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Abstract

By a
{
Cα

3 , C
β
6

}
-decomposition of a graph G, we mean a partition of the

edge set of G into α cycles of length 3 and β cycles of length 6. In this
paper, necessary and sufficient conditions for the existence of a

{
Cα

3 , C
β
6

}
-

decomposition of (Km × Kn)(λ), where × denotes the tensor product of
graphs and λ is the multiplicity of the edges, is obtained. In fact, we prove
that for λ ≥ 1, m, n ≥ 3 and (m,n) 6= (3, 3), a

{
Cα

3 , C
β
6

}
-decomposition

of (Km × Kn)(λ) exists if and only if λ(m − 1)(n − 1) ≡ 0 (mod 2) and

3α+ 6β = λm(m−1)n(n−1)
2 .
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1. Introduction

Throughout this paper, graphs are assumed to be loopless and finite. Let Ck

denote the cycle of length k. The complete graph on n vertices is denoted byKn. A
graph G is said to be H-decomposable if the edge set E(G) can be partitioned into
E1, E2, . . . , Ek such that 〈Ei〉 ≃ H, 1 ≤ i ≤ k. If a graph G can be decomposed
into cycles of length k, then we say that G admits a Ck-decomposition and in
this case we write G = Ck ⊕ Ck ⊕ · · · ⊕ Ck; also we write it as Ck | G. A graph
G is said to be {H1, H2}-decomposable if the edge set of G can be partitioned
into E1, E2, . . . , Ek such that 〈Ei〉 ≃ H1 or 〈Ei〉 ≃ H2, 1 ≤ i ≤ k and H1, H2 ∈
{〈E1〉, 〈E2〉, . . . , 〈Ek〉}. The graph obtained by replacing each edge of G by λ
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parallel edges is denoted by G(λ). For an integer k, kG denotes k disjoint copies
of G. Definitions which are not given here can be found in [9].

For two simple graphs G1 and G2 their tensor product, denoted by G1 ×G2,

has vertex set V (G1)×V (G2) in which (x1, y1)(x2, y2) is an edge whenever x1x2 is
an edge inG1 and y1y2 is an edge inG2, see Figure 1. Similarly, the wreath product

of the graphs G1 and G2, denoted by G1 ◦G2, has vertex set V (G1)× V (G2) in
which (x1, y1)(x2, y2) is an edge whenever x1x2 is an edge in G1 or, x1 = x2 and
y1y2 is an edge in G2, see Figure 2. Note that, (G1 × G2)(λ) ≃ G1(λ) × G2 ≃
G1 × G2(λ). Let V (G) =

{
x1, x2, . . . , xm

}
and V (H) = {1, 2, . . . , n}. For xi ∈

V (G), xi × V (H) =
{
(xi, j) | j ∈ {1, 2, . . . , n}

}
; we denote (xi, j) by xij . The set

Xi =
{
xi1, x

i
2, . . . , x

i
n

}
= xi×V (H) is called the ith layer (of vertices) or ith partite

set of G × H (respectively G ◦ H), corresponding to the vertex xi, 1 ≤ i ≤ m,

of V (G). Clearly, Km ◦Kn is the complete m-partite graph in which each of its
partite sets has n vertices. Further, Km × Kn = Km ◦ Kn − E(nKm), where
nKm denotes n disjoint copies of Km. As the tensor product is commutative,
Km ×Kn ≃ Kn ×Km.
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Figure 1. The graph C3 × C4.
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Figure 2. The graph C3 ◦ P3.

In the study of group divisible designs, complete multipartite graphs Km◦Kn

are decomposed into complete subgraphs; but in a modified group divisible design
the graph Km ×Kn is decomposed into complete subgraphs, see [3–6,24]. In [5],
Assaf used modified group divisible designs to construct covering and packing de-
signs, and group divisible designs with block size 5. Further, a Cp-decomposition,
p a prime, of the graph Km × Kn was used to find a Cp-decomposition of
Km ◦ Kn, see [25]. Moreover, a resolvable 2k-cycle decomposition of Km ×
Kn and a decomposition of Km × Kn into closed trails of length k have been
studied in [33, 34]. Besides that, Hamilton cycle decompositions of the graphs
Km × Kn,Km,m × Kn,Km,m × (Kr ◦ Ks) and (Km ◦ Kn) × (Kr ◦ Ks) and the
directed Hamilton cycle decompositions of the symmetric digraphs (Km ×Kn)

∗,

(Km,m × Kn)
∗, (Km,m × (Kr ◦ Ks))

∗, ((Km × Kn) × Kr)
∗, ((Km ◦ Kn) × Kr)

∗

and ((Km ◦ Kn) × (Kr ◦ Ks))
∗ are obtained in [8, 28–31, 35]. Hence Km × Kn

is proved to be an important proper spanning subgraph of the regular complete
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multipartite graph Km ◦Kn.

Decompositions of complete graphs into specified subgraphs have been stud-
ied for a long time. Decompositions of complete graphs into cycles are well-
studied. Decompositions of graphs into fixed length cycles and varying length
cycles are completely settled for the complete graphs Kn and the complete multi-
graphs Kn(λ). In [1, 21, 36], it is proved that if n is odd and k |

(
n
2

)
, 3 ≤ k ≤ n,

then Ck |Kn. Further, if n is even and k | n(n−2)
2 , 3 ≤ k ≤ n, then Ck |Kn − I,

where I is a perfect matching of Kn. Bryant et al. [13,14] completely settled the
problem of decomposing Kn(λ), λ ≥ 1 into cycles of varying lengths.

Chou et al. [16] obtained a necessary and sufficient condition for the existence
of a decomposition of Ka,b (respectively Km,m − I, where m ≥ 3 is odd and I

denotes a perfect matching) into cycles of length 4, 6 and 8. In [17], Chou and
Fu considered a {Cr

4 , C
s
2t}-decomposition of Ka,b and Km,m − I, where m is odd

and I denotes a perfect matching. Later, Fu et al. [18] proved that the necessary
conditions for the existence of a decomposition of Km,m (respectively Km,m − I)
into cycles of distinct lengths are sufficient whenever m is even (respectively
odd) except m = 4. Recently, Asplund et al. [2] established a necessary and
sufficient condition for the existence of a decomposition of Ka,b(λ) into cycles of
arbitrary lengths.

Billington et al. [12] proved the existence of a C5-decomposition of (Km ◦
Kn)(λ). Muthusamy and Shanmuga Vadivu [32] proved the existence of a C2k-
decomposition of Km ◦ Kn. Very recently, irrespective of the parity of k, the
authors of [15] actually solve the existence problem for a Ck-decomposition of
(Km ◦Kn)(λ) whose cycle-set can be partitioned into 2-regular graphs containing

all the vertices except those belonging to one part. A
{
Cα
4 , C

β
5

}
-decomposition

of Km ◦ Kn was given by Fu [22]. Moreover, Bahmanian and Šajna [7] showed
that if Km(λn) has a decomposition into cycles of lengths k1, k2, . . . , kt (plus a
perfect matching if λn(m − 1) is odd), then (Km ◦Kn)(λ) has a decomposition
into cycles of lengths k1n, k2n, . . . , ktn (plus a perfect matching if λn(m − 1) is
odd).

Billington obtained necessary and sufficient conditions for the existence of a
{
Cα
3 , C

β
4

}
-decomposition of the graph Ka,b,c a ≤ b ≤ c, see [10]. Ganesamurthy

and Paulraja proved that the existence of a
{
Cα
3 , C

β
6

}
-decomposition of the graph

Ka,b,c, a ≤ b ≤ c, see [19]. In [3], Assaf obtained a C3-decomposition of (Km ×
Kn)(λ). For p ≥ 5, p a prime, existence of Cp-decompositions of Km × Kn and
Km ◦Kn were proved by Manikandan and Paulraja [25–27]. Existence of a Ck-
decomposition of Km×Kn is not yet known for general k. In this paper, we obtain
a necessary and sufficient condition for the existence of a

{
Cα
3 , C

β
6

}
-decomposition

of (Km ×Kn)(λ).

Besides other results, the following main theorem is proved.
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Theorem 1. For λ ≥ 1, m, n ≥ 3 and (m,n) 6= (3, 3), the graph (Km ×Kn) (λ)

admits a
{
Cα
3 , C

β
6

}
-decomposition if and only if λ(m − 1)(n − 1) ≡ 0 (mod 2)

and 3α+ 6β = λm(m−1)n(n−1)
2 .

2. Notation and Terminology

A latin square of order n, denoted by Ln, is an n × n array, each cell of which
contains exactly one of the symbols in {1, 2, . . . , n} such that each row and each
column of the array contains each of the symbols in {1, 2, . . . n} exactly once. As
in [11], a cell (i, j) is termed “empty” if it contains no entry and “filled” otherwise.
We represent a partial latin square L by a set of ordered triples (i, j, k), where
entry k occurs in row i and column j. In this sense (i, j, k) is an element of L.
For our convenience, we avoid, if necessary, drawing empty cells of a partial latin
square. A latin square is said to be idempotent if the cell (i, i) contains the
symbol i, 1 ≤ i ≤ n. A latin square of order k is cyclic if the 1st row entries are
a1, a2, a3, . . . , ak, then the sth row entries are as, as+1, as+2, . . . , as−1, in order.

Remark 2. Using a latin square, Ln, of order n, the complete tripartite graph
Kn,n,n, n ≥ 2, can be decomposed into C3’s as follows. Let the partite sets of
Kn,n,n be

{
xi1, x

i
2, x

i
3, . . . , x

i
n

}
, 1 ≤ i ≤ 3. For the (i, j)th cell of Ln with entry

k, there corresponds a 3-cycle
(
x1i , x

2
j , x

3
k

)
in Kn,n,n. Since Ln has n2 cells, we

obtain n2 cycles of length 3 which decompose Kn,n,n. Further, if we consider an
idempotent latin square Ln of order n, n ≥ 3, then the non-diagonal cells of Ln

give a C3-decomposition of K3 ×Kn, as K3 ×Kn = K3 ◦Kn − E(nK3).

Remark 3. Consider a cyclic latin square C ′ of order n ≥ 3 on the set {1, 2, . . . ,
n}, where n is an odd integer and the ith row elements, in order, are i, i + 1,
i + 2, . . . , i − 1. Let n = 2k + 1, k ≥ 1. Now we rename the entries in C ′ by
j → 1+ (j − 1)k′, where k′ = k+1. The resulting latin square, In, is idempotent
and commutative. Existence of an idempotent commutative latin square of order
2k+1 is guaranteed in [23]. The entries in the cells in T = {(1, 2), (2, 3), . . . , (k−
1, k), (k, 1)} is a transversal of In. We can extend the latin square In to In+1,

n + 1 = 2k + 2, k ≥ 1, using the method of stripping the transversal T of In,
see [23]. The resulting latin square In+1, is idempotent, see Appendix. Then for
any n ≥ 3, we can obtain an idempotent latin square of order n.

Remark 4. The edges of the triangles corresponding to the entries of each of
the partial latin squares of Figure 3, define a graph isomorphic to K2,2,2−E(K3)
and it can be decomposed into three C3’s or, a C3 and a C6, see Figure 3, where
rij and cjk denote the row ij and column jk. Observe that in each case, in each
of the three cells of the partial latin square, there are only two distinct symbols.
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cj1 cj2
ri1 b

ri2 b a

cj1 cj2
ri1 a

ri2 b a

cj1 cj2
ri1 a b

ri2 a

cj1 cj2
ri1 a b

ri2 b

b

b b

b

bb

x1i1

x1i2 x2j2

x2j1

x3a x3b

Normal edges induce aC3 and broken edges induce aC6.

The subgraph ofK2,2,2 corresponding to the first partial latin square given above.

Figure 3. K2,2,2 − E(K3) = C3 ⊕ C6, where K3 =
〈
x1
i1
, x2

j1
, x3

a

〉
.

1. An idempotent latin square of order n without its diagonal entries is denoted
by In −D.

2. An ordered triple (i, j, k), stands for the (i, j)th entry of a latin square is k.

3. At some places, we write the entries of a partial latin square by ordered
triples; for example, the three triples (xi, yl, z), (xk, yj , z) and (xk, yl, w) rep-
resent the partial latin square

cyj cyl
rxi

z

rxk
z w

where rxi
represents the row xi and similarly cyj represents the column yj .

3.
{
Cα
3 , C

β
6

}
-Decomposition of K3 ×Kn

In this section, we prove the existence of a decomposition of K3 × Kn into α

cycles of length 3 and β cycles of length 6.
The following lemma is a simple observation.

Lemma 5. The graph K3 × K3 cannot be decomposed into 4 copies of C3 and

a C6.

Proof. The proof is left to the reader.

Lemma 6. For (α, β) 6= (4, 1), the graph K3 × K3 admits a
{
Cα
3 , C

β
6

}
-decom-

position.
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Proof. Let the vertex set of the three partite sets of K3 × K3 be
{
xi1, x

i
2, x

i
3

}
,

1 ≤ i ≤ 3. Observe that α is always even and the maximum value of α is 6.

(i) (α, β) = (6, 0). Consider the unique idempotent latin square I3; the non-
diagonal entries of I3 give six edge disjoint copies of C3, see Remark 2.

(ii) (α, β) = (2, 2). A required set of cycles are
(
x11, x

2
3, x

3
2

)
,
(
x12, x

2
3, x

3
1

)
,

(
x11, x

3
3, x

2
1, x

3
2, x

1
3, x

2
2

)
and

(
x12, x

3
3, x

2
2, x

3
1, x

1
3, x

2
1

)
.

(iii) (α, β) = (0, 3). A set of three cycles of length 6 is
(
x11, x

2
2, x

1
3, x

2
1, x

1
2, x

2
3

)
,

(
x11, x

3
2, x

1
3, x

3
1, x

1
2, x

3
3

)
and

(
x21, x

3
2, x

2
3, x

3
1, x

2
2, x

3
3

)
.

Lemma 7. The graph K3 ×K4 has a
{
Cα
3 , C

β
6

}
-decomposition.

Proof. We consider only the possible values for α and β.

(i) (α, β) = (12, 0). The entries of the non-diagonal cells of an idempotent
latin square I4 give a C3-decomposition of K3 ×K4, see Remark 2.

(ii) (α, β) ∈ {(10, 1), (8, 2), (6, 3), (4, 4)}.

Consider the following partial latin square I4 −D of I4.

c1 c2 c3 c4
r1 4 2 3
r2 3 4 1
r3 4 1 2
r4 2 3 1

The cells of I4 −D are partitioned into the following partial latin squares.

c2 c3
r1 4 2
r2 4

c1 c4
r1 3
r2 3 1

c1 c4
r3 4 2
r4 2

c2 c3
r3 1
r4 3 1

The edges of K3 × K4 corresponding to each of these partial latin squares
induces the subgraph isomorphic toK2,2,2−E(K3), and it admits a decomposition
consisting of three C3’s or, a C3 and a C6, see Figure 3. Depending on the value
of α and β, we choose C3’s or, a C3 and a C6 corresponding to each of these
partial latin squares to get a

{
Cα
3 , C

β
6

}
-decomposition of K3 ×K4.

(iii) (α, β) ∈ {(2, 5), (0, 6)}. The graph

K3 ×K4 = K3 × (K3 ⊕K1,3)

= K3 ×K3 ⊕K3 ×K1,3

= K3 ×K3 ⊕K3 ×K2 ⊕K3 ×K2 ⊕K3 ×K2.

As the graph K3×K2 ≃ C6, and the graph K3×K3 has a {C
r
3 , C

s
6}-decomposition

for (r, s) 6= (4, 1), we obtain a
{
Cα
3 , C

β
6

}
-decomposition of K3 ×K4.

Lemma 8. The graph K3 ×Kn, 5 ≤ n ≤ 11, admits a
{
Cα
3 , C

β
6

}
-decomposition.
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Proof. If (α, β) = (n(n − 1), 0), then the required decomposition exists by Re-
mark 2. So we suppose that β 6= 0. First we consider 1 ≤ β ≤ n − 1. Consider
an In − D, where In is obtained as in Remark 3; the idempotent latin squares
In, 5 ≤ n ≤ 11, are given in Appendix. We use n − 1 partial latin squares, each
having three cells, of In−D, 5 ≤ n ≤ 11, to obtain C6’s, 1 ≤ β ≤ n− 1; the three
cells are chosen so that two cells are filled by a common symbol, (see Remark 4).
According to our notation, each set of three triples in the following list of triples
gives a partial latin square (of In −D) having three filled cells.

n = 5. {(r1, c3, 2)(r1, c4, 5)(r2, c3, 5)}, {(r1, c5, 3)(r2, c4, 3)(r2, c5, 1)}, {(r3, c1, 2)
(r3, c2, 5)(r4, c1, 5)}, {(r4, c2, 3)(r5, c1, 3)(r5, c2, 1)}.

n = 6. {(r1, c2, 6)(r1, c3, 2)(r2, c3, 6)}, {(r1, c5, 3)(r2, c4, 3)(r2, c5, 1)}, {(r3, c1, 2)
(r3, c2, 5)(r4, c1, 5)}, {(r4, c2, 3)(r4, c3, 1)(r5, c2, 1)}, {(r5, c3, 4)(r6, c2, 4)(r6, c3, 5)}.

n = 7. {(r1, c3, 2)(r1, c4, 6)(r2, c3, 6)}, {(r1, c5, 3)(r2, c4, 3)(r2, c5, 7)}, {(r1, c6, 7)
(r1, c7, 4)(r2, c6, 4)}, {(r3, c1, 2)(r3, c2, 6)(r4, c1, 6)}, {(r4, c2, 3)(r5, c1, 3)(r5, c2, 7)},
{(r6, c1, 7)(r6, c2, 4)(r7, c1, 4)}.

n = 8. {(r1, c2, 8)(r1, c3, 2)(r2, c3, 8)}, {(r1, c5, 3)(r2, c4, 3)(r2, c5, 7)}, {(r1, c6, 7)
(r1, c7, 4)(r2, c6, 4)}, {(r3, c1, 2)(r3, c2, 6)(r4, c1, 6)}, {(r4, c2, 3)(r5, c1, 3)(r5, c2, 7)},
{(r6, c2, 4)(r6, c3, 1)(r7, c2, 1)}, {(r7, c3, 5)(r8, c2, 5)(r8, c3, 6)}.

n = 9. {(r1, c3, 2)(r1, c4, 7)(r2, c3, 7)}, {(r1, c5, 3)(r2, c4, 3)(r2, c5, 8)}, {(r1, c6, 8)
(r1, c7, 4)(r2, c6, 4)}, {(r1, c8, 9)(r2, c7, 9)(r2, c8, 5)}, {(r3, c1, 2)(r3, c2, 7)(r4, c1, 7)},
{(r4, c2, 3)(r5, c1, 3)(r5, c2, 8)}, {(r6, c1, 8)(r6, c2, 4)(r7, c1, 4)}, {(r7, c2, 9)(r8, c1, 9)
(r8, c2, 5)}.

n = 10. {(r1, c2, 10)(r1, c3, 2)(r2, c3, 10)}, {(r1, c5, 3)(r2, c4, 3)(r2, c5, 8)}, {(r1, c6,
8)(r1, c7, 4)(r2, c6, 4)}, {(r1, c8, 9) (r2, c7, 9)(r2, c8, 5)}, {(r3, c1, 2) (r3, c2, 7) (r4, c1,
7)}, {(r4, c2, 3) (r5, c1, 3) (r5, c2, 8)}, {(r6, c1, 8) (r6, c2, 4) (r7, c1, 4)}, {(r7, c2, 9)
(r8, c1, 9)(r8, c2, 5)}, {(r9, c2, 1)(r9, c3, 6)(r10, c2, 6)}.

n = 11. {(r1, c3, 2)(r1, c4, 8)(r2, c3, 8)}, {(r1, c5, 3)(r2, c4, 3)(r2, c5, 9)}, {(r1, c6, 9)
(r1, c7, 4)(r2, c6, 4)}, {(r1, c8, 10)(r2, c7, 10)(r2, c8, 5)}, {(r1, c9, 5) (r1, c10, 11) (r2,
c9, 11)}, {(r3, c1, 2) (r3, c2, 8) (r4, c1, 8)}, {(r4, c2, 3) (r5, c1, 3) (r5, c2, 9)}, {(r6, c1,
9) (r6, c2, 4) (r7, c1, 4)}, {(r7, c2, 10) (r8, c1, 10) (r8, c2, 5)}, {(r9, c1, 5) (r9, c2, 11)
(r10, c1, 11)}.

Each of the subgraphs of K3 ×Kn corresponding to the above n − 1, 5 ≤ n

≤ 11, partial latin squares is isomorphic toK2,2,2−E(K3), see Figure 3, and it can

be decomposed into C3’s or, a C3 and a C6 and hence K3 ×Kn has a
{
Cα
3 , C

β
6

}
-

decomposition, when (α, β) = (n(n − 1) − 2i, i), 5 ≤ n ≤ 11, 1 ≤ i ≤ n − 1. The
filled cells of In − D, 5 ≤ n ≤ 11, which are not covered by the above n − 1
partial latin squares partition the remaining edges of K3 ×Kn into 3-cycles, by
Remark 2.

Now we complete the proof by induction on n, n ≥ 5, for β ≥ n. For n = 5,
K3×K5 = K3×K4⊕K3×K2⊕· · ·⊕K3×K2; we use Lemma 7 and the fact that



256 P. Paulraja and R. Srimathi

K3×K2 ≃ C6 to complete the proof. The graph K3×Kn+1 = K3×(Kn⊕K1,n) =
K3 ×Kn ⊕K3 ×K2 ⊕ · · · ⊕K3 ×K2. Now a required decomposition follows by
induction applied to K3 ×Kn and the fact that K3 ×K2 ≃ C6.

Lemma 9. If β ≥ 4, then the graph K3×(K6−e) has a
{
Cα
3 , C

β
6

}
-decomposition.

Proof. The graph K3 × (K6 − e) = K3 × (K5 ⊕K1,4)
= K3 ×K5 ⊕K3 ×K2 ⊕ · · · ⊕K3 ×K2

︸ ︷︷ ︸

4−copies

.

As K3 ×K2 ≃ C6 and a
{
Cr
3 , C

s
6

}
-decomposition of K3 ×K5 follows by Lemma

8, we have the desired result.

Lemma 10. If β = 2, then the graph K3×(K6−e) has a
{
Cα
3 , C

β
6

}
-decomposition.

Proof. The graph K3 × (K6 − e) = K3 × (K3 ⊕K3 ⊕K3 ⊕K3 ⊕K2 ⊕K2)
= K3 ×K3 ⊕K3 ×K3 ⊕K3 ×K3 ⊕K3 ×K3

⊕K3 ×K2 ⊕K3 ×K2.

As K3 ×K2 ≃ C6, the result follows by Lemma 6.

Lemma 11. If β 6= 1, then the graph K3 × (K7 − E(K3)) has a
{
Cα
3 , C

β
6

}
-

decomposition.

Proof. The graph K3 × (K7 − E(K3)) = K3 × (K3 ⊕K3 ⊕ · · · ⊕K3
︸ ︷︷ ︸

6−copies

)

= K3 ×K3 ⊕ · · · ⊕K3 ×K3

Now the result follows by Lemma 6.

Lemma 12. The cells of the first two rows of In − D, where n = 2k + 2, can
be partitioned into

⌊
4k+2
3

⌋
partial latin squares, each of which is one of the form

given in Figure 3, together with one or two filled cells depending on n.

Proof. Let n = 2k + 2, k ≥ 1. Obtain the idempotent latin square In and the
partial latin square In −D, as in Remark 3. The entries of the first two rows of
In −D are shown in Figure 4, see Appendix for In, 5 ≤ n ≤ 11. We partition the
cells of these two rows of In−D into

⌊
4k+2
3

⌋
3-subsets as shown in Figures 5, 6

and 7 according to n ≡ 0, 2 or 4 (mod 6), respectively. Each of the subsets has
three filled cells having two distinct elements as shown in Remark 4.

c1 c2 c3 c4 c5 . . . c2k−2 c2k−1 c2k c2k+1 c2k+2

r1 2k + 2 2 k + 3 3 . . . 2k k 2k + 1 k + 1 k + 2
r2 k + 2 2k + 2 3 k + 4 . . . k 2k + 1 k + 1 1 k + 3

Figure 4. First two rows of In −D.
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n ≡ 0 (mod 6):

c1 c2 c3 c4 c5 c6 . . . c6k−4 c6k−3 c6k−2 c6k−1 c6k
r1 6k 2 3k + 2 3 3k + 3 . . . 6k − 2 3k − 1 6k − 1 3k 3k + 1
r2 3k + 1 6k 3 3k + 3 4 . . . 3k − 1 6k − 1 3k 1 3k + 2

r1

r2

c 2c 1 c 3 c 4 c 5 c 6 c 7 . . . c 6
k

c 6
k
−
1

c 6
k
−
2

c 6
k
−
3

c 6
k
−
4

c 6
k
−
5

. . .

. . . ∗

Figure 5. Except the cell with ∗, all other cells are partitioned into 3 cells as shown above,
where the last column cells are combined with the first cell of the second row.

n ≡ 2 (mod 6):

c1 c2 c3 c4 c5 . . . c6k−2 c6k−1 c6k c6k+1 c6k+2

r1 6k + 2 2 3k + 3 3 . . . 6k 3k 6k + 1 3k + 1 3k + 2
r2 3k + 2 6k + 2 3 3k + 4 . . . 3k 6k + 1 3k + 1 1 3k + 3

r1

r2

c 2c 1 c 3 c 4 c 5 c 6 c 7 . . . c 6
k
+
2

c 6
k
+
1

c 6
k

c 6
k
−
1

c 6
k
−
2

c 6
k
−
3

. . .

. . .

∗

∗

Figure 6. Except the two cells with ∗, all other cells are partitioned into 3 cells as shown
above, where the last column cells are combined with the first cell of the second row.

n ≡ 4 (mod 6):

c1 c2 c3 c4 c5 . . . c6k c6k+1 c6k+2 c6k+3 c6k+4

r1 6k + 4 2 3k + 4 3 . . . 6k + 2 3k + 1 6k + 3 3k + 2 3k + 3
r2 3k + 3 6k + 4 3 3k + 5 . . . 3k + 1 6k + 3 3k + 2 1 3k + 4

r1

r2

c 2c 1 c 3 c 4 c 5 c 6 c 7 . . . c 6
k
+
4

c 6
k
+
3

c 6
k
+
2

c 6
k
+
1

c 6
k

c 6
k
−
1

. . .

. . .

Figure 7. The two cells of the last column cells are combined with the first cell of the
second row.
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We apply following theorem to prove Theorem 14.

Theorem 13 [19]. Let Ka,b,c be the complete tripartite graph with a ≤ b ≤ c and

let Ka,b,c 6= K1,1,c, when c ≡ 1 (mod 6) and c > 1. If a ≡ b ≡ c (mod 6), then

Ka,b,c admits a
{
Cα
3 , C

β
6

}
-decomposition for any α ≡ a (mod 2), with 0 ≤ α ≤ ab.

Theorem 14. The graph K3 ×Kn, n ≥ 4, admits a
{
Cα
3 , C

β
6

}
-decomposition.

Proof. Since the graph K3×Kn has a C3-decomposition, we assume that β ≥ 1.
Because of Lemmas 7 and 8, we assume that n ≥ 12.

Case (i): n ≡ 0 (mod 4). Let n = 4k, k ≥ 3. The graph K3 × Kn = K3 ×
(kK4⊕Kk◦K4) = k(K3×K4)⊕K3×(Kk◦K4) = G1⊕G2, where G1 = k(K3×K4)
and G2 = K3 × (Kk ◦K4).

The graphG2 = K3×(Kk◦K4) = (K3×Kk)◦K4 = (K3⊕K3⊕· · ·⊕K3)◦K4 =
(K4,4,4 ⊕K4,4,4 ⊕ · · · ⊕K4,4,4), since K3 |K3 ×Kn. Now invoke Theorem 13 and
Lemma 7 to the graphs K4,4,4 and G1, respectively, to complete the proof of this
case.

Case (ii): n ≡ 1 (mod 4). Let n = 4k + 1, k ≥ 3. The graph K3 × Kn =
K3 × (K5 ⊕K5 ⊕ · · · ⊕K5

︸ ︷︷ ︸

k−copies

⊕Kk ◦ K4) = (K3 × K5) ⊕ (K3 × K5) ⊕ · · · ⊕ (K3 ×

K5)⊕K3×(Kk◦K4) = G1⊕G2, whereG1 = (K3×K5)⊕(K3×K5)⊕· · ·⊕(K3×K5)
and G2 = K3 × (Kk ◦K4) = (K3 ×Kk) ◦K4 = (K3 ⊕K3 ⊕ · · · ⊕K3) ◦K4. As
in Case (i), G2 is isomorphic to K4,4,4 ⊕ · · · ⊕K4,4,4.

Now apply Theorem 13 and Lemma 8 to the graphs K4,4,4 and G1, respec-
tively, to complete the proof of this case.

Case (iii): n ≡ 2 (mod 4). Let n = 4k + 2, k ≥ 3. First we prove for the
case β < 2(k − 1) = 2k − 2. Out of the

⌊
8k+2
3

⌋
partial latin squares, each having

3 cells, described in Lemma 12, consider 2k − 3 partial latin squares. The edge
induced subgraph of K3×Kn, corresponding to each of these 2k− 3 partial latin
squares admits three copies of C3 or, a C3 and a C6 and the cells not covered by
these partial latin squares, give a C3-decomposition of the remaining subgraph
of K3 ×Kn. Thus we obtain a

{
Cα
3 , C

β
6

}
-decomposition of K3 ×Kn.

Next consider the case β ≥ 2(k − 1). The graph K3 ×Kn = K3 ×K4k+2 =
K3 × (K6 ⊕K6 − e⊕K6 − e⊕ · · · ⊕K6 − e⊕Kk ◦K4) = K3 ×K6 ⊕K3 ×K6 −
e⊕ · · · ⊕K3 ×K6 − e⊕K3 × (Kk ◦K4) = G1 ⊕G2 ⊕G3, where G1 = K3 ×K6,

G2 = (K3×K6−e)⊕(K3×K6−e)⊕· · ·⊕(K3×K6−e) and G3 = K3×(Kk ◦K4).
The result follows by Lemmas 8, 9 and 10 as the graph G3 is isomorphic to the
graph G2 considered in Case (i) above.

Case (iv): n ≡ 3 (mod 4). Let n = 4k + 3, k ≥ 3. If β = 1, then consider
the cells {(r1, c3, 2)(r1, c4, 2k + 4)(r2, c3, 2k + 4)} of I(4k+3) −D; the subgraph of



A
{
Cα
3 , C

β
6

}
-Decomposition of (Km ×Kn)(λ) 259

K3 × Kn corresponding to these three cells is a C3 and a C6, and each of the
remaining cells of I4k+3 −D gives a C3.

If β ≥ 2, then K3 × Kn = K3 × K4k+3 = K3 × (K7 ⊕ (K7 − E(K3)) ⊕
· · · ⊕ (K7 − E(K3)) ⊕Kk ◦K4) = K3 ×K7 ⊕K3 × (K7 − E(K3)) ⊕ · · · ⊕K3 ×
(K7 − E(K3)) ⊕ (K3 × (Kk ◦ K4)) = G1 ⊕ G2 ⊕ G3, where G1 = K3 × K7,

G2 = K3 × (K7 −E(K3))⊕ · · · ⊕K3 × (K7 −E(K3)) and G3 = K3 × (Kk ◦K4).
Now apply Lemma 8 to G1 and Lemma 11 to G2; the graph G3 is isomorphic to
the graph G2 in Case (i).

4.
{
Cα
3 , C

β
6

}
-Decomposition of (Km ×Kn)(λ)

In this section we prove the existence of a
{
Cα
3 , C

β
6

}
-decomposition of (Km ×

Kn)(λ). We need some lemmas to prove the main theorem.

Lemma 15. The graph K1,3 ×K5 has a decomposition into ten C6’s.

Proof. Let V (K1,3) =
{
x1, x2, x3, x4

}
with the center x1 and V (K5) = {1, 2, 3,

4, 5}. Let V (K1,3 × K5) =
⋃4

i=1X
i, where Xi is as defined in the introduc-

tion. Let C =
(
x11, x

3
3, x

1
4, x

2
3, x

1
5, x

4
4

)
and C ′ =

(
x11, x

4
2, x

1
5, x

2
1, x

1
4, x

3
2

)
. Then

{
C,

ρ(C), . . . , ρ4(C), C ′, ρ(C ′), . . . , ρ4(C ′)
}
is a C6-decomposition, where ρ = (12345)

and its powers are the permutations acting on the subscripts of the vertices of the

cycles C and C ′, where ρ(C) stands for
(

x1
ρ(1), x

3
ρ(3), x

1
ρ(4), x

2
ρ(3), x

1
ρ(5), x

4
ρ(4)

)

.

Assaf proved the existence of a C3-decomposition of (Km×Kn) (λ) whenever
the obvious necessary conditions are satisfied, see [3]. The proof of it uses a C3-
decomposition of K4×K5; but the C3-decomposition of K4×K5 given in Lemma
3.4 of [3] contains a typo. The next lemma contains a proof of C3-decomposition
of K4 ×K5.

Lemma 16. The graph K4 ×K5 has a
{
Cα
3 , C

β
6

}
-decomposition.

Proof. Let V (K4) =
{
x1, x2, x3, x4

}
and V (K5) = {1, 2, 3, 4, 5}. Let vertex

set of K4 × K5 be as defined in Lemma 15. The eight cycles Ci, 1 ≤ i ≤ 8,
given below and ρ, ρ2, ρ3, ρ4 applied to the subscripts of vertices of the Ci, which
we denote by ρj(Ci), decompose K4 × K5 into 3-cycles, that is, C1, ρ

(
C1

)
, . . . ,

ρ4
(
C1

)
, C2, ρ

(
C2

)
, . . . , ρ4

(
C2

)
, . . . , C8, ρ

(
C8

)
, . . . , ρ4

(
C8

)
is a C3-decomposition

of K4 ×K5, where ρ(C) is defined as in the previous lemma.

C1 =
(
x11, x

3
2, x

4
3

)
C2 =

(
x11, x

3
3, x

4
5

)
C3 =

(
x23, x

3
2, x

4
5

)

C4 =
(
x11, x

2
2, x

3
5

)
C5 =

(
x22, x

3
4, x

4
3

)
C6 =

(
x11, x

2
3, x

3
4

)

C7 =
(
x11, x

2
5, x

4
4

)
C8 =

(
x11, x

2
4, x

4
2

)
.
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First we consider the proof for the case 1 ≤ β ≤ 10. Let Gi = C3i−2∪C3i−1∪C3i,

1 ≤ i ≤ 2, be the subgraph of K4 × K5, where cycles Cj , 1 ≤ j ≤ 8, denote
the above 3-cycles. Observe that the edge induced subgraph Gi, 1 ≤ i ≤ 2, is
isomorphic to K2,2,2 − E(K3), see Figure 8.

b
x1
1

b

x
4
3

b

b
x32

x33

b x23

b

x
4
5

The edge induced subgraphG1

b

b
b

b

bb

x11

x23
x32

x33

x43x45

G1
∼= K2,2,2 − E(K3).

X1 X2

X3
X
4

of K4 ×K5.
A redrawing of the graphG1

Figure 8.

Let ρ = (12345) be the permutation on V (K5) = {1, 2, 3, 4, 5}. Allow ρ, ρ2,

ρ3, ρ4 to act on the subscripts of the vertices of Gi, 1 ≤ i ≤ 2, and Cj , 7 ≤ j ≤
8, which we denote by Gi, ρ(Gi), ρ

2(Gi), ρ
3(Gi), ρ

4(Gi), C
j , ρ(Cj), ρ2(Cj), ρ3(Cj),

ρ4(Cj), 1 ≤ i ≤ 2, 7 ≤ j ≤ 8. For i = 1, 2, Gi, ρ(Gi), ρ
2(Gi), ρ

3(Gi), ρ
4(Gi) give

ten copies of K2,2,2 − E(K3) and for j = 7, 8, Cj , ρ(Cj), ρ2(Cj), ρ3(Cj), ρ4(Cj),
give ten copies of C3 in K4 ×K5. As each K2,2,2 − E(K3) is decomposable into
three copies of C3 or, a C3 and a C6, these ten copies of K2,2,2 − E(K3) give β

cycles of length 6, where 1 ≤ β ≤ 10 and the rest into C3’s.
Next we consider the proof for the case β ≥ 11. As the graph K4 × K5 =

(K3 ⊕ K1,3) × K5 = K3 × K5 ⊕ K1,3 × K5, the lemma follows by Lemmas 8
and 15.

Lemma 17. The graph K6 ×K5 admits a
{
Cα
3 , C

β
6

}
-decomposition.

Proof. Let V (K6) =
{
x1, x2, . . . , x6

}
and V (K5) = {1, 2, 3, 4, 5}. A set of 20

base cycles for a C3-decomposition of K6 ×K5 is given below.

C1 =
(
x11, x

3
4, x

6
2

)
C2 =

(
x11, x

2
3, x

5
5

)
C3 =

(
x23, x

3
1, x

6
2

)

C4 =
(
x31, x

4
4, x

6
3

)
C5 =

(
x12, x

4
4, x

6
5

)
C6 =

(
x12, x

2
5, x

3
1

)

C7 =
(
x22, x

3
4, x

4
5

)
C8 =

(
x34, x

5
5, x

6
3

)
C9 =

(
x45, x

5
4, x

6
3

)

C10 =
(
x11, x

3
3, x

4
2

)
C11 =

(
x12, x

3
3, x

5
5

)
C12 =

(
x21, x

4
2, x

5
5

)

C13 =
(
x13, x

4
2, x

5
4

)
C14 =

(
x21, x

3
5, x

5
4

)
C15 =

(
x35, x

4
2, x

5
3

)

C16 =
(
x12, x

2
3, x

4
5

)
C17 =

(
x12, x

5
4, x

6
1

)
C18 =

(
x14, x

2
3, x

6
1

)

C19 =
(
x21, x

5
2, x

6
3

)
C20 =

(
x24, x

4
3, x

6
5

)
.
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First we consider the proof for the case β ≤ 30. Let Gi = C3i−2∪C3i−1∪C3i,

1 ≤ i ≤ 6; clearly the edge induced subgraph Gi, 1 ≤ i ≤ 6, of K6 × K5, is
isomorphic to K2,2,2 − E(K3).

Let ρ = (12345) be a permutation on V (K5) = {1, 2, 3, 4, 5}. Then Gi, ρ(Gi),
ρ2(Gi), ρ

3(Gi), ρ
4(Gi), C

j , ρ(Cj), ρ2(Cj), ρ3(Cj), ρ4(Cj), 1 ≤ i ≤ 6, 19 ≤ j ≤ 20,
where ρs(Gi) and ρr(Cj) have the same meaning as in the proof of Lemma 16,
give 30 copies of K2,2,2 − E(K3) and 10 copies of C3 in K6 × K5. Each copy
of K2,2,2 − E(K3) is decomposable into C3’s or, a C3 and a C6 and using this

decomposition of K2,2,2 − E(K3) suitably, we can achieve a required
{
Cα
3 , C

β
6

}
-

decomposition of K6 ×K5, for β ≤ 30.

Next let β ≥ 31. Clearly, K6 × K5 = (K4 ⊕ K3 ⊕ K1,3 ⊕ K1,3) × K5 =
(K4 ×K5)⊕ (K3 ×K5)⊕ (K1,3 ×K5)⊕ (K1,3 ×K5). By Lemmas 8, 15 and 16,
the lemma follows.

We quote the following results to prove our main Theorem 1.

Theorem 18 [23]. (i) If n ≡ 1 or 3 (mod 6), then Kn can be decomposed into

cycles of length 3.

(ii) If n ≡ 5 (mod 6), then Kn can be decomposed into K3’s and a K5.

Lemma 19 [20]. If n ≡ 0 or 1 (mod 3), then Kn can be decomposed into K3’s,

K4’s and K6’s.

Theorem 20 [20]. Let λ and m ≥ 3 be positive integers. There exists a K3-

decomposition of Km(λ) if and only if λ(m− 1) ≡ 0 (mod 2) and λm(m− 1) ≡ 0
(mod 6).

Proof of Theorem 1. λ = 1. The proof of the necessity is obvious and we
prove the sufficiency. If m = 3 or n = 3, then the result follows by Theorem 14.
Since (m,n) 6= (3, 3), we assume that m and n are at least 4. As m or n is odd
and the tensor product is commutative, we assume that m is odd. Then m ≡ 1, 3
or 5 (mod 6). If m ≡ 1 or 3 (mod 6) then the graph

Km ×Kn = (K3 ⊕K3 ⊕ · · · ⊕K3)×Kn, by Theorem 18,

= K3 ×Kn ⊕K3 ×Kn ⊕ · · · ⊕K3 ×Kn.

Now by Theorem 14 the result follows. If m ≡ 5 (mod 6), let m = 6k + 5. Since
Km = K5⊕K3⊕· · ·⊕K3, by Theorem 18, Km×Kn = K5×Kn⊕K3×Kn⊕K3×
Kn ⊕ · · · ⊕ K3 × Kn, n ≥ 4. Because of Theorem 14, it is enough to show that
the graph K5×Kn has a

{
Cα
3 , C

β
6

}
-decomposition. By the divisibility condition,

n ≡ 0 or 1 (mod 3). Since n ≡ 0 or 1 (mod 3), Kn can be decomposed into K3’s,
K4’s and K6’s, by Lemma 19. Then K5 × Kn is the edge disjoint union of the
graphs K5 ×K3,K5 ×K4 and K5 ×K6, and now apply Lemmas 8, 16 and 17 to
complete the proof.
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Next we consider the case λ = 2. By hypothesis, either m ≡ 0 or 1 (mod 3)
or n ≡ 0 or 1 (mod 3). Without loss of generality, assume that m ≡ 0 or 1 (mod
3), as the tensor product is commutative. The graph

(Km ×Kn)(2) ≃ Km(2)×Kn = (K3 ⊕K3 ⊕ · · · ⊕K3)×Kn, by Theorem 20

= (K3 ×Kn ⊕K3 ×Kn ⊕ · · · ⊕K3 ×Kn).

The result follows by Theorem 14. Now we consider the case λ = 3. As
λ is odd, either m or n is odd; we assume that m is odd. (Km × Kn)(3) ≃
Km(3)×Kn = (K3 ⊕ · · · ⊕Kn)×Kn, by Theorem 20. Now apply Theorem 14,
the result follows. The last case is λ = 6. Edge divisibility condition is satisfied
for all m and n and again by applying Theorem 20, the desired result is obtained.
This completes the proof.

Appendix

I5 :

c1 c2 c3 c4 c5
r1 1 4 2 5 3
r2 4 2 5 3 1
r3 2 5 3 1 4
r4 5 3 1 4 2
r5 3 1 4 2 5

I6 :

c1 c2 c3 c4 c5 c6
r1 1 6 2 5 3 4
r2 4 2 6 3 1 5
r3 2 5 3 6 4 1
r4 5 3 1 4 6 2
r5 6 1 4 2 5 3
r6 3 4 5 1 2 6

I7 :

c1 c2 c3 c4 c5 c6 c7
r1 1 5 2 6 3 7 4
r2 5 2 6 3 7 4 1
r3 2 6 3 7 4 1 5
r4 6 3 7 4 1 5 2
r5 3 7 4 1 5 2 6
r6 7 4 1 5 2 6 3
r7 4 1 5 2 6 3 7

I8 :

c1 c2 c3 c4 c5 c6 c7 c8
r1 1 8 2 6 3 7 4 5
r2 5 2 8 3 7 4 1 6
r3 2 6 3 8 4 1 5 7
r4 6 3 7 4 8 5 2 1
r5 3 7 4 1 5 8 6 2
r6 7 4 1 5 2 6 8 3
r7 8 1 5 2 6 3 7 4
r8 4 5 6 7 1 2 3 8

I9 :

c1 c2 c3 c4 c5 c6 c7 c8 c9
r1 1 6 2 7 3 8 4 9 5
r2 6 2 7 3 8 4 9 5 1
r3 2 7 3 8 4 9 5 1 6
r4 7 3 8 4 9 5 1 6 2
r5 3 8 4 9 5 1 6 2 7
r6 8 4 9 5 1 6 2 7 3
r7 4 9 5 1 6 2 7 3 8
r8 9 5 1 6 2 7 3 8 4
r9 5 1 6 2 7 3 8 4 9
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I10 :

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10
r1 1 10 2 7 3 8 4 9 5 6
r2 6 2 10 3 8 4 9 5 1 7
r3 2 7 3 10 4 9 5 1 6 8
r4 7 3 8 4 10 5 1 6 2 9
r5 3 8 4 9 5 10 6 2 7 1
r6 8 4 9 5 1 6 10 7 3 2
r7 4 9 5 1 6 2 7 10 8 3
r8 9 5 1 6 2 7 3 8 10 4
r9 10 1 6 2 7 3 8 4 9 5
r10 5 6 7 8 9 1 2 3 4 10

I11 :

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11
r1 1 7 2 8 3 9 4 10 5 11 6
r2 7 2 8 3 9 4 10 5 11 6 1
r3 2 8 3 9 4 10 5 11 6 1 7
r4 8 3 9 4 10 5 11 6 1 7 2
r5 3 9 4 10 5 11 6 1 7 2 8
r6 9 4 10 5 11 6 1 7 2 8 3
r7 4 10 5 11 6 1 7 2 8 3 9
r8 10 5 11 6 1 7 2 8 3 9 4
r9 5 11 6 1 7 2 8 3 9 4 10
r10 11 6 1 7 2 8 3 9 4 10 5
r11 6 1 7 2 8 3 9 4 10 5 11

Idempotent latin squares of orders 5, 6, . . . , 11 are given above.
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