MINIMAL GRAPHS WITH RESPECT TO GEOMETRIC DISTANCE REALIZABILITY

Tomáš Madaras
AND
Pavol Široczki
Institute of Mathematics
P.J. Šafárik University in Košice
Jesenná 5, 04001 Košice, Slovakia
e-mail: tomas.madaras@upjs.sk
siroczki@gmail.com

Abstract

A graph G is minimal non-unit-distance graph if there is no drawing of G in Euclidean plane having all edges of unit length, but, for each edge e of $G, G-e$ has such a drawing. We prove that, for infinitely many n, the number of non-isomorphic n-vertex minimal non-unit-distance graphs is at least exponential in n.

Keywords: unit-distance graph, odd-distance graph, Euclidean plane.
2010 Mathematics Subject Classification: 05C62.

1. INTRODUCTION

Throughout this paper, we consider connected graphs without loops or multiple edges, and their drawings in the plane. By drawing $D=D(G)$ of a graph $G=(V, E)$ in the plane, we mean a function ϕ defined on $V \cup E$ which assigns each vertex $v \in V$ a point $\phi(v) \in \mathbb{R}^{2}$, and, each edge $u v \in E$ is mapped to a simple curve $\phi(u v) \subset \mathbb{R}^{2}$ with endpoints $\phi(u), \phi(v)$. It is usually assumed that ϕ is injective on V and, for each edge $u v \in E$ and each $w \in V, w \neq u, v$, $\phi(w) \notin \phi(u v)$ holds; a drawing which violates some of these two properties is called degenerate. When mentioning distances between points $\phi(x), \phi(y)$ (which correspond to vertices x, y of G) in the plane, we refer to the Euclidean distance
(here denoted as $\operatorname{dist}(x, y)$) unless specified otherwise. All graph-theoretic terms which are not defined here are used in accordance with [11].

To describe properties of graphs of a graph family \mathcal{G}, one aims to obtain a complete characterization of members of \mathcal{G}, usually in terms of forbidden subgraphs, induced subgraphs, minors or topological minors. A related source of information on properties of \mathcal{G} is the set $\mathcal{M}(\mathcal{G})$ of minimal non- \mathcal{G}-graphs (that is, the graphs which do not belong to \mathcal{G}, but each of their proper subgraphs is in \mathcal{G}) and the function $f(\mathcal{G}, n)$ whose value is the number of non-isomorphic n-vertex graphs from $\mathcal{M}(\mathcal{G})$. The asymptotic character of $f(\mathcal{G}, n)$ may serve as an indirect indicator for 'tractability' of the family \mathcal{G} in terms of efficient algorithmic recognition of good characterization. For example, Kuratowski's theorem [6] yields that the minimal non-planar graphs are exactly the subdivisions of K_{5} or $K_{3,3}$, and the number of such graphs on n vertices is certainly polynomial in n (because it is bounded from above by the number of ways how to redistribute 2 -valent vertices on the edges of K_{5} or $K_{3,3}$). On the other hand, for 1-planar graphs (for which there exists a drawing in the plane such that each its edge is crossed at most once), it was shown in [5] that, for each $n \geq 63$, there exist at least $2^{\frac{n-54}{4}}$ non-isomorphic minimal non-1-planar graphs. Note that $f(\mathcal{G}, n)$ is not related to the number of distinct n-vertex graphs of \mathcal{G}, as this number is exponential for both planar and 1-planar graphs.

In this paper, we study the function $f(\mathcal{U} D, n)$ for the family $\mathcal{U} D$ of graphs defined by the property that, for each $G \in \mathcal{U} D$, there exists a non-degenerate drawing D of G in the Euclidean plane such that all edges of D are unit segments (D is further referred as unit-distance drawing of G). The family $\mathcal{U} D$ is a part of larger family of unit-distance graphs in \mathbb{R}^{2} : here the vertex set V is a subset of \mathbb{R}^{2} and the edge set E is a subset of all pairs $\{x, y\}, x, y \in V$ with $\operatorname{dist}(x, y)=1$ (see [1]). The latter family was widely studied mainly in connection with the (Hadwiger)-Nelson problem of determining the chromatic number of the plane (for its history and connections to other areas of mathematics, see the excellent monograph [9]). The problem of characterization of minimal non-unit-distance graphs was first mentioned in [2] and seems to be still open. It is easy to see that the family $\mathcal{U} D$ is not closed under taking minors, since any subdivision of $K_{2,3}$ (which is not a unit-distance graph) has an unit-distance drawing. In [4] and [10], it is proven that the problem of recognition of unit-distance graphs (and, more generally, the problem of determining the minimum dimension of Euclidean space in which a graph has unit-distance drawing) is NP-hard.

We prove the following result.
Theorem 1. For infinitely many integers n, there exist at least exponentially many non-isomorphic n-vertex graphs from $\mathcal{M}(\mathcal{U D})$.

2. The Proof

For the purpose of the subsequent proof, we briefly recall the equidistribution theorem.

Theorem 2 (Equidistribution theorem, [12]). Let a be an irrational number. Then the sequence $\{n \cdot a-\lfloor n \cdot a\rfloor\}_{n=1}^{\infty}$ is uniformly distributed on the unit interval $(0,1)$.

Claim 3. The inequality

$$
\begin{equation*}
n-\sqrt{3} \cdot\left\lfloor\frac{n}{\sqrt{3}}\right\rfloor<\frac{2-\sqrt{3}}{2} \tag{*}
\end{equation*}
$$

holds for infinitely many positive integers n.
Proof. The equidistribution theorem for $a=\frac{1}{\sqrt{3}}$ yields that the sequence $\left\{\frac{n}{\sqrt{3}}-\right.$ $\left.\left\lfloor\frac{n}{\sqrt{3}}\right\rfloor\right\}_{n=1}^{\infty}$ is uniformly distributed on the interval $(0,1)$. Thus, the sequence $s=\left\{n-\sqrt{3} \cdot\left\lfloor\left.\frac{n}{\sqrt{3}} \right\rvert\,\right\}_{n=1}^{\infty}\right.$ is uniformly distributed on the interval $(0, \sqrt{3})$ as the elements of this sequence are exactly the elements of the previous sequence multiplied by $\sqrt{3}$. Our claim now follows from the fact that the terms on the right side of $(*)$ are positive and the uniform distribution of s.

From now on we will denote the set of all positive integers satisfying (*) by \mathcal{S} and, for a positive integer $n \in \mathcal{S}$, we define $N=\left\lfloor\frac{n}{\sqrt{3}}\right\rfloor ;$ note that $\min \mathcal{S}=7$.

We continue by defining, for any $n \in \mathcal{S}$, the set \mathcal{G}_{n} of graphs $G_{n, S}$ in the following way: start with a 'snake' S_{n} consisting of $4 n-1$ triangles (see Figure 1), denote its 2 -valent vertices (the left and the right one, respectively) as v_{0} and $v_{2 n}$. Note that S_{n} has (up to mirror symmetry) a unique unit-distance drawing.

Let B_{1} and B_{2} be the graphs in Figure 2. We define the sequence $S=$ $\left\{D_{i}\right\}_{i=1}^{2 N}$, where each D_{i} is either a copy of B_{1} or B_{2}, and the number of occurrences of B_{1} and B_{2} in S is equal. Concatenate the graphs of S by identifying vertices $y_{i} \in D_{i}$ and $x_{i+1} \in D_{i+1}$, thus forming a 'chain'. Finally, identify vertex $x_{1} \in D_{1}$ with vertex $v_{0} \in S_{n}$ and $y_{2 N} \in D_{2 N}$ with $v_{2 n} \in S_{n}$ obtaining the graph $G_{n, S}$ (the resulting graph clearly depends on the choice of S).

Claim 4. The number of non-isomorphic graphs in \mathcal{G}_{n} is at least exponential in terms of number of their vertices.

Proof. We have $\frac{1}{2}\binom{2 N}{N}$ possible orderings of terms in S (the term $\frac{1}{2}$ prevents us from including mirror symmetry), which is at least $\frac{4^{N}}{2 \cdot(2 N+1)}>2^{N}$ for $N \geq 5$. On the other hand, the number of vertices of any graph $G_{n, S} \in \mathcal{G}_{n}$ is $4 n+1+$

Figure 1. The 'snake' S_{n}.

Figure 2. The blocks B_{1} and B_{2}.
$8 N$, which is linear in N. Thus the number of non-isomorphic graphs in \mathcal{G}_{n} is exponential in the size of their vertex set (it is easy to see that for two sequences $S_{1}=\left\{D_{i}\right\}_{i=1}^{2 N}$ and $S_{2} \neq S_{1}$, the graphs $G_{n, S_{1}}$ and $G_{n, S_{2}}$ are isomorphic only if $S_{2}=\left\{D_{2 N-i}\right\}_{i=1}^{2 N}$, but then their drawings possess mirror symmetry).

Claim 5. Every graph $G \in \mathcal{G}_{n}$ is not a unit-distance graph.
Proof. Assume that a unit distance drawing of G exists. There is a unique (up to mirror symmetry) unit-distance realization of the graph S_{n}. The distance between vertices v_{0} and $v_{2 n}$ in this drawing is necessarily $2 n$. Similarly, for $B_{i}, i \in\{1,2\}$, the unit-distance realization of B_{i} is also unique (up to mirror symmetry) and the distance between vertices x and y in this drawing is exactly $\sqrt{3}$. Thus, the distance between vertices x_{1} and $y_{2 N}$ is at most $2 N \sqrt{3}=2 \sqrt{3} \cdot\left\lfloor\frac{n}{\sqrt{3}}\right\rfloor<2 n$, the last inequality follows from the irrationality of $\sqrt{3}$. Notice that in G vertex x_{1} is identified with vertex v_{0} and vertex $v_{2 n}$ is identified with $y_{2 N}$, but the distance between these vertices is either $2 n$ (from the realisation of S_{n}) and, on the other hand, strictly less then $2 n$ (from the properties of the drawings of blocks B_{i}, $i \in[1,2 N])$. This contradiction shows that G is not a unit-distance graph.

Claim 6. Every graph $G \in \mathcal{G}_{n}$ belongs to $\mathcal{M}(U D)$.
Proof. We need to show that for every edge $e \in E(G)$, the graph $G-e$ belongs to $\mathcal{U} D$. This is done by case analysis.

First, assume that the removed edge e belongs to block D_{i} for some $i \in[1,2 N]$ and this block is isomorphic with B_{1}. Here we need to distinguish two cases (up
to mirror symmetry) labeled with e_{1}, e_{2} in Figure 2. In each of these cases the drawing of this block can be deformed in such a way that the distance between vertices x_{i} and y_{i} in this drawing of $D_{i}-e$ is arbitrarily close to 2 . The drawings for each case are illustrated in Figure 3. For each $j \in[1,2 N], j \neq i$, the distance between vertices x_{j} and y_{j} is exactly $\sqrt{3}$. Thus the sum $\sum_{i=1}^{2 N} \operatorname{dist}\left(x_{j}, y_{j}\right)$ is arbitrary close to $(2 N-1) \sqrt{3}+2$. On the other hand, from (*) it follows that $2 n<(2 N-1) \sqrt{3}+2$, so there exists such a drawing that the considered sum is bigger than $2 n$.

Figure 3. Deformation of B_{1} without edge.
Next, assume that the removed edge e belongs to block D_{i} for some $i \in[1,2 N]$ and this block is isomorphic with B_{2}. In this case we need to distinguish 5 subcases (again, up to mirror symmetry) labelled $e_{i}, i \in[1,5]$, in Figure 2. Again, in each of the subcases, the drawing of this block can be deformed in such a way that the distance between vertices x_{i} and y_{i} in this drawing of $D_{i}-e$ is arbitrarily close to 2 . The deformation for each case is illustrated in Figure 4. Again, similarly to the previous case, it follows that $\sum_{i=1}^{2 N} \operatorname{dist}\left(x_{j}, y_{j}\right)>2 n$.

Figure 4. Deformation of B_{2} without edge.

Finally, assume that the edge e belongs to S_{n}. Figure 5 shows all five cases how to deform $S_{n}-e$ to obtain a non-degenerate unit-distance drawing in which the Euclidean distance between v_{0} and $v_{2 n}$ will be less than $2 n$. The difference between $2 n$ and $2 N$ is less than $2-\sqrt{3}$, so it suffices to decrease the distance between vertices v_{0} and $v_{2 n}$ by any value bigger than $2-\sqrt{3}$. This is obviously possible for the first case (vertex v_{0} arbitrary close to v_{2}) and the second case (v_{0} arbitrary close to v_{1}). In the third case, the worst possibility (in terms of distance between v_{0} and $v_{2 n}$) is to remove the edge $u_{1} u_{2}$, but v_{0} could be rotated arbitrary close to vertex v_{2}, thus the distance between v_{0} and $v_{2 n}$ would be arbitrary close to $2(n-1)$.

Figure 5. Deformation of S_{n} without edge.

After deforming the considered graph as illustrated for the fourth case, the distance between vertices v_{0} and $v_{2 n}$ is arbitrary close to $\left(\left(2 n-\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}\right)^{\frac{1}{2}}$ (consider the right-angled triangle where the line segment connecting v_{0} and $v_{2 n}$ would form the hypotenuse), which converges to $2 n-\frac{1}{2}$ as n increases (even for the smallest possible $n=7$ this distance is 13.52775 which is quite close to 13.5). It follows from (*) that $2 n-\frac{1}{2}<2 N \sqrt{3}+2-\sqrt{3}-\frac{1}{2}<2 N \sqrt{3}$.

In fifth case, the vertex v_{0} could be rotated around the vertex u_{i+1} to be close to the line segment connecting vertices v_{i+1} and $v_{2 n}$. This time the worst case would be to remove the edge $v_{1} v_{2}$, but the vertex v_{0} would be close to vertex v_{3} and the distance between v_{0} and $v_{2 n}$ in this case would be close to $2 n-3$.

In all five described cases, the distance between vertices v_{0} and $v_{2 n}$ in a unitdistance drawing of $S_{n}-e$ can be decreased at least by a factor arbitrary close to $\frac{1}{2}$, which is bigger than $2-\sqrt{3}$.

Now, it suffices to show that the chain of graphs corresponding to the sequence S can be attached to v_{0} and $v_{2 n}$ to obtain a non-degenerate unit-distance drawing of G. This is implied by the following general auxiliary result.
Lemma 7. Let $\left\{H_{i}\right\}_{i=1}^{k}$ be a sequence of graphs such that, for each $i \in[1, k]$ there exists a non-degenerate unit-distance drawing D_{i} of H_{i} containing two vertices $x_{i-1}^{i}, x_{i}^{i} \in V\left(H_{i}\right)$ having Euclidean distance $d_{i}>1$. Further, let D be a non-degenerate unit-distance drawing of a graph H containing vertices u, v with their Euclidean distance less than $\sum_{i=1}^{k} d_{i}$. Consider the graph G^{\prime} obtained by identification of each vertex $x_{i}^{i} \in V\left(H_{i}\right)$ with vertex $x_{i}^{i+1} \in V\left(H_{i+1}\right)$ and subsequent identification of u with x_{0}^{1} and v with vertex x_{k}^{k}. Then there exists a non-degenerate unit-distance drawing of G^{\prime}.

Proof. For $i=1, \ldots, k-1$, let x_{i} be the vertex resulting from the identification of x_{i}^{i} with x_{i}^{i+1}, and let $x_{0}=u, x_{k}=v$. Start with the placement of D_{1} after identifying u with x_{0}^{1}. If we place the unit-distance drawing D_{1} of H_{1} in such a way that x_{1} in H_{1} lies on the line segment connecting points x_{0} and x_{k}, then the Euclidean distance between x_{1} and x_{k} will be strictly less than $\sum_{i=2}^{k} d_{i}$. Then there exists, by continuity of Euclidean distance, $\varepsilon \in \mathbb{R}$ such that when rotating the drawing of H_{i} by an angle $\alpha \in(-\varepsilon, \varepsilon)$ around the point x_{0}, the Euclidean distance between x_{1} and x_{k} is still strictly less than $\sum_{i=2}^{k} d_{i}$.

We have to show that the placement of H_{1} can be arranged in a way that the unit-distance drawing obtained is not degenerate. First, let us consider the case when a vertex $w \in V\left(D_{1}\right)$ lies on an edge $e \in E(D)$. The feasible positions for w are determined by the angle $\alpha \in(-\varepsilon, \varepsilon)$ and form a circular arc. An edge $e \in E(D)$ can intersect this arc in at most two points, so there are a finite number of forbidden positions for w. Now, consider the case when $w \in V(D)$ and $e \in E\left(D_{1}\right)$. We argue in the same way, but this time we fix the unit-distance
drawing of H_{1} and rotate the drawing D by angle α around the vertex x_{0}. As H_{1} and H are finite graphs, an appropriate α can be chosen such that all vertices of $V\left(D_{1}\right) \cup V(D)$ are distinct and none of them appears in the interior of a line segment of $D_{1} \cup D$.

The above described step can be repeated for all $i \in[1, k-3]$, however, when placing the drawing D_{k-2} of H_{k-2}, one has to be more careful, because the position of x_{k-2} determines the position of x_{k-1}. When preparing to place D_{k-2} the situation is that we have a point x_{k-3} whose distance from x_{k} is less than $d_{k-2}+d_{k-1}+d_{k}$. Again, if we place D_{k-2} such that x_{k-2} lies on the line segment determined by points x_{k-3} and x_{k}, the Euclidean distance of x_{k-2} and x_{k} is less than $d_{k-1}+d_{k}$ and there exists $\varepsilon \in \mathbb{R}$ such that when rotating the drawing D_{k-2} by an angle $\alpha \in(-\varepsilon, \varepsilon)$ around x_{k-3}, the Euclidean distance between x_{k-2} and x_{k} remains smaller than $d_{k-1}+d_{k}$. The possible positions for x_{k-1} form a circular arc (intersection of the circle with unit diameter centered in x_{k} and the disk centered in x_{k-3} with radius d_{k-2}). Thus, there are infinitely many possible positions for x_{k-2} and x_{k-1} and now we can again apply the argument as in the previous cases to avoid a degeneracy.

Now, that Lemma 7 is proved, the proof of Claim 6 is complete.

3. Concluding Remarks

Since our result covers only a subset of the set of positive integers, it would be desirable to prove an exponential lower bound for $f(\mathcal{U D}, n)$ for all n.

Note that, in unit-distance drawings of graphs from $\mathcal{U} D$, we do not require the condition $\operatorname{dist}(x, y) \neq 1$ for nonadjacent vertices x, y (unit-distance drawings which satisfy this condition are called faithful). The recent paper [1] considers labelled unit-distance and faithful unit-distance graphs in general Euclidean spaces \mathbb{R}^{d}; it is proved that, for prescribed d and given number of vertices, there is far more unit-distance graphs than the faithful ones. Concerning the structure of minimal non-faithful unit-distance graphs (for fixed d), the authors address the problem of minimum number of edges of such graphs and provide lower and upper bounds for bipartite case.

Along with unit-distance graphs, there are studied also odd distance graphs for which there exist drawings with all edges represented by line segments of odd lengths. It is known (see [3]) that the complete graph K_{4} is not an odd distance graph, and recently in [8] it was proved that this is also not the case for the wheel graph W_{6} (observe that both these graphs also belong to $\mathcal{M}(\mathcal{U} \mathcal{D})$). Hence, the related problem would be to characterize all minimal non-odd-distance graphs; note that, by the result of Piepmeyer (see [7]), these graphs have chromatic number at least 4 .

Acknowledgement

This work was supported by the Slovak Research and Development Agency under the Contract No. APVV-15-0116.

References

[1] N. Alon and A. Kupavskii, Two notions of unit distance graphs, J. Combin. Theory Ser. A 125 (2014) 1-17. doi:10.1016/j.jcta.2014.02.006
[2] P. Erdős, F. Harary and W.T. Tutte, On the dimension of a graph, Mathematika 12 (1965) 118-122. doi:10.1112/S0025579300005222
[3] R.L. Graham, B.L. Rotschild and E.G. Strauss, Are there $n+2$ points in \mathbb{E}^{n} with odd integral distances?, Amer. Math. Monthly 81 (1974) 21-25. doi:10.1080/00029890.1974.11993491
[4] B. Horvat, J. Kratochvíl and T. Pisanski, On the computational complexity of degenerate unit distance representations of graphs, Lecture Notes in Comput. Sci. 6460 (2011) 274-285. doi:10.1007/978-3-642-19222-7_28
[5] V.P. Korzhik and B. Mohar, Minimal obstructions for 1-immersions and hardness of 1-planarity testing, J. Graph Theory 72 (2013) 30-71. doi:10.1002/jgt. 21630
[6] K. Kuratowski, Sur le problème des courbes gauches en topologie, Fund. Math. 15 (1930) 271-283. doi:10.4064/fm-15-1-271-283
[7] L. Piepmeyer, The maximum number of odd integral distances between points in the plane, Discrete Comput. Geom. 16 (1996) 113-115. doi:10.1007/BF02711135
[8] M. Rosenfeld and N.L. Tiên, Forbidden subgraphs of the odd-distance graph, J. Graph Theory 75 (2014) 323-330. doi:10.1002/jgt. 21738
[9] A. Soifer, The Mathematical Coloring Book (Springer-Verlag, New York, 2009). doi:10.1007/978-0-387-74642-5
[10] M. Tikhomirov, On computational complexity of length embeddability of graphs, Discrete Math. 339 (2016) 2605-2612. doi:10.1016/j.disc.2016.05.011
[11] D.B. West, Introduction to Graph Theory (Prentice Hall, 1996).
[12] H. Weyl, Über die Gibbs'sche Erscheinung und verwandte Konvergenzphänomene, Rend. Circ. Mat. 30 (1910) 377-407.
doi:10.1007/BF03014883

