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Abstract

Let m ≥ 5 be a positive integer and let G be a 3-connected graph on at
least 2m + 1 vertices. We prove that G has a contractible set W such that
m ≤ |W | ≤ 2m − 4. (Recall that a set W ⊂ V (G) of a 3-connected graph
G is contractible if the graph G(W ) is connected and the graph G −W is
2-connected.) A particular case for m = 4 is that any 3-connected graph on
at least 11 vertices has a contractible set of 5 or 6 vertices.
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Basic Definitions

Before introducing results of our paper let us recall main definitions that we
need. We consider undirected graphs without loops and multiple edges and use
standard notation.

For a graph G, we denote the set of its vertices by V (G) and the set of its
edges by E(G). We use notation v(G) for the number of vertices of G. For
disjoint sets X,Y ⊂ V (G), we denote by EG(X,Y ) the set of all edges of the
graph G joining X and Y . A notation xy ∈ EG(X,Y ) means that x ∈ X and
y ∈ Y .

We denote the degree of a vertex x in the graph G by dG(x).
Let NG(w) denote the neighborhood of a vertex w ∈ V (G) (i.e., the set of

all vertices of the graph G adjacent to w). For a subset W of V (G), let NG(W )
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denote the neighborhood of W (i.e., the set of all vertices of the graph G which
are adjacent to W and do not belong to W ).

For a set of vertices U ⊂ V (G), we denote by G(U) the induced subgraph of
the graph G on the set U .

Let u ∈ V (G), and let W,U ⊂ V (G). We say that a vertex u ∈ V (G) is
adjacent to a set W ⊂ V (G) if u /∈ W and u is adjacent to a vertex of W .
Further, U is adjacent to W if a vertex of U is adjacent to W .

An xy-path is a path between vertices x and y. If P is a path containing x
and y then xPy denote the part of P between x and y.

A component of a graph G is a maximal up to inclusion connected subgraph
of G.

Definition. (1) Let R ⊂ V (G). We denote by G−R the graph obtained from G
by deleting all vertices of the set R and all edges incident to vertices of R.
The set R is a cutset if the graph G−R is disconnected.

(2) If H is a subgraph of G then G−H = G− V (H).

(3) A graph G is k-connected if |V (G)| > k and G has no cutset of size less
than k.

Definition. (1) A subset W of V (G) is connected if G(W ) is connected.

(2) Let G be a 3-connected graph. A subset W of V (G) is contractible if W is
connected and G−W is 2-connected.

1. Introduction and Main Results

Consider a 2-connected graph G on n vertices, and let n1 and n2 be positive
integers with n1 + n2 = n. Clearly, V (G) can be partitioned into two connected
sets V1 and V2 such that |V1| = n1 and |V2| = n2.

In 1994, McCuaig and Ota [4] have formulated the following conjecture for
3-connected graphs. This conjecture was mentioned in Mader’s survey on con-
nectivity [3].

Conjecture 1. Let m ∈ N. Then there exists an integer n such that every 3-
connected graph G on at least n vertices has a contractible set of m vertices.

For m = 1, this statement is clear. For m = 2, it is rather easy and well-
known (it was proved by Tutte). The case m = 3 was proved by the authors of
this conjecture [4], the case m = 4 was proved by Kriesell [5]. For any m ≥ 5,
Conjecture 1 is open now. It is only known [6] that in case m = 5 Conjecture 1
is true for cubic graphs and graphs of average degree close to 3.

We suggest a new result on existence of large contractible sets in 3-connected
graphs.
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Theorem 2. Let m ≥ 5 be a positive integer and G be a 3-connected graph on
at least 2m + 1 vertices. Then G has a contractible set W such that m ≤ |W | ≤
2m− 4.

A particular case of this theorem for m = 5 is the following.

Corollary 3. A 3-connected graph on n ≥ 11 vertices has a contractible set of 5
or 6 vertices.

In what follows, we formulate several facts on the structure of 2-connected
graphs and after that, with the help of them, we prove Theorem 2.

2. Necessary Tools

We start with well known definitions of block and cutpoint.

2.1. Blocks and cutpoints of a connected graph

We have a classic instrument to study the structure of a connected graph —
blocks and cutpoints. First we recall the definitions.

Definition. Let G be a connected graph.
A vertex a ∈ V (G) is a cutpoint of G if the graph G− a is disconnected.
A block of the graph G is a subgraph having no cutpoints which is maximal

up to inclusion with this property.
The interior, denoted by Int(B), of a block B is the set of all its vertices

which are not cutpoints of G.

The structure of mutual disposition of blocks and cutpoints of a connected
graph can be described by the tree of blocks and cutpoints (see [7]). Recall that
the tree of blocks and cutpoints of a graph G is a bipartite graph with bipartition
(B,S), where B is the set of blocks and S is the set of cutpoints of G. A cutpoint
a and a block B are adjacent if and only if a ∈ V (B). It is easy to prove that
this graph is a tree, all leaves of which correspond to blocks (which are called
pendant blocks).

We need the following simple lemma.

Lemma 4. Let G be a 2-connected graph and let U,W ⊂ V (G). Assume that
U ∩W = ∅ and U is not adjacent to W . If G−U−W is 2-connected, then G−U
is 2-connected.

Proof. Since G− U −W is 2-connected, there exists a block B of G− U which
contains G−U −W . Suppose G−U has a cutpoint, say a. Then a separates B
from another block B′. Clearly, V (B′) ⊂W and, therefore, V (B′) is not adjacent
to U . Then a is a cutpoint of G, a contradiction.
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2.2. The decomposition of a graph by a set of cutsets

We need to describe the structure of decomposition of a 2-connected graph by its
2-vertex cutsets. We define the block tree of a 2-connected graph as in [12]. In gen-
eral, this structure is similar to Tutte’s one [1]. We start with the decomposition
of a graph by a set of cutsets, defined in [10].

Definition. Let R ⊂ V (G) be a cutset.

(1) Let X,Y ⊂ V (G), X 6⊂ R, Y 6⊂ R. We say that R separates X from Y if no
two vertices vx ∈ X and vy ∈ Y belong to the same connected component of
the graph G−R.

(2) We say that R splits a set X ⊂ V (G) if the set X \R is not contained in one
connected component of the graph G−R.

In this section, k ≥ 2 and G is a k-connected graph. Denote by Rk(G) the
set of all k-vertex cutsets of G.

Definition. Let S ⊂ Rk(G).

(1) A set A ⊂ V (G) is a part of decomposition of G by S if no cutset of S splits
A and A is maximal up to inclusion set with this property. By Part(G;S)
we denote the set of all parts of decomposition of G by S.

(2) Let A ∈ Part(G;S). A vertex of A is inner if it does not belong to any cutset
of S. The set of all inner vertices of the part A is called the interior of A,
which is denoted by Int(A).
The boundary of A is the set Bound(A) = A \ Int(A).

(3) For a set S ∈ Rk(G), we will write simply Part(G;S) instead of Part(G; {S}).

It is clear that if two parts of Part(G;S) have nonempty intersection then
their intersection is a subset of a certain cutset of S.

It is easy to prove [11] that Bound(A) consists of all vertices of the part A
which are adjacent to V (G) \ A. If Int(A) 6= ∅ then Bound(A) separates Int(A)
from V (G) \A.

Definition. Two cutsets S, T ∈ Rk(G) are independent if S does not split T
and T does not split S. Otherwise, these cutsets are dependent.

Remark 5. Let G be a k-connected graph and let S, T ∈ Rk(G).

(1) Then either S and T are independent or each of them splits the other. For
the detail of proof see [2, 8].

(2) Let S and T be independent. By the definition, there exist a part A ∈
Part(G;S) such that T ⊂ A and a part B ∈ Part(G;T ) such that S ⊂ B.
If A′ ∈ Part(G;S) and A′ 6= A then A′ ⊂ B. For the detail of proof see [8].

(3) Let S and T be independent. Let A ∈ Part(G;S) and B ∈ Part(G;T ).
Clearly, if A ⊂ B then Int(A) ⊂ Int(B).
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2.3. The block tree of a 2-connected graph

In this section, the graph G is 2-connected.

Definition. (1) A cutset S ∈ R2(G) is single if S is independent with all other
cutsets of R2(G). Denote by O(G) the set of all single cutsets of the graph G.

(2) We will write Part(G) instead of Part(G;O(G)). Parts of this decomposition
will be called simply parts of G.

Definition. The block tree BT(G) of a 2-connected graph G is a bipartite graph
with bipartition (O(G),Part(G)), where a single cutset S and a part A are adja-
cent if and only if S ⊂ A.

In what follows we list several properties of BT(G). Most of them are similar
to properties of the classic tree of blocks and cutpoints of a connected graph.

Lemma 6 [13, Lemma 1]. For a 2-connected graph G, the following statements
hold.

(1) BT(G) is a tree. Every leaf of BT(G) corresponds to a part of Part(G).

(2) Let B,B′ ∈ Part(G). Then a cutset S ∈ O(G) separates B from B′ in G if
and only if S separates B from B′ in BT(G).

Definition. Let A ∈ Part(G). A part A is pendant if it corresponds to a leaf of
BT(G).

Remark 7. If A ∈ Part(G) is a pendant part then Bound(A) is a single cutset
of the graph G.

Definition. (1) For a 2-connected graph G, we denote by G′ the graph obtained
from G upon adding all edges of type ab where {a, b} ∈ O(G).

(2) A part A ∈ Part(G) is called a cycle if the graph G′(A) is a cycle. A is called
a 3-block if G′(A) is a 3-connected graph. If A is a cycle then |A| is the length
of A.

Lemma 8 [13, Lemma 2]. For a 2-connected graph G, the following statements
hold.

(1) Every part of Part(G) is either a cycle or a 3-block.

(2) If A ∈ Part(G) is a cycle, then all vertices of Int(A) have degree 2 in the
graph G.

(3) Let A ∈ Part(G) be a cycle of length at least 4. Then any pair of its non-
neighboring vertices form a non-single cutset of the graph G. All non-single
cutsets of G are of such type.

(4) Let S ∈ R2(G) be a non-single cutset. Then |Part(G;S)| = 2.
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Lemma 9 [12, Lemma 6]. Assume that G is a 2-connected graph, S ∈ R2(G)
and B ∈ Part(G;S). If G(B) is 2-connected then S ∈ O(G).

Lemma 10. Assume that G is a 2-connected graph, S = {a, b} ∈ R2(G) and
D ∈ Part(G;S). Then one of the two following statements holds.

1◦ G(D) is an ab-path.

2◦ There exists a pendant part A ∈ Part(G) such that Int(A) ⊂ Int(D).

Proof. Assume that there exists T ∈ O(G) such that T ⊂ D. Since T is single,
T is independent with S or T coincides with S. Hence, there is a part D′ ∈
Part(G;T ) such that Int(D′) ⊂ Int(D). By item (2) of Lemma 6, D′ is a union
of parts of Part(G) which lie in one component of BT(G)− S. Clearly, among
these parts, there is a pendant part A ∈ Part(G). Then Int(A) ⊂ Int(D) and
statement 2◦ holds.

Now we may assume that no single cutset is contained in D. In particular,
S /∈ O(G). Then, by item (3) of Lemma 8, there exists a part C ∈ Part(G) such
that S ⊂ C and C is a cycle. Since D contains no single cutset, Int(D) ⊂ Int(C).
Therefore, G(D) is a simple ab-path.

Lemma 11 [12, Theorem 2]. Let G be a 2-connected graph without single cutsets.
Then either G is 3-connected or G is a cycle.

3. Proof of Theorem 2

In what follows, the graph G will be 3-connected.

Definition. A contractible set W ⊂ V (G) of a 3-connected graph G is maximal
if there exists no vertex x ∈ V (G) \W such that the set W ∪ {x} is contractible.

Remark 12. Let W ⊂ V (G) be a maximal contractible set and x ∈ V (G) \W
be a vertex adjacent to W . Then the graph G−W − x is not 2-connected.

Lemma 13. Let G be a 3-connected graph, and W ⊂ V (G) be a maximal con-
tractible set such that the graph H = G −W is not a cycle. Then the following
statements hold.

(1) Let A ∈ Part(H) be a cycle. Then each inner vertex of A is adjacent to W .

(2) There are at least two pendant parts in Part(H), all these parts are cycles of
length at least 4. The boundary of every pendant part is a single cutset of H.

(3) Let A ∈ Part(H) be a pendant part. Then H − Int(A) is 2-connected.

Proof. (1) Let A ∈ Part(H) be a cycle and x ∈ Int(A). Then dH(x) = 2. Since
G is 3-connected, the vertex x must be adjacent in G to the set W .
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(2) Since W is maximal, the graph H is not 3-connected. Since H is not a
cycle, by Lemma 11 this graph has single cutsets. Hence, the tree BT(H) has at
least two leaves which correspond to pendant parts of Part(H). The boundary
of a pendant part is a single cutset of the graph H.

Consider a pendant part A ∈ Part(H). Let Bound(A) = S. If W is not
adjacent to Int(A) then a 2-vertex cutset S separates Int(A) in a 3-connected
graph G. Since this is impossible, there exists a vertex x ∈ Int(A) adjacent to W
in G. However, by maximality of W , the graph H − x cannot be 2-connected.
Hence, there exists a cutset R ∈ R2(H) which contains x. Since x ∈ Int(A), the
cutset R is not single. Then, by item (3) of Lemma 8, the part A is a cycle of
length at least 4.

(3) Let Bound(A) = {x, x′} and H ′ = H − Int(A). Suppose that H ′ is not
2-connected. Then H ′ has a cutpoint w. If both x and x′ belong to the same
block of H ′ then w is a cutpoint of H, a contradiction. Therefore, in H ′, w
separates x from x′.

By item (2), vertices of the set Int(A) form a simple xx′-path in H. Since
Bound(A) = {x, x′} is a single cutset in H, no cutset of R2(H) separates x
from x′. Then, by Menger’s theorem, there exist three independent xx′-paths
in H. Clearly, at most one of these paths intersects Int(A). Therefore, in H ′,
there are two independent xx′-paths. Thus, w cannot separate x from x′ in H ′,
a contradiction.

Theorem 2 is a consequence of the following lemma.

Lemma 14. Let m ≥ 4, n ≥ 2m + 3 and let G be a 3-connected graph on n
vertices. If G has a contractible set of m ≥ 4 vertices, then G has a contractible
set of m′ vertices, where m + 1 ≤ m′ ≤ 2m− 2.

The proof of Lemma 14 is rather complicated. We divide this proof into
several claims. In all these claims, let G satisfy the condition of Lemma 14,
i.e., let G be a 3-connected graph with v(G) ≥ 2m + 3. We assume that G
has a contractible set of m ≥ 4 vertices. Each such set is maximal, otherwise,
Lemma 14 is proved. We try to find in the graph G a suitable vertex set W ′, i.e.,
a contractible set of size m + 1 ≤ |W ′| ≤ 2m− 2.

For a maximal contractible set W of m vertices, we will use the notation
H = G−W and F = G(W ). Then H is 2-connected and F is connected.

Claim 15. Let W be a maximal contractible set of m vertices. Assume that the
graph G −W is not a cycle and has a pendant part D with |Int(D)| ≤ m− 2.
Then the assertion of Lemma 14 holds.

Proof. Consider the set W ′ = W ∪ Int(D). By item (1) of Lemma 13, the graph
G(W ′) is connected. By item (3) of Lemma 13, the graph



90 D.V. Karpov

G−W ′ = (G−W )− Int(D)

is 2-connected. Since m = |W | < |W ′| ≤ 2m− 2, the set W ′ is suitable.

Claim 16. Let M be a maximal contractible set of at most m vertices with
|NG(M)| = p ≤ m + 2. Then the graph G −M is not a cycle and has pendant
parts D1, . . . , Dk such that

k∑
i=1

|Int(Di)| ≤ p.

Proof. Let G′ = G−M . If G′ is a cycle then all vertices of this cycle are adjacent
to M in G. Therefore, V (G) ⊂ M ∪ NG(M), whence it follows v(G) ≤ |M |+
|NG(M)| ≤ 2m + 2, a contradiction.

Thus, G′ is not a cycle. Then the graph G and the set M satisfy the condition
of Lemma 13. Therefore, G′ has at least two pendant parts D1, . . . , Dk which
interiors are disjoint. By item (1) of Lemma 13,

⋃k
i=1 Int(Di) ⊂ NG(M), whence

our claim follows.

Claim 17. Let M and W be two maximal contractible sets such that |M | = m,
|W | ≤ m and |NG(M) \W | ≤ 2. Then the assertion of Lemma 14 holds.

Proof. The contractible set M satisfies the condition of Claim 16. Let G′ =
G−M , let D1, . . . , Dk be pendant parts of the graph G′ and D =

⋃k
i=1 Int(Di).

If W 6⊂ D then

|D| ≤ |W | − 1 + 2 = m + 1,

whence by k ≥ 2 the graph G′ has a pendant part which interior contains at
most m+1

2 < m−1 vertices. In this case, by Claim 15, the assertion of Lemma 14
holds.

Now let W ⊂ D. Clearly, Int(D1), . . . , Int(Dk) are vertex sets of components
of G(D). Since the graph G(W ) is connected, we have W ⊂ Int(Di) for a certain i.
Hence, the union of all other interiors consists of at most 2 vertices. Therefore, G′

has a pendant part which interior has at most 2 ≤ m−2 vertices and, by Claim 15,
the assertion of Lemma 14 holds.

Claim 18. Let W be a maximal contractible set of at most m vertices and let
the graph H = G−W be a cycle. Then the assertion of Lemma 14 holds.

Proof. Let H = h1h2 · · ·hk be a cycle. It follows that k ≥ m + 3, since n ≥
2m + 3 and |W | ≤ m. In the rest of the proof, subscripts are taken modulo k.
Since G is a 3-connected graph, every vertex of H has degree at least 3 in G.
Hence, each vertex of H has at least one neighbor in W . Recall that the graph
F = G(W ) is connected.
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Subclaim 18.1. For i ∈ {1, 2, . . . , k}, if |NG({hi, hi+m+1}) ∩ W | ≥ 2, then
Lemma 14 holds.

Proof. Let x and y be two distinct vertices of W which are adjacent to hi
and hi+m+1, respectively. Let L = {hi+1, hi+2, . . . , hi+m} and let P be a xy-path
in F . Then, in the graph G′ = G − L, all vertices of the path P and the set
V (H) \ L lie on a cycle (see Figure 1a). Hence, these vertices lie in the same
block B of the graph G′.

Let U be the set of all vertices of G′ which do not belong to B. Then
U ⊂W \ {x, y}. Assume that U 6= ∅. Then every connected component of G(U)
is separated in the graph G′ from B by a cutpoint and, therefore, is adjacent to L
(since G is 3-connected). Let W ′ = L ∪ U . It follows that G(W ′) is connected.
Further, W ′ is a contractible set, since G−W ′ = B is 2-connected. Moreover,

m + 1 ≤ |W ′| = |L|+ |U | ≤ |L|+ |W \ {x, y}| ≤ 2m− 2

and Lemma 14 holds.

Hence, we may assume U = ∅. Then L is a contractible set of G. Further, we
may assume L is a maximal contractible set, otherwise, Lemma 14 holds (since
|L| = m). Note that NG(L) ⊂ {hi, hi+m+1} ∪W . By applying Claim 17 on the
set L, the assertion of Lemma 14 holds.
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Figure 1. H is a cycle.

By Subclaim 18.1, we assume that |NG({hi, hi+m+1}) ∩ W | ≤ 1, for i ∈
{1, 2, . . . , k}. It follows that |NG(hi) ∩W | = 1, for i ∈ {1, 2, . . . , k}.

Subclaim 18.2. If there exist i, j ∈ {1, 2, . . . , k} such that NG(hi) ∩ W 6=
NG(hj) ∩W, then Lemma 14 holds.

Proof. We can pick s such that NG(hs)∩W 6= NG(hs−1)∩W . Let NG(hs)∩W =
{x} and NG(hs−1) ∩W = {y}. Further, L = {hs+1, hs+2, . . . , hs+m}. Clearly,
hs−1 /∈ L.
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Let Q be a xy-path in F and let G′ = G − L. By Subclaim 18.1, x is
adjacent to hs+m+1. Therefore, in the graph G′, all vertices of the path Q and of
the set V (H) \ L lie on a cycle (see Figure 1b). Hence, these vertices lie in the
same block B of the graph G′. Now, by the same argument as in Subclaim 18.1,
Subclaim 18.2 holds.

By Subclaim 18.2, we may assume that all vertices of H are adjacent to
exactly one vertex of W , say, x. Therefore, x is a cutpoint of a 2-connected
graph G, a contradiction. Hence, Claim 18 holds.

If H is a cycle then Claim 18 shows that Lemma 14 holds. In what follows,
we may assume that H is not a cycle.

Claim 19. Let W be a maximal contractible set. Assume that |W | ≤ m. Let
A ∈ Part(H) be a pendant part such that |Int(A)| ≥ m. Then the assertion of
Lemma 14 holds.

Proof. Recall that F = G(W ) is connected. By item (2) of Lemma 13, A is a
cycle and Bound(A) = {s, t} is a single cutset of H. Let vertices of Int(A) follow
a1, . . . , ak from s to t, where k ≥ m. Let L = {a1, . . . , am} and G′ = G − L.
If k = m then let t′ = t. If k > m then let t′ = am+1. By Lemma 13, H ′ =
H − Int(A) is 2-connected.

Subclaim 19.1. If G′ is 2-connected, then Lemma 14 holds.

Proof. Now L is a contractible set of m vertices. We assume that L is maximal,
since otherwise Lemma 14 is proved. Since NG(L) ⊂ W ∪ {s, t′}, by applying
Claim 17 on the set L, Lemma 14 holds.

Subclaim 19.2. Let P be a connected subgraph of G(Int(A)) and let v be a vertex
of W which is adjacent to V (P ).

(1) Let B′ be a block of G−P which contains H ′. Then M = G−B′ is connected.
(2) Let B′ be a block of G − P − v which contains H ′. Then M = G − B′ is

connected.

Proof. (1) Suppose M is disconnected. Let M1 be a component of M which
does not contain P (see Figure 2a). Then V (M1) ⊂ W and no vertex of M1 is
adjacent to V (P ). By the definition of B′, we find that G − P has a cutpoint
w /∈ M1 which separates M1 from B′. It follows that w is a cutpoint of G, a
contradiction. Hence, M is connected.

(2) The proof is similar to that of item (1).

In what follows, we may assume that G′ is not 2-connected. Let B be a block
of G′ which contains H ′. By Lemma 13, there exists a pendant part A′ ∈ Part(H)
which is different from A and every inner vertex of A′ is adjacent to W .
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Subclaim 19.3. If k > m, then am+1, . . . , ak ∈ V (B).

Proof. Let a′ ∈ Int(A′). Both am+1 and a′ have neighbors in W , say y and y′,
respectively. There is a yy′-path in F and a a′t-path in H ′ (see Figure 2b). Hence,
there is a cycle which contains am+1, . . . , ak, t and a′. Since a′, t ∈ V (B) and
a′ 6= t, all vertices am+1, . . . , ak are also contained in V (B).
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Figure 2. |Int(A)| ≥ m. Subclaims 19.2–19.4.

Let D = V (G) \ (L ∪W ) = V (H ′) ∪ {am+1, . . . , ak}. Clearly, Int(A′) ⊂ D.
By Subclaim 19.3, D ⊂ V (B).

Subclaim 19.4. If D has two distinct vertices d and d′ such that NG(d)∩W 6= ∅,
NG(d′) ∩W 6= ∅ and NG(d) ∩W 6= NG(d′) ∩W, then Lemma 14 holds.

Proof. Let NG(d)∩W = {x} and NG(d′)∩W = {x′}. There exists a xx′-path P
in F (see Figure 2c). Clearly, P is contained in B. Let U = W \ V (B) and
W ′ = L ∪ U . It follows that U ⊂W \ V (P ). Since G′ is not 2-connected, U 6= ∅.
By Subclaim 19.2, G(W ′) is connected. Since G−W ′ = B is 2-connected, W ′ is
a contractible set. Moreover,

m + 1 ≤ |W ′| = |L|+ |U | ≤ |L|+ |W \ V (P )| ≤ m + (m− 2) = 2m− 2,

and Lemma 14 holds.

It was mentioned above that NG(D) ∩ W ⊃ NG(Int(A′)) ∩ W 6= ∅. By
Subclaim 19.4, we may assume that NG(D) ∩W = {x}. Since |Int(A′)| ≥ 2 and
every vertex of Int(A′) is adjacent to x, we have x ∈ V (B).

Subclaim 19.5. If |NG({a1, am}) ∩W | ≥ 2, then Lemma 14 holds.
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Proof. By Lemma 13, NG(a1)∩W 6= ∅ and NG(am)∩W 6= ∅. Hence, we can find
in W two distinct vertices u and v such that a1u ∈ E(G) and amv ∈ E(G). In F ,
there exist a xu-path Pu and a xv-path Pv. By symmetry, we may assume that
Pu does not contain v. (The vertex u can coincide with x and the vertex v cannot
coincide with x.) Let L′ = {a2, . . . , am, v} and let G1 = G− L′ (see Figure 3a).

Suppose G1 is 2-connected. We may assume that L′ is maximal (otherwise,
Lemma 14 is proved). Recall that v has no neighbor in D (since v 6= x). Therefore,
NG(L′) ⊂W ∪ {a1, t′}. Then Lemma 14 follows from Claim 17.

Now we may assume G1 is not 2-connected. Let B′ be the block of G1 which
contains H ′. Let a′ ∈ Int(A′). Then a′ is adjacent to x. Clearly, there is an
sa′-path in H ′ (see Figure 3b). Therefore, the path a1uPux is contained in B′.

Let U ′ be the set of all vertices of G1 which do not belong to B′ and W ′′ =
L′ ∪U ′. By Subclaim 19.2, W ′′ is connected. Since G−W ′′ = B′ is 2-connected,
W ′′ is contractible. Further,

m ≤ |L′| < |W ′′| = |L′|+ |U ′| ≤ |L′|+ |W \ {x, v}| ≤ m + (m− 2) = 2m− 2,

and Lemma 14 holds.
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Figure 3. |Int(A)| ≥ m. Subclaim 19.5.

By Subclaim 19.5, we may assume that |NG({a1, am}) ∩ W | = 1. Let
NG({a1, am}) ∩W = {v}, where v can coincide with x. Let

M = {a2, . . . , am−1} ∪W \ {x, v}

(see Figure 3c). Since NG(D)∩W = {x} and NG({a1, am})∩W = {v}, G−M is
a block of G−{a2, . . . , am−1}. By Subclaim 19.2, M is a connected set. Thus, M
is contractible. Further,

2m− 4 = (m− 2) + (m− 2) ≤ |M | = |{a2, . . . , am−1}|+ |W \ {x, v}|

≤ (m− 2) + (m− 1) = 2m− 3.
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If m ≥ 5 then M is a contractible set such that m + 1 ≤ |M | ≤ 2m− 3 and
Lemma 14 holds. So, we may assume m = 4. Then |M | = 4. Therefore, M is
a maximal contractible set (otherwise, Lemma 14 is proved). Since W \ {x, v}
is not adjacent to D, we have NG(M) ⊆ W ∪ {a1, am}. Hence, by Claim 17,
Lemma 14 holds.

By Lemma 13, H has at least two pendant parts, say A and A′. Further, by
Claims 15 and 19, assume that the interior of any pendant part of H consists of
exactly m− 1 vertices. Let

Bound(A) = {s, t}, L = Int(A) = {a1, . . . , am−1},

Bound(A′) = {s′, t′}, L′ = Int(A′) = {a′1, . . . , a′m−1},

where vertices of L are enumerated from s to t and vertices of L′ are enumerated
from s′ to t′. Set the notation N = V (H) \ (L ∪ L′). Recall that both graphs
H − L and H − L′ are 2-connected by Lemma 13.

Claim 20. Assume that, for any vertex w ∈ W and for any part B ∈ Part(H),
there is at most one edge from w to Int(B). Then Lemma 14 holds.

Proof. For each vertex a ∈ L∪L′, we choose one edge from a to W . The chosen
edges are called good. By the condition of the claim, any two good edges incident
to vertices of L have distinct ends in W . Then, since |L| = m − 1, exactly one
vertex in W (say, z) is not an end of a good edge incident to L. Similarly, exactly
one vertex of W (say, z′) is not an end of a good edge incident to L′.

Subclaim 20.1. Assume that there exist two adjacent vertices x, y ∈ W \ {z′}.
Then Lemma 14 holds.

Proof. Consider the set W ′ = L∪W \{x, y} (see Figure 4a). Then |W ′| = 2m−3.
The graph G −W ′ is 2-connected since it can be obtained from a 2-connected
graph H−L upon adding adjacent vertices x, y which have different neighbors in
the set L′ ⊂ V (H − L). If the graph G(W ′) is connected, the set W ′ is suitable
and Lemma 14 is proved.

Assume that the graph G(W ′) is disconnected. Then the only vertex of the
set W which can be not adjacent to L (the vertex z) is separated in F by the set
{x, y} from all other vertices. Since F is connected, z is adjacent to at least one
of x and y, say, to y. Since G is 3-connected, dG(z) ≥ 3. Thus, z is adjacent to
L′∪N . If z is adjacent to N (see Figure 4b) then G(N∪L′∪{z, y}) is 2-connected.

In the remaining case, z is not adjacent to N . Then z is adjacent to exactly
one vertex of the set N ∪ L′, say, to a′i ∈ L′. Therefore, zy, zx ∈ E(G). One
of the vertices x and y (say, y) is adjacent to a vertex of the set L′ \ {a′i} (see
Figure 4c). Then G(N ∪ L′ ∪ {z, y}) is 2-connected again. In both cases, the set
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Figure 4. Subclaim 20.1.

W ′′ = L ∪ (W \ {z, y}) is suitable: the graph G −W ′′ = G(N ∪ L′ ∪ {z, y}) is
2-connected, the graph G(W ′′) is connected (all vertices of the set W \ {z, y} are
adjacent to L) and |W ′′| = 2m− 3. Thus, Lemma 14 holds.

Now we return to the proof of Claim 20. We may assume that all edges of the
graph F are incident to the vertex z′ (otherwise, by Subclaim 20.1, Lemma 14
holds). By symmetry, all edges of F are incident to z. Thus, z = z′ and F is a star
with the center z (see Figure 5a). In this case, consider a vertex y ∈W , adjacent
to a′2 and the set M = L ∪ {y}. We will prove that the graph G1 = G −M is
2-connected. Since H − L is 2-connected, vertices of the set N ∪ L′ = V (H − L)
lie in one block of G1, say, B. All leaves of the star F − y are incident to good
edges, and other ends of these edges are distinct vertices of the set L′ ⊂ V (B).
Therefore, we have W \ {y} ⊂ V (B). Hence, G1 = B is a 2-connected graph.

Note that M is connected, |M | = m and NG(M) ⊆ (W \ {y}) ∪ {a′2, s, t}.
Thus, M is a maximal contractible set. By Claim 16, the graph G−M is not a
cycle and has pendant parts D1, . . . , Dk (where k ≥ 2) such that

∑k
i=1 |Int(Di)| ≤

m + 2. Then |Int(Di)| = m − 1 for all i ∈ {1, . . . , k} (otherwise, by Claims 15
and 19, Lemma 14 holds). This is possible only if m = 4 and k = 2 (in this
case, m + 2 = 2(m − 1)). Hence, NG(M) = (W \ {y}) ∪ {a′2, s, t} and the
graph G(NG(M)) has two connected components Int(D1) and Int(D2) such that
|Int(D1)| = |Int(D2)| = m− 1. Since G(W \ {y}) = F − y is connected and have
exactly m− 1 vertices, W \ {y} and {a′2, s, t} must be components of G(NG(M)).
However, a′2 can be adjacent only to a′1, a

′
3 and vertices of W . Hence, a′2 is not

adjacent to {s, t}, a contradiction.

Claim 21. Let y ∈W be adjacent to two vertices of L. If F − y is disconnected,
then Lemma 14 holds.

Proof. Let U1, . . . , Up be all connected components of F − y. Assume that U1

is not adjacent to L′ (see Figure 5b) and consider a block B′ of U1. Recall that
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G − y is 2-connected and U1 is not adjacent to U2, . . . , Up. Hence, in G − y,
there exist two disjoint paths from B′ to L ∪ N which inner vertices belong to
U1. Therefore, the graph G′ = G(N ∪ L ∪ U1) is 2-connected.

Let W ′ = L′ ∪W \ U1. The graph G −W ′ = G′ is 2-connected, the graph
G(W ′) is connected (all components U2, . . . , Uk are adjacent to y ∈ W \ U1 and
W \ U1 is adjacent to L′) and

m + 1 ≤ |L′|+ |U2 ∪ {y}| ≤ |W ′| ≤ |L′|+ |W | − |U1| ≤ 2m− 2.

Hence, the set W ′ is suitable and Lemma 14 is proved.

Now we may assume that all components U1, . . . , Up are adjacent to L′ (see
Figure 5c). In this case, W ′ = L′∪W \{y}. The graph G−W ′ = G(N ∪L∪{y})
is 2-connected, the graph G(W ′) is connected and |W ′| = 2m− 2. Hence, the set
W ′ is suitable and Lemma 14 is proved.

Next two claims will study properties of G under the assumption that Lemma
14 does not hold. In the proofs, we use the same notation as above.

Claim 22. Assume that Lemma 14 does not hold. Let W be a contractible set
of m vertices. Then there exists a vertex y ∈ W such that, for any pendant
part D ∈ Part(H), all vertices of Int(D) are adjacent to y and are not adjacent
to W \ {y}.

Proof. There exist a vertex y ∈W and a pendant part A ∈ Part(H) such that y
has two neighbors in L = Int(A) (otherwise, Lemma 14 is proved by Claim 20).
Moreover, F − y is connected (otherwise, Lemma 14 is proved by Claim 21).

First, we prove the claim for a pendant part A′ ∈ Part(H) which is different
from A. Let L′ = Int(A′). We know that |L| = |L′| = m− 1 (otherwise, Lemma
14 is proved). Assume that W \ {y} and L′ are adjacent (see Figure 6a). Let
W ′ = L′ ∪ (W \ {y}). The graph G−W ′ = G(N ∪ L ∪ {y}) is 2-connected, the
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graph G(W ′) is connected and |W ′| = 2m− 2. Hence, the set W ′ is suitable and
Lemma 14 holds, a contradiction.

Hence, L′ and W \ {y} are not adjacent. Then every vertex of L′ is adjacent
to y. Since |L′| ≥ 2, we may exchange L and L′ and, by symmetry, assure that
each vertex of L is adjacent to y and is not adjacent to W \ {y}. Thus, we have
proved the claim for every pendant part of Part(H).
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Figure 6. Claim 22 and Subclaim 23.1.

Claim 23. Assume that Lemma 14 does not hold. Let W be a contractible set
of m vertices. Then there exists a vertex y ∈W which is adjacent to all vertices
of W \ {y}. Then there exists a vertex y ∈ W which is adjacent to all vertices
of W \ {y}. Moreover, for any pendant part D ∈ Part(H), all vertices of Int(D)
are adjacent to y and are not adjacent to W \ {y}.

Proof. By Claim 22, all inner vertices of pendant parts of Part(H) are adjacent
to a certain vertex y ∈W and are not adjacent to W \ {y}.

Consider pendant parts A and A′ of H and there interiors L and L′, respec-
tively. Let M = L ∪ {y}, G′ = G −M and W ′ = W \ {y}. Clearly, G − y is
2-connected. By Lemma 13, H ′ = (G − y) −W ′ − L is 2-connected. Since L is
not adjacent to W ′, by Lemma 4, the graph G′ = (G − y) − L is 2-connected.
Since |M | = m and the graph G(M) is connected, M is a maximal contractible
set.

Subclaim 23.1. W ′ is a pendant part of the graph G′.

Proof. We will prove that there exists a pendant part D ∈ Part(G′) such that
Int(D) ⊂ W ′. Then, by Claims 15 and 19, |Int(D)| = m − 1 whence it follows
W ′ = Int(D) and the subclaim holds.

Since F is connected, there exists a vertex w ∈ W ′ which is adjacent to y.
Since M is a maximal contractible set and M ∪{w} is connected, G′−w is not 2-
connected. Since G′−W ′ = H ′ is 2-connected, there is a block B of G′−w which



Large Contractible Subgraphs of a 3-Connected Graph 99

contains H ′. Let u1, . . . , uk be all cutpoints of G′−w which belong to V (B). Then,
for all i ∈ {1, . . . , k}, Si = {w, ui} ∈ R2(G

′) and there is a part Ui ∈ Part(G′;Si)
such that Int(Ui) ⊂ W ′ (see Figure 6b). If Si is single then, by Lemma 10,
there exists a pendant part D ∈ Part(G′) such that Int(D) ⊂ Int(Ui), and we
are done. In what follows, assume that Si is not single. Then, by Lemma 6,
|Part(G′, Si)| = 2. Therefore, G′ − Int(Ui) ∈ Part(G′;Si).

If G′(Ui) is not a uiw-path then, by Lemma 10, there exists a pendant
part D ∈ Part(G′) such that Int(D) ⊂ Int(Ui), and we are done. Thus, we
may assume that, for all i ∈ {1, . . . , k}, G′(Ui) is a simple wui-path.

If k = 1 then G′ − Int(U1) = B and B is 2-connected. If k ≥ 3 then
G′ − Int(U1) is also 2-connected (see Figure 6c). In both cases, by Lemma 9, S1

is single, a contradiction.

If k = 2 then S = {u1, u2} ∈ R2(G
′) and Part(G′;S) = {V (B), U1 ∪U2} (see

Figure 6d). Since B is 2-connected, by Lemma 9, S ∈ O(G). In this case, U1∪U2

is a pendant part of G′. Clearly, Int(U1∪U2) ⊂W and the subclaim is proved.

Now we finish the proof of Claim 23. By Subclaim 23.1, W ′ is a pendant part
of the graph G′. By Claim 22, there exists a vertex y′ ∈M which is adjacent to
all vertices of W ′. Since L is not adjacent to W ′, y′ = y (see Figure 7a).
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Figure 7. The vertex y.

Claim 24. The set T = {a2, . . . , am−1, t} is contractible.

Proof. First, let us prove that G − T is 2-connected. Indeed, this graph is
obtained from a 2-connected graph G − t upon deleting vertices of the set T ′ =
T \ {t} which are adjacent in G − t only to y and a1 (see Figure 7b). In a
2-connected graph H ′ = H − L, there are two disjoint a′1s-paths and at most
one of them contains t. Thus, in H ′ − t, there is an a′1s-path P which forms a
cycle together with the path sa1ya

′
1. Thus, in G− T , there is a block B which

contains a1 and y. If G − T is not 2-connected then it has a cutpoint x which
separates B from another block B′. Since vertices of the set T ′ are adjacent in
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G − T = G − t − T ′ only to vertices of the block B, the vertex x also separates
B from B′ in G− t, a contradiction.

Thus, G − T is 2-connected. Clearly, G(T ) is connected. Therefore, T is
contractible.

The end of the proof of Lemma 14. Assume the statement of Lemma 14
does not hold. By Claim 24, the set T = {a2, . . . , am−1, t} is contractible. Con-
sider two cases.

1. The set T is not maximal.
Then there exists a vertex u ∈ NG(T ) such that G− T − u is 2-connected. Note
that u 6= y, since dG−T−y(a1) = 1. However, any vertex u ∈ V (G − T ) \ {y} is
not adjacent to {a3, . . . , am−1}. Since a2t /∈ E(G), the graph G(T ∪ {u}) has no
vertex adjacent to all others, a contradiction with Claim 23.

2. The set T is maximal.
The graph H0 = G − T is 2-connected. If H0 is a cycle then Lemma 14 follows
from Claim 18. Let H0 be not a cycle. Consider a pendant part D ∈ Part(H). If
|Int(D)| ≥ m then Lemma 14 follows from Claim 19. Now assume that |Int(D)| ≤
m− 1 and consider a set W ′ = T ∪ Int(D). By Lemma 13, the graph G−W ′ =
H0 − Int(D) is 2-connected and the graph G(W ′) is connected. Thus, W ′ is
contractible. Since 2 ≤ |Int(D)| ≤ m − 1, we have m + 1 ≤ |W ′| ≤ 2m − 2, i.e.,
Lemma 14 is proved.

Proof of Theorem 2. Consider the maximal s ≤ m such that the graph G
has a contractible set U of s vertices. If s = m we are done. Assume that
s ≤ m − 1. By Lemma 14, there exists another contractible set U ′ such that
s+ 1 ≤ |U ′| ≤ 2s−2 ≤ 2m−4. By the maximality of s, we have |U ′| > m. Thus,
the set U ′ is suitable for Theorem 2.
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