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Abstract

We show that the intersection dimension of graphs with respect to several
hereditary properties can be bounded as a function of the maximum degree.
As an interesting special case, we show that the circular dimension of a

graph with maximum degree ∆ is at most O
(

∆ log∆
log log∆

)

. It is also shown

that permutation dimension of any graph is at most ∆(log∆)1+o(1). We also
obtain bounds on intersection dimension in terms of treewidth.
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1. Introduction

A graph property is a class of labeled finite graphs closed under isomorphism.
A graph property P is said to be hereditary if, for every G ∈ P, every vertex
induced subgraph of G is also in P. We often refer to a graph property simply as
a property or a class. In [10], Cozzens and Roberts introduced the notion of di-
mensional properties of graphs. They termed a graph property P as dimensional

if any graph can be written as the intersection of graphs from P, i.e., for any
graph G = (V,E), there are k graphs {Gi = (V,Ei) ∈ P : 1 ≤ i ≤ k} (for some
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k) such that E =
⋂

iEi. Throughout the paper, we focus only on dimensional
properties of graphs. Also, we use the terms “set” and “family” interchangeably.

For a dimensional property P and a graph G, the minimum number k such
that G can be written as the intersection of k graphs from P is defined as the
intersection dimension of G with respect to P and is denoted by dimP(G).

In [17], Kratochvil and Tuza showed that a property P is dimensional if and
only if all complete graphs and all complete graphs minus an edge are in P. They
also proved that for any dimensional hereditary property P, either dimP(G) = 1
for every G or it can take arbitrarily large values. However, it may still be possible
to express dimP(G) in terms of other invariants of G. In this paper, we bound
dimP(G) in terms of the maximum degree ∆(G).

Some interesting specializations of intersection dimension include the boxicity
box(G) of a graph (with respect to the class of interval graphs), cubicity cub(G)
(with respect to the class of unit interval graphs), circular dimension dimCA(G)
(with respect to the class of circular arc graphs), overlap dimension dimo(G) (with
respect to the class of overlap graphs), permutation dimension dimperm(G) (with
respect to the class of permutation graphs), split dimension dimsplit(G) (with
respect to the class of split graphs), chordal dimension dimchord(G) (with respect
to the class of chordal graphs), perfect dimension dimperf(G) (with respect to the
class of perfect graphs). Of these, boxicity is the most studied notion and various
results on boxicity for special graph classes are known. For example, in [23],
it was shown that every planar graph has boxicity at most 3. It is also known
that every bipartite planar graph has boxicity at most 2 [15] and also that every
outerplanar graph has boxicity at most 2 [22]. Upper bounds on boxicity have
also been obtained in terms of treewidth [9] (box(G) ≤ tw(G)+ 2 for any G) and
maximum degree [1, 8, 11] (box(G) ≤ c∆(log∆)2 for any G, c is a constant, due
to [1]).

Circular dimension was first studied by Feinberg in [12], where, for every n,
the maximum value of circular dimension was determined exactly for the class of
complete multi-partite graphs on n vertices. Since the class of interval graphs is
contained in the class CA of circular arc graphs, the boxicity of a graph is an upper
bound on its circular dimension. However, the circular dimension can be much
smaller than boxicity. Moreover, boxicity cannot be bounded by any function of
circular dimension, that is, there is no f() such that box(G) ≤ f(dimCA(G)) for
every G. This assertion follows from the infinite family of graphs {P c

n, C
c
n |n ≥ 4}.

It was established by Cozzens and Roberts [10], for each n ≥ 4, that each of P c
n

and Cc
n has boxicity at least (n−1)/3, whereas each of them has circular dimension

at most 2. Here, P c
n and Cc

n denote respectively the complement of a path Pn

and a cycle Cn on n vertices. In [17], it is established that
dimA1

(G)

dimA2
(G) can become

arbitrarily large, for various specific pairs of hereditary graph classes (A1,A2).
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In particular, it is established for the case of A1 = CA and A2 denoting interval
graphs.

In this paper, we present upper bounds for the intersection dimension
dimP(G) of an arbitrary graph G with respect to any member P of a set C
of hereditary and dimensional properties, in terms of its invariants like maximum
degree ∆(G), treewidth tw(G), star chromatic number χs(G) and its generaliza-
tions to (2,F)-chromatic numbers χ2,F (G). As a consequence, it follows that for
every such property P, dimP(G) is bounded for graphs G from any proper minor
closed class and in particular, for graphs of bounded treewidth.

Moreover, for some specific hereditary classes P such as the class of circular-
arc graphs, the class of overlap graphs and the class of permutation graphs, we
also upper-bound dimP(G) (for any G) by a “nearly” linear function of either
∆(G) or χ(G). The proofs of these bounds are based on relating the intersection
dimension with (2,F)-subgraph colorings, in particular, frugal colorings (these
notions are defined in Section 2). No bound (applicable to all graphs) was known
before for permutation dimension and overlap dimension. For the cases of planar
and planar bipartite graphs G, [17] establishes that permutation dimension is at
most 12 and 4, respectively.

This paper is organized as follows. In Section 2, we present some definitions
of graph operations and graph coloring notions like forbidden subgraph colorings
and frugal colorings. In Section 3, we obtain the basic results of this paper
relating intersection dimension (with respect to certain hereditary classes) and
forbidden subgraph colorings. Section 4 contains improved bounds on intersection
dimension in terms of maximum degree obtained by using frugal colorings. In
Section 5, we obtain an improved bound on the circular dimension and conclude
with some open problems in Section 6.

2. Definitions and Facts

We first need a few preliminaries. For a simple undirected graph G = (V,E),

we shall denote by Gc the complement of G, defined as Gc =
(

V,
(

V
2

)

\ E
)

and

for a subset S ⊆ V , we shall denote by G[S] the subgraph induced by G on S,
that is, GS = (S,ES), where ES = {{u, v} ∈ E : u, v ∈ S}. A graph H is said
to be a vertex induced (shortly induced) subgraph of G if H = G[S] for some
S ⊆ V . A graph H is said to be a minor of G (denoted by H ⊳ G) if H can
be obtained from G by applying a sequence of edge contractions and deletions
of vertices or edges. We say that G is H-minor free if G does not have a minor
which is isomorphic to H. A class C of graphs is said to be proper minor-closed

if C is closed under minors (that is, G ∈ C ∧H⊳G ⇒ H ∈ C) and is not the class
of all graphs. A family of graphs is non-trivial if it contains at least one graph
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and is not the class of all graphs.

We also recall some special classes of graphs. A split graph is a graph G =
(V,E) which admits a partition V = S ∪ T such that G[S] and G[T ] induce
respectively a complete graph and an empty graph. A graph is a permutation

graph if it is isomorphic to a graph G = (V,E) where V = {1, 2, . . . , n}, E =
{{i, j} : i < j, πi > πj}, for some permutation π : V → V . A graph is an interval

graph if it is isomorphic to a graph G = (V,E) where V = {ui = [ai, bi] : 1 ≤
i ≤ n, ai, bi ∈ R, ai ≤ bi ∀i} and E = {{ui, uj} : ui ∩ uj 6= ∅}. A graph is
an overlap graph (also known as a circle graph) if it is isomorphic to a graph
G = (V,E) where V = {ui = [ai, bi] : 1 ≤ i ≤ n, ai, bi ∈ R, ai ≤ bi ∀i}
and E = {{ui, uj} : ui ∩ uj 6= ∅, ui 6⊆ uj , uj 6⊆ ui}. A graph is a circular-arc

graph if it is isomorphic to a graph G = (V,E) where V = {ci : 1 ≤ i ≤ n},
E = {{ci, cj} : ci∩cj 6= ∅} and each ci is an arc on a planar circle (without loss of
generality assumed to be of radius 1 and centered at (0, 0)). A graph is a chordal

graph if there is no induced cycle on four or more edges. A graph G = (V,E)
is a perfect graph if, for every induced subgraph GS = G[S] (S ⊆ V ), we have
χ(GS) = ω(GS) where χ() and ω() denote respectively the chromatic number and
maximum size of a clique in a graph. For more details on these graph classes,
the reader is referred to [10, 14, 7].

Definition 1. We say that a class A of graphs is additive if, for every two vertex
disjoint members G = (U,E) and H = (V, F ) of A, their disjoint union G ∪ H
defined to be (U ∪ V,E ∪ F ) is also a member of A.

Some examples of additive and hereditary classes are: the class of perfect
graphs, the class of chordal graphs, the class of interval graphs, and the class of
permutation graphs. The class of circular-arc graphs and the class of split graphs
are examples of classes which are not additive.

Definition 2. Following [17], we say that a class A of graphs has the Full Degree
Completion (FDC) property if for any graph G = (V,E) in A, the graph H =
(V ∪ {u}, E ∪ {{u, v} : v ∈ V }) (u 6∈ V ) obtained by adding a universal vertex
(i.e., a vertex adjacent to all of V ) also belongs to A.

Some examples of hereditary classes which are additive and which also satisfy
FDC property are: the class of perfect graphs, the class of chordal graphs, the
class of interval graphs, the class of permutation graphs. The class of overlap
graphs is an example of a graph class which does not satisfy the FDC property.
Each of the two classes of split graphs and circular-arc graphs satisfies the FDC
property, but is not additive.

Definition 3. The Zykov sum of two graphs G = (U,E) and H = (V, F ) with
disjoint vertex sets is formed by taking the union of the two graphs and adding
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all edges between the graphs, that is, the graph G′ = (U ∪ V,E ∪ F ∪ {{u, v} :
u ∈ U, v ∈ V }). We say that a class A of graphs has the Zykov sum property if
the Zykov sum of any two vertex disjoint graphs in A is also in A.

It follows from definitions that if a graph class satisfies the Zykov sum prop-
erty, then it also satisfies the FDC property. Some examples of additive and
hereditary classes which satisfy the Zykov sum property are: the class of perfect
graphs and the class of permutation graphs. Examples of graph classes which do
not satisfy the Zykov sum property include the class of interval graphs and the
class of chordal graphs.

Definition 4. Given two graphs G and H, we say that G is H-free if G has no
isomorphic copy of H as a subgraph (not necessarily induced). Given a family F
of graphs, we say that G is F-free if G is H-free for each H ∈ F .

For a family F of graphs, we use Forb(F) to denote the class of all graphs
which are F-free. Thus, for example, if F is the set of all cycles, Forb(F) is
the class of all forests. An acyclic coloring of a graph is a proper vertex coloring
in which the subgraph induced by the union of any two color classes is a forest.
The following definition from [5] generalizes the notion of acyclic coloring, and is
related to intersection dimension, as we shall prove later.

Definition 5. Let F be a family of connected bipartite graphs on at least 3
vertices each. We define a (2,F)-subgraph coloring (or just a (2,F)-coloring) to
be a proper coloring of the vertices of a graph G so that the subgraph of G induced
by the union of any 2 color classes is F-free. We denote by χ2,F (G) the minimum
number of colors sufficient to guarantee a (2,F)-subgraph coloring of G.

In recent works [5, 4, 6], the present authors defined a generalization of the
above notion for any fixed j ≥ 2 (by considering the union of any j color classes)
and obtained upper bounds on (j,F)-chromatic numbers and their edge analogues
of an arbitrary G in terms of ∆(G). Tightness (up to polylogarithmic factors in
∆) were also established for the case j = 2.

Four special cases of this notion, which are of interest to the present work
are the following.

• Acyclic coloring is a (2,F)-coloring, where F is the set of all cycles. The
minimum number of colors used in any acyclic coloring of G is known as its
acyclic chromatic number and is denoted by χa(G). [3] presents an upper bound
of O

(

∆4/3
)

on graphs of maximum degree ∆.

• Star coloring is a (2, {P4})-coloring — in such a coloring, the union of any two
color classes induces a forest of vertex disjoint stars. The minimum number of
colors used in any star coloring of a graph is called its star chromatic number
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and is denoted by χs(G). [13] presents an upper bound of O
(

∆3/2
)

on graphs of
maximum degree ∆.

• β-frugal coloring is a (2, {K1,β+1})-coloring — it is a coloring in which each
vertex has at most β neighbors in any other color class. The corresponding
chromatic number is referred to as its β-frugal chromatic number and is denoted
by χfrugal

β (G). A simple probabilistic argument (see [16]) establishes an upper

bound of O
(

∆(β+1)/β
)

on graphs of maximum degree ∆.

• (2, planar)-coloring is a proper coloring in which the union of any two color
classes induces a planar subgraph. The corresponding chromatic number is de-
noted by χplanar

2 (G). [5] presents an upper bound of O
(

∆8/7
)

on graphs of max-
imum degree ∆.

The following fact is easy to verify and will be often used later in the proof.

Fact 6. Suppose P1 and P2 are two properties such that P1 ⊆ P2. If P1 is di-
mensional, then P2 is also dimensional and also dimP2

(G) ≤ dimP1
(G) for any G.

3. Intersection Dimension and Forbidden Subgraph Colorings

In their paper [17], Kratochvil and Tuza proved the following lemmas which we
shall need.

Lemma 7 [17]. Let A be a dimensional class of graphs satisfying the FDC re-

quirement. Suppose G = (V,E) is a graph and Gi = (Vi, Ei), i = 1, 2, . . . , k are

induced subgraphs of G such that each non-edge of G is present as a non-edge in

some Gi. Then, dimA(G) ≤
∑k

i=1 dimA(Gi).

Lemma 8 [17]. Let A be a dimensional class of graphs satisfying the Zykov sum

property. If G = (V,E) is a graph and Gij = (Vij , Eij), i = 1, 2, . . . , k, j =
1, . . . , li, are induced subgraphs of G such that (i) each non-edge of G is present

as a non-edge in some Gij and (ii) for every i, the vertex sets Vij , j = 1, 2, . . . , li
form a partition of V . Then dimA(G) ≤

∑k
i=1max1≤j≤li dimAGij.

Using Lemmas 7 and 8, we now obtain a result which connects intersection
dimension and (2,F)-subgraph colorings. This result generalizes the bounds ob-
tained (in Section 3) of [17] for some specific hereditary and dimensional classes
like split graphs and chordal graphs to arbitrary hereditary and dimensional graph
classes. Below, we use BIP to refer to the class of all bipartite graphs.

Theorem 9. Let A be a hereditary and additive class of graphs which satis-

fies the FDC property. Let F be a family of connected graphs and suppose

there exists a constant t = t(F) such that for all graphs H ∈ Forb(F) ∩ BIP ,
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the intersection dimension of H w.r.t A is at most t. Then for any graph

G, dimA(G) ≤ t
(χ2,F (G)

2

)

. Further, if A has the Zykov sum property, then

dimA(G) ≤ tχ2,F (G).

In particular, if Forb(F)∩BIP ⊆ A for some F , then dimA(G) ≤
(χ2,F (G)

2

)

.

If A also satisfies Zykov sum property, then dimA(G) ≤ χ2,F (G).

Proof. Since A is hereditary and is additive, it contains all empty graphs. Let
G = (V,E) be any graph and let C1, . . . , Ck be the color classes in a (2,F)-
subgraph coloring of G where k = χ2,F (G).

For all i 6= j, let Gi,j be the subgraph of G induced by the union of the color
classes Ci and Cj . We have Gi,j ∈ Forb(F) ∩ BIP and hence dimA(Gi,j) ≤ t.
Also, each non-edge of G is present as a non-edge in some Gi,j . Hence, by Lemma

7, dimA(G) ≤
∑

1≤i<j≤k dimA(Gi,j) ≤ t
(χ2,F (G)

2

)

.
Suppose that A also satifies the Zykov sum property. Consider a (2,F)-

subgraph coloring ofG with the color classes C1, . . . , Ck, where k = χ2,F (G). Now
consider a proper edge coloring of Kk (the complete graph on [k] = {1, 2, . . . , k})
using k colors. Let M1, . . . ,Mk be the matchings forming the k color classes in
this edge coloring.

For each i ∈ [k], let Hi = {Gi,j}j be a collection of induced subgraphs of
G obtained as follows. For each matching edge (l,m) in Mi, include in Hi the
induced subgraph Gi,(l,m) = G[Cl ∪ Cm]. For each l ∈ [k] such that vertex l is
unmatched in Mi, include the subgraph Gi,l = G[Cl] in Hi. Clearly, the vertex
sets of Gi,j form a partition of V for each i. Also, each non-edge of G is present as
a non-edge in some Gi,j . Further, for all i, j, Gi,j ∈ Forb(F). Applying Lemma
8, we get dimA(G) ≤ kt = tχ2,F (G). This proves Theorem 9.

The following two corollaries are consequences of the above theorem.

Corollary 10. For any G, the following are true:

(a) dimperf(G) ≤ χ(G);

(b) dimo(G) ≤ dimperm(G) ≤ 4χplanar
2 (G).

Proof. By setting F = {C5, C7, . . .} and A to be the class of perfect graphs, we
note that Forb(F) ∩ BIP ⊆ A and also that χ2,F (G) = χ(G). Also, A satisfies
the Zykov sum property. Hence (a) follows. It should be noted that (a) is an
immediate corollary of the fact (dimsplit(G) ≤ χ(G) for any G) established in [17]
and also Fact 6. Here, this derivation is presented (as an alternate proof) of this
fact to illustrate the applicability of Theorem 9. As mentioned before, the class
of split graphs is not even additive.

For (b), note that permutation graphs form an additive and hereditary class
satisfying the Zykov sum property. Applying the bound of dimperm(G) ≤ 4
obtained in [17] for planar bipartite graphs, we deduce the stated bound. Since
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every permutation graph is an overlap graph (see Section 4.7 of [7]), an application
of Fact 6 implies that dimo(G) ≤ dimperm(G). This completes the proof of
Corollary 10.

Corollary 11. For any G and for any additive and hereditary class A, the fol-

lowing are true:

(a) if A satisfies the FDC property, then dimA(G) ≤
(

χs(G)
2

)

;

(b) if A satisfies the Zykov sum property, then dimA(G) ≤ χs(G).

Proof. For (a) and (b), we set F = {P4}. Then, Forb(F) is the collection of all
graphs each of whose connected components is either a star or a triangle (that
is, a complete graph on 3 vertices). Also, any hereditary class of graphs which is
additive and which satisfies the FDC property must contain all stars and also all
complete graphs. Thus, Forb(F) ⊆ A.

Statements (a) and (b) now follow from an application of Theorem 9.

We now apply some results of Fertin et al. [13], Albertson et al. [2], Nešetřil
and Ossona de Mendez [20], and Mohar and Špacapan [18] on the star chromatic
number in conjunction with Corollaries 10 and 11 to obtain the following corollary.

Corollary 12. Let A be a hereditary class of graphs which is additive. Then,

there exists positive constants c1, c2, c3, c4, c5, c6 and cH (for every fixed graph H)
such that: for any graph G with maximum degree ∆, treewidth t and genus g > 0,
we have the following:

(a) If A satisfies the FDC property, then

dimA(G) ≤ c1∆
3; dimA(G) ≤ c2t

4; dimA(G) ≤ c3g
6/5.

If G is H-minor free, then dimA(G) ≤ cH .

(b) If A satisfies the Zykov sum property, then

dimA(G) ≤ c4∆
3/2; dimA(G) ≤

(t+ 2)(t+ 1)

2
; dimA(G) ≤ c5g

3/5.

(c) dimo(G) ≤ dimperm(G) ≤ 100 ·∆8/7.

Proof. The stated bounds follow from an application of Corollaries 10 and 11
combined with the following upper bounds on star chromatic numbers.

• χs(∆) = O
(

∆3/2
)

([13]).

• If graph G has treewidth at most t, then χs(G) ≤ (t+ 2)(t+ 1)/2 ([2, 13]).

• For any fixed graph H, there is a constant dH such that for any H-minor free
graph G, χs(G) ≤ dH ([20]).
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• For a graph G of genus g > 0, χs(G) ≤ c6g
3/5, where c6 is some absolute

constant ([18]).

• χplanar
2 (G) ≤ 25 ·∆8/7 ([5]).

This completes the proof of Corollary 12.

Remark. It follows that for every proper minor-closed class C, there is a d = dC
such that dimA(G) ≤ d for every G ∈ C and for every hereditary and additive
class A satisfying FDC. In particular, it is true for graphs of bounded treewidth.

4. Improved Bounds

In this section, we significantly improve the bounds of Corollary 12 (stated in
terms of ∆(G)) by combining Theorem 9 with the following result of Molloy and
Reed [19] on frugal colorings. Throughout this section, all logarithms are with
respect to base 2.

Theorem 13 [19]. There exists a postiive constant ∆0 such that every graph G
of maximum degree ∆ ≥ ∆0 can be properly colored using ∆+1 colors so that any

vertex has at most β neighbors in any color class, where β = ⌊a(log∆)/(log log∆)⌋
and a (≥ 2 without loss of generality) is some absolute positive constant.

Notation. Let A be a hereditary, additive and dimensional class of graphs
satisfying the FDC property. For such classes, and for any positive real number
t, we define dimA(t) = max{dimA(G) : ∆(G) ≤ t}. By Corollary 12, dimA(t) is
well-defined.

By combining Theorem 9 with Theorem 13, we obtain the following re-
sult. In what follows, for x ≥ 1, log∗ x denotes min

{

k ≥ 0 : log(k) x < 2
}

where log(0) x = x and for i ≥ 1, define log(i) x = log2
(

log(i−1) x
)

. We note

that log∗ x = o
(

log(i) x
)

for every fixed i ≥ 0. In particular, we have log∗ x =
o(log log x).

Theorem 14. Let A be an additive, hereditary class of graphs satisfying the FDC

property. Then for all sufficiently large ∆ and for some positive constant B, the

following holds.

• dimA(∆) ≤ ∆2(log∆)2 ·Blog∗ ∆;

• If A satisfies the Zykov sum property as well, then

dimA(∆) ≤ ∆(log∆) ·Blog∗ ∆;

• In particular, dimo(∆) ≤ dimperm(∆) ≤ ∆(log∆) ·Blog∗ ∆.
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Proof. Let G be a graph of maximum degree ∆ ≥ ∆0, as in Theorem 13. We
apply Theorem 9 with F = {K1,β+1} where β = ⌊a(log∆)/(log log∆)⌋, a being
the constant in Theorem 13. By Theorem 13, χ2,F (G) ≤ ∆ + 1. Applying
Theorem 9, we get dimA(G) ≤

(

∆+1
2

)

dimA(β). Thus, we get for all ∆ ≥ ∆0,

dimA(∆) ≤

(

∆+ 1

2

)

dimA

(⌊

a log∆

log log∆

⌋)

≤ ∆2 dimA

(⌊

a log∆

log log∆

⌋)

.

For x > 2, we define

f0(x) = x and f(x) =

⌊

a log x

log log x

⌋

,

and for i ≥ 1,

f i+1(x) =

⌊

a log f i(x)

log log f i(x)

⌋

.

Let k = max
{

i : f i(∆) ≥ 22
a}

. Note that f i+1(∆) ≤
⌊

log f i(∆)
⌋

for i ≤ k.
Hence k ≤ log∗∆. Applying statement (a) of Corollary 12, we obtain that

dimA(∆0) ≤ c1∆
3
0, where c1 is the constant mentioned in Corollary 12.

Assume without loss of generality that ∆0 ≥ 22
a

. As a result, we have

dimA(∆) ≤ ∆2 dimA(f(∆)) ≤ ∆2(f(∆))2 dimA

(

f2(∆)
)

≤ . . . ≤ ∆2





∏

1≤i≤k

(

f i(∆)
)2



 dimA

(⌊

ee
a⌋)

≤ c1∆
3
0 ·∆

2





∏

1≤i≤k

(

f i(∆)
)2



 .

We now bound the product

S =
∏

1≤i≤k

f i(∆).

Using the fact that f i+1(∆) ≤ log f i(∆) for i ≤ k, we get

S ≤

(

a log∆

log log∆

)(

a log log∆

log log f(∆)

)(

a log log f(∆)

log log f2(∆)

)

. . .

(

a log log fk−2(∆)

log log fk−1(∆)

)

.

Thus,
S ≤ ak log∆.

Hence, we get

dimA(∆) ≤ c∆2(log∆)2 · a2(log
∗ ∆), where c = c1∆

3
0.
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By suitably choosing B, we can infer that c · a2(log
∗ ∆) ≤ Blog∗ ∆.

If A satisfies the Zykov sum property, applying Theorem 9 yields

dimA(∆) ≤ (∆ + 1) dimA

(⌊

a log∆

log log∆

⌋)

≤ 2∆dimA

(⌊

a log∆

log log∆

⌋)

.

By a similar analysis carried out as before, one can deduce that dimA(∆) ≤
∆(log∆)Blog∗ ∆. This completes the proof of Theorem 14.

Remark. As noted before, we have log∗∆ = o
(

log(i)∆
)

for every fixed i. In

fact, log∗∆ ≤ 5 for any 1 ≤ ∆ ≤ 265536. Thus, one sees that the above theo-
rem replaces the O(∆3) bound (for classes satisfying FDC) by a bound which is
essentially ∆2(log∆)2 ignoring the multiplicative factor which grows very slowly
compared to other factors. Similar significant improvements can be noticed for
other other types of classes also.

The assumption of A being additive used in Theorems 9 and 14 is essential,
as otherwise the dimension number need not always be expressed as a function
of the maximum degree as the following examples illustrate.

Unbounded dimension with only the FDC assumption. Consider the
class of graphs consisting of complete graph (Kn) and complete graphs minus an
edge (Kn − e). This is the intersection of all dimensional classes satisfying the
FDC property. The intersection dimension of a graph G with respect to this class
is |E(Gc)|, which is not bounded by any function of the maximum degree.

Unbounded dimension with only the Zykov sum assumption. The Zykov
sum property carries over intersection and thus we can consider the smallest
dimensional class of graphs with Zykov sum property. This class is in fact the
class of all complete graphs and complete graphs minus a matching (of any size).
It is easy to see that the intersection dimension of a graph G with respect to
this class is in fact χ′(Gc). χ′(Gc) is the chromatic index of the complement Gc.
This shows that for hereditary classes satisfying only the Zykov sum property, the
intersection dimension need not always be bounded by a function of the maximum
degree.

5. Circular Dimension — A Special Case

Circular arc graphs (shortly, CA graphs) are defined as the intersection graphs
of closed arcs of a circle. Despite their similarity to interval graphs (which are a
subclass of CA graphs), these need not be perfect graphs while interval graphs
are also perfect graphs. The class CA is clearly dimensional and hereditary but



164 N.R. Aravind and C.R. Subramanian

it is not additive. As a result, the results of Sections 3 and 4 cannot be employed
to obtain upper bounds for dimCA(G).

Since the class of circular arcs is a superclass of the class of interval graphs,
it follows that for any graph G, dimCA(G) ≤ box(G). Employing the best known
bound ([1]) on box(G), we deduce that dimCA(G) ≤ c∆(log∆)2 for any G. We
present below an asymptotic improvement over this bound on dimCA(G) that is

asymptotically O
(

∆
(

log∆
log log∆

))

.

Lemma 15. Let G be a split graph such that every clique vertex has at most t
neighbors in the independent set. Then G has circular dimension at most t+ 1.

Proof. Let G be G = (I ∪ C,E). Form t + 1 CA graphs G0, G1, . . . , Gt with
Gi = (I ∪ C,Ei) and E = E0 ∩ E1 ∩ · · · ∩ Et as follows. Assume, without loss of
generality, that I = {1, . . . , n} is the independent set in G. Consider n+1 distinct
points on the unit circle and label them consecutively with 0, 1, . . . , n, traversing
in the clockwise direction. In each Gk (0 ≤ k ≤ t), each i ∈ I is identified with
the closed circular arc consisting of just the point i on the circle. Define i0 = 0.
For any clique vertex u with r ≥ 1 neighbors in I, say i1 < i2 < · · · ir, and for
any s, 0 ≤ s ≤ r, we identify u with the closed circular arc (clockwise) joining
is+1 with is (modulo r+1) in the graph Gs. For s > r, identify u in Gs with the
circular arc used in Gr. If u has no neighbor in I, then identify u with the closed
arc consisting of just the point i0, in each Gs (0 ≤ s ≤ t). It can be verified that
E(G) = E(G0) ∩ E(G1) ∩ · · · ∩ E(Gt) and that each Gi is a split graph. This
proves Lemma 15.

Theorem 16. The circular dimension satisfies dimCA(∆) ≤ c∆
(

log∆
log log∆

)

for

some constant c.

Proof. For ∆ ≤ ∆0 (∆0 is defined in Theorem 13), employ the O(∆(log∆)2)

bound on box(G). For ∆ ≥ ∆0, applying Theorem 13, we obtain a β
(

≤ a(log∆)
log log∆

)

-

frugal coloring of V (G) using k = ∆+1 colors. Let V1, . . . , Vk be the color classes.
We now form k split supergraphs G1, . . . , Gk where Gi is obtained from G by
making G[V −Vi] a complete graph, that is, Gi = (V,E∪{{u, v} : u, v ∈ V \Vi}).
It can be seen that E(G) = E(G1) ∩ · · · ∩ E(Gk). Now we apply Lemma 15 to
each Gi and deduce that dimCA(Gi) ≤ β + 1 and hence dimCA(G) ≤ k(β + 1) ≤

c∆
(

log∆
log log∆

)

for a suitably chosen constant c > 0. This proves Theorem 16.

In this context, we recall the following lower bound on the maximum value
of circular dimension over n-vertex graphs, obtained by Shearer [21].

Theorem 17. There exist graphs on n vertices for which the circular dimension

is at least Ω
(

n
log

2
n

)

.
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6. Concluding Remarks

We obtained upper bounds (in terms of some invariants like maximum degree) on
intersection dimension of an arbitrary graph, for several dimensional, hereditary
properties. It would be interesting to determine how tight these bounds are. Also,
studying the computational complexity of determining the intersection dimension
will be an interesting problem. In particular, we suggest the following open
problems.

• Determine the asymptotically best bound for circular dimension in terms of
maximum degree. We conjecture that it is O(∆).

• It is known [11] that testing whether a graph has boxicity at most 2 is NP-
complete. Can similar statements be established for other nontrivial dimen-
sional graph properties?
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