DOMINATING VERTEX COVERS: THE VERTEX-EDGE DOMINATION PROBLEM

William F. Klostermeyer
School of Computing
University of North Florida
Jacksonville, FL 32224 USA
e-mail: wkloster@unf.edu
Margaret-Ellen Messinger
Department of Mathematics and Computer Science Mount Allison University, Sackville, NB, Canada
e-mail: mmessinger@mta.ca
AND
Anders Yeo
Department of Mathematics and Computer Science
University of Southern Denmark
Odense, Denmark
and Department of Mathematics
University of Johannesburg
Auckland Park, 2006 South Africa
e-mail: yeo@imada.sdu.dk

Abstract

The vertex-edge domination number of a graph, $\gamma_{v e}(G)$, is defined to be the cardinality of a smallest set D such that there exists a vertex cover C of G such that each vertex in C is dominated by a vertex in D. This is motivated by the problem of determining how many guards are needed in a graph so that a searchlight can be shone down each edge by a guard either incident to that edge or at most distance one from a vertex incident to the edge. Our main result is that for any cubic graph G with n vertices, $\gamma_{v e}(G) \leq 9 n / 26$. We also show that it is $N P$-hard to decide if $\gamma_{v e}(G)=\gamma(G)$ for bipartite graph G.

Keywords: cubic graph, dominating set, vertex cover, vertex-edge dominating set
2010 Mathematics Subject Classification: 05C69.

1. Introduction

Let $G=(V, E)$ be an undirected graph with n vertices. A dominating set of graph G is a set $D \subseteq V$ such that for each $u \in V \backslash D$, there exists an $x \in D$ adjacent to u. A vertex u is said to dominate a vertex v if either $u=v$ or u is adjacent to v. The minimum cardinality amongst all dominating sets of G is the domination number, denoted $\gamma(G)$. A vertex cover of graph G is a set $C \subseteq V$ such that for each edge $u v \in E$, at least one of u, v is an element of C. The minimum cardinality amongst all vertex covers of G is the vertex cover number, denoted $\tau^{\prime}(G)$.

A number of recent papers have studied problems associated with defending or searching a finite, undirected graph $G=(V, E)$. These problems sometimes refer to protecting the graph with guards. A variety of graph protection problems and models have been considered in the literature of late, see the survey [5]. In the usual protection model, each attack in a sequence of attacks is defended by a mobile guard that is sent to the attacked vertex from a neighboring vertex or, in the case when edges are attacked, by sending a guard across the attacked edge (as introduced in [4]). A dominating set can then be viewed as a static positioning of guards which protect the vertices of the graph, while a vertex cover can be viewed a static positioning of guards which protect the edges of the graph.

A number of other papers have considered so-called searchlight problems which, inspired by the famous art gallery problem, attempt to use searchlights to find an intruder in a graph or a polygon. See for example [2] and [12]. In this paper, we study a variation on the searchlight problem. We shall consider the problem in which the guards, each of whom holds a searchlight, must shine a searchlight down some edge (where they think there might be an intruder). The problem is formally defined below and was initially defined by Peters in [10]. The problem was also studied in $[1,7-9,11]$.

We now define what one may informally think of as a vertex-cover-dominatingset, or what is called a vertex-edge dominating set, for simplicity. The parameter $\gamma_{v e}(G)$ is called the vertex-edge domination number of G (see [10]) and is defined to be equal to the cardinality of a smallest set D such that there exists a vertex cover C of G such that each vertex in C is dominated by a vertex in D. Alternatively, a set D is a vertex-edge dominating set if and only if the set of vertices not dominated by D form an independent set.

We shall say that an edge $u v$ is protected if there is a guard on u, v, or any neighbor of u, v. As examples, observe that $\gamma_{v e}\left(P_{4}\right)=1$ and $\gamma_{v e}\left(C_{5}\right)=2$. It is clear that $\tau^{\prime}(G) \geq \gamma(G) \geq \gamma_{v e}(G)$ for any graph G without isolated vertices.

Informally, we wish to place guards on the vertices of a graph so that any edge is "close" to any guard; that is, each edge is incident to a vertex with a guard or incident with a vertex adjacent to a vertex with a guard. Following the
art gallery metaphor, one may suppose that an alarm is triggered on edge $u v$. A guard must be able to quickly view $u v$ to determine whether there is an intruder on the edge or a false alarm. Thus, if guards occupy the vertices of a vertex-edge dominating set and an alarm is triggered on edge $u v$, there is a guard nearby: on an endpoint of u, v or on a vertex adjacent to u or v. Such a guard can shine a flashlight down incident edge $u v$ to check for an intruder or move to one of u, v and shine a flashlight down incident edge $u v$. As a simple example, consider the graph G shown in Figure 1 with a guard located on vertex y. Suppose an alarm is triggered on some edge e of G. If e is incident with y, the guard simply shines a flashlight down edge e. Otherwise, the guard moves to x or z and shines a flashlight down edge e.

With respect to the formal definition of the vertex-edge domination number, observe that $C=\{x, z\}$ is a vertex cover of graph G shown in Figure 1. It is clear that $D=\{y\}$ is a set of minimum cardinality such that each vertex of C is dominated by D. Thus, $\gamma_{v e}(G)=1$.

Figure 1. A graph G with $\gamma_{v e}(G)=1$.
Upper bounds on the vertex-edge domination number of graphs of order n were presented in [1] for non-trivial connected graphs (upper bound of $\gamma_{v e}(G) \leq$ $n / 2$) and connected C_{5}-free graphs (upper bound of $\gamma_{v e}(G) \leq n / 3$).

In this paper, we present results on the vertex-edge domination number of some graphs. Our main result is shown in Section 2: $\gamma_{v e}(G) \leq 9 n / 26$ for any cubic graph G with n vertices. In Section 3, we show that it is $N P$-hard to determine whether a bipartite graph, B, satisfies $\gamma_{v e}(B)=\gamma(B)$. We start with a simple result.

Proposition 1. Let G be a connected graph of order at least 2. Then $\gamma_{v e}(G)=$ $\tau^{\prime}(G)$ if and only if $\tau^{\prime}(G)=1$.

Proof. As G is a connected graph of order at least 2 we have $\tau^{\prime}(G) \geq 1$. If $\tau^{\prime}(G)=1$, then the proposition follows, as $\tau^{\prime}(G) \geq \gamma_{v e}(G)$ for all G.

Now suppose $\tau^{\prime}(G)>1$. Let C be a minimum vertex cover of G. We construct a vertex-edge dominating set D with fewer vertices than C. Initially, let $D=C$. If any two vertices in C are adjacent, then one of them can be removed from D. So suppose no two vertices in C are adjacent. If there exist two vertices in C that are distance two apart, then these two vertices can replaced in D by the vertex that lies on the path of length two between them. If there are no such
vertices of distance two apart in C, then it follows that the closest pair of vertices in C are distance at least three apart and thus C cannot be a vertex cover, as there is an edge on the shortest path between any two vertices in C that is not covered by any vertex in C.

2. Cubic Graphs

Kostochka and Stocker proved that the domination number of a cubic graph with n vertices is at most $5 n / 14$, see [6]. There exists a cubic graph on 14 vertices where the domination number is 5 , so the bound is tight. Thus, trivially, for any cubic graph $G, \gamma_{v e}(G) \leq \gamma(G) \leq 5 n / 14 \approx 0.35714 n$. In this section, we prove our main result, that for any cubic graph $G, \gamma_{v e}(G) \leq 9 n / 26 \approx 0.34615 n$.

In Section 2.1, we define a useful class of hypergraphs and state two useful hypergraph results. In Section 2.2, we state and prove our main result, Theorem 4.

2.1. Main result on hypergraphs from [3]

For the hypergraph H, let $n(H)$ denote the number of vertices in $H, m(H)$ denote the number of edges in H and $e_{i}(H)$ denote the number of edges in H of size i. For hypergraph H with the vertex set V, a smallest subset of V that contains vertices from every edge is called a transversal and its cardinality is denoted by $\tau(H)$.

In order to state the main result from [3], we need to define a particular class of hypergraphs \mathcal{B}. Let \mathcal{B} be the class of bad hypergraphs defined as exactly those that can be generated using the operations (A)-(D) below.
(A) Let H_{2} be the hypergraph with two vertices $\{x, y\}$ and one edge $\{x, y\}$ and let H_{2} belong to \mathcal{B}.
(B) Given any $B^{\prime} \in \mathcal{B}$ containing a 2-edge $\{u, v\}$, define B as follows. Let $V(B)=$ $V\left(B^{\prime}\right) \cup\{x, y\}$ and let $E(B)=E\left(B^{\prime}\right) \cup\{\{u, v, x\},\{u, v, y\},\{x, y\}\} \backslash\{u, v\}$. Now add B to \mathcal{B}.
(C) Given any $B^{\prime} \in \mathcal{B}$ containing a 3-edge $\{u, v, w\}$, define B as follows. Let $V(B)=V\left(B^{\prime}\right) \cup\{x, y\}$ and let

$$
E(B)=E\left(B^{\prime}\right) \cup\{\{u, v, w, x\},\{u, v, w, y\},\{x, y\}\} \backslash\{u, v, w\}
$$

Now add B to \mathcal{B}.
(D) Given any $B_{1}, B_{2} \in \mathcal{B}$, such that B_{i} contains a 2-edge $\left\{u_{i}, v_{i}\right\}$, for $i=1,2$, define B as follows.
Let $V(B)=V\left(B_{1}\right) \cup V\left(B_{2}\right) \cup\{x\}$ and let $E(B)=E\left(B_{1}\right) \cup E\left(B_{2}\right) \cup\left\{\left\{u_{1}, v_{1}, x\right\}\right.$, $\left.\left\{u_{2}, v_{2}, x\right\},\left\{u_{1}, v_{1}, u_{2}, v_{2}\right\}\right\} \backslash\left\{\left\{u_{1}, v_{1}\right\},\left\{u_{2}, v_{2}\right\}\right\}$. Now add B to \mathcal{B}.

Definition 1. For any hypergraph H, let $b(H)$ denote the number of connected components in H that belong to \mathcal{B}. Further, let $b^{1}(H)$ denote the maximum number of vertex disjoint subhypergraphs in H which are isomorphic to hypergraphs in \mathcal{B} and which are intersected by exactly one other edge in H.

Theorem 2 [3]. If H is a hypergraph whose all edges have size 2, 3, or 4, and $\Delta(H) \leq 3$, then

$$
24 \tau(H) \leq 6 n(H)+4 e_{4}(H)+6 e_{3}(H)+10 e_{2}(H)+2 b(H)+b^{1}(H)
$$

Using Theorem 2, we can prove the following result, which is implicit in [3]; therefore we include a short proof for completeness.

Theorem 3. Let H be a hypergraph whose all edges have size 3 or 4 , and $\Delta(H) \leq$ 3 and every 4 -edge contains a vertex that does not belong to any 3 -edge. Then $12 \tau(H) \leq 3 n(H)+2 e_{4}(H)+3 e_{3}(H)$.

Proof. Assume that $R \in \mathcal{B}$ and that R contains no 2-edge. In this case we note that the last operation carried out in the construction of R is operation (D) (see Subsection 2.1), as operations (A)-(C) all create 2 -edges. Therefore there exist five vertices $\left\{u_{1}, v_{1}, u_{2}, v_{2}, x\right\}$ in R where $\left\{\left\{u_{1}, v_{1}, x\right\},\left\{u_{2}, v_{2}, x\right\},\left\{u_{1}, v_{1}, u_{2}, v_{2}\right\}\right\} \subseteq$ $E(R)$. However then R is not a subgraph of H as the edge $\left\{u_{1}, v_{1}, u_{2}, v_{2}\right\}$ contains no vertex that does not belong to a 3 -edge. Therefore $b(H)=b^{1}(H)=0$ and by Theorem 2 we have the following, which completes the proof of the theorem.

$$
\begin{aligned}
24 \tau(H) & \leq 6 n(H)+4 e_{4}(H)+6 e_{3}(H)+10 e_{2}(H)+2 b(H)+b^{1}(H) \\
& =6 n(H)+4 e_{4}(H)+6 e_{3}(H) .
\end{aligned}
$$

2.2. Upper bound for cubic graphs

The bound that we shall present in Theorem 4 cannot be improved to anything below $n / 3$, due to the graph in Figure 2. We leave it as an open problem to either find larger connected cubic graphs with $\gamma_{v e}(G)=n / 3$ or show that the graph in Figure 2 is the only one; for instance, it does not appear easy to combine copies of the graph in Figure 2 in some way to arrive at another such example.

The open neighborhood of a vertex $v \in V(G)$ is $N(v)=\{u \in V \mid u v \in E(G)\}$ and its closed neighborhood is the set $N[v]=N(v) \cup\{v\}$.

Theorem 4. If G is a cubic graph, then $\gamma_{v e}(G) \leq 9 n / 26$.
Proof. Let S be a maximal independent set in G and assume that $|S|=(5 / 14-$ $\left.\varepsilon_{1}\right) n$, where $n=|V(G)|\left(\varepsilon_{1}\right.$ may be positive or negative). Let T be the set of all vertices in $\bar{S}=V(G) \backslash S$ that have exactly one neighbor in S and let $\varepsilon_{2}=(|S|-|T|) / n$. We will now prove the following two claims.

Figure 2. A 6-vertex cubic graph with vertex-edge domination number equal to $n / 3$.

Claim A. $\gamma_{v e}(G) \leq|S|-\varepsilon_{2} n / 4=\left(\frac{5}{14}-\varepsilon_{1}-\frac{\varepsilon_{2}}{4}\right) n$.
Proof. Let U be a maximal subset of S such that $S \backslash U$ dominates \bar{S}. As \bar{S} is a vertex cover of G, we note that $\gamma_{v e}(G) \leq|S \backslash U|$.

We will now show that $|U| \geq \varepsilon_{2} n / 4$, which will complete the proof of Claim A. Clearly this is true if $\varepsilon_{2} \leq 0$, so assume that $\varepsilon_{2}>0$. For the sake of contradiction assume that $|U|<\varepsilon_{2} n / 4$ and let T^{\prime} be the set of all vertices not in T that have a unique neighbor in $S \backslash U$; note that $T^{\prime} \subseteq N(U)$. As G is cubic, we must have $\left|T^{\prime}\right| \leq 3|U|$, which implies the following inequality.
$|S \backslash U|=|S|-|U| \geq\left(|T|+\varepsilon_{2} n\right)-|U|>(|T|+4|U|)-|U|=|T|+3|U| \geq|T|+\left|T^{\prime}\right|$.
As $|T|+\left|T^{\prime}\right|<|S \backslash U|$, we note that some vertex in $s \in S \backslash U$ is not adjacent to a vertex in $T \cup T^{\prime}$ (as each vertex in $T \cup T^{\prime}$ is adjacent to at most one vertex in $S \backslash U)$. This is a contradiction to the maximality of U, as s could have been added to U. This completes the proof of Claim A.

Claim B. $\frac{12}{14} \gamma_{v e}(G) \leq\left(\frac{4}{14}+\varepsilon_{1}+\frac{2 \varepsilon_{2}}{14}\right) n$.
Proof. We will first construct a 4-uniform hypergraph H as follows. Let $V(H)=$ $V(G)$ and for every vertex $s \in \bar{S}$ add $N_{G}[s]$ as a hyperedge in H. This completes the definition of H. As G is cubic, we note that H is 4-uniform with $n=|V(G)|$ vertices and $m_{H}=|\bar{S}|$ edges.

Note that $\Delta(H) \leq 3$ as for all $x \in V(G)$ at least one vertex in $N[x]$ belongs to S and therefore at most three vertices from $N[x]$ belongs to \bar{S} (which are the vertices that give rise to edges containing x). Furthermore, no 4-edge in H has all its vertices in S.

Let $Q_{1} \subseteq V(H)$ be all degree one vertices in H. Note that every vertex in Q_{1} belongs to \bar{S} and it has all its neighbors in S. Let H^{\prime} be the hypergraph obtained from H by deleting all vertices in Q_{1} (by deleting a vertex v, we mean deleting v and shrinking every edge, e, containing v such that it contains the vertex set $V(e) \backslash\{v\}$ instead of $V(e))$. Note that all edges in H^{\prime} have size three or four and if e is a 3-edge, then all vertices in e belong to S. As no 4-edge is completely contained in S we note that every 4-edge contains a vertex (in \bar{S}) which does not
belong to any 3 -edge. Therefore the following holds by Theorem 3 .

$$
12 \tau\left(H^{\prime}\right) \leq 3 n\left(H^{\prime}\right)+2 e_{4}\left(H^{\prime}\right)+3 e_{3}\left(H^{\prime}\right) \leq 3\left(n-\left|Q_{1}\right|\right)+2\left(m_{H}-\left|Q_{1}\right|\right)+3\left|Q_{1}\right| .
$$

Next, as $m_{H}=n-|S|$, this implies the following

$$
12 \tau\left(H^{\prime}\right) \leq 5 n-2|S|-2\left|Q_{1}\right| .
$$

We will first show that $\gamma_{v e}(G) \leq \tau\left(H^{\prime}\right)$ and then evaluate $5 n-2|S|-2\left|Q_{1}\right|$. Let R be a transversal in H^{\prime} with $|R|=\tau\left(H^{\prime}\right)$. As R contains a vertex from $N[y]$ for all $y \in \bar{S}$, we note that R dominates all vertices in \bar{S}. As \bar{S} is a vertex cover of G, we get that $\gamma_{v e}(G) \leq|R|=\tau\left(H^{\prime}\right)$ as desired.

We will now evaluate $5 n-2|S|-2\left|Q_{1}\right|$. Let Q_{2} be the vertices in \bar{S} of degree 2 in H and let Q_{3} be the vertices in \bar{S} of degree 3 in H. In G the vertices in Q_{1} have 3 neighbors in S, the vertices in Q_{2} have 2 neighbors in S, and the vertices in Q_{3} have 1 neighbor in S. By double counting the number of edges between S and \bar{S} we get the following

$$
3|S|=3\left|Q_{1}\right|+2\left|Q_{2}\right|+1\left|Q_{3}\right| .
$$

Recall that $Q_{3}=T$ and $|S|-|T|=\varepsilon_{2} n$ (and therefore $|S|-\varepsilon_{2} n=|T|$), and thus we obtain the following

$$
3|S|=3\left|Q_{1}\right|+2\left|Q_{2}\right|+\left(|S|-\varepsilon_{2} n\right) .
$$

As $Q_{1} \cup Q_{2}=\bar{S} \backslash T$ we also note that the following holds

$$
\left|Q_{1}\right|+\left|Q_{2}\right|=|\bar{S}|-|T| \leq(n-|S|)-\left(|S|-\varepsilon_{2} n\right) .
$$

Next, the above two equations can be rewritten as follows

$$
3\left|Q_{1}\right|+2\left|Q_{2}\right|=2|S|+\varepsilon_{2} n \quad 2\left|Q_{1}\right|+2\left|Q_{2}\right|=2 n-4|S|+2 \varepsilon_{2} n .
$$

Subtracting the second equation from the first, one obtains the following

$$
\left|Q_{1}\right|=6|S|-2 n-\varepsilon_{2} n .
$$

Now since $|S|=\left(5 n / 14-\varepsilon_{1}\right)$, we get the following equality

$$
\begin{aligned}
5 n-2|S|-2\left|Q_{1}\right| & =5 n-2|S|-2\left(6|S|-2 n-\varepsilon_{2} n\right)=9 n-14|S|+2 \varepsilon_{2} n \\
& =9 n-14\left(5 / 14-\varepsilon_{1}\right) n+2 \varepsilon_{2} n=n\left(4+14 \varepsilon_{1}+2 \varepsilon_{2}\right) .
\end{aligned}
$$

Therefore $12 \tau\left(H^{\prime}\right) \leq n\left(4+14 \varepsilon_{1}+2 \varepsilon_{2}\right)$, which completes the proof of Claim B (by dividing both sides by 14).

Adding the results in Claim A and Claim B, we get the following inequality

$$
\gamma_{v e}(G)+\frac{12}{14} \gamma_{v e}(G) \leq\left(\frac{5}{14}-\varepsilon_{1}-\frac{\varepsilon_{2}}{4}\right) n+\left(\frac{4}{14}+\varepsilon_{1}+\frac{2 \varepsilon_{2}}{14}\right) n
$$

which implies

$$
\frac{26}{14} \gamma_{v e}(G) \leq\left(\frac{9}{14}-\frac{7 \varepsilon_{2}-4 \varepsilon_{2}}{28}\right) n
$$

Therefore if $\varepsilon_{2} \geq 0$, then we have $\gamma_{v e}(G) \leq 9 n / 26$, as desired. If $\varepsilon_{2}<0$, then we note that S is a dominating set in G and therefore $\gamma_{v e}(G) \leq|S|=\left(5 / 14-\varepsilon_{1}\right) n$. Combining this with Claim B results in the following inequality

$$
\gamma_{v e}(G)+\frac{12}{14} \gamma_{v e}(G) \leq\left(\frac{5}{14}-\varepsilon_{1}\right) n+\left(\frac{4}{14}+\varepsilon_{1}+\frac{2 \varepsilon_{2}}{14}\right) n
$$

Analogously to above this implies the following

$$
\frac{26}{14} \gamma_{v e}(G) \leq\left(\frac{9}{14}+\frac{2 \varepsilon_{2}}{28}\right) n
$$

This again implies $\gamma_{v e}(G) \leq 9 n / 26$, as desired.
Following the example shown in Figure 2, we leave open the following question.

Question 1. Is it true that for any cubic graph G of order n, $\gamma_{v e}(G) \leq n / 3$?
In fact, a stronger open problem was stated in [1]. Namely, is it true that $\gamma_{v e}(G) \leq n / 3$ for all connected graphs of order $n \geq 6 ?$

3. $N P$-HARDNESS

Recall that a support vertex in a tree is a vertex that is adjacent to a leaf in the tree. The trees, T, satisfying $\gamma_{v e}(T)=\gamma(T)$ were characterized by Theorem 32 of [9]. This result states that $\gamma_{v e}(T)=\gamma(T)$ if and only if T has an efficient dominating set S such that each vertex of S is a support vertex of T. A simple corollary of the result in [9] is the following.

Corollary 5. We can decide if $\gamma_{v e}(T)=\gamma(T)$ in polynomial time for all trees T.
We now consider the case when we want to decide whether $\gamma_{v e}(G)=\gamma(G)$ for bipartite graphs G.

Theorem 6. It is $N P$-hard to decide whether $\gamma_{v e}(G)=\gamma(G)$ for a bipartite graph G.

Proof. Recall that if $H=(V, E)$ is a hypergraph, then we denote the cardinality of a smallest subset of V that contains vertices from every edge (called a transversal) by $\tau(H)$.

We will reduce from the $N P$-hard problem of deciding whether a 3 -uniform hypergraph, H, has a transversal of size at most k. That is, the hypergraph $H=(V, E)$, where V is the vertex set of H and each edge $e \in E$ is a set containing three vertices. We then want to decide whether there is a subset, $X \subseteq V$, of size at most k that contains at least one vertex of every edge of H.

The idea is to construct a graph, G, such that $\gamma_{v e}(G)<\gamma(G)$ if and only if $\tau(H) \leq k$. Start the construction of graph G with vertex set V. To this, for each edge $e \in E$, we add the vertex set $V_{e}=\left\{v_{i}^{e} \mid i=1,2, \ldots, k\right\}$ and the edges from each vertex in V_{e} to the three vertices in V that belong to e. Then we add the vertices $W=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ and for all $i=1,2, \ldots, k$ add all edges from w_{i} to v_{i}^{e} for all $e \in E$. Finally, we add the two new vertices x and y and all edges from x to $V \cup\{y\}$. This completes the construction of G.

We will show that $\tau(H) \leq k$ if and only if $\gamma_{v e}(G)<\gamma(G)$. Let $S_{i}=w_{i} \cup$ $\left\{v_{i}^{e} \mid e \in E\right\}$. Note that $\gamma(G)=k+1$, as any dominating set in G must contain at least one vertex from each S_{i} (in order to dominate w_{i}) and a vertex from $\{x, y\}$ (in order to dominate y) and $W \cup\{x\}$ is a dominating set in G.

If $\tau(H) \leq k$, then let T be a transversal of H of size $\tau(H)$. Note that $T \subseteq V$ and T is a vertex-edge-dominating set in G (as the only vertices not dominated by T in G are $\left\{w_{1}, w_{2}, \ldots, w_{k}, y\right\}$ which form an independent set). Therefore $\gamma_{v e}(G) \leq|T| \leq k<k+1=\gamma(G)$.

Now assume that $\gamma_{v e}(G)<\gamma(G)$. For the sake of contradiction assume that $\tau(H)>k$. Let Q be a vertex-edge dominating set in G of size $\gamma_{v e}(G)$. As $|Q|=\gamma_{v e}(G)<\gamma(G)=k+1$ and $\tau(H)>k$ we note that $Q \cap V$ is not a transversal in H. Therefore some edge $e \in E$ is not covered by $Q \cap V$. Due to the edge $w_{i} v_{i}^{e}$, we note that Q must contain at least one vertex from each S_{i}, $i=1,2, \ldots, k$. As $|Q| \leq k$, we therefore note that the edge $x y$ is not covered by Q, a contradiction. Therefore $\tau(H)>k$, which completes the proof.

Acknowledgements

The authors thank the anonymous referees for their helpful comments, especially pointing out some useful references.

References

[1] R. Boutrig, M. Chellali, T.W. Haynes and S.T. Hedetniemi, Vertex-edge domination in graphs, Aequationes Math. 90 (2016) 355-366. doi:10.1007/s00010-015-0354-2
[2] D. Dereniowski, H. Ono, I. Suzuki, Ł. Wrona, M. Yamashita and P. Żylinski, The searchlight problem for road networks, Theoret. Comput. Sci. 591 (2015) 28-59. doi:10.1016/j.tcs.2015.04.026
[3] M.A. Henning and A. Yeo, Transversals in 4-uniform hypergraphs, Electron. J. Combin. 23 (2016) \#P3.50.
[4] W.F. Klostermeyer and C.M. Mynhardt, Edge protection in graphs, Australas. J. Combin. 45 (2009) 235-250.
[5] W.F. Klostermeyer and C.M. Mynhardt, Protecting a graph with mobile guards, Appl. Anal. Discrete Math. 10 (2016) 1-29. doi:10.2298/AADM151109021K
[6] A.V. Kostochka and C. Stocker, A new bound on the domination number of connected cubic graphs, Sib. Èlektron. Mat. Izv. 6 (2009) 465-504.
[7] B. Krishnakumari, Y.B. Venkatakrishnan and M. Krzywkowski, Bounds on the vertex-edge domination number of a tree, C.R. Math. 352 (2014) 363-366. doi:10.1016/j.crma.2014.03.017
[8] J.R. Lewis, Vertex-Edge and Edge-Vertex Domination in Graphs, Ph.D. Thesis (Clemson University, Clemson, 2007).
[9] J.R. Lewis, S.T. Hedetniemi, T.W. Haynes and G.H. Fricke, Vertex-edge domination, Util. Math. 81 (2010) 193-213.
[10] J.W. Peters, Theoretical and Algorithmic Results on Domination and Connectivity, Ph.D. Thesis (Clemson University, Clemson, 1986).
[11] Y.B. Venkatakrishnan, C. Natarajan and G. Sathiamoorthy, Vertex-edge and connected domination numbers of a tree, Int. J. Pure Appl. Math. 119 (2018) 103-111.
[12] W.C.K. Yen and C.Y. Tang, An optimal algorithm for solving the searchlight guarding problem on weight two-terminal series-parallel graphs, Acta Inform. 36 (1999) 143-172.
doi:10.1007/s002360050156

