

⌋
, 0) (j ∈ {1, 2, . . . , n});

(3) the image of the edge y1y5 is an arc and the images of other edges are straight
line segments.

Hence, the drawing shows that cr(H) ≤ Z(6, n) + n + 3
⌊
n
2

⌋
. In order to show

Theorem 1, we only need to prove that cr(H) ≥ Z(6, n) + n+ 3
⌊
n
2

⌋
. For n = 1,

since the graph W5 +K1 contains a subdivision of the complete bipartite graph
K3,3 with cr(K3,3) = 1, cr(W5 + K1) ≥ cr(K3,3) = 1 = Z(6, 1) + 1 + 3

⌊
1
2

⌋
. In

the following, we shall prove the inequality for n > 1. Suppose that there is an
optimal drawing D of H with crD(H) < Z(6, n) + n+ 3

⌊
n
2

⌋
, that is,

(2.13) crD(H) = Z(6, n) + n+ 3
⌊n
2

⌋
− a, for some a ≥ 1.
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y1

y2

y3

y4

y5

 (1)  (2)

 (3)

x

x

xz2

z1

Figure 5. (1) The drawing φ0 of the graph W5 + nK1; (2) The drawing of the graph
W3 + nK1; (3) The drawing of the graph W4 + nK1.

Using (1.1), (1.2), (2.1) and (2.2), we get that

crD(H) = crD
(
EXZ ∪ (EXY ∪ EY Z ∪ EY Y )

)

= crD(EXZ) + crD(EXY ∪ EY Z ∪ EY Y ) + crD(EXZ , EY Y )

+ crD(EXZ , EXY ∪ EY Z)(2.14)

= 0 + crD(EXY ∪ EY Z ∪ EY Y ) + crD(EXZ , EY Y ) +
5∑

i=1

crD

(
EXZ , Ẽyi

)
.

Since the edge-induced subgraph 〈EXY ∪EY Z ∪EY Y 〉 of H contains the complete
bipartite graph K5,n+1 with cr(K5,n+1) = Z(5, n+ 1) as a subgraph, cr

(
〈EXY ∪

EY Z ∪ EY Y 〉
)
≥ Z(5, n+ 1). On the other hand, the drawing in Figure 6 shows

that cr
(
〈EXY ∪ EY Z ∪ EY Y 〉

)
≤ Z(5, n+ 1). Thus,

cr
(
〈EXY ∪ EY Z ∪ EY Y 〉

)
= Z(5, n+ 1),
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which together with (2.13) and (2.14) yields

5∑

i=1

crD

(
EXZ , Ẽyi

)
≤ Z(6, n) + n+ 3

⌊n
2

⌋
− a− Z(5, n+ 1)− crD(EXZ , EY Y )

=

{
n2

−n
2 − a− crD(EXZ , EY Y ), n is even,

n2
−n+2
2 − a− crD(EXZ , EY Y ), n is odd.

(2.15)

Figure 6. The drawing of the graph 〈EXY ∪ EY Z ∪ EY Y 〉.

By our hypothesis, D is an optimal drawing of H with crD(H) = Z(6, n) + n +
3
⌊
n
2

⌋
− a for some a ≥ 1. So, by combing Lemma 3 and Lemma 5, we have

(2.16)

5∑

i=1

crD

(
EXZ , Ẽyi

)

≥

{
n2

−n
2 + 4a− crD(EXZ , EY Y ), n is even,

n2
−n−6
2 + 4a− crD(EXZ , EY Y ), n is odd.

According to n is even or odd, we consider the following two cases.

Case 1. When n is even, by (2.15) and (2.16), we obtain

n2 − n

2
+ 4a− crD(EXZ , EY Y ) ≤

n2 − n

2
− a− crD(EXZ , EY Y ).

Case 2. When n is odd, by (2.15) and (2.16), we get

n2 − n− 6

2
+ 4a− crD(EXZ , EY Y )

≤
n2 − n+ 2

2
− a− crD(EXZ , EY Y ).

Hence, by simple calculation, we have that for Case 1, a ≤ 0 and for Case 2,
a ≤ 4

5 . This contradiction completes the proof.
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In [17], the crossing number of the graph W5 + nK1 was proved as a case
analysis of a significant number of cases. However, in our paper, we construct
the relationship between the crossing number of the graph H and the crossing
number of the graph Q+ (n+ 1)K1, hence we make this claim more accessible.

3. The Proof of Theorem 2

We prove Theorem 2 with the help of some definitions and results in [3]. Next,
we briefly introduce two concepts that are used in the proof.

For a multiset L ⊆ V (G2), we denote by G1�LG2 the capped Cartesian
product of graphs G1 and G2, that is, the graph obtained by adding a distinct
vertex v

′

to G1�G2 for each copy of a vertex v ∈ L and joining v
′

to all the
vertices of G1�{v}. We call each v

′

a cap of v. For v ∈ V (G2), let χL(v) denote
the multiplicity of v in L and let l(v) = degG2

(v) + χL(v). Let F ⊆ E(G) is a
subset of edges of G and π is a permutation of F . A π-subdivision Gπ of G is
the graph, obtained from G by subdividing every edge e ∈ F with the vertex ve
and adding the edges

{
vevπ(e)|e ∈ F

}
.

3.1. Proof of Theorem 2

A subtree T
′

of T is obtained by deleting all leaf vertices in T , and let L be the
multiset containing each vertex v of T

′

with χL(v) = degT (v)− degT ′ (v). Thus,

l(v) = degT ′ (v) + degT (v)− degT ′ (v) = degT (v), v ∈ V
(
T

′)
.

It is easy to verify that 2 ≤ l(v) ≤ ∆(T ) (∆(T ) is the maximum degree of T )
for every vertex v ∈ V (T

′

). The drawings in Figure 5 show that the wheels Wj

(j = 3, 4, 5) have all apex-homogeneous drawings (the detailed definition of all
apex-homogeneous drawings see [3]) such that each of them is optimal. Note that
the central vertex of Wj is a dominating vertex, i.e., a vertex adjacent to all other
vertices of the graph. Thus, by Theorem 10 in [3], we have

(3.1)

cr(Wj�LT
′

) =
∑

v∈V (T
′
)

cr
(
W

l(v)
j

)

=

∆(T )∑

i=2

nicr
(
W i

j

)
(2 ≤ l(v) ≤ ∆(T ), j ∈ {3, 4, 5}),

where ni is the number of vertices of degree i in T .
The graph Wj�LT

′

(j ∈ {3, 4, 5}) is obtained from the Cartesian product
Wj�T

′

(j ∈ {3, 4, 5}) by adding rv caps to Wj�{v} (j ∈ {3, 4, 5}) for every
vertex v of T

′

(rv is the number of T -leaves adjacent to v). Actually, the graph



196 Y. Wang and Y. Huang

Wj�LT
′

(j ∈ {3, 4, 5}) has n1 caps (n1 is the number of leaf vertices of T ). This
consistency in combination with Theorem 19 in [3] also implies that a properly
chosen π-subdivision of edges connecting a cap of Wj�LT

′

(j ∈ {3, 4, 5}) with
the corresponding rim increases the crossing number by precisely one. To obtain
Wj�T from Wj�LT

′

(j ∈ {3, 4, 5}), we need one such π-subdivision for each
T -leaf vertex (the number of T -leaf vertices is n1). Together with (3.1), we get

cr(Wj�T ) = n1 + cr
(
Wj�LT

′

)

= n1

(
W 1

j

)
+

∆(T )∑

i=2

nicr
(
W i

j

) (
by cr

(
W 1

j

)
= cr

(
Wj +K1

)
= 1

)

=

∆(T )∑

i=1

nicr
(
W i

j

)

=





∑∆(T )
i=1 ni(Z(4, i) + i), j = 3 (by Theorem 3.1 in [14]),

∑∆(T )
i=1 ni

(
Z(5, i) + i+

⌊
i
2

⌋)
, j = 4 (by Theorem 10 in [4]),

∑∆(T )
i=1 ni

(
Z(6, i) + i+ 3

⌊
i
2

⌋)
, j = 5 (by Theorem 1).

This finishes the proof of Theorem 2.
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[12] M. Klešč, The join of graphs and crossing numbers , Electron. Notes Discrete Math.
28 (2007) 349–355.
doi:10.1016/j.endm.2007.01.049
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[15] M. Klešč and Š. Schrötter, The crossing numbers of join of paths and cycles with

two graphs of order five, Lecture Notes in Comput. Sci. 7125 (2012) 160–167.
doi:10.1007/978-3-642-28212-6 15
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