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Abstract

The vertex-edge domination number of a graph, γve(G), is defined to be
the cardinality of a smallest set D such that there exists a vertex cover C of G
such that each vertex in C is dominated by a vertex in D. This is motivated
by the problem of determining how many guards are needed in a graph so
that a searchlight can be shone down each edge by a guard either incident
to that edge or at most distance one from a vertex incident to the edge. Our
main result is that for any cubic graph G with n vertices, γve(G) ≤ 9n/26.
We also show that it is NP -hard to decide if γve(G) = γ(G) for bipartite
graph G.

Keywords: cubic graph, dominating set, vertex cover, vertex-edge domi-
nating set.

2010 Mathematics Subject Classification: 05C69.

http://dx.doi.org/10.7151/dmgt.2175


124 W.F. Klostermeyer, M.E. Messinger and A. Yeo

1. Introduction

Let G = (V,E) be an undirected graph with n vertices. A dominating set of
graph G is a set D ⊆ V such that for each u ∈ V \ D, there exists an x ∈ D
adjacent to u. A vertex u is said to dominate a vertex v if either u = v or u is
adjacent to v. The minimum cardinality amongst all dominating sets of G is the
domination number, denoted γ(G). A vertex cover of graph G is a set C ⊆ V
such that for each edge uv ∈ E, at least one of u, v is an element of C. The
minimum cardinality amongst all vertex covers of G is the vertex cover number,
denoted τ ′(G).

A number of recent papers have studied problems associated with defending
or searching a finite, undirected graph G = (V,E). These problems sometimes
refer to protecting the graph with guards. A variety of graph protection problems
and models have been considered in the literature of late, see the survey [5]. In
the usual protection model, each attack in a sequence of attacks is defended by a
mobile guard that is sent to the attacked vertex from a neighboring vertex or, in
the case when edges are attacked, by sending a guard across the attacked edge (as
introduced in [4]). A dominating set can then be viewed as a static positioning
of guards which protect the vertices of the graph, while a vertex cover can be
viewed a static positioning of guards which protect the edges of the graph.

A number of other papers have considered so-called searchlight problems
which, inspired by the famous art gallery problem, attempt to use searchlights
to find an intruder in a graph or a polygon. See for example [2] and [12]. In
this paper, we study a variation on the searchlight problem. We shall consider
the problem in which the guards, each of whom holds a searchlight, must shine a
searchlight down some edge (where they think there might be an intruder). The
problem is formally defined below and was initially defined by Peters in [10]. The
problem was also studied in [1, 7–9,11].

We now define what one may informally think of as a vertex-cover-dominating-
set, or what is called a vertex-edge dominating set, for simplicity. The parameter
γve(G) is called the vertex-edge domination number of G (see [10]) and is defined
to be equal to the cardinality of a smallest set D such that there exists a vertex
cover C of G such that each vertex in C is dominated by a vertex in D. Alter-
natively, a set D is a vertex-edge dominating set if and only if the set of vertices
not dominated by D form an independent set.

We shall say that an edge uv is protected if there is a guard on u, v, or any
neighbor of u, v. As examples, observe that γve(P4) = 1 and γve(C5) = 2. It is
clear that τ ′(G) ≥ γ(G) ≥ γve(G) for any graph G without isolated vertices.

Informally, we wish to place guards on the vertices of a graph so that any
edge is “close” to any guard; that is, each edge is incident to a vertex with a
guard or incident with a vertex adjacent to a vertex with a guard. Following the
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art gallery metaphor, one may suppose that an alarm is triggered on edge uv. A
guard must be able to quickly view uv to determine whether there is an intruder
on the edge or a false alarm. Thus, if guards occupy the vertices of a vertex-edge
dominating set and an alarm is triggered on edge uv, there is a guard nearby: on
an endpoint of u, v or on a vertex adjacent to u or v. Such a guard can shine a
flashlight down incident edge uv to check for an intruder or move to one of u, v
and shine a flashlight down incident edge uv. As a simple example, consider the
graph G shown in Figure 1 with a guard located on vertex y. Suppose an alarm
is triggered on some edge e of G. If e is incident with y, the guard simply shines
a flashlight down edge e. Otherwise, the guard moves to x or z and shines a
flashlight down edge e.

With respect to the formal definition of the vertex-edge domination number,
observe that C = {x, z} is a vertex cover of graph G shown in Figure 1. It is
clear that D = {y} is a set of minimum cardinality such that each vertex of C is
dominated by D. Thus, γve(G) = 1.

Figure 1. A graph G with γve(G) = 1.

Upper bounds on the vertex-edge domination number of graphs of order n
were presented in [1] for non-trivial connected graphs (upper bound of γve(G) ≤
n/2) and connected C5-free graphs (upper bound of γve(G) ≤ n/3).

In this paper, we present results on the vertex-edge domination number of
some graphs. Our main result is shown in Section 2: γve(G) ≤ 9n/26 for any
cubic graph G with n vertices. In Section 3, we show that it is NP -hard to
determine whether a bipartite graph, B, satisfies γve(B) = γ(B). We start with
a simple result.

Proposition 1. Let G be a connected graph of order at least 2. Then γve(G) =
τ ′(G) if and only if τ ′(G) = 1.

Proof. As G is a connected graph of order at least 2 we have τ ′(G) ≥ 1. If
τ ′(G) = 1, then the proposition follows, as τ ′(G) ≥ γve(G) for all G.

Now suppose τ ′(G) > 1. Let C be a minimum vertex cover of G. We con-
struct a vertex-edge dominating set D with fewer vertices than C. Initially, let
D = C. If any two vertices in C are adjacent, then one of them can be removed
from D. So suppose no two vertices in C are adjacent. If there exist two vertices
in C that are distance two apart, then these two vertices can replaced in D by
the vertex that lies on the path of length two between them. If there are no such
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vertices of distance two apart in C, then it follows that the closest pair of vertices
in C are distance at least three apart and thus C cannot be a vertex cover, as
there is an edge on the shortest path between any two vertices in C that is not
covered by any vertex in C.

2. Cubic Graphs

Kostochka and Stocker proved that the domination number of a cubic graph with
n vertices is at most 5n/14, see [6]. There exists a cubic graph on 14 vertices
where the domination number is 5, so the bound is tight. Thus, trivially, for any
cubic graph G, γve(G) ≤ γ(G) ≤ 5n/14 ≈ 0.35714n. In this section, we prove
our main result, that for any cubic graph G, γve(G) ≤ 9n/26 ≈ 0.34615n.

In Section 2.1, we define a useful class of hypergraphs and state two useful
hypergraph results. In Section 2.2, we state and prove our main result, Theo-
rem 4.

2.1. Main result on hypergraphs from [3]

For the hypergraph H, let n(H) denote the number of vertices in H, m(H) denote
the number of edges in H and ei(H) denote the number of edges in H of size i.
For hypergraph H with the vertex set V , a smallest subset of V that contains
vertices from every edge is called a transversal and its cardinality is denoted by
τ(H).

In order to state the main result from [3], we need to define a particular class
of hypergraphs B. Let B be the class of bad hypergraphs defined as exactly those
that can be generated using the operations (A)–(D) below.

(A) Let H2 be the hypergraph with two vertices {x, y} and one edge {x, y} and
let H2 belong to B.

(B) Given any B′ ∈ B containing a 2-edge {u, v}, define B as follows. Let V (B) =
V (B′) ∪ {x, y} and let E(B) = E(B′) ∪ {{u, v, x}, {u, v, y}, {x, y}} \ {u, v}.
Now add B to B.

(C) Given any B′ ∈ B containing a 3-edge {u, v, w}, define B as follows. Let
V (B) = V (B′) ∪ {x, y} and let

E(B) = E(B′) ∪ {{u, v, w, x}, {u, v, w, y}, {x, y}} \ {u, v, w}.

Now add B to B.

(D) Given any B1, B2 ∈ B, such that Bi contains a 2-edge {ui, vi}, for i = 1, 2,
define B as follows.

Let V (B) = V (B1)∪V (B2)∪{x} and let E(B) = E(B1)∪E(B2)∪{{u1, v1, x},
{u2, v2, x}, {u1, v1, u2, v2}} \ {{u1, v1}, {u2, v2}}. Now add B to B.
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Definition 1. For any hypergraph H, let b(H) denote the number of connected
components in H that belong to B. Further, let b1(H) denote the maximum num-
ber of vertex disjoint subhypergraphs in H which are isomorphic to hypergraphs
in B and which are intersected by exactly one other edge in H.

Theorem 2 [3]. If H is a hypergraph whose all edges have size 2, 3, or 4, and
∆(H) ≤ 3, then

24τ(H) ≤ 6n(H) + 4e4(H) + 6e3(H) + 10e2(H) + 2b(H) + b1(H).

Using Theorem 2, we can prove the following result, which is implicit in [3];
therefore we include a short proof for completeness.

Theorem 3. Let H be a hypergraph whose all edges have size 3 or 4, and ∆(H) ≤
3 and every 4-edge contains a vertex that does not belong to any 3-edge. Then

12τ(H) ≤ 3n(H) + 2e4(H) + 3e3(H).

Proof. Assume that R ∈ B and that R contains no 2-edge. In this case we note
that the last operation carried out in the construction of R is operation (D) (see
Subsection 2.1), as operations (A)–(C) all create 2-edges. Therefore there exist
five vertices {u1, v1, u2, v2, x} in R where {{u1, v1, x}, {u2, v2, x}, {u1, v1, u2, v2}} ⊆
E(R). However then R is not a subgraph of H as the edge {u1, v1, u2, v2} contains
no vertex that does not belong to a 3-edge. Therefore b(H) = b1(H) = 0 and by
Theorem 2 we have the following, which completes the proof of the theorem.

24τ(H) ≤ 6n(H) + 4e4(H) + 6e3(H) + 10e2(H) + 2b(H) + b1(H)

= 6n(H) + 4e4(H) + 6e3(H).

2.2. Upper bound for cubic graphs

The bound that we shall present in Theorem 4 cannot be improved to anything
below n/3, due to the graph in Figure 2. We leave it as an open problem to either
find larger connected cubic graphs with γve(G) = n/3 or show that the graph in
Figure 2 is the only one; for instance, it does not appear easy to combine copies
of the graph in Figure 2 in some way to arrive at another such example.

The open neighborhood of a vertex v ∈ V (G) is N(v) = {u ∈ V |uv ∈ E(G)}
and its closed neighborhood is the set N [v] = N(v) ∪ {v}.

Theorem 4. If G is a cubic graph, then γve(G) ≤ 9n/26.

Proof. Let S be a maximal independent set in G and assume that |S| = (5/14−
ε1)n, where n = |V (G)| (ε1 may be positive or negative). Let T be the set
of all vertices in S = V (G) \ S that have exactly one neighbor in S and let
ε2 = (|S| − |T |)/n. We will now prove the following two claims.
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Figure 2. A 6-vertex cubic graph with vertex-edge domination number equal to n/3.

Claim A. γve(G) ≤ |S| − ε2n/4 =
(

5

14
− ε1 −

ε2
4

)

n.

Proof. Let U be a maximal subset of S such that S \U dominates S. As S is a
vertex cover of G, we note that γve(G) ≤ |S \ U |.

We will now show that |U | ≥ ε2n/4, which will complete the proof of Claim A.
Clearly this is true if ε2 ≤ 0, so assume that ε2 > 0. For the sake of contradiction
assume that |U | < ε2n/4 and let T ′ be the set of all vertices not in T that have
a unique neighbor in S \ U ; note that T ′ ⊆ N(U). As G is cubic, we must have
|T ′| ≤ 3|U |, which implies the following inequality.

|S \U | = |S|−|U | ≥ (|T |+ε2n)−|U |>(|T |+4|U |)−|U | = |T |+3|U | ≥ |T |+ |T ′|.

As |T |+ |T ′| < |S \U |, we note that some vertex in s ∈ S \U is not adjacent
to a vertex in T ∪ T ′ (as each vertex in T ∪ T ′ is adjacent to at most one vertex
in S \ U). This is a contradiction to the maximality of U , as s could have been
added to U . This completes the proof of Claim A. �

Claim B. 12

14
γve(G) ≤

(

4

14
+ ε1 + 2ε2

14

)

n.

Proof. We will first construct a 4-uniform hypergraph H as follows. Let V (H) =
V (G) and for every vertex s ∈ S add NG[s] as a hyperedge in H. This completes
the definition of H. As G is cubic, we note that H is 4-uniform with n = |V (G)|
vertices and mH = |S| edges.

Note that ∆(H) ≤ 3 as for all x ∈ V (G) at least one vertex in N [x] belongs
to S and therefore at most three vertices from N [x] belongs to S (which are the
vertices that give rise to edges containing x). Furthermore, no 4-edge in H has
all its vertices in S.

Let Q1 ⊆ V (H) be all degree one vertices in H. Note that every vertex in Q1

belongs to S and it has all its neighbors in S. Let H ′ be the hypergraph obtained
from H by deleting all vertices in Q1 (by deleting a vertex v, we mean deleting
v and shrinking every edge, e, containing v such that it contains the vertex set
V (e) \ {v} instead of V (e)). Note that all edges in H ′ have size three or four and
if e is a 3-edge, then all vertices in e belong to S. As no 4-edge is completely
contained in S we note that every 4-edge contains a vertex (in S) which does not
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belong to any 3-edge. Therefore the following holds by Theorem 3.

12τ(H ′) ≤ 3n(H ′) + 2e4(H
′) + 3e3(H

′) ≤ 3(n− |Q1|) + 2(mH − |Q1|) + 3|Q1|.

Next, as mH = n− |S|, this implies the following

12τ(H ′) ≤ 5n− 2|S| − 2|Q1|.

We will first show that γve(G) ≤ τ(H ′) and then evaluate 5n− 2|S| − 2|Q1|.
Let R be a transversal in H ′ with |R| = τ(H ′). As R contains a vertex from N [y]
for all y ∈ S, we note that R dominates all vertices in S. As S is a vertex cover
of G, we get that γve(G) ≤ |R| = τ(H ′) as desired.

We will now evaluate 5n−2|S|−2|Q1|. Let Q2 be the vertices in S of degree
2 in H and let Q3 be the vertices in S of degree 3 in H. In G the vertices in Q1

have 3 neighbors in S, the vertices in Q2 have 2 neighbors in S, and the vertices
in Q3 have 1 neighbor in S. By double counting the number of edges between S
and S we get the following

3|S| = 3|Q1| + 2|Q2| + 1|Q3|.

Recall that Q3 = T and |S| − |T | = ε2n (and therefore |S| − ε2n = |T |), and
thus we obtain the following

3|S| = 3|Q1| + 2|Q2| + (|S| − ε2n).

As Q1 ∪Q2 = S \ T we also note that the following holds

|Q1| + |Q2| = |S| − |T | ≤ (n− |S|) − (|S| − ε2n).

Next, the above two equations can be rewritten as follows

3|Q1| + 2|Q2| = 2|S| + ε2n 2|Q1| + 2|Q2| = 2n− 4|S| + 2ε2n.

Subtracting the second equation from the first, one obtains the following

|Q1| = 6|S| − 2n− ε2n.

Now since |S| = (5n/14 − ε1), we get the following equality

5n− 2|S| − 2|Q1| = 5n− 2|S| − 2(6|S| − 2n− ε2n) = 9n− 14|S| + 2ε2n

= 9n− 14(5/14 − ε1)n + 2ε2n = n (4 + 14ε1 + 2ε2) .

Therefore 12τ(H ′) ≤ n (4 + 14ε1 + 2ε2), which completes the proof of Claim
B (by dividing both sides by 14). �
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Adding the results in Claim A and Claim B, we get the following inequality

γve(G) +
12

14
γve(G) ≤

(

5

14
− ε1 −

ε2
4

)

n +

(

4

14
+ ε1 +

2ε2
14

)

n

which implies
26

14
γve(G) ≤

(

9

14
−

7ε2 − 4ε2
28

)

n.

Therefore if ε2 ≥ 0, then we have γve(G) ≤ 9n/26, as desired. If ε2 < 0, then
we note that S is a dominating set in G and therefore γve(G) ≤ |S| = (5/14−ε1)n.
Combining this with Claim B results in the following inequality

γve(G) +
12

14
γve(G) ≤

(

5

14
− ε1

)

n +

(

4

14
+ ε1 +

2ε2
14

)

n.

Analogously to above this implies the following

26

14
γve(G) ≤

(

9

14
+

2ε2
28

)

n.

This again implies γve(G) ≤ 9n/26, as desired.

Following the example shown in Figure 2, we leave open the following ques-
tion.

Question 1. Is it true that for any cubic graph G of order n, γve(G) ≤ n/3?

In fact, a stronger open problem was stated in [1]. Namely, is it true that
γve(G) ≤ n/3 for all connected graphs of order n ≥ 6?

3. NP -Hardness

Recall that a support vertex in a tree is a vertex that is adjacent to a leaf in
the tree. The trees, T , satisfying γve(T ) = γ(T ) were characterized by Theorem
32 of [9]. This result states that γve(T ) = γ(T ) if and only if T has an efficient
dominating set S such that each vertex of S is a support vertex of T . A simple
corollary of the result in [9] is the following.

Corollary 5. We can decide if γve(T ) = γ(T ) in polynomial time for all trees T .

We now consider the case when we want to decide whether γve(G) = γ(G)
for bipartite graphs G.

Theorem 6. It is NP -hard to decide whether γve(G) = γ(G) for a bipartite

graph G.
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Proof. Recall that if H = (V,E) is a hypergraph, then we denote the cardi-
nality of a smallest subset of V that contains vertices from every edge (called a
transversal) by τ(H).

We will reduce from the NP -hard problem of deciding whether a 3-uniform
hypergraph, H, has a transversal of size at most k. That is, the hypergraph
H = (V,E), where V is the vertex set of H and each edge e ∈ E is a set
containing three vertices. We then want to decide whether there is a subset,
X ⊆ V , of size at most k that contains at least one vertex of every edge of H.

The idea is to construct a graph, G, such that γve(G) < γ(G) if and only if
τ(H) ≤ k. Start the construction of graph G with vertex set V . To this, for each
edge e ∈ E, we add the vertex set Ve = {ve

i
| i = 1, 2, . . . , k} and the edges from

each vertex in Ve to the three vertices in V that belong to e. Then we add the
vertices W = {w1, w2, . . . , wk} and for all i = 1, 2, . . . , k add all edges from wi to
ve
i

for all e ∈ E. Finally, we add the two new vertices x and y and all edges from
x to V ∪ {y}. This completes the construction of G.

We will show that τ(H) ≤ k if and only if γve(G) < γ(G). Let Si = wi ∪
{ve

i
| e ∈ E}. Note that γ(G) = k+1, as any dominating set in G must contain at

least one vertex from each Si (in order to dominate wi) and a vertex from {x, y}
(in order to dominate y) and W ∪ {x} is a dominating set in G.

If τ(H) ≤ k, then let T be a transversal of H of size τ(H). Note that T ⊆ V
and T is a vertex-edge-dominating set in G (as the only vertices not dominated
by T in G are {w1, w2, . . . , wk, y} which form an independent set). Therefore
γve(G) ≤ |T | ≤ k < k + 1 = γ(G).

Now assume that γve(G) < γ(G). For the sake of contradiction assume that
τ(H) > k. Let Q be a vertex-edge dominating set in G of size γve(G). As
|Q| = γve(G) < γ(G) = k + 1 and τ(H) > k we note that Q ∩ V is not a
transversal in H. Therefore some edge e ∈ E is not covered by Q ∩ V . Due to
the edge wiv

e
i
, we note that Q must contain at least one vertex from each Si,

i = 1, 2, . . . , k. As |Q| ≤ k, we therefore note that the edge xy is not covered by
Q, a contradiction. Therefore τ(H) > k, which completes the proof.
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