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Pavol Široczki

Institute of Mathematics
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Abstract

A graph G is minimal non-unit-distance graph if there is no drawing of
G in Euclidean plane having all edges of unit length, but, for each edge e
of G, G − e has such a drawing. We prove that, for infinitely many n, the
number of non-isomorphic n-vertex minimal non-unit-distance graphs is at
least exponential in n.
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1. Introduction

Throughout this paper, we consider connected graphs without loops or multiple
edges, and their drawings in the plane. By drawing D = D(G) of a graph
G = (V,E) in the plane, we mean a function φ defined on V ∪ E which assigns
each vertex v ∈ V a point φ(v) ∈ R2, and, each edge uv ∈ E is mapped to
a simple curve φ(uv) ⊂ R2 with endpoints φ(u), φ(v). It is usually assumed
that φ is injective on V and, for each edge uv ∈ E and each w ∈ V,w 6= u, v,
φ(w) 6∈ φ(uv) holds; a drawing which violates some of these two properties is
called degenerate. When mentioning distances between points φ(x), φ(y) (which
correspond to vertices x, y of G) in the plane, we refer to the Euclidean distance
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(here denoted as dist(x, y)) unless specified otherwise. All graph-theoretic terms
which are not defined here are used in accordance with [11].

To describe properties of graphs of a graph family G, one aims to obtain a
complete characterization of members of G, usually in terms of forbidden sub-
graphs, induced subgraphs, minors or topological minors. A related source of
information on properties of G is the setM(G) of minimal non-G-graphs (that is,
the graphs which do not belong to G, but each of their proper subgraphs is in G)
and the function f(G, n) whose value is the number of non-isomorphic n-vertex
graphs fromM(G). The asymptotic character of f(G, n) may serve as an indirect
indicator for ’tractability’ of the family G in terms of efficient algorithmic recogni-
tion of good characterization. For example, Kuratowski’s theorem [6] yields that
the minimal non-planar graphs are exactly the subdivisions of K5 or K3,3, and
the number of such graphs on n vertices is certainly polynomial in n (because
it is bounded from above by the number of ways how to redistribute 2-valent
vertices on the edges of K5 or K3,3). On the other hand, for 1-planar graphs (for
which there exists a drawing in the plane such that each its edge is crossed at

most once), it was shown in [5] that, for each n ≥ 63, there exist at least 2
n−54

4

non-isomorphic minimal non-1-planar graphs. Note that f(G, n) is not related to
the number of distinct n-vertex graphs of G, as this number is exponential for
both planar and 1-planar graphs.

In this paper, we study the function f(UD,n) for the family UD of graphs
defined by the property that, for each G ∈ UD, there exists a non-degenerate
drawing D of G in the Euclidean plane such that all edges of D are unit segments
(D is further referred as unit-distance drawing of G). The family UD is a part of
larger family of unit-distance graphs in R2: here the vertex set V is a subset of
R2 and the edge set E is a subset of all pairs {x, y}, x, y ∈ V with dist(x, y) = 1
(see [1]). The latter family was widely studied mainly in connection with the
(Hadwiger)-Nelson problem of determining the chromatic number of the plane
(for its history and connections to other areas of mathematics, see the excellent
monograph [9]). The problem of characterization of minimal non-unit-distance
graphs was first mentioned in [2] and seems to be still open. It is easy to see that
the family UD is not closed under taking minors, since any subdivision of K2,3

(which is not a unit-distance graph) has an unit-distance drawing. In [4] and
[10], it is proven that the problem of recognition of unit-distance graphs (and,
more generally, the problem of determining the minimum dimension of Euclidean
space in which a graph has unit-distance drawing) is NP-hard.

We prove the following result.

Theorem 1. For infinitely many integers n, there exist at least exponentially
many non-isomorphic n-vertex graphs from M(UD).
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2. The Proof

For the purpose of the subsequent proof, we briefly recall the equidistribution
theorem.

Theorem 2 (Equidistribution theorem, [12]). Let a be an irrational number.
Then the sequence {n ·a−bn ·ac}∞n=1 is uniformly distributed on the unit interval
(0, 1).

Claim 3. The inequality

(∗) n−
√

3 ·
⌊
n√
3

⌋
<

2−
√

3

2

holds for infinitely many positive integers n.

Proof. The equidistribution theorem for a = 1√
3

yields that the sequence
{

n√
3
−⌊

n√
3

⌋}∞
n=1

is uniformly distributed on the interval (0, 1). Thus, the sequence

s =
{
n−
√

3 ·
⌊

n√
3

⌋}∞
n=1

is uniformly distributed on the interval
(
0,
√

3
)

as the

elements of this sequence are exactly the elements of the previous sequence mul-
tiplied by

√
3. Our claim now follows from the fact that the terms on the right

side of (∗) are positive and the uniform distribution of s.

From now on we will denote the set of all positive integers satisfying (∗) by

S and, for a positive integer n ∈ S, we define N =
⌊

n√
3

⌋
; note that minS = 7.

We continue by defining, for any n ∈ S, the set Gn of graphs Gn,S in the
following way: start with a ’snake’ Sn consisting of 4n − 1 triangles (see Figure
1), denote its 2-valent vertices (the left and the right one, respectively) as v0 and
v2n. Note that Sn has (up to mirror symmetry) a unique unit-distance drawing.

Let B1 and B2 be the graphs in Figure 2. We define the sequence S =
{Di}2Ni=1, where each Di is either a copy of B1 or B2, and the number of occur-
rences of B1 and B2 in S is equal. Concatenate the graphs of S by identifying
vertices yi ∈ Di and xi+1 ∈ Di+1, thus forming a ’chain’. Finally, identify vertex
x1 ∈ D1 with vertex v0 ∈ Sn and y2N ∈ D2N with v2n ∈ Sn obtaining the graph
Gn,S (the resulting graph clearly depends on the choice of S).

Claim 4. The number of non-isomorphic graphs in Gn is at least exponential in
terms of number of their vertices.

Proof. We have 1
2

(
2N
N

)
possible orderings of terms in S (the term 1

2 prevents us

from including mirror symmetry), which is at least 4N

2·(2N+1) > 2N for N ≥ 5.
On the other hand, the number of vertices of any graph Gn,S ∈ Gn is 4n + 1 +
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Figure 1. The ’snake’ Sn.

Figure 2. The blocks B1 and B2.

8N , which is linear in N . Thus the number of non-isomorphic graphs in Gn is
exponential in the size of their vertex set (it is easy to see that for two sequences
S1 = {Di}2Ni=1 and S2 6= S1, the graphs Gn,S1 and Gn,S2 are isomorphic only if
S2 = {D2N−i}2Ni=1, but then their drawings possess mirror symmetry).

Claim 5. Every graph G ∈ Gn is not a unit-distance graph.

Proof. Assume that a unit distance drawing of G exists. There is a unique (up to
mirror symmetry) unit-distance realization of the graph Sn. The distance between
vertices v0 and v2n in this drawing is necessarily 2n. Similarly, for Bi, i ∈ {1, 2},
the unit-distance realization of Bi is also unique (up to mirror symmetry) and
the distance between vertices x and y in this drawing is exactly

√
3. Thus, the

distance between vertices x1 and y2N is at most 2N
√

3 = 2
√

3 ·
⌊

n√
3

⌋
< 2n, the

last inequality follows from the irrationality of
√

3. Notice that in G vertex x1 is
identified with vertex v0 and vertex v2n is identified with y2N , but the distance
between these vertices is either 2n (from the realisation of Sn) and, on the other
hand, strictly less then 2n (from the properties of the drawings of blocks Bi,
i ∈ [1, 2N ]). This contradiction shows that G is not a unit-distance graph.

Claim 6. Every graph G ∈ Gn belongs to M(UD).

Proof. We need to show that for every edge e ∈ E(G), the graph G− e belongs
to UD. This is done by case analysis.

First, assume that the removed edge e belongs to blockDi for some i ∈ [1, 2N ]
and this block is isomorphic with B1. Here we need to distinguish two cases (up
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to mirror symmetry) labeled with e1, e2 in Figure 2. In each of these cases the
drawing of this block can be deformed in such a way that the distance between
vertices xi and yi in this drawing of Di− e is arbitrarily close to 2. The drawings
for each case are illustrated in Figure 3. For each j ∈ [1, 2N ], j 6= i, the distance
between vertices xj and yj is exactly

√
3. Thus the sum

∑2N
i=1 dist(xj , yj) is

arbitrary close to (2N − 1)
√

3 + 2. On the other hand, from (∗) it follows that
2n < (2N − 1)

√
3 + 2, so there exists such a drawing that the considered sum is

bigger than 2n.

Figure 3. Deformation of B1 without edge.

Next, assume that the removed edge e belongs to blockDi for some i ∈ [1, 2N ]
and this block is isomorphic with B2. In this case we need to distinguish 5
subcases (again, up to mirror symmetry) labelled ei, i ∈ [1, 5], in Figure 2.
Again, in each of the subcases, the drawing of this block can be deformed in such
a way that the distance between vertices xi and yi in this drawing of Di − e is
arbitrarily close to 2. The deformation for each case is illustrated in Figure 4.
Again, similarly to the previous case, it follows that

∑2N
i=1 dist(xj , yj) > 2n.

Figure 4. Deformation of B2 without edge.



70 T. Madaras and P. Široczki

Finally, assume that the edge e belongs to Sn. Figure 5 shows all five cases
how to deform Sn− e to obtain a non-degenerate unit-distance drawing in which
the Euclidean distance between v0 and v2n will be less than 2n. The difference
between 2n and 2N is less than 2 −

√
3, so it suffices to decrease the distance

between vertices v0 and v2n by any value bigger than 2 −
√

3. This is obviously
possible for the first case (vertex v0 arbitrary close to v2) and the second case (v0
arbitrary close to v1). In the third case, the worst possibility (in terms of distance
between v0 and v2n) is to remove the edge u1u2, but v0 could be rotated arbitrary
close to vertex v2, thus the distance between v0 and v2n would be arbitrary close
to 2(n− 1).

Figure 5. Deformation of Sn without edge.
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After deforming the considered graph as illustrated for the fourth case, the

distance between vertices v0 and v2n is arbitrary close to
(

(2n− 1
2)2 + (

√
3
2 )2

) 1
2

(consider the right-angled triangle where the line segment connecting v0 and v2n
would form the hypotenuse), which converges to 2n− 1

2 as n increases (even for
the smallest possible n = 7 this distance is 13.52775 which is quite close to 13.5).
It follows from (∗) that 2n− 1

2 < 2N
√

3 + 2−
√

3− 1
2 < 2N

√
3.

In fifth case, the vertex v0 could be rotated around the vertex ui+1 to be
close to the line segment connecting vertices vi+1 and v2n. This time the worst
case would be to remove the edge v1v2, but the vertex v0 would be close to vertex
v3 and the distance between v0 and v2n in this case would be close to 2n− 3.

In all five described cases, the distance between vertices v0 and v2n in a unit-
distance drawing of Sn − e can be decreased at least by a factor arbitrary close
to 1

2 , which is bigger than 2−
√

3.

Now, it suffices to show that the chain of graphs corresponding to the se-
quence S can be attached to v0 and v2n to obtain a non-degenerate unit-distance
drawing of G. This is implied by the following general auxiliary result.

Lemma 7. Let {Hi}ki=1 be a sequence of graphs such that, for each i ∈ [1, k]
there exists a non-degenerate unit-distance drawing Di of Hi containing two ver-
tices xii−1, x

i
i ∈ V (Hi) having Euclidean distance di > 1. Further, let D be a

non-degenerate unit-distance drawing of a graph H containing vertices u, v with
their Euclidean distance less than

∑k
i=1 di. Consider the graph G′ obtained by

identification of each vertex xii ∈ V (Hi) with vertex xi+1
i ∈ V (Hi+1) and sub-

sequent identification of u with x10 and v with vertex xkk. Then there exists a
non-degenerate unit-distance drawing of G′.

Proof. For i = 1, . . . , k− 1, let xi be the vertex resulting from the identification
of xii with xi+1

i , and let x0 = u, xk = v. Start with the placement of D1 after
identifying u with x10. If we place the unit-distance drawing D1 of H1 in such a
way that x1 in H1 lies on the line segment connecting points x0 and xk, then the
Euclidean distance between x1 and xk will be strictly less than

∑k
i=2 di. Then

there exists, by continuity of Euclidean distance, ε ∈ R such that when rotating
the drawing of Hi by an angle α ∈ (−ε, ε) around the point x0, the Euclidean
distance between x1 and xk is still strictly less than

∑k
i=2 di.

We have to show that the placement of H1 can be arranged in a way that
the unit-distance drawing obtained is not degenerate. First, let us consider the
case when a vertex w ∈ V (D1) lies on an edge e ∈ E(D). The feasible positions
for w are determined by the angle α ∈ (−ε, ε) and form a circular arc. An
edge e ∈ E(D) can intersect this arc in at most two points, so there are a finite
number of forbidden positions for w. Now, consider the case when w ∈ V (D)
and e ∈ E(D1). We argue in the same way, but this time we fix the unit-distance
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drawing of H1 and rotate the drawing D by angle α around the vertex x0. As
H1 and H are finite graphs, an appropriate α can be chosen such that all vertices
of V (D1) ∪ V (D) are distinct and none of them appears in the interior of a line
segment of D1 ∪D.

The above described step can be repeated for all i ∈ [1, k − 3], however,
when placing the drawing Dk−2 of Hk−2, one has to be more careful, because
the position of xk−2 determines the position of xk−1. When preparing to place
Dk−2 the situation is that we have a point xk−3 whose distance from xk is less
than dk−2 + dk−1 + dk. Again, if we place Dk−2 such that xk−2 lies on the line
segment determined by points xk−3 and xk, the Euclidean distance of xk−2 and xk
is less than dk−1 +dk and there exists ε ∈ R such that when rotating the drawing
Dk−2 by an angle α ∈ (−ε, ε) around xk−3, the Euclidean distance between xk−2
and xk remains smaller than dk−1 + dk. The possible positions for xk−1 form a
circular arc (intersection of the circle with unit diameter centered in xk and the
disk centered in xk−3 with radius dk−2). Thus, there are infinitely many possible
positions for xk−2 and xk−1 and now we can again apply the argument as in the
previous cases to avoid a degeneracy.

Now, that Lemma 7 is proved, the proof of Claim 6 is complete.

3. Concluding Remarks

Since our result covers only a subset of the set of positive integers, it would be
desirable to prove an exponential lower bound for f(UD, n) for all n.

Note that, in unit-distance drawings of graphs from UD, we do not require
the condition dist(x, y) 6= 1 for nonadjacent vertices x, y (unit-distance drawings
which satisfy this condition are called faithful). The recent paper [1] considers la-
belled unit-distance and faithful unit-distance graphs in general Euclidean spaces
Rd; it is proved that, for prescribed d and given number of vertices, there is far
more unit-distance graphs than the faithful ones. Concerning the structure of
minimal non-faithful unit-distance graphs (for fixed d), the authors address the
problem of minimum number of edges of such graphs and provide lower and upper
bounds for bipartite case.

Along with unit-distance graphs, there are studied also odd distance graphs
for which there exist drawings with all edges represented by line segments of odd
lengths. It is known (see [3]) that the complete graph K4 is not an odd distance
graph, and recently in [8] it was proved that this is also not the case for the wheel
graph W6 (observe that both these graphs also belong to M(UD)). Hence, the
related problem would be to characterize all minimal non-odd-distance graphs;
note that, by the result of Piepmeyer (see [7]), these graphs have chromatic
number at least 4.
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