DECOMPOSITION OF THE TENSOR PRODUCT OF COMPLETE GRAPHS INTO CYCLES OF LENGTHS 3 AND 6

P. Paulraja and R. Srimathi
Department of Mathematics
Kalasalingam Academy of Research and Education
Krishnankoil-626126, India
e-mail: ppraja56@gmail.com
gsrimathi66@gmail.com

Abstract

By a $\left\{C_{3}^{\alpha}, C_{6}^{\beta}\right\}$-decomposition of a graph G, we mean a partition of the edge set of G into α cycles of length 3 and β cycles of length 6 . In this paper, necessary and sufficient conditions for the existence of a $\left\{C_{3}^{\alpha}, C_{6}^{\beta}\right\}$ decomposition of $\left(K_{m} \times K_{n}\right)(\lambda)$, where \times denotes the tensor product of graphs and λ is the multiplicity of the edges, is obtained. In fact, we prove that for $\lambda \geq 1, m, n \geq 3$ and $(m, n) \neq(3,3)$, a $\left\{C_{3}^{\alpha}, C_{6}^{\beta}\right\}$-decomposition of $\left(K_{m} \times K_{n}\right)(\lambda)$ exists if and only if $\lambda(m-1)(n-1) \equiv 0(\bmod 2)$ and $3 \alpha+6 \beta=\frac{\lambda m(m-1) n(n-1)}{2}$.

Keywords: cycle decomposition, tensor product.
2010 Mathematics Subject Classification: 05B30, 05C70.

1. Introduction

Throughout this paper, graphs are assumed to be loopless and finite. Let C_{k} denote the cycle of length k. The complete graph on n vertices is denoted by K_{n}. A graph G is said to be H-decomposable if the edge set $E(G)$ can be partitioned into $E_{1}, E_{2}, \ldots, E_{k}$ such that $\left\langle E_{i}\right\rangle \simeq H, 1 \leq i \leq k$. If a graph G can be decomposed into cycles of length k, then we say that G admits a C_{k}-decomposition and in this case we write $G=C_{k} \oplus C_{k} \oplus \cdots \oplus C_{k}$; also we write it as $C_{k} \mid G$. A graph G is said to be $\left\{H_{1}, H_{2}\right\}$-decomposable if the edge set of G can be partitioned into $E_{1}, E_{2}, \ldots, E_{k}$ such that $\left\langle E_{i}\right\rangle \simeq H_{1}$ or $\left\langle E_{i}\right\rangle \simeq H_{2}, 1 \leq i \leq k$ and $H_{1}, H_{2} \in$ $\left\{\left\langle E_{1}\right\rangle,\left\langle E_{2}\right\rangle, \ldots,\left\langle E_{k}\right\rangle\right\}$. The graph obtained by replacing each edge of G by λ
parallel edges is denoted by $G(\lambda)$. For an integer $k, k G$ denotes k disjoint copies of G. Definitions which are not given here can be found in [9].

For two simple graphs G_{1} and G_{2} their tensor product, denoted by $G_{1} \times G_{2}$, has vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$ in which $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)$ is an edge whenever $x_{1} x_{2}$ is an edge in G_{1} and $y_{1} y_{2}$ is an edge in G_{2}, see Figure 1. Similarly, the wreath product of the graphs G_{1} and G_{2}, denoted by $G_{1} \circ G_{2}$, has vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$ in which $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)$ is an edge whenever $x_{1} x_{2}$ is an edge in G_{1} or, $x_{1}=x_{2}$ and $y_{1} y_{2}$ is an edge in G_{2}, see Figure 2. Note that, $\left(G_{1} \times G_{2}\right)(\lambda) \simeq G_{1}(\lambda) \times G_{2} \simeq$ $G_{1} \times G_{2}(\lambda)$. Let $V(G)=\left\{x^{1}, x^{2}, \ldots, x^{m}\right\}$ and $V(H)=\{1,2, \ldots, n\}$. For $x^{i} \in$ $V(G), x^{i} \times V(H)=\left\{\left(x^{i}, j\right) \mid j \in\{1,2, \ldots, n\}\right\}$; we denote $\left(x^{i}, j\right)$ by x_{j}^{i}. The set $X^{i}=\left\{x_{1}^{i}, x_{2}^{i}, \ldots, x_{n}^{i}\right\}=x^{i} \times V(H)$ is called the $i^{\text {th }}$ layer (of vertices) or $i^{\text {th }}$ partite set of $G \times H$ (respectively $G \circ H$), corresponding to the vertex $x^{i}, 1 \leq i \leq m$, of $V(G)$. Clearly, $K_{m} \circ \bar{K}_{n}$ is the complete m-partite graph in which each of its partite sets has n vertices. Further, $K_{m} \times K_{n}=K_{m} \circ \bar{K}_{n}-E\left(n K_{m}\right)$, where $n K_{m}$ denotes n disjoint copies of K_{m}. As the tensor product is commutative, $K_{m} \times K_{n} \simeq K_{n} \times K_{m}$.

Figure 1. The graph $C_{3} \times C_{4}$.

Figure 2. The graph $C_{3} \circ P_{3}$.

In the study of group divisible designs, complete multipartite graphs $K_{m} \circ \bar{K}_{n}$ are decomposed into complete subgraphs; but in a modified group divisible design the graph $K_{m} \times K_{n}$ is decomposed into complete subgraphs, see [3-6, 24]. In [5], Assaf used modified group divisible designs to construct covering and packing designs, and group divisible designs with block size 5 . Further, a C_{p}-decomposition, p a prime, of the graph $K_{m} \times K_{n}$ was used to find a C_{p}-decomposition of $K_{m} \circ \bar{K}_{n}$, see [25]. Moreover, a resolvable $2 k$-cycle decomposition of $K_{m} \times$ K_{n} and a decomposition of $K_{m} \times K_{n}$ into closed trails of length k have been studied in $[33,34]$. Besides that, Hamilton cycle decompositions of the graphs $K_{m} \times K_{n}, K_{m, m} \times K_{n}, K_{m, m} \times\left(K_{r} \circ \bar{K}_{s}\right)$ and $\left(K_{m} \circ \bar{K}_{n}\right) \times\left(K_{r} \circ \bar{K}_{s}\right)$ and the directed Hamilton cycle decompositions of the symmetric digraphs $\left(K_{m} \times K_{n}\right)^{*}$, $\left(K_{m, m} \times K_{n}\right)^{*},\left(K_{m, m} \times\left(K_{r} \circ \bar{K}_{s}\right)\right)^{*},\left(\left(K_{m} \times K_{n}\right) \times K_{r}\right)^{*},\left(\left(K_{m} \circ \bar{K}_{n}\right) \times K_{r}\right)^{*}$ and $\left(\left(K_{m} \circ \bar{K}_{n}\right) \times\left(K_{r} \circ \bar{K}_{s}\right)\right)^{*}$ are obtained in [8,28-31,35]. Hence $K_{m} \times K_{n}$ is proved to be an important proper spanning subgraph of the regular complete
multipartite graph $K_{m} \circ \bar{K}_{n}$.
Decompositions of complete graphs into specified subgraphs have been studied for a long time. Decompositions of complete graphs into cycles are wellstudied. Decompositions of graphs into fixed length cycles and varying length cycles are completely settled for the complete graphs K_{n} and the complete multigraphs $K_{n}(\lambda)$. In $[1,21,36]$, it is proved that if n is odd and $\left.k \left\lvert\, \begin{array}{c}n \\ 2\end{array}\right.\right), 3 \leq k \leq n$, then $C_{k} \mid K_{n}$. Further, if n is even and $k \left\lvert\, \frac{n(n-2)}{2}\right., 3 \leq k \leq n$, then $C_{k} \mid K_{n}-I$, where I is a perfect matching of K_{n}. Bryant et al. [13,14] completely settled the problem of decomposing $K_{n}(\lambda), \lambda \geq 1$ into cycles of varying lengths.

Chou et al. [16] obtained a necessary and sufficient condition for the existence of a decomposition of $K_{a, b}$ (respectively $K_{m, m}-I$, where $m \geq 3$ is odd and I denotes a perfect matching) into cycles of length 4, 6 and 8. In [17], Chou and Fu considered a $\left\{C_{4}^{r}, C_{2 t}^{s}\right\}$-decomposition of $K_{a, b}$ and $K_{m, m}-I$, where m is odd and I denotes a perfect matching. Later, Fu et al. [18] proved that the necessary conditions for the existence of a decomposition of $K_{m, m}$ (respectively $K_{m, m}-I$) into cycles of distinct lengths are sufficient whenever m is even (respectively odd) except $m=4$. Recently, Asplund et al. [2] established a necessary and sufficient condition for the existence of a decomposition of $K_{a, b}(\lambda)$ into cycles of arbitrary lengths.

Billington et al. [12] proved the existence of a C_{5}-decomposition of ($K_{m} \circ$ $\left.\bar{K}_{n}\right)(\lambda)$. Muthusamy and Shanmuga Vadivu [32] proved the existence of a $C_{2 k}{ }^{-}$ decomposition of $K_{m} \circ \bar{K}_{n}$. Very recently, irrespective of the parity of k, the authors of [15] actually solve the existence problem for a C_{k}-decomposition of $\left(K_{m} \circ \bar{K}_{n}\right)(\lambda)$ whose cycle-set can be partitioned into 2-regular graphs containing all the vertices except those belonging to one part. A $\left\{C_{4}^{\alpha}, C_{5}^{\beta}\right\}$-decomposition of $K_{m} \circ \bar{K}_{n}$ was given by Fu [22]. Moreover, Bahmanian and Sajna [7] showed that if $K_{m}(\lambda n)$ has a decomposition into cycles of lengths $k_{1}, k_{2}, \ldots, k_{t}$ (plus a perfect matching if $\lambda n(m-1)$ is odd), then $\left(K_{m} \circ \bar{K}_{n}\right)(\lambda)$ has a decomposition into cycles of lengths $k_{1} n, k_{2} n, \ldots, k_{t} n$ (plus a perfect matching if $\lambda n(m-1)$ is odd).

Billington obtained necessary and sufficient conditions for the existence of a $\left\{C_{3}^{\alpha}, C_{4}^{\beta}\right\}$-decomposition of the graph $K_{a, b, c} a \leq b \leq c$, see [10]. Ganesamurthy and Paulraja proved that the existence of a $\left\{C_{3}^{\alpha}, C_{6}^{\beta}\right\}$-decomposition of the graph $K_{a, b, c}, a \leq b \leq c$, see [19]. In [3], Assaf obtained a C_{3}-decomposition of ($K_{m} \times$ $\left.K_{n}\right)(\lambda)$. For $p \geq 5, p$ a prime, existence of C_{p}-decompositions of $K_{m} \times K_{n}$ and $K_{m} \circ \bar{K}_{n}$ were proved by Manikandan and Paulraja [25-27]. Existence of a $C_{k^{-}}$ decomposition of $K_{m} \times K_{n}$ is not yet known for general k. In this paper, we obtain a necessary and sufficient condition for the existence of a $\left\{C_{3}^{\alpha}, C_{6}^{\beta}\right\}$-decomposition of $\left(K_{m} \times K_{n}\right)(\lambda)$.

Besides other results, the following main theorem is proved.

Theorem 1. For $\lambda \geq 1, m, n \geq 3$ and $(m, n) \neq(3,3)$, the graph $\left(K_{m} \times K_{n}\right)(\lambda)$ admits a $\left\{C_{3}^{\alpha}, C_{6}^{\beta}\right\}$-decomposition if and only if $\lambda(m-1)(n-1) \equiv 0(\bmod 2)$ and $3 \alpha+6 \beta=\frac{\lambda m(m-1) n(n-1)}{2}$.

2. Notation and Terminology

A latin square of order n, denoted by L_{n}, is an $n \times n$ array, each cell of which contains exactly one of the symbols in $\{1,2, \ldots, n\}$ such that each row and each column of the array contains each of the symbols in $\{1,2, \ldots n\}$ exactly once. As in [11], a cell (i, j) is termed "empty" if it contains no entry and "filled" otherwise. We represent a partial latin square L by a set of ordered triples (i, j, k), where entry k occurs in row i and column j. In this sense (i, j, k) is an element of L. For our convenience, we avoid, if necessary, drawing empty cells of a partial latin square. A latin square is said to be idempotent if the cell (i, i) contains the symbol $i, 1 \leq i \leq n$. A latin square of order k is cyclic if the $1^{\text {st }}$ row entries are $a_{1}, a_{2}, a_{3}, \ldots, a_{k}$, then the $s^{t h}$ row entries are $a_{s}, a_{s+1}, a_{s+2}, \ldots, a_{s-1}$, in order.

Remark 2. Using a latin square, L_{n}, of order n, the complete tripartite graph $K_{n, n, n}, n \geq 2$, can be decomposed into C_{3} 's as follows. Let the partite sets of $K_{n, n, n}$ be $\left\{x_{1}^{i}, x_{2}^{i}, x_{3}^{i}, \ldots, x_{n}^{i}\right\}, 1 \leq i \leq 3$. For the $(i, j)^{t h}$ cell of L_{n} with entry k, there corresponds a 3 -cycle $\left(x_{i}^{1}, x_{j}^{2}, x_{k}^{3}\right)$ in $K_{n, n, n}$. Since L_{n} has n^{2} cells, we obtain n^{2} cycles of length 3 which decompose $K_{n, n, n}$. Further, if we consider an idempotent latin square L_{n} of order $n, n \geq 3$, then the non-diagonal cells of L_{n} give a C_{3}-decomposition of $K_{3} \times K_{n}$, as $K_{3} \times K_{n}=K_{3} \circ \bar{K}_{n}-E\left(n K_{3}\right)$.

Remark 3. Consider a cyclic latin square C^{\prime} of order $n \geq 3$ on the set $\{1,2, \ldots$, $n\}$, where n is an odd integer and the $i^{\text {th }}$ row elements, in order, are $i, i+1$, $i+2, \ldots, i-1$. Let $n=2 k+1, k \geq 1$. Now we rename the entries in C^{\prime} by $j \rightarrow 1+(j-1) k^{\prime}$, where $k^{\prime}=k+1$. The resulting latin square, I_{n}, is idempotent and commutative. Existence of an idempotent commutative latin square of order $2 k+1$ is guaranteed in [23]. The entries in the cells in $T=\{(1,2),(2,3), \ldots,(k-$ $1, k),(k, 1)\}$ is a transversal of I_{n}. We can extend the latin square I_{n} to I_{n+1}, $n+1=2 k+2, k \geq 1$, using the method of stripping the transversal T of I_{n}, see [23]. The resulting latin square I_{n+1}, is idempotent, see Appendix. Then for any $n \geq 3$, we can obtain an idempotent latin square of order n.

Remark 4. The edges of the triangles corresponding to the entries of each of the partial latin squares of Figure 3, define a graph isomorphic to $K_{2,2,2}-E\left(K_{3}\right)$ and it can be decomposed into three C_{3} 's or, a C_{3} and a C_{6}, see Figure 3, where $r_{i_{j}}$ and $c_{j_{k}}$ denote the row i_{j} and column j_{k}. Observe that in each case, in each of the three cells of the partial latin square, there are only two distinct symbols.

The subgraph of $K_{2,2,2}$ corresponding to the first partial latin square given above.
Normal edges induce a C_{3} and broken edges induce a C_{6}.

Figure 3. $K_{2,2,2}-E\left(K_{3}\right)=C_{3} \oplus C_{6}$, where $K_{3}=\left\langle x_{i_{1}}^{1}, x_{j_{1}}^{2}, x_{a}^{3}\right\rangle$.

1. An idempotent latin square of order n without its diagonal entries is denoted by $I_{n}-D$.
2. An ordered triple (i, j, k), stands for the $(i, j)^{t h}$ entry of a latin square is k.
3. At some places, we write the entries of a partial latin square by ordered triples; for example, the three triples $\left(x_{i}, y_{l}, z\right),\left(x_{k}, y_{j}, z\right)$ and $\left(x_{k}, y_{l}, w\right)$ represent the partial latin square

where $r_{x_{i}}$ represents the row x_{i} and similarly $c_{y_{j}}$ represents the column y_{j}.

$$
\text { 3. }\left\{C_{3}^{\alpha}, C_{6}^{\beta}\right\} \text {-DECOMPOSITION OF } K_{3} \times K_{n}
$$

In this section, we prove the existence of a decomposition of $K_{3} \times K_{n}$ into α cycles of length 3 and β cycles of length 6 .

The following lemma is a simple observation.
Lemma 5. The graph $K_{3} \times K_{3}$ cannot be decomposed into 4 copies of C_{3} and $a C_{6}$.

Proof. The proof is left to the reader.
Lemma 6. For $(\alpha, \beta) \neq(4,1)$, the graph $K_{3} \times K_{3}$ admits a $\left\{C_{3}^{\alpha}, C_{6}^{\beta}\right\}$-decomposition.

Proof. Let the vertex set of the three partite sets of $K_{3} \times K_{3}$ be $\left\{x_{1}^{i}, x_{2}^{i}, x_{3}^{i}\right\}$, $1 \leq i \leq 3$. Observe that α is always even and the maximum value of α is 6 .
(i) $(\alpha, \beta)=(6,0)$. Consider the unique idempotent latin square I_{3}; the nondiagonal entries of I_{3} give six edge disjoint copies of C_{3}, see Remark 2.
(ii) $(\alpha, \beta)=(2,2)$. A required set of cycles are $\left(x_{1}^{1}, x_{3}^{2}, x_{2}^{3}\right),\left(x_{2}^{1}, x_{3}^{2}, x_{1}^{3}\right)$, $\left(x_{1}^{1}, x_{3}^{3}, x_{1}^{2}, x_{2}^{3}, x_{3}^{1}, x_{2}^{2}\right)$ and $\left(x_{2}^{1}, x_{3}^{3}, x_{2}^{2}, x_{1}^{3}, x_{3}^{1}, x_{1}^{2}\right)$.
(iii) $(\alpha, \beta)=(0,3)$. A set of three cycles of length 6 is $\left(x_{1}^{1}, x_{2}^{2}, x_{3}^{1}, x_{1}^{2}, x_{2}^{1}, x_{3}^{2}\right)$, $\left(x_{1}^{1}, x_{2}^{3}, x_{3}^{1}, x_{1}^{3}, x_{2}^{1}, x_{3}^{3}\right)$ and $\left(x_{1}^{2}, x_{2}^{3}, x_{3}^{2}, x_{1}^{3}, x_{2}^{2}, x_{3}^{3}\right)$.

Lemma 7. The graph $K_{3} \times K_{4}$ has a $\left\{C_{3}^{\alpha}, C_{6}^{\beta}\right\}$-decomposition.
Proof. We consider only the possible values for α and β.
(i) $(\alpha, \beta)=(12,0)$. The entries of the non-diagonal cells of an idempotent latin square I_{4} give a C_{3}-decomposition of $K_{3} \times K_{4}$, see Remark 2 .
(ii) $(\alpha, \beta) \in\{(10,1),(8,2),(6,3),(4,4)\}$.

Consider the following partial latin square $I_{4}-D$ of I_{4}.

	c_{1}	c_{2}	c_{3}	c_{4}
		4	2	3
r_{1}		4	4	1
r_{2}	3		4	1
r_{3}	4	1		2
r_{4}	2	3	1	

The cells of $I_{4}-D$ are partitioned into the following partial latin squares.

The edges of $K_{3} \times K_{4}$ corresponding to each of these partial latin squares induces the subgraph isomorphic to $K_{2,2,2}-E\left(K_{3}\right)$, and it admits a decomposition consisting of three C_{3} 's or, a C_{3} and a C_{6}, see Figure 3. Depending on the value of α and β, we choose C_{3} 's or, a C_{3} and a C_{6} corresponding to each of these partial latin squares to get a $\left\{C_{3}^{\alpha}, C_{6}^{\beta}\right\}$-decomposition of $K_{3} \times K_{4}$.
(iii) $(\alpha, \beta) \in\{(2,5),(0,6)\}$. The graph

$$
\begin{aligned}
K_{3} \times K_{4} & =K_{3} \times\left(K_{3} \oplus K_{1,3}\right) \\
& =K_{3} \times K_{3} \oplus K_{3} \times K_{1,3} \\
& =K_{3} \times K_{3} \oplus K_{3} \times K_{2} \oplus K_{3} \times K_{2} \oplus K_{3} \times K_{2}
\end{aligned}
$$

As the graph $K_{3} \times K_{2} \simeq C_{6}$, and the graph $K_{3} \times K_{3}$ has a $\left\{C_{3}^{r}, C_{6}^{s}\right\}$-decomposition for $(r, s) \neq(4,1)$, we obtain a $\left\{C_{3}^{\alpha}, C_{6}^{\beta}\right\}$-decomposition of $K_{3} \times K_{4}$.

Lemma 8. The graph $K_{3} \times K_{n}, 5 \leq n \leq 11$, admits a $\left\{C_{3}^{\alpha}, C_{6}^{\beta}\right\}$-decomposition.

Proof. If $(\alpha, \beta)=(n(n-1), 0)$, then the required decomposition exists by Remark 2. So we suppose that $\beta \neq 0$. First we consider $1 \leq \beta \leq n-1$. Consider an $I_{n}-D$, where I_{n} is obtained as in Remark 3; the idempotent latin squares $I_{n}, 5 \leq n \leq 11$, are given in Appendix. We use $n-1$ partial latin squares, each having three cells, of $I_{n}-D, 5 \leq n \leq 11$, to obtain C_{6} 's, $1 \leq \beta \leq n-1$; the three cells are chosen so that two cells are filled by a common symbol, (see Remark 4). According to our notation, each set of three triples in the following list of triples gives a partial latin square (of $I_{n}-D$) having three filled cells.
$\mathbf{n}=\mathbf{5} .\left\{\left(r_{1}, c_{3}, 2\right)\left(r_{1}, c_{4}, 5\right)\left(r_{2}, c_{3}, 5\right)\right\},\left\{\left(r_{1}, c_{5}, 3\right)\left(r_{2}, c_{4}, 3\right)\left(r_{2}, c_{5}, 1\right)\right\},\left\{\left(r_{3}, c_{1}, 2\right)\right.$ $\left.\left(r_{3}, c_{2}, 5\right)\left(r_{4}, c_{1}, 5\right)\right\},\left\{\left(r_{4}, c_{2}, 3\right)\left(r_{5}, c_{1}, 3\right)\left(r_{5}, c_{2}, 1\right)\right\}$.
$\mathbf{n}=$ 6. $\left\{\left(r_{1}, c_{2}, 6\right)\left(r_{1}, c_{3}, 2\right)\left(r_{2}, c_{3}, 6\right)\right\},\left\{\left(r_{1}, c_{5}, 3\right)\left(r_{2}, c_{4}, 3\right)\left(r_{2}, c_{5}, 1\right)\right\},\left\{\left(r_{3}, c_{1}, 2\right)\right.$
$\left.\left(r_{3}, c_{2}, 5\right)\left(r_{4}, c_{1}, 5\right)\right\},\left\{\left(r_{4}, c_{2}, 3\right)\left(r_{4}, c_{3}, 1\right)\left(r_{5}, c_{2}, 1\right)\right\},\left\{\left(r_{5}, c_{3}, 4\right)\left(r_{6}, c_{2}, 4\right)\left(r_{6}, c_{3}, 5\right)\right\}$.
$\mathbf{n}=\mathbf{7}$. $\left\{\left(r_{1}, c_{3}, 2\right)\left(r_{1}, c_{4}, 6\right)\left(r_{2}, c_{3}, 6\right)\right\},\left\{\left(r_{1}, c_{5}, 3\right)\left(r_{2}, c_{4}, 3\right)\left(r_{2}, c_{5}, 7\right)\right\},\left\{\left(r_{1}, c_{6}, 7\right)\right.$
$\left.\left(r_{1}, c_{7}, 4\right)\left(r_{2}, c_{6}, 4\right)\right\},\left\{\left(r_{3}, c_{1}, 2\right)\left(r_{3}, c_{2}, 6\right)\left(r_{4}, c_{1}, 6\right)\right\},\left\{\left(r_{4}, c_{2}, 3\right)\left(r_{5}, c_{1}, 3\right)\left(r_{5}, c_{2}, 7\right)\right\}$, $\left\{\left(r_{6}, c_{1}, 7\right)\left(r_{6}, c_{2}, 4\right)\left(r_{7}, c_{1}, 4\right)\right\}$.
$\mathbf{n}=\mathbf{8}$. $\left\{\left(r_{1}, c_{2}, 8\right)\left(r_{1}, c_{3}, 2\right)\left(r_{2}, c_{3}, 8\right)\right\},\left\{\left(r_{1}, c_{5}, 3\right)\left(r_{2}, c_{4}, 3\right)\left(r_{2}, c_{5}, 7\right)\right\},\left\{\left(r_{1}, c_{6}, 7\right)\right.$ $\left.\left(r_{1}, c_{7}, 4\right)\left(r_{2}, c_{6}, 4\right)\right\},\left\{\left(r_{3}, c_{1}, 2\right)\left(r_{3}, c_{2}, 6\right)\left(r_{4}, c_{1}, 6\right)\right\},\left\{\left(r_{4}, c_{2}, 3\right)\left(r_{5}, c_{1}, 3\right)\left(r_{5}, c_{2}, 7\right)\right\}$, $\left\{\left(r_{6}, c_{2}, 4\right)\left(r_{6}, c_{3}, 1\right)\left(r_{7}, c_{2}, 1\right)\right\},\left\{\left(r_{7}, c_{3}, 5\right)\left(r_{8}, c_{2}, 5\right)\left(r_{8}, c_{3}, 6\right)\right\}$.
$\mathbf{n}=\mathbf{9} .\left\{\left(r_{1}, c_{3}, 2\right)\left(r_{1}, c_{4}, 7\right)\left(r_{2}, c_{3}, 7\right)\right\},\left\{\left(r_{1}, c_{5}, 3\right)\left(r_{2}, c_{4}, 3\right)\left(r_{2}, c_{5}, 8\right)\right\},\left\{\left(r_{1}, c_{6}, 8\right)\right.$ $\left.\left(r_{1}, c_{7}, 4\right)\left(r_{2}, c_{6}, 4\right)\right\},\left\{\left(r_{1}, c_{8}, 9\right)\left(r_{2}, c_{7}, 9\right)\left(r_{2}, c_{8}, 5\right)\right\},\left\{\left(r_{3}, c_{1}, 2\right)\left(r_{3}, c_{2}, 7\right)\left(r_{4}, c_{1}, 7\right)\right\}$, $\left\{\left(r_{4}, c_{2}, 3\right)\left(r_{5}, c_{1}, 3\right)\left(r_{5}, c_{2}, 8\right)\right\},\left\{\left(r_{6}, c_{1}, 8\right)\left(r_{6}, c_{2}, 4\right)\left(r_{7}, c_{1}, 4\right)\right\},\left\{\left(r_{7}, c_{2}, 9\right)\left(r_{8}, c_{1}, 9\right)\right.$ $\left.\left(r_{8}, c_{2}, 5\right)\right\}$.
$\mathbf{n}=$ 10. $\left\{\left(r_{1}, c_{2}, 10\right)\left(r_{1}, c_{3}, 2\right)\left(r_{2}, c_{3}, 10\right)\right\},\left\{\left(r_{1}, c_{5}, 3\right)\left(r_{2}, c_{4}, 3\right)\left(r_{2}, c_{5}, 8\right)\right\},\left\{\left(r_{1}, c_{6}\right.\right.$, 8) $\left.\left(r_{1}, c_{7}, 4\right)\left(r_{2}, c_{6}, 4\right)\right\},\left\{\left(r_{1}, c_{8}, 9\right)\left(r_{2}, c_{7}, 9\right)\left(r_{2}, c_{8}, 5\right)\right\},\left\{\left(r_{3}, c_{1}, 2\right)\left(r_{3}, c_{2}, 7\right)\left(r_{4}, c_{1}\right.\right.$, $7)\},\left\{\left(r_{4}, c_{2}, 3\right)\left(r_{5}, c_{1}, 3\right)\left(r_{5}, c_{2}, 8\right)\right\},\left\{\left(r_{6}, c_{1}, 8\right)\left(r_{6}, c_{2}, 4\right)\left(r_{7}, c_{1}, 4\right)\right\},\left\{\left(r_{7}, c_{2}, 9\right)\right.$ $\left.\left(r_{8}, c_{1}, 9\right)\left(r_{8}, c_{2}, 5\right)\right\},\left\{\left(r_{9}, c_{2}, 1\right)\left(r_{9}, c_{3}, 6\right)\left(r_{10}, c_{2}, 6\right)\right\}$.
$\mathbf{n}=$ 11. $\left\{\left(r_{1}, c_{3}, 2\right)\left(r_{1}, c_{4}, 8\right)\left(r_{2}, c_{3}, 8\right)\right\},\left\{\left(r_{1}, c_{5}, 3\right)\left(r_{2}, c_{4}, 3\right)\left(r_{2}, c_{5}, 9\right)\right\},\left\{\left(r_{1}, c_{6}, 9\right)\right.$ $\left.\left(r_{1}, c_{7}, 4\right)\left(r_{2}, c_{6}, 4\right)\right\},\left\{\left(r_{1}, c_{8}, 10\right)\left(r_{2}, c_{7}, 10\right)\left(r_{2}, c_{8}, 5\right)\right\},\left\{\left(r_{1}, c_{9}, 5\right)\left(r_{1}, c_{10}, 11\right)\left(r_{2}\right.\right.$, $\left.\left.c_{9}, 11\right)\right\},\left\{\left(r_{3}, c_{1}, 2\right)\left(r_{3}, c_{2}, 8\right)\left(r_{4}, c_{1}, 8\right)\right\},\left\{\left(r_{4}, c_{2}, 3\right)\left(r_{5}, c_{1}, 3\right)\left(r_{5}, c_{2}, 9\right)\right\},\left\{\left(r_{6}, c_{1}\right.\right.$, 9) $\left.\left(r_{6}, c_{2}, 4\right)\left(r_{7}, c_{1}, 4\right)\right\},\left\{\left(r_{7}, c_{2}, 10\right)\left(r_{8}, c_{1}, 10\right)\left(r_{8}, c_{2}, 5\right)\right\},\left\{\left(r_{9}, c_{1}, 5\right)\left(r_{9}, c_{2}, 11\right)\right.$ $\left.\left(r_{10}, c_{1}, 11\right)\right\}$.

Each of the subgraphs of $K_{3} \times K_{n}$ corresponding to the above $n-1,5 \leq n$ ≤ 11, partial latin squares is isomorphic to $K_{2,2,2}-E\left(K_{3}\right)$, see Figure 3, and it can be decomposed into $C_{3}{ }^{\prime}$'s or, a C_{3} and a C_{6} and hence $K_{3} \times K_{n}$ has a $\left\{C_{3}^{\alpha}, C_{6}^{\beta}\right\}^{-}$ decomposition, when $(\alpha, \beta)=(n(n-1)-2 i, i), 5 \leq n \leq 11,1 \leq i \leq n-1$. The filled cells of $I_{n}-D, 5 \leq n \leq 11$, which are not covered by the above $n-1$ partial latin squares partition the remaining edges of $K_{3} \times K_{n}$ into 3 -cycles, by Remark 2.

Now we complete the proof by induction on $n, n \geq 5$, for $\beta \geq n$. For $n=5$, $K_{3} \times K_{5}=K_{3} \times K_{4} \oplus K_{3} \times K_{2} \oplus \cdots \oplus K_{3} \times K_{2}$; we use Lemma 7 and the fact that
$K_{3} \times K_{2} \simeq C_{6}$ to complete the proof. The graph $K_{3} \times K_{n+1}=K_{3} \times\left(K_{n} \oplus K_{1, n}\right)=$ $K_{3} \times K_{n} \oplus K_{3} \times K_{2} \oplus \cdots \oplus K_{3} \times K_{2}$. Now a required decomposition follows by induction applied to $K_{3} \times K_{n}$ and the fact that $K_{3} \times K_{2} \simeq C_{6}$.

Lemma 9. If $\beta \geq 4$, then the graph $K_{3} \times\left(K_{6}-e\right)$ has a $\left\{C_{3}^{\alpha}, C_{6}^{\beta}\right\}$-decomposition.
Proof. The graph $K_{3} \times\left(K_{6}-e\right)=K_{3} \times\left(K_{5} \oplus K_{1,4}\right)$

$$
=K_{3} \times K_{5} \oplus \underbrace{K_{3} \times K_{2} \oplus \cdots \oplus K_{3} \times K_{2}}_{4-\text { copies }}
$$

As $K_{3} \times K_{2} \simeq C_{6}$ and a $\left\{C_{3}^{r}, C_{6}^{s}\right\}$-decomposition of $K_{3} \times K_{5}$ follows by Lemma 8 , we have the desired result.

Lemma 10. If $\beta=2$, then the graph $K_{3} \times\left(K_{6}-e\right)$ has a $\left\{C_{3}^{\alpha}, C_{6}^{\beta}\right\}$-decomposition.
Proof. The graph $K_{3} \times\left(K_{6}-e\right)=K_{3} \times\left(K_{3} \oplus K_{3} \oplus K_{3} \oplus K_{3} \oplus K_{2} \oplus K_{2}\right)$

$$
\begin{aligned}
= & K_{3} \times K_{3} \oplus K_{3} \times K_{3} \oplus K_{3} \times K_{3} \oplus K_{3} \times K_{3} \\
& \oplus K_{3} \times K_{2} \oplus K_{3} \times K_{2}
\end{aligned}
$$

As $K_{3} \times K_{2} \simeq C_{6}$, the result follows by Lemma 6 .
Lemma 11. If $\beta \neq 1$, then the graph $K_{3} \times\left(K_{7}-E\left(K_{3}\right)\right)$ has a $\left\{C_{3}^{\alpha}, C_{6}^{\beta}\right\}-$ decomposition.

Proof. The graph $K_{3} \times\left(K_{7}-E\left(K_{3}\right)\right)=K_{3} \times(\underbrace{K_{3} \oplus K_{3} \oplus \cdots \oplus K_{3}}_{6-\text { copies }})$

$$
=K_{3} \times K_{3} \oplus \cdots \oplus K_{3} \times K_{3}
$$

Now the result follows by Lemma 6.
Lemma 12. The cells of the first two rows of $I_{n}-D$, where $n=2 k+2$, can be partitioned into $\left\lfloor\frac{4 k+2}{3}\right\rfloor$ partial latin squares, each of which is one of the form given in Figure 3, together with one or two filled cells depending on n.

Proof. Let $n=2 k+2, k \geq 1$. Obtain the idempotent latin square I_{n} and the partial latin square $I_{n}-D$, as in Remark 3. The entries of the first two rows of $I_{n}-D$ are shown in Figure 4, see Appendix for $I_{n}, 5 \leq n \leq 11$. We partition the cells of these two rows of I_{n-D} into $\left\lfloor\frac{4 k+2}{3}\right\rfloor 3$-subsets as shown in Figures 5, 6 and 7 according to $n \equiv 0,2$ or $4(\bmod 6)$, respectively. Each of the subsets has three filled cells having two distinct elements as shown in Remark 4.

c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	\ldots	$c_{2 k-2}$	$c_{2 k-1}$	$c_{2 k}$	$c_{2 k+1}$	$c_{2 k+2}$
r_{1}	$2 k+2$	2	$k+3$	3	\ldots	$2 k$	k	$2 k+1$	$k+1$	$k+2$
$r_{2} \quad k+2$		$2 k+2$	3	$k+4$	\ldots	k	$2 k+1$	$k+1$	1	$k+3$

Figure 4. First two rows of $I_{n}-D$.
$n \equiv 0(\bmod 6):$

Figure 5. Except the cell with $*$, all other cells are partitioned into 3 cells as shown above, where the last column cells are combined with the first cell of the second row.
$n \equiv 2(\bmod 6):$

c_{1}		c_{2}		c_{3}	c_{4}	c_{5}	\ldots	$c_{6 k-2}$	$c_{6 k-1}$	$c_{6 k}$	$c_{6 k+1}$
$c_{6} k+2$											
r_{1}		$6 k+2$	2	$3 k+3$	3	\ldots	$6 k$	$3 k$	$6 k+1$	$3 k+1$	$3 k+2$
r_{2}	$3 k+2$		$6 k+2$	3	$3 k+4$	\ldots	$3 k$	$6 k+1$	$3 k+1$	1	$3 k+3$

Figure 6. Except the two cells with $*$, all other cells are partitioned into 3 cells as shown above, where the last column cells are combined with the first cell of the second row.
$n \equiv 4(\bmod 6):$

Figure 7. The two cells of the last column cells are combined with the first cell of the second row.

We apply following theorem to prove Theorem 14.
Theorem 13 [19]. Let $K_{a, b, c}$ be the complete tripartite graph with $a \leq b \leq c$ and let $K_{a, b, c} \neq K_{1,1, c}$, when $c \equiv 1(\bmod 6)$ and $c>1$. If $a \equiv b \equiv c(\bmod 6)$, then $K_{a, b, c}$ admits a $\left\{C_{3}^{\alpha}, C_{6}^{\beta}\right\}$-decomposition for any $\alpha \equiv a(\bmod 2)$, with $0 \leq \alpha \leq a b$.

Theorem 14. The graph $K_{3} \times K_{n}, n \geq 4$, admits a $\left\{C_{3}^{\alpha}, C_{6}^{\beta}\right\}$-decomposition.
Proof. Since the graph $K_{3} \times K_{n}$ has a C_{3}-decomposition, we assume that $\beta \geq 1$. Because of Lemmas 7 and 8 , we assume that $n \geq 12$.

Case $(\mathrm{i}): n \equiv 0(\bmod 4)$. Let $n=4 k, k \geq 3$. The graph $K_{3} \times K_{n}=K_{3} \times$ $\left(k K_{4} \oplus K_{k} \circ \bar{K}_{4}\right)=k\left(K_{3} \times K_{4}\right) \oplus K_{3} \times\left(K_{k} \circ \bar{K}_{4}\right)=G_{1} \oplus G_{2}$, where $G_{1}=k\left(K_{3} \times K_{4}\right)$ and $G_{2}=K_{3} \times\left(K_{k} \circ \bar{K}_{4}\right)$.

The graph $G_{2}=K_{3} \times\left(K_{k} \circ \bar{K}_{4}\right)=\left(K_{3} \times K_{k}\right) \circ \bar{K}_{4}=\left(K_{3} \oplus K_{3} \oplus \cdots \oplus K_{3}\right) \circ \bar{K}_{4}=$ $\left(K_{4,4,4} \oplus K_{4,4,4} \oplus \cdots \oplus K_{4,4,4}\right)$, since $K_{3} \mid K_{3} \times K_{n}$. Now invoke Theorem 13 and Lemma 7 to the graphs $K_{4,4,4}$ and G_{1}, respectively, to complete the proof of this case.

Case (ii): $n \equiv 1(\bmod 4)$. Let $n=4 k+1, k \geq 3$. The graph $K_{3} \times K_{n}=$ $K_{3} \times(\underbrace{K_{5} \oplus K_{5} \oplus \cdots \oplus K_{5}}_{k \text {-copies }} \oplus K_{k} \circ \bar{K}_{4})=\left(K_{3} \times K_{5}\right) \oplus\left(K_{3} \times K_{5}\right) \oplus \cdots \oplus\left(K_{3} \times\right.$ $\left.K_{5}\right) \oplus K_{3} \times\left(K_{k} \circ \bar{K}_{4}\right)=G_{1} \oplus G_{2}$, where $G_{1}=\left(K_{3} \times K_{5}\right) \oplus\left(K_{3} \times K_{5}\right) \oplus \cdots \oplus\left(K_{3} \times K_{5}\right)$ and $G_{2}=K_{3} \times\left(K_{k} \circ \bar{K}_{4}\right)=\left(K_{3} \times K_{k}\right) \circ \bar{K}_{4}=\left(K_{3} \oplus K_{3} \oplus \cdots \oplus K_{3}\right) \circ \bar{K}_{4}$. As in Case (i), G_{2} is isomorphic to $K_{4,4,4} \oplus \cdots \oplus K_{4,4,4}$.

Now apply Theorem 13 and Lemma 8 to the graphs $K_{4,4,4}$ and G_{1}, respectively, to complete the proof of this case.

Case (iii): $n \equiv 2(\bmod 4)$. Let $n=4 k+2, k \geq 3$. First we prove for the case $\beta<2(k-1)=2 k-2$. Out of the $\left\lfloor\frac{8 k+2}{3}\right\rfloor$ partial latin squares, each having 3 cells, described in Lemma 12, consider $2 k-3$ partial latin squares. The edge induced subgraph of $K_{3} \times K_{n}$, corresponding to each of these $2 k-3$ partial latin squares admits three copies of C_{3} or, a C_{3} and a C_{6} and the cells not covered by these partial latin squares, give a C_{3}-decomposition of the remaining subgraph of $K_{3} \times K_{n}$. Thus we obtain a $\left\{C_{3}^{\alpha}, C_{6}^{\beta}\right\}$-decomposition of $K_{3} \times K_{n}$.

Next consider the case $\beta \geq 2(k-1)$. The graph $K_{3} \times K_{n}=K_{3} \times K_{4 k+2}=$ $K_{3} \times\left(K_{6} \oplus K_{6}-e \oplus K_{6}-e \oplus \cdots \oplus K_{6}-e \oplus K_{k} \circ \bar{K}_{4}\right)=K_{3} \times K_{6} \oplus K_{3} \times K_{6}-$ $e \oplus \cdots \oplus K_{3} \times K_{6}-e \oplus K_{3} \times\left(K_{k} \circ \bar{K}_{4}\right)=G_{1} \oplus G_{2} \oplus G_{3}$, where $G_{1}=K_{3} \times K_{6}$, $G_{2}=\left(K_{3} \times K_{6}-e\right) \oplus\left(K_{3} \times K_{6}-e\right) \oplus \cdots \oplus\left(K_{3} \times K_{6}-e\right)$ and $G_{3}=K_{3} \times\left(K_{k} \circ \bar{K}_{4}\right)$. The result follows by Lemmas 8, 9 and 10 as the graph G_{3} is isomorphic to the graph G_{2} considered in Case (i) above.

Case (iv): $n \equiv 3(\bmod 4)$. Let $n=4 k+3, k \geq 3$. If $\beta=1$, then consider the cells $\left\{\left(r_{1}, c_{3}, 2\right)\left(r_{1}, c_{4}, 2 k+4\right)\left(r_{2}, c_{3}, 2 k+4\right)\right\}$ of $I_{(4 k+3)}-D$; the subgraph of
$K_{3} \times K_{n}$ corresponding to these three cells is a C_{3} and a C_{6}, and each of the remaining cells of $I_{4 k+3}-D$ gives a C_{3}.

If $\beta \geq 2$, then $K_{3} \times K_{n}=K_{3} \times K_{4 k+3}=K_{3} \times\left(K_{7} \oplus\left(K_{7}-E\left(K_{3}\right)\right) \oplus\right.$ $\left.\cdots \oplus\left(K_{7}-E\left(K_{3}\right)\right) \oplus K_{k} \circ \bar{K}_{4}\right)=K_{3} \times K_{7} \oplus K_{3} \times\left(K_{7}-E\left(K_{3}\right)\right) \oplus \cdots \oplus K_{3} \times$ $\left(K_{7}-E\left(K_{3}\right)\right) \oplus\left(K_{3} \times\left(K_{k} \circ \bar{K}_{4}\right)\right)=G_{1} \oplus G_{2} \oplus G_{3}$, where $G_{1}=K_{3} \times K_{7}$, $G_{2}=K_{3} \times\left(K_{7}-E\left(K_{3}\right)\right) \oplus \cdots \oplus K_{3} \times\left(K_{7}-E\left(K_{3}\right)\right)$ and $G_{3}=K_{3} \times\left(K_{k} \circ \bar{K}_{4}\right)$. Now apply Lemma 8 to G_{1} and Lemma 11 to G_{2}; the graph G_{3} is isomorphic to the graph G_{2} in Case (i).

4. $\left\{C_{3}^{\alpha}, C_{6}^{\beta}\right\}$-DECOMPOSITION OF $\left(K_{m} \times K_{n}\right)(\lambda)$

In this section we prove the existence of a $\left\{C_{3}^{\alpha}, C_{6}^{\beta}\right\}$-decomposition of $\left(K_{m} \times\right.$ $\left.K_{n}\right)(\lambda)$. We need some lemmas to prove the main theorem.

Lemma 15. The graph $K_{1,3} \times K_{5}$ has a decomposition into ten C_{6} 's.
Proof. Let $V\left(K_{1,3}\right)=\left\{x^{1}, x^{2}, x^{3}, x^{4}\right\}$ with the center x^{1} and $V\left(K_{5}\right)=\{1,2,3$, $4,5\}$. Let $V\left(K_{1,3} \times K_{5}\right)=\bigcup_{i=1}^{4} X^{i}$, where X^{i} is as defined in the introduction. Let $C=\left(x_{1}^{1}, x_{3}^{3}, x_{4}^{1}, x_{3}^{2}, x_{5}^{1}, x_{4}^{4}\right)$ and $C^{\prime}=\left(x_{1}^{1}, x_{2}^{4}, x_{5}^{1}, x_{1}^{2}, x_{4}^{1}, x_{2}^{3}\right)$. Then $\{C$, $\left.\rho(C), \ldots, \rho^{4}(C), C^{\prime}, \rho\left(C^{\prime}\right), \ldots, \rho^{4}\left(C^{\prime}\right)\right\}$ is a C_{6}-decomposition, where $\rho=(12345)$ and its powers are the permutations acting on the subscripts of the vertices of the cycles C and C^{\prime}, where $\rho(C)$ stands for $\left(x_{\rho(1)}^{1}, x_{\rho(3)}^{3}, x_{\rho(4)}^{1}, x_{\rho(3)}^{2}, x_{\rho(5)}^{1}, x_{\rho(4)}^{4}\right)$.

Assaf proved the existence of a C_{3}-decomposition of $\left(K_{m} \times K_{n}\right)(\lambda)$ whenever the obvious necessary conditions are satisfied, see [3]. The proof of it uses a C_{3} decomposition of $K_{4} \times K_{5}$; but the C_{3}-decomposition of $K_{4} \times K_{5}$ given in Lemma 3.4 of [3] contains a typo. The next lemma contains a proof of C_{3}-decomposition of $K_{4} \times K_{5}$.

Lemma 16. The graph $K_{4} \times K_{5}$ has a $\left\{C_{3}^{\alpha}, C_{6}^{\beta}\right\}$-decomposition.
Proof. Let $V\left(K_{4}\right)=\left\{x^{1}, x^{2}, x^{3}, x^{4}\right\}$ and $V\left(K_{5}\right)=\{1,2,3,4,5\}$. Let vertex set of $K_{4} \times K_{5}$ be as defined in Lemma 15. The eight cycles $C^{i}, 1 \leq i \leq 8$, given below and $\rho, \rho^{2}, \rho^{3}, \rho^{4}$ applied to the subscripts of vertices of the C^{i}, which we denote by $\rho^{j}\left(C^{i}\right)$, decompose $K_{4} \times K_{5}$ into 3 -cycles, that is, $C^{1}, \rho\left(C^{1}\right), \ldots$, $\rho^{4}\left(C^{1}\right), C^{2}, \rho\left(C^{2}\right), \ldots, \rho^{4}\left(C^{2}\right), \ldots, C^{8}, \rho\left(C^{8}\right), \ldots, \rho^{4}\left(C^{8}\right)$ is a C_{3}-decomposition of $K_{4} \times K_{5}$, where $\rho(C)$ is defined as in the previous lemma.

$$
\begin{array}{lll}
C^{1}=\left(x_{1}^{1}, x_{2}^{3}, x_{3}^{4}\right) & C^{2}=\left(x_{1}^{1}, x_{3}^{3}, x_{5}^{4}\right) & C^{3}=\left(x_{3}^{2}, x_{2}^{3}, x_{5}^{4}\right) \\
C^{4}=\left(x_{1}^{1}, x_{2}^{2}, x_{5}^{3}\right) & C^{5}=\left(x_{2}^{2}, x_{4}^{3}, x_{3}^{4}\right) & C^{6}=\left(x_{1}^{1}, x_{3}^{2}, x_{4}^{3}\right) \\
C^{7}=\left(x_{1}^{1}, x_{5}^{2}, x_{4}^{4}\right) & C^{8}=\left(x_{1}^{1}, x_{4}^{2}, x_{2}^{4}\right) &
\end{array}
$$

First we consider the proof for the case $1 \leq \beta \leq 10$. Let $G_{i}=C^{3 i-2} \cup C^{3 i-1} \cup C^{3 i}$, $1 \leq i \leq 2$, be the subgraph of $K_{4} \times K_{5}$, where cycles $C^{j}, 1 \leq j \leq 8$, denote the above 3 -cycles. Observe that the edge induced subgraph $G_{i}, 1 \leq i \leq 2$, is isomorphic to $K_{2,2,2}-E\left(K_{3}\right)$, see Figure 8.

Figure 8.
Let $\rho=(12345)$ be the permutation on $V\left(K_{5}\right)=\{1,2,3,4,5\}$. Allow ρ, ρ^{2}, ρ^{3}, ρ^{4} to act on the subscripts of the vertices of $G_{i}, 1 \leq i \leq 2$, and $C^{j}, 7 \leq j \leq$ 8 , which we denote by $G_{i}, \rho\left(G_{i}\right), \rho^{2}\left(G_{i}\right), \rho^{3}\left(G_{i}\right), \rho^{4}\left(G_{i}\right), C^{j}, \rho\left(C^{j}\right), \rho^{2}\left(C^{j}\right), \rho^{3}\left(C^{j}\right)$, $\rho^{4}\left(C^{j}\right), 1 \leq i \leq 2,7 \leq j \leq 8$. For $i=1,2, G_{i}, \rho\left(G_{i}\right), \rho^{2}\left(G_{i}\right), \rho^{3}\left(G_{i}\right), \rho^{4}\left(G_{i}\right)$ give ten copies of $K_{2,2,2}-E\left(K_{3}\right)$ and for $j=7,8, C^{j}, \rho\left(C^{j}\right), \rho^{2}\left(C^{j}\right), \rho^{3}\left(C^{j}\right), \rho^{4}\left(C^{j}\right)$, give ten copies of C_{3} in $K_{4} \times K_{5}$. As each $K_{2,2,2}-E\left(K_{3}\right)$ is decomposable into three copies of C_{3} or, a C_{3} and a C_{6}, these ten copies of $K_{2,2,2}-E\left(K_{3}\right)$ give β cycles of length 6 , where $1 \leq \beta \leq 10$ and the rest into C_{3} 's.

Next we consider the proof for the case $\beta \geq 11$. As the graph $K_{4} \times K_{5}=$ $\left(K_{3} \oplus K_{1,3}\right) \times K_{5}=K_{3} \times K_{5} \oplus K_{1,3} \times K_{5}$, the lemma follows by Lemmas 8 and 15 .

Lemma 17. The graph $K_{6} \times K_{5}$ admits a $\left\{C_{3}^{\alpha}, C_{6}^{\beta}\right\}$-decomposition.
Proof. Let $V\left(K_{6}\right)=\left\{x^{1}, x^{2}, \ldots, x^{6}\right\}$ and $V\left(K_{5}\right)=\{1,2,3,4,5\}$. A set of 20 base cycles for a C_{3}-decomposition of $K_{6} \times K_{5}$ is given below.

$$
\begin{array}{lll}
C^{1}=\left(x_{1}^{1}, x_{4}^{3}, x_{2}^{6}\right) & C^{2}=\left(x_{1}^{1}, x_{3}^{2}, x_{5}^{5}\right) & C^{3}=\left(x_{3}^{2}, x_{1}^{3}, x_{2}^{6}\right) \\
C^{4}=\left(x_{1}^{3}, x_{4}^{4}, x_{3}^{6}\right) & C^{5}=\left(x_{2}^{1}, x_{4}^{4}, x_{5}^{6}\right) & C^{6}=\left(x_{2}^{1}, x_{5}^{2}, x_{1}^{3}\right) \\
C^{7}=\left(x_{2}^{2}, x_{4}^{3}, x_{5}^{4}\right) & C^{8}=\left(x_{4}^{3}, x_{5}^{5}, x_{3}^{6}\right) & C^{9}=\left(x_{5}^{4}, x_{4}^{5}, x_{3}^{6}\right) \\
C^{10}=\left(x_{1}^{1}, x_{3}^{3}, x_{2}^{4}\right) & C^{11}=\left(x_{2}^{1}, x_{3}^{3}, x_{5}^{5}\right) & C^{12}=\left(x_{1}^{2}, x_{2}^{4}, x_{5}^{5}\right) \\
C^{13}=\left(x_{3}^{1}, x_{2}^{4}, x_{4}^{5}\right) & C^{14}=\left(x_{1}^{2}, x_{5}^{3}, x_{4}^{5}\right) & C^{15}=\left(x_{5}^{3}, x_{2}^{4}, x_{3}^{5}\right) \\
C^{16}=\left(x_{2}^{1}, x_{3}^{2}, x_{5}^{4}\right) & C^{17}=\left(x_{2}^{1}, x_{4}^{5}, x_{1}^{6}\right) & C^{18}=\left(x_{4}^{1}, x_{3}^{2}, x_{1}^{6}\right) \\
C^{19}=\left(x_{1}^{2}, x_{2}^{5}, x_{3}^{6}\right) & C^{20}=\left(x_{4}^{2}, x_{3}^{4}, x_{5}^{6}\right) . &
\end{array}
$$

A $\left\{C_{3}^{\alpha}, C_{6}^{\beta}\right\}$-Decomposition of $\left(K_{m} \times K_{n}\right)(\lambda)$

First we consider the proof for the case $\beta \leq 30$. Let $G_{i}=C^{3 i-2} \cup C^{3 i-1} \cup C^{3 i}$, $1 \leq i \leq 6$; clearly the edge induced subgraph $G_{i}, 1 \leq i \leq 6$, of $K_{6} \times K_{5}$, is isomorphic to $K_{2,2,2}-E\left(K_{3}\right)$.

Let $\rho=(12345)$ be a permutation on $V\left(K_{5}\right)=\{1,2,3,4,5\}$. Then $G_{i}, \rho\left(G_{i}\right)$, $\rho^{2}\left(G_{i}\right), \rho^{3}\left(G_{i}\right), \rho^{4}\left(G_{i}\right), C^{j}, \rho\left(C^{j}\right), \rho^{2}\left(C^{j}\right), \rho^{3}\left(C^{j}\right), \rho^{4}\left(C^{j}\right), 1 \leq i \leq 6,19 \leq j \leq 20$, where $\rho^{s}\left(G_{i}\right)$ and $\rho^{r}\left(C^{j}\right)$ have the same meaning as in the proof of Lemma 16, give 30 copies of $K_{2,2,2}-E\left(K_{3}\right)$ and 10 copies of C_{3} in $K_{6} \times K_{5}$. Each copy of $K_{2,2,2}-E\left(K_{3}\right)$ is decomposable into C_{3} 's or, a C_{3} and a C_{6} and using this decomposition of $K_{2,2,2}-E\left(K_{3}\right)$ suitably, we can achieve a required $\left\{C_{3}^{\alpha}, C_{6}^{\beta}\right\}$ decomposition of $K_{6} \times K_{5}$, for $\beta \leq 30$.

Next let $\beta \geq 31$. Clearly, $K_{6} \times K_{5}=\left(K_{4} \oplus K_{3} \oplus K_{1,3} \oplus K_{1,3}\right) \times K_{5}=$ $\left(K_{4} \times K_{5}\right) \oplus\left(K_{3} \times K_{5}\right) \oplus\left(K_{1,3} \times K_{5}\right) \oplus\left(K_{1,3} \times K_{5}\right)$. By Lemmas 8, 15 and 16, the lemma follows.

We quote the following results to prove our main Theorem 1.
Theorem $18[23]$. (i) If $n \equiv 1$ or $3(\bmod 6)$, then K_{n} can be decomposed into cycles of length 3 .
(ii) If $n \equiv 5(\bmod 6)$, then K_{n} can be decomposed into K_{3} 's and a K_{5}.

Lemma 19 [20]. If $n \equiv 0$ or $1(\bmod 3)$, then K_{n} can be decomposed into K_{3} 's, K_{4} 's and K_{6} 's.

Theorem 20 [20]. Let λ and $m \geq 3$ be positive integers. There exists a K_{3} decomposition of $K_{m}(\lambda)$ if and only if $\lambda(m-1) \equiv 0(\bmod 2)$ and $\lambda m(m-1) \equiv 0$ $(\bmod 6)$.

Proof of Theorem 1. $\lambda=1$. The proof of the necessity is obvious and we prove the sufficiency. If $m=3$ or $n=3$, then the result follows by Theorem 14 . Since $(m, n) \neq(3,3)$, we assume that m and n are at least 4 . As m or n is odd and the tensor product is commutative, we assume that m is odd. Then $m \equiv 1,3$ or $5(\bmod 6)$. If $m \equiv 1$ or $3(\bmod 6)$ then the graph

$$
\begin{aligned}
K_{m} \times K_{n} & =\left(K_{3} \oplus K_{3} \oplus \cdots \oplus K_{3}\right) \times K_{n}, \text { by Theorem 18 } \\
& =K_{3} \times K_{n} \oplus K_{3} \times K_{n} \oplus \cdots \oplus K_{3} \times K_{n}
\end{aligned}
$$

Now by Theorem 14 the result follows. If $m \equiv 5(\bmod 6)$, let $m=6 k+5$. Since $K_{m}=K_{5} \oplus K_{3} \oplus \cdots \oplus K_{3}$, by Theorem 18, $K_{m} \times K_{n}=K_{5} \times K_{n} \oplus K_{3} \times K_{n} \oplus K_{3} \times$ $K_{n} \oplus \cdots \oplus K_{3} \times K_{n}, n \geq 4$. Because of Theorem 14, it is enough to show that the graph $K_{5} \times K_{n}$ has a $\left\{C_{3}^{\alpha}, C_{6}^{\beta}\right\}$-decomposition. By the divisibility condition, $n \equiv 0$ or $1(\bmod 3)$. Since $n \equiv 0$ or $1(\bmod 3), K_{n}$ can be decomposed into K_{3} 's, K_{4} 's and K_{6} 's, by Lemma 19. Then $K_{5} \times K_{n}$ is the edge disjoint union of the graphs $K_{5} \times K_{3}, K_{5} \times K_{4}$ and $K_{5} \times K_{6}$, and now apply Lemmas 8,16 and 17 to complete the proof.

Next we consider the case $\lambda=2$. By hypothesis, either $m \equiv 0$ or $1(\bmod 3)$ or $n \equiv 0$ or $1(\bmod 3)$. Without loss of generality, assume that $m \equiv 0$ or $1(\bmod$ 3), as the tensor product is commutative. The graph

$$
\begin{aligned}
\left(K_{m} \times K_{n}\right)(2) & \simeq K_{m}(2) \times K_{n}=\left(K_{3} \oplus K_{3} \oplus \cdots \oplus K_{3}\right) \times K_{n}, \text { by Theorem } 20 \\
& =\left(K_{3} \times K_{n} \oplus K_{3} \times K_{n} \oplus \cdots \oplus K_{3} \times K_{n}\right)
\end{aligned}
$$

The result follows by Theorem 14. Now we consider the case $\lambda=3$. As λ is odd, either m or n is odd; we assume that m is odd. $\left(K_{m} \times K_{n}\right)(3) \simeq$ $K_{m}(3) \times K_{n}=\left(K_{3} \oplus \cdots \oplus K_{n}\right) \times K_{n}$, by Theorem 20 . Now apply Theorem 14 , the result follows. The last case is $\lambda=6$. Edge divisibility condition is satisfied for all m and n and again by applying Theorem 20, the desired result is obtained. This completes the proof.

Appendix

$$
\text { A }\left\{C_{3}^{\alpha}, C_{6}^{\beta}\right\} \text {-DECOMPOSITION of }\left(K_{m} \times K_{n}\right)(\lambda)
$$

Idempotent latin squares of orders $5,6, \ldots, 11$ are given above.

Acknowledgments

The authors would like to thank the referees for their careful reading and suggestions. Also the second author would like to thank the Kalasalingam Academy of Research and Education, Tamil Nadu, India, for the financial support through University Research Fellowship.

References

[1] B. Alspach and H. Gavlas, Cycle decompositions of K_{n} and $K_{n}-I$, J. Combin. Theory Ser. B 81 (2001) 77-99.
doi:10.1006/jctb.2000.1996
[2] J. Asplund, J. Chaffee and J.M. Hammer, Decomposition of a complete bipartite multigraph into arbitrary cycle sizes, Graphs Combin. 33 (2017) 715-728.
doi:10.1007/s00373-017-1817-0
[3] A.M. Assaf, Modified group divisible designs, Ars Combin. 29 (1990) 13-20.
[4] A.M. Assaf, An application of modified group divisible designs, J. Combin. Theory Ser. A 68 (1994) 152-168.
doi:10.1016/0097-3165(94)90095-7
[5] A.M. Assaf, Modified group divisible designs with block size 4 and $\lambda>1$, Australas. J. Combin. 16 (1997) 229-238.
[6] A.M. Assaf and R. Wei, Modified group divisible designs with block size 4 and $\lambda=1$, Discrete Math. 195 (1999) 15-25.
doi:10.1016/S0012-365X(98)00161-7
[7] M.A. Bahmanian and M. Šajna, Decomposing complete equipartite multigraphs into cycles of variable lengths: The Amalgamation-detachment approach, J. Combin. Des. 24 (2016) 165-183. doi:10.1002/jcd. 21419
[8] R. Balakrishnan, J.-C. Bermond, P. Paulraja and M.-L. Yu, On Hamilton cycle decompositions of the tensor product of complete graphs, Discrete Math. 268 (2003) 49-58. doi:10.1016/S0012-365X(02)00680-5
[9] R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, $2^{\text {nd }}$ Ed. (Springer, New York, 2012).
doi:10.1007/978-1-4614-4529-6
[10] E.J. Billington, Decomposing complete tripartite graphs into cycles of lengths 3 and 4, Discrete Math. 197/198 (1999) 123-135. doi:10.1016/S0012-365X(99)90049-3
[11] E.J. Billington and N.J. Cavenagh, Sparse graphs which decompose into closed trails of arbitrary lengths, Graphs Combin. 24 (2008) 129-147. doi:10.1007/s00373-008-0783-y
[12] E.J. Billington, D.G. Hoffman and B.M. Maenhaut, Group divisible pentagon systems, Util. Math. 55 (1999) 211-219.
[13] D. Bryant, D. Horsley and W. Pettersson, Cycle decompositions V: Complete graphs into cycles of arbitrary lengths, Proc. Lond. Math. Soc. (3) 108 (2014) 1153-1192. doi:10.1112/plms/pdt051
[14] D. Bryant, D. Horsley, B. Maenhaut and B.R. Smith, Decompositions of complete multigraphs into cycles of varying lengths, J. Combin. Theory Ser. B 129 (2018) 79-106. doi:10.1016/j.jctb.2017.09.005
[15] M. Buratti, H. Cao, D. Dai and T. Traetta, A complete solution to the existence of (k, λ)-cycle frames of type g^{u}, J. Combin. Des. 25 (2017) 197-230. doi:10.1002/jcd. 21523
[16] C.C. Chou, C.M. Fu and W.C. Huang, Decomposition of $K_{m, n}$ into short cycles, Discrete Math. 197/198 (1999) 195-203. doi:10.1016/S0012-365X(99)90063-8
[17] C.C. Chou and C.M. Fu, Decomposition of $K_{m, n}$ into 4-cycles and 2t-cycles, J. Comb. Optim. 14 (2007) 205-218. doi:10.1007/s10878-007-9060-x
[18] C.M. Fu, K.C. Huang and M. Mishima, Decomposition of complete bipartite graphs into cycles of distinct even lengths, Graphs Combin. 32 (2016) 1397-1413. doi:10.1007/s00373-015-1664-9
[19] S. Ganesamurthy and P. Paulraja, Decompositions of complete tripartite graphs into cycles of lengths 3 and 6, Australas. J. Combin. 73 Part 1, to appear.

A $\left\{C_{3}^{\alpha}, C_{6}^{\beta}\right\}$-DECOMPOSITION OF $\left(K_{m} \times K_{n}\right)(\lambda)$
[20] H. Hanani, Balanced incomplete block designs and related designs, Discrete Math. 11 (1975) 255-369.
doi:10.1016/0012-365X(75)90040-0
[21] D.G. Hoffman, C.C. Lindner and C.A. Rodger, On the construction of odd cycle systems, J. Graph Theory 13 (1989) 417-426.
doi:10.1002/jgt. 3190130405
[22] M.H. Huang and H.L. Fu, $(4,5)$-cycle systems of complete multipartite graphs, Taiwanese J. Math. 16 (2012) 999-1006.
doi:10.11650/twjm/1500406672
[23] C.C. Lindner and C.A. Rodger, Design Theory, $2^{\text {nd }}$ Ed. (CRC Press, Boca Raton, 2009).
[24] A.C.H. Ling and C.J. Colbourn, Modified group divisible designs with block size four, Discrete Math. 219 (2000) 207-221. doi:10.1016/S0012-365X(99)00342-8
[25] R.S. Manikandan and P. Paulraja, C_{p}-decompositions of some regular graphs, Discrete Math. 306 (2006) 429-451. doi:10.1016/j.disc.2005.08.006
[26] R.S. Manikandan and P. Paulraja, C_{5}-decompositions of the tensor product of complete graphs, Australas. J. Combin. 37 (2007) 285-293.
[27] R.S. Manikandan and P. Paulraja, C_{7}-decompositions of the tensor product of complete graphs, Discuss. Math. Graph Theory 37 (2017) 523-535.
doi:10.7151/dmgt. 1936
[28] R.S. Manikandan and P. Paulraja, Hamiltonian decompositions of the tensor product of a complete graph and a complete bipartite graphs, Ars Combin. 80 (2006) 33-44.
[29] R.S. Manikandan and P. Paulraja, Hamilton cycle decompositions of the tensor product of complete multipartite graphs, Discrete Math. 308 (2008) 3586-3606. doi:10.1016/j.disc.2007.07.020
[30] R.S. Manikandan and P. Paulraja, Hamilton cycle decompositions of the tensor products of complete bipartite graphs and complete multipartite graphs, Discrete Math. 310 (2010) 2776-2789. doi:10.1016/j.disc.2010.05.034
[31] R.S. Manikandan, P. Paulraja and S. Sivasankar, Directed Hamilton cycle decompositions of the tensor product of symmetric digraphs, Ars Combin. 98 (2011) 379-386.
[32] A. Muthusamy and A. Shanmuga Vadivu, Cycle frames of complete multipartite multigraphs-III, J. Combin. Des. 22 (2014) 473-487.
doi:10.1002/jcd. 21373
[33] P. Paulraja and S. Sampath Kumar, Resolvable even cycle decompositions of the tensor product of complete graphs, Discrete Math. 311 (2011) 1841-1850.
doi:10.1016/j.disc.2011.04.028
[34] P. Paulraja and S. Sampath Kumar, Closed trail decompositions of some classes of regular graphs, Discrete Math. 312 (2012) 1353-1366.
doi:10.1016/j.disc.2011.12.015
[35] P. Paulraja and S. Sivasankar, Directed Hamilton cycle decompositions of the tensor products of symmetric digraphs, Graphs Combin. 25 (2009) 571-581. doi:10.1007/s00373-009-0866-4
[36] M. Šajna, Cycle decompositions III: Complete graphs and fixed length cycles, J. Combin. Des. 10 (2002) 27-78. doi:10.1002/jcd. 1027

