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Abstract

A (graph) property P is a class of simple finite graphs closed under
isomorphisms. In this paper we consider generalizations of sum list colorings
of graphs with respect to properties P.

If to each vertex v of a graph G a list L(v) of colors is assigned, then
in an (L,P)-coloring of G every vertex obtains a color from its list and the
subgraphs of G induced by vertices of the same color are always in P. The
P-sum choice number χP

sc
(G) of G is the minimum of the sum of all list sizes

such that, for any assignment L of lists of colors with the given sizes, there
is always an (L,P)-coloring of G.

We state some basic results on monotonicity, give upper bounds on the P-
sum choice number of arbitrary graphs for several properties, and determine
the P-sum choice number of specific classes of graphs, namely, of all complete
graphs, stars, paths, cycles, and all graphs of order at most 4.
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1. Introduction

Let G = (V,E) be a simple graph with vertex set V = V (G) and edge set
E = E(G), and for every vertex v ∈ V let L(v) be a set (list) of available colors.
The graph G is called L-colorable if there is a proper coloring c of the vertices
with c(v) ∈ L(v) for all v ∈ V . A function f from the vertex set V of G to the
positive integers is called a choice function of G if G is L-colorable for every list
assignment L with |L(v)| = f(v) for all v ∈ V . If the list length of all vertices
coincide then this is the ordinary list colorability. The sum choice number χsc(G)
denotes the minimum of

∑

v∈V f(v) over all choice functions f of G. Since the
considered colorings are proper, vertices of the same color induce an edgeless
graph.

Sum list colorings were introduced by Isaak in 2002 [7]. Results on the sum
choice number can be found, e.g., in [1, 2, 6–9,11].

In this paper we examine a generalization of this concept. We consider vertex
colorings such that the graphs induced by the vertices of the same color belong
to some specific given class of graphs (and not necessarily to the class of edgeless
graphs).

A (graph) property P is a non-empty isomorphism-closed subclass of I, where
I denotes the class of all finite simple graphs (see [3]). We assume in the entire
paper that K1 ∈ P for the considered properties P. A property P is called
additive if G ∪ H ∈ P whenever G ∈ P and H ∈ P are disjoint where G and
H are two graphs of I. A property P is called hereditary (induced hereditary) if
G ∈ P andH ⊆ G (H ≤ G) impliesH ∈ P, whereH ⊆ G (H ≤ G) means thatH
is a subgraph (an induced subgraph) of G. Therefore, every hereditary property
is also induced hereditary. Obviously, K1 ∈ P for any (induced) hereditary
property P.

The graph G is called (L,P)-colorable if there exists a mapping (coloring)
c : V (G) → N such that c(v) ∈ L(v) for each vertex v ∈ V (G) and, for each i ∈ N,
the graph induced in G by the vertices colored i belongs to P. Such a mapping
is called an (L,P)-coloring or a P-list coloring of G.

Let f : V (G) → N be a function which assigns list sizes to the vertices of G.
The graph G is (f,P)-choosable and f is a P-choice function of G if for every
list assignment L with list sizes specified by f , that is, |L(v)| = f(v) for each
v ∈ V (G), the graph G is (L,P)-colorable. The P-sum choice number χP

sc(G) of
a graph G is the minimum of the sum of list sizes in f taken over all P-choice
functions f of G. Thus

χP
sc(G) = min

{

∑

v∈V (G)

f(v) : f is a P-choice function of G

}

.

We use the following standard notation for specific graph properties.
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O = {G ∈ I : E(G) = ∅},
Ok= {G ∈ I : each component of G has at most k + 1 vertices},
Sk = {G ∈ I : ∆(G) ≤ k},
Dk= {G ∈ I : each subgraph of G contains a vertex of degree ≤ k},
Ok= {G ∈ I : χ(G) ≤ k},
Jk= {G ∈ I : χ′(G) ≤ k},
Ik = {G ∈ I : G does not contain Kk+2}.

All these properties are additive induced hereditary properties.

Note that Ok ⊆ Sk ⊂ Dk ⊂ Ok+1 ⊂ Ik for k ≥ 1 (see [3]).

The completeness c(P) of an induced hereditary property P is defined as
c(P) = max{k : Kk+1 ∈ P}; we write c(P) = ∞ if the maximum does not exist.
For example, c(P) = 0 if and only if P ⊆ O, c(I) = ∞, and c(Ok) = c(Sk) =
c(Dk) = c(Ok+1) = c(Ik) = k, as well as c(Jk) = k if k is odd and c(Jk) = k − 1
if k is even. Moreover, if P is an additive hereditary property with c(P) = k,
then Ok ⊆ P ⊆ Ik (see [3]).

The P-sum choice number is a generalization of the usual sum choice number
since χO

sc(G) = χsc(G) for all graphs G. This concept was introduced in [4].
In [4,5] the P-sum choice number for induced hereditary properties P was studied,
especially for P = D1, that is, for the class of acyclic graphs. In [10] lower and
upper bounds on χP

sc(G) are given for arbitrary induced hereditary properties P
where G is the union of two graphs with exactly one vertex in common.

This paper is organized as follows. In Section 2 we collect some basic results,
most of them from the literature. In Section 3 we present upper bounds on the
P-sum choice number for arbitrary graphs and specific additive induced heredi-
tary properties P, namely Dk, Ik, Jk, Ok, O

k, and Sk. Moreover, Theorem 10
contains a general upper bound for all additive hereditary properties and Theo-
rem 14 for all additive properties. In Section 4 we determine the P-sum choice
number of some known classes of graphs including complete graphs, stars, paths,
cycles, and all graphs of order at most 4 for arbitrary additive induced hereditary
properties P.

2. Preliminaries

In this section we state some basic results.

Proposition 1. Let P,Q be arbitrary properties. If P ⊆ Q, then χQ
sc(G) ≤

χP
sc(G).

Proof. Each (L,P)-coloring of G is also an (L,Q)-coloring of G since each graph
in P is contained inQ. This implies that each P-choice function of G is aQ-choice
function of G, hence χQ

sc(G) ≤ χP
sc(G).
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The following proposition collects some bounds that can be found in [4] or
deduced from some results there.

Proposition 2 [4]. Let P be a hereditary (an induced hereditary) property and

H ⊆ G (H ≤ G). Then χP
sc(G) ≥ χP

sc(H) + χP
sc(G− V (H)) ≥ χP

sc(H) + |V (G)| −
|V (H)|.

A direct implication is the following result.

Corollary 3. If P is an induced hereditary property and V (G) = V1 ∪ · · · ∪ Vl is

a partition of the vertex set of a graph G, then χP
sc(G) ≥

∑l
i=1 χ

P
sc(G[Vi]).

Proof. The result follows by iterative application of Proposition 2 on the induced
subgraphs G[V1], . . . , G[Vl−1].

For P = O (that is, for the sum choice number) the lower bound can be
improved to χO

sc(G) ≥
∑l

i=1 χ
O
sc(G[Vi]) + l − c(G) where c(G) is the number of

components of G (see [6, 9]).

In the proof in [9], l − c(G) edges that induce bridges (that is, blocks K2)
were added to the subgraph G[V1]∪· · ·∪G[Vl], and each bridge increases the sum
choice number by χsc(K2) − 2 = 3 − 2 = 1. Since χP

sc(K2) = 2 for P 6= O, the
larger subgraph does not increase the lower bound on the P-sum choice number
if P 6= O.

The following result is proved in [4] using some hypergraph method.

Proposition 4 [4]. Let P be an additive induced hereditary property. If G =
F ∪H is the disjoint union of F and H, then χP

sc(G) = χP
sc(F ) + χP

sc(H).

Proof. Let f : V (G) → N be a function such that f |V (F ) and f |V (H) are P-choice
functions of F and H, respectively. Let L be a list assignment of G with sizes
determined by f . An (L|V (F ),P)-coloring of F and an (L|V (H),P)-coloring of H
provide an (L,P)-coloring of G = F ∪H since for each color i the subgraphs of
F and of H induced by vertices of color i are disjoint and contained in P, hence
their union, that is, the corresponding induced subgraph of G = F ∪H, is also
in P since P is additive. This implies χP

sc(G) ≤ χP
sc(F ) + χP

sc(H). Equality holds
by Proposition 2.

This result implies that the P-sum choice number of a graph is equal to
the sum of the P-sum choice numbers of its components for additive induced
hereditary properties P.

Corollary 5. Let P be an additive induced hereditary property. If G has c com-

ponents H1, . . . , Hc, then χP
sc(G) = χP

sc(H1) + · · ·+ χP
sc(Hc).



Generalized Sum List Colorings of Graphs 693

3. Upper Bounds for Specific Properties

In this section we present upper bounds on χP
sc(G) for arbitrary graphsG = (V,E)

and specific additive (induced) hereditary properties P.

The greedy bound GB(G) = |V | + |E| is an upper bound on the sum choice
number χsc(G) = χO

sc(G), and obviously χI
sc(G) = |V | holds (each vertex obtains

a list of size 1). Since O ⊆ P ⊆ I for any additive property P, we have |V | ≤
χP
sc(G) ≤ |V |+ |E| by Proposition 1.

The next result states an upper bound on the D1-sum choice number proved
in [4]. We present a simple direct proof.

Theorem 6 [4]. χD1

sc (G) ≤ |E|+ c(G), where c(G) is the number of components

of G.

Proof. If G is connected, then order the vertices V = {v1, . . . , vn} in such a
way that vi, i ≥ 2, is connected to vj , 1 ≤ j ≤ i − 1. Set f(v1) = 1 and
f(vi) = |{e ∈ E : e = vjvi, j < i}| ≥ 1 for i ≥ 2.

Then
∑n

i=1 f(vi) = |E|+1. We prove that f is a D1-choice function of G by
a greedy (L,P)-coloring of v1, . . . , vn for an arbitrary list assignment L with list
sizes defined by f . Obviously, v1 can be colored. Assume that v1, . . . , vi−1 are
colored and consider vi, i ≥ 2. If all neighbors of vi in {v1, . . . , vi−1} are colored
distinctly, then vi can be colored by any color from its list since neither adding
an isolated vertex nor a pending edge to an acyclic graph does create a cycle. If
at least two neighbors have the same color, then there is a color in L(vi) not used
in any neighbor of vi which can be used to color vi, and we are done.

If G is not connected, then use Corollary 5 and apply the preceding result
for all components of G.

Note that this bound can be improved (see Theorem 7), but it is also tight
in some specific cases. For example, it holds that χD1

sc (Cn) = n+1 = |E(Cn)|+1
(see Theorem 19).

The following result can be deduced from Corollary 9 in [4]. We give a direct
proof instead without using hypergraph methods.

Theorem 7. Let v1, . . . , vn be an arbitrary ordering of the vertices of G and

Gi = G[{v1, . . . , vi}], i ∈ {1, . . . , n}. Then

χDk
sc (G) ≤ n+

n
∑

i=1

⌊

dGi
(vi)

k + 1

⌋

≤ |V |+
|E|

k + 1
.

Proof. Define f : V → N by f(vi) = 1 +
⌊

dGi
(vi)

k+1

⌋

, i ∈ {1, . . . , n}. Then
∑n

i=1 f(vi) = n+
∑n

i=1

⌊

dGi
(vi)

k+1

⌋

≤ n+ 1
k+1

∑n
i=1 dGi

(vi) = |V |+ 1
k+1 |E|.
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We prove in the following that f is a Dk-choice function of G. Let L be a
list assignment with |L(v)| = f(v) for every v ∈ V . Vertex v1 can be colored
with the color from its list. Assume that vertices v1, . . . , vi−1 are already colored
in a partial (L,Dk)-coloring of G, and consider the next vertex vi. If at most
k neighbors of vi are colored by a color α ∈ L(vi), then vi can also be colored
by α since the subgraph Cα of Gi induced by vertices of color α is k-degenerate:
Each subgraph of Cα without vi has a vertex of degree at most k because of
the assumed coloring, and if vi is a vertex of the subgraph, then vi is a vertex

of degree at most k. This means that at most
⌊

dGi
(vi)

k+1

⌋

colors cannot be used

for vi, but L(vi) has at least one color which is not forbidden. Therefore, the
(L,Dk)-coloring of G can be completed and f is a Dk-choice function of G.

If Dk ⊆ P, then χP
sc(G) ≤ χDk

sc (G) by Proposition 1, thus the upper bound
of Theorem 7 is also an upper bound on the P-sum choice number of G. Since
Dk ⊆ Ok+1 ⊆ Ik we obtain the following bounds.

Corollary 8. Let v1, . . . , vn be an arbitrary ordering of the vertices of G and

Gi = G[{v1, . . . , vi}], i ∈ {1, . . . , n}. Then

χOk

sc (G) ≤ n+

n
∑

i=1

⌊

dGi
(vi)

k

⌋

≤ |V |+
|E|

k
.

Note that for O1 = O Corollary 8 gives the greedy bound of G: χO1

sc (G) =
χsc(G) ≤ GB(G) = |V |+ |E|.

Corollary 9. Let v1, . . . , vn be an arbitrary ordering of the vertices of G and

Gi = G[{v1, . . . , vi}], i ∈ {1, . . . , n}. Then

χIk
sc (G) ≤ n+

n
∑

i=1

⌊

dGi
(vi)

k + 1

⌋

≤ |V |+
|E|

k + 1
.

Let us mention that it is possible to generalize these results and prove that

f : V → N with f(vi) = 1+
⌊

dGi
(vi)

d(P,G)

⌋

is a P-choice function ofG for an appropriate

divisor d(P, G). Note that d(P, G) = 1 leads to a choice function f with sum of
list sizes equal to the greedy bound GB(G) which is indeed an upper bound on
the P-choice number of G. In Corollary 9 in [4] a divisor d(P, G) = δ(P) was
used, that is, the smallest minimum degree of a minimal forbidden graph of P
(which is a graph not contained in P whose proper induced subgraphs are all in
P). Obviously, it suffices to consider just subgraphs of G.

The following result provides a general upper bound on χP
sc(G).
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Theorem 10. Let P be an additive hereditary property, v1, . . . , vn be an arbitrary

ordering of the vertices of G, Gi = G[{v1, . . . , vi}] for i ∈ {1, . . . , n}, and k =
c(P). Then

χP
sc(G) ≤ n+

n
∑

i=1

min

{

dGi
(vi),

⌊

i− 1

k + 1

⌋}

.

Proof. Define f : V (G) → N by f(vi) = 1+min
{

dGi
(vi),

⌊

i−1
k+1

⌋}

, i ∈ {1, . . . , n}.

Then
∑n

i=1 f(vi) = n+
∑n

i=1min
{

dGi
(vi),

⌊

i−1
k+1

⌋}

as stated.

Let L be a list assignment with list sizes defined by f . Vertex v1 can be
colored with the color from its list of size f(v1) = 1. Assume that vertices
v1, . . . , vi−1 are already colored in a partial (L,P)-coloring of G, and consider
next the vertex vi.

If f(vi) = 1 + dGi
(vi), then we can color vi by a color distinct from the

colors of all of its already colored dGi
(vi) neighbors. Thus vi belongs to none

of the so far existing components induced by vertices of the same color. Let

now f(vi) = 1 +
⌊

i−1
k+1

⌋

. If at most k vertices in v1, . . . , vi−1 are colored with a

color α ∈ L(vi), then vi can also be colored by α since all subgraphs of Kk+1

are contained in the hereditary property P. Hence at most
⌊

i−1
k+1

⌋

colors are

forbidden for vertex vi, but L(vi) contains at least one additional color which can
be used to color vi.

This implies that the (L,P)-coloring of G can be inductively completed, and
therefore f is a P-choice function of G.

Note that for P ⊇ Dk the degree dGi
(vi) can be replaced by

⌊

dGi
(vi)

k+1

⌋

. Since

dGi
(vi) ≤ i− 1, we obtain the upper bound of Theorem 7.

Corollary 11. Let P be an additive hereditary property, G be a graph with n
vertices, and k = c(P). Then

χP
sc(G) ≤ χOk

sc (G) ≤ n+
n
∑

i=1

⌊

i− 1

k + 1

⌋

.

Proof. The first inequality follows from Proposition 1 since Ok ⊆ P, the second
by Theorem 10 since c(Ok) = k.

For complete graphs equality holds in Theorem 10 and Corollary 11 (see
Theorem 15).

The square G2 of a graph G is the graph with V (G2) = V (G) and uv ∈ E(G2)
if and only if the distance between u and v in G is at most 2.
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Theorem 12. Let v1, . . . , vn be an arbitrary ordering of the vertices of G and

Gi = G[{v1, . . . , vi}] for i ∈ {1, . . . , n}. Then

χSk
sc (G) ≤ n+

n
∑

i=1

⌊

dGi
2(vi)

k + 1

⌋

≤ |V (G)|+

∣

∣E(G2)
∣

∣

k + 1
.

Proof. Define f : V (G) → N by f(vi) = 1 +

⌊

d
Gi

2 (vi)

k+1

⌋

, i ∈ {1, . . . , n}. Then

n
∑

i=1

f(vi) = n+
n
∑

i=1

⌊

dGi
2(vi)

k + 1

⌋

≤ n+
n
∑

i=1

⌊

dG2[{v1,...,vi}](vi)

k + 1

⌋

≤ n+
1

k + 1

n
∑

i=1

dG2[{v1,...,vi}](vi) = |V (G)|+
1

k + 1

∣

∣E(G2)
∣

∣ .

The first inequality follows from Gi = G[{v1, . . . , vi}] which implies that two
vertices at distance at most 2 in Gi have also distance at most 2 in G, that is,
Gi

2 ⊆ G2[{v1, . . . , vi}].

We prove in the following that f is an Sk-choice function of G. Let L be a list
assignment with list sizes defined by f . Vertex v1 can be colored with the color
from its list. Assume that v1, . . . , vi−1 are already colored in a partial (L,Sk)-
coloring of G and consider the next vertex vi, i ∈ {2, . . . , n}. A color α ∈ L(vi) is
forbidden for vi if either vi is adjacent to at least k + 1 vertices of color α in Gi,
or if vi is adjacent to a vertex vj of color α, j < i, which is adjacent to at least
k vertices of color α. In either case, at least k + 1 vertices of NGi

2(vi) must be
already colored with α in order to forbid this color for vi. This implies that at

most
⌊

1
k+1dGi

2(vi)
⌋

different colors are forbidden, hence vi can be colored with a

color from L(vi), and the (L,Sk)-coloring of G can be inductively completed.

If Sk ⊆ P, then χP
sc(G) ≤ χSk

sc (G) by Proposition 1, thus the upper bound
of Theorem 12 is also an upper bound on the P-sum choice number of G. This
improves the upper bound on χP

sc(G) from Corollary 11 if Sk ⊆ P since dGi
2(vi) ≤

i− 1. For example, the Theorem of Vizing states that χ′(G) ≤ ∆(G)+1, that is,

∆(G) ≤ k − 1 implies χ′(G) ≤ k. Therefore, Sk−1 ⊆ Jk and χJk
sc (G) ≤ χ

Sk−1

sc (G)
by Proposition 1. From Theorem 12 we obtain the following bounds.

Corollary 13. Let v1, . . . , vn be an arbitrary ordering of the vertices of G, Gi =
G[{v1, . . . , vi}] for i ∈ {1, . . . , n}, and k ≥ 1. Then

χJk
sc (G) ≤ n+

n
∑

i=1

⌊

dGi
2(vi)

k

⌋

≤ |V (G)|+

∣

∣E(G2)
∣

∣

k
.
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In [9] an upper bound on the sum choice number of G was proved that
depends on a partition V (G) = V1 ∪ · · · ∪ Vl of the vertex set of G and the sum
choice numbers of the induced subgraphs G[Vi], i = 1, . . . , l. The bound can be
generalized as follows.

Theorem 14. If P is an additive property and V (G) = V1∪· · ·∪Vl is a partition

of V (G), then

χP
sc(G) ≤

l
∑

i=1

χP
sc(G[Vi]) + |E(G)| −

l
∑

i=1

|E(G[Vi])| .

Proof. For i ∈ {1, . . . , l} let fi : Vi → N be a P-choice function of G[Vi] with
∑

v∈Vi
fi(v) = χP

sc(G[Vi]). Define f : V (G) → N as follows:

f(v) = fi(v) + |N(v) ∩ (V1 ∪ · · · ∪ Vi−1)| for v ∈ Vi, i ∈ {1, . . . , l}.

Consider an arbitrary list assignment L with |L(v)| = f(v) for each vertex
v ∈ V (G). Color at first the vertices of V1 which is possible since f |V1

= f1 and
f1 is a P-choice function of G[V1]. Assume that all vertices of V1 ∪ · · · ∪ Vi−1

are colored by a partial (L,P)-coloring ϕ of G and consider next the set Vi,
i ∈ {2, . . . , l}.

A vertex v ∈ Vi will be colored distinctly from the previously colored neigh-
bors, that is, only the colors of Li(v) = L(v)\{ϕ(w) : w ∈ N(v)∩(V1∪· · ·∪Vi−1)}
will be used. Since |Li(v)| ≥ fi(v) for all v ∈ Vi and fi is a P-choice function of
G[Vi], each vertex v ∈ Vi can be colored with a color from Li(v) ⊆ L(v). The
coloring is a partial (L,P)-coloring of G since P is additive.

This implies that f is a P-choice function of G with

∑

v∈V (G)

f(v) =
l

∑

i=1

χP
sc(G[Vi]) + |E(G) \ E(G[V1] ∪ · · · ∪G[Vl])|

=
l

∑

i=1

χP
sc(G[Vi]) + |E(G)| −

l
∑

i=1

|E(G[Vi])| .

4. Specific Graph Classes

In this section we determine the P-sum choice number of some well-known classes
of graphs for arbitrary additive induced hereditary properties P. We begin with
complete graphs whose P-sum choice numbers only depend on the complete
graphs contained in P, that is, on the completeness c(P) of P. The proof is
similar to the proof for the determination of the sum choice number χsc(Kn)
in [8]. In fact, the following theorem is a generalization of this result.



698 A. Kemnitz, M. Marangio and M. Voigt

Theorem 15. Let b(n, k) =
∑n

i=1

(

1 +
⌊

i−1
k+1

⌋)

for n ∈ N, k ∈ N0 and P be an

induced hereditary property. If c(P) = k, then χP
sc(Kn) = b(n, k).

Proof. The proof of Theorem 10 implies χP
sc(Kn) ≤ b(n, k) if G = Kn since

dGi
(vi) = i− 1. We only need to require that P is induced hereditary, since the

subgraphs of G induced by vertices of the same color are also complete and thus
connected induced subgraphs.

Consider an arbitrary P-choice function f of Kn and denote the vertices of
Kn in increasing order with respect to f , f(v1) ≤ · · · ≤ f(vn). Assume that there

is a vertex vj , 1 ≤ j ≤ n, with f(vj) < 1+
⌊

j−1
k+1

⌋

. Since f(vj) ≥ 1, j− 1 ≥ k+1.

Let L be the list assignment with initial lists, L(vi) = {1, . . . , f(vi)} for each
i ∈ {1, . . . , n}. Then in any (L,P)-coloring the vertices in V ′ = {v1, . . . , vj} will

be colored by at most q =
⌊

j−1
k+1

⌋

≥ 1 colors 1, . . . , q. By the pigeonhole principle,

there is a color α ∈ {1, . . . , q} used in at least
⌈

j
q

⌉

vertices of V ′. Let r be the

integer 0 ≤ r ≤ k with j − 1 = q(k+ 1)+ r. Then
⌈

j
q

⌉

=
⌈

q(k+1)+r+1
q

⌉

= k+ 1+
⌈

r+1
q

⌉

> k+1, that is, the graph induced by the vertices of color α is a complete

graph with more than k+1 vertices, a contradiction to c(P) = k. It follows that

f(vi) ≥ 1 +
⌊

i−1
k+1

⌋

for every i ∈ {1, . . . , n} and therefore χP
sc(Kn) ≥ b(n, k).

In the following proposition we compute b(n, k).

Proposition 16. For n ∈ N, k ∈ N0 let n = q(k + 1) + r with q, r ∈ N0, r ≤ k.

Then b(n, k) = 1
2(q + 1)(n+ r) = 1

2

(⌊

n
k+1

⌋

+ 1
)(

2n−
⌊

n
k+1

⌋

(k + 1)
)

.

Proof. Let n = q(k + 1) + r with 0 ≤ r ≤ k. Then

b(n, k) =

n
∑

i=1

(

1 +
⌊

i−1
k+1

⌋)

= n+

q(k+1)
∑

i=1

⌊

i−1
k+1

⌋

+

q(k+1)+r
∑

i=q(k+1)+1

⌊

i−1
k+1

⌋

= n+ (k + 1)

q−1
∑

j=0

j + rq = n+ 1
2(k + 1)(q − 1)q + rq

= 1
2(k + 1)q(q + 1) + r(q + 1) = 1

2(q + 1)(n+ r)

= 1
2

(⌊

n
k+1

⌋

+ 1
)(

2n−
⌊

n
k+1

⌋

(k + 1)
)

.

For example, if P = O, then c(O) = k = 0 and therefore χO
sc(Kn) =

χsc(Kn) = 1
2(n + 1)n = n +

(

n
2

)

= |V (Kn)| + |E(Kn)| (see [8]). For proper-
ties P with c(P) = k = 1 we obtain χP

sc(Kn) =
1
2

(⌊

n
2

⌋

+ 1
) (

2n− 2
⌊

n
2

⌋)

, that is,
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χP
sc(Kn) =

1
4n(n+2) if n even and χP

sc(Kn) =
1
4(n+1)2 if n odd. This generalizes

Theorem 31 of [4] on χD1

sc (Kn).

In the next theorems stars, paths, and cycles are considered. Their P-sum
choice number again only depends on the connected induced subgraphs contained
in P.

Theorem 17. Let P be an additive induced hereditary property. If m ∈ N and

s = max{k : k ≤ m and K1,k ∈ P} for P 6= O and s = 0 for P = O, then

χP
sc(K1,m) = m+ 1 +

⌊

m
s+1

⌋

.

Proof. Let V = {z, v1, . . . , vm} be the vertex set of K1,m such that z has degree
m. Define f : V → N by f(vi) = 1 for i ∈ {1, . . . ,m} and f(z) = 1 +

⌊

m
s+1

⌋

. We
prove that f is a P-choice function of K1,m. Consider an arbitrary list assignment
L with list sizes defined by f . Each vertex vi must be colored with the color from
its own list L(vi) for each i ∈ {1, . . . ,m} which is possible since P is additive.
Each color which is used to color at most s vertices vi can be used to color z since
K1,s ∈ P and P is induced hereditary which implies that also all substars are in
P. Therefore, at most

⌊

m
s+1

⌋

colors are forbidden for z which implies that z can
be colored with a color from its list. Therefore, f is a P-choice function of K1,m

and χP
sc(K1,m) ≤

∑

v∈V f(v) = m+ 1 +
⌊

m
s+1

⌋

.

Consider now an arbitrary P-choice function f of K1,m and assume without
loss of generality that f(v1) = · · · = f(va) = 1 and f(va+1), . . . , f(vm) ≥ 2,
a ≥ 0. Consider an arbitrary list assignment L with list sizes defined by f .
As above, vi must be colored with the color from L(vi) for i ∈ {1, . . . , a}. It
must hold that f(z) ≥ 1 +

⌊

a
s+1

⌋

, which allows z to be colored with a color
β ∈ L(z). Lastly, va+1, . . . , vm can always be colored by a color different from
β since their list size is at least 2. It follows that

∑

v∈V f(v) ≥ a + 2(m − a) +

1 +
⌊

a
s+1

⌋

= m + 1 +
⌊

(m−a)(s+1)+a

s+1

⌋

≥ m + 1 +
⌊

m
s+1

⌋

since s ≥ 0. Therefore,

χP
sc(K1,m) ≥ m+ 1 +

⌊

m
s+1

⌋

.

For example, if P = O, then χO
sc(K1,m) = χsc(K1,m) = 2m+ 1.

Theorem 18. Let P be an additive induced hereditary property. If n ∈ N and

p = max{k : k ≤ n and Pk ∈ P}, then χP
sc(Pn) = n+

⌊

n−1
p

⌋

.

Proof. Let Pn = (v1, . . . , vn) and define f : V (Pn) → N by f(vi) = 1 if i = 1
or if p 6 |(i− 1), and f(vi) = 2 otherwise. We prove that f is a P-choice function
of Pn. Consider an arbitrary list assignment L with |L(vi)| = f(vi) for every
i ∈ {1, . . . , n}. We color the vertices in order, beginning with v1. If f(vi) = 1,
then vi must be colored with the single color in its list. If f(vi) = 2, then vi will
be colored with a color different from the color of vi−1. This implies that each
graph induced by vertices of the same color consists of paths of order at most p
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and therefore belongs to P since P is additive and induced hereditary. Hence the
coloring is an (L,P)-coloring, and f is a P-choice function which implies that

χP
sc(Pn) ≤ n+

⌊

n−1
p

⌋

.

Assume that there is a P-choice function f of Pn with
∑

v∈V (Pn)
f(v) =

n − 1 +
⌊

n−1
p

⌋

. Since χP
sc(Pn) ≥ n, p ≤ n − 1, which implies Pp+1 /∈ P. There

are less than
⌊

n−1
p

⌋

vertices with list size at least 2, all other vertices have list

size 1. Therefore, we either find p + 1 consecutive vertices with list size 1, or
(a + 2)p + 1 consecutive vertices vj , . . . , vj+(a+2)p, a ≥ 0, with the following list
sizes: f(vi) = 2 if i = j + lp, l = 1, . . . , a + 1, and f(vi) = 1 otherwise. Every
sequence of consecutive vertices of list size 1 is assigned the same list, alternating
between {1} and {2}, all other vertices have initial lists L(v) = {1, . . . , f(v)}.
These lists force that any list coloring has p+ 1 consecutive vertices of the same

color, which is a contradiction to Pp+1 /∈ P. Therefore, χP
sc(Pn) ≥ n+

⌊

n−1
p

⌋

.

For example, if P = O, then p = 1 and χO
sc(Pn) = χsc(Pn) = 2n− 1.

Theorem 19. Let P be an additive induced hereditary property. If n ∈ N and

p = max{k : k ≤ n and Pk ∈ P}, then χP
sc(Cn) = n if Cn ∈ P, χP

sc(Cn) = n + 1

if Cn /∈ P, p = n− 1, and χP
sc(Cn) = n+ 1 +

⌊

n−1
p

⌋

otherwise.

Proof. The result is obvious if Cn ∈ P, therefore assume in the following that
Cn /∈ P which implies χP

sc(Cn) ≥ n+ 1.
Let v1, v2, . . . , vn be the consecutive vertices of Cn, and V = {v1, . . . , vn}.
If p = n − 1, then f : V → N with f(vi) = 1 for i ∈ {1, . . . , n − 1} and

f(vn) = 2 is a P-choice function of Cn, since for any list assignment with list
sizes determined by f the vertex vn can be colored differently than vertex v1,
that is, the graphs induced by vertices of the same color consist of paths of order
at most p = n− 1 which are in P since P is an additive and induced hereditary
property. Hence, χP

sc(Cn) = n+ 1 in this case.
If p 6= n − 1, then define f : V → N by f(vi) = 1 if i = 1 or if p 6 | (i − 1),

and f(vi) = 2 otherwise (see the proof of Theorem 18) and f ′ : V → N by
f ′(vi) = f(vi) if 1 ≤ i ≤ n− 1 and f ′(vn) = f(vn) + 1. Consider an arbitrary list
assignment L with |L(vi)| = f ′(vi) for every i ∈ {1, . . . , n}. Color the vertices
v1, . . . , vn in order as in the proof of Theorem 18, but additionally remove the
color of v1 from L(vn) which is possible since its list size was increased by 1,
thus forcing vn to be colored differently from v1. This implies again that the
coloring is an (L,P)-coloring and f ′ is a P-choice function of Cn. Therefore,

χP
sc(Cn) ≤ n+ 1 +

⌊

n−1
p

⌋

. Note that because of the lower bound n+ 1, equality

holds for p ≥ n. Since p 6= n − 1, let p ≤ n − 2 in the following, which implies
Pp+1 /∈ P.
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Assume that there is a P-choice function f of Cn with
∑

v∈V f(v) = n +
⌊

n−1
p

⌋

. If there is a vertex vi with f(vi) ≥ 3, then vi can always be colored with

a color different from the colors of its neighbors. This implies that
∑

v∈V f(v) ≥

f(vi) + χP
sc(Pn−1) ≥ 3 + n − 1 +

⌊

n−2
p

⌋

≥ n + 1 +
⌊

n−1
p

⌋

by Theorem 18, a

contradiction to the assumption. Hence there are exactly a =
⌊

n−1
p

⌋

vertices

with list size 2 and n − a vertices with list size 1. Set n = ap + r with 1 ≤ r ≤
p. Since n > ap, by the pigeonhole principle, we either find p + 1 consecutive
vertices with list size 1 (e.g., if a = 1) which leads to a list assignment with a
monochromatic Pp+1 which is not in P, a contradiction, or we find p consecutive
vertices of list size 1 bounded by two vertices of list size 2. In this case, by
removing the p vertices of list size 1 and reducing the list size of the end-vertices
of the resulting Pn−p by 1 we obtain a P-choice function of Pn−p which implies
∑

v∈V f(v) ≥ p+ 2 + χP
sc(Pn−p) = p+ 2 + n− p+

⌊

n−p−1
p

⌋

= n+ 1 +
⌊

n−1
p

⌋

by

Theorem 18, a contradiction to the initial assumption.

For example, if P = O, then p = 1 and χO
sc(Cn) = χsc(Cn) = 2n.

The results of this section allow the computation of the P-sum choice number
of all graphs of order at most 4 with the exception of the graph isomorphic to a
paw K1,3 + e (a claw K1,3 with an additional edge) and of K1,1,2. Their P-sum
choice numbers will be determined in the next propositions.

Proposition 20. Let P be an additive induced hereditary property. If G ∼=
K1,3 + e, then χO

sc(G) = 8, χP
sc(G) = 4 if G ∈ P, and χP

sc(G) = 5 if G /∈ P 6= O.

Proof. If P = O, then χO
sc(G) = χsc(G) = GB(G) = 8 [1]. If G ∈ P, then

obviously χP
sc(G) = |V (G)| = 4. Therefore, let G /∈ P 6= O. Since G /∈ P,

χP
sc(G) ≥ |V (G)|+1 = 5. Denote the vertices of G such that dG(z) = 3, dG(w) =

1, and dG(v1) = dG(v2) = 2. Define f : V (G) → N by f(z) = 2 and f(v) = 1
for v 6= z. Consider an arbitrary list assignment L with sizes defined by f . In
an (L,P)-coloring of G, all vertices except z must obtain the color of their list.
If v1 and v2 are colored by the same color α, then color z differently from α.
Otherwise, if the colors of v1 and v2 are not equal, then color z differently from
the color of w. In any case, at most two adjacent vertices share the same color,
that is, f is a P-choice function of G and χP

sc(G) ≤ 5.

Proposition 21. Let P be an additive induced hereditary property. Then it holds

χO
sc(K1,1,2) = 9, χO1

sc (K1,1,2) = 6, χP
sc(K1,1,2) = 4 if K1,1,2 ∈ P, and χP

sc(K1,1,2) =
5 in the remaining cases.

Proof. If P = O, then χO
sc(K1,1,2) = χsc(K1,1,2) = GB(K1,1,2) = 9 [1]. If K1,1,2

∈ P, then obviously χP
sc(K1,1,2) = |V (K1,1,2)| = 4.
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If P = O1, then each subgraph P3, C3 needs a list of size 2 to avoid a
monochromatic P3, C3 /∈ P. Hence χO1

sc (K1,1,2) ≥ 2 · 2 + 2 · 1 = 6. Denote the
vertices of K1,1,2 such that dK1,1,2

(vi) = 2 and dK1,1,2
(wi) = 3, i = 1, 2. Set

f(vi) = 2 and f(wi) = 1, i = 1, 2. Consider a list assignment L with list sizes
defined by f . Vertices w1 and w2 must be colored with the color from their lists.
If w1 is colored by α and w2 by β (α = β is allowed), then color v1 by a color
6= α and v2 by a color 6= β. It follows that χO1

sc (K1,1,2) ≤ 6.
In the remaining cases it holds that K1,1,2 /∈ P, P 6= O, and P 6= O1. Since

K1,1,2 /∈ P, χP
sc(K1,1,2) ≥ |V (G)|+1 = 5. Set f(w1) = 2 for a vertex w1 of degree

3 and f(v) = 1 for v 6= w1. In any list assignment L with list sized defined by
f , the colors of the path P3 = (v1, w2, v2) are fixed. Color then w1 by a color
different from the color of w2. This implies that at most three vertices that induce
a P3 are colored by the same color, and P3 ∈ P. Therefore, χP

sc(K1,1,2) ≤ 5.

5. Concluding Remarks

In Section 3 we determined general upper bounds on the P-sum choice number
of arbitrary graphs for some of the most common properties P, namely Ok, Sk,
Dk, O

k, Jk, and Ik. It would be interesting to obtain reasonable lower bounds
on the P-sum choice number of arbitrary graphs for the same properties.

In Section 4 we determined the P-sum choice number of complete graphs,
stars, paths, cycles, and all graphs of order at most 4 for arbitrary additive in-
duced hereditary properties P. By the same methods and extensive case analysis
we also determined the P-sum choice number of all graphs of order 5 for arbitrary
additive hereditary properties P.

As mentioned above, we determined the P-sum choice number of stars K1,m.
It would be an interesting task to study the P-sum choice number of arbitrary
complete bipartite graphs Kl,m. Partial results for P = D1 can be found in [4]
and for P = O in [1, 6], for example.
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