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Abstract

The first and second Zagreb eccentricity indices (EM1 and EM2), the
eccentric distance sum (EDS), and the connective eccentricity index (CEI)
are all recently conceived eccentricity-based graph invariants, some of which
found applications in chemistry. We prove that EDS ≥ EM1 for any con-
nected graph, whereas EDS > EM2 for trees. Moreover, in the case of trees,
EM1 ≥ CEI, whereas EM2 > CEI for trees with at least three vertices. In
addition, we compare EDS with EM2, and compare EM1, EM2 with CEI
for general connected graphs under some restricted conditions.
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1. Introduction

Throughout this paper we consider only simple connected graphs. For a graph
G = (V,E) with vertex set V = V (G) and edge set E = E(G), the degree of a
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vertex v in G, denoted by dG(v), is the number of edges incident with v. Denote
by dG(u, v) the distance between the vertices u and v in G. The eccentricity of
a vertex v in the graph G is defined as εG(v) = max{dG(u, v)|u ∈ V (G)}. If
dG(u, v) = εG(v) for some vertex u in G, then u is said to be an eccentric vertex

of v. The diameter of a connected graph G is equal to max{εG(v)|v ∈ V (G)},
while the radius is equal to min{εG(v)|v ∈ V (G)}.

A connected graph is said to be a tree if it contains no cycles. Let Pn, Sn,
Cn, and Kn be the path, star, cycle, and complete graph of order n, respectively.
For notation and terminology not defined here, the readers are referred to [4].

The first and second Zagreb indices have been introduced more than forty
years ago [16,17] and became one of the best studied degree-based graph invari-
ants [5, 27]. These are defined as

M1(G) =
∑

u∈V (G)

dG(u)
2

and
M2(G) =

∑

uv∈E(G)

dG(u) dG(v).

In an analogy with them, Vukičević and Graovac [30], and Ghorbani and Hos-
seinzadeh [13], independently, introduces the first and second Zagreb eccentricity

indices as

(1) EM1(G) =
∑

u∈V (G)

εG(u)
2

and

(2) EM2(G) =
∑

uv∈E(G)

εG(u) εG(v) .

For recent results on the Zagreb eccentricity indices of graphs, see [6,7,25,28,29,
31] and the references cited therein.

The eccentric distance sum (EDS) of a connected graph G, denoted by ξd(G),
is defined as

(3) ξd(G) =
∑

u∈V (G)

εG(u)DG(u) =
∑

{u,v}⊆V (G)

[

εG(u) + εG(v)
]

dG(u, v).

This graph invariant was put forward by Gupta, Singh and Madan [15] as an
eccentricity weighted version of the Wiener index [10]. It proved to be a struc-
ture descriptor that can be used to predict biological and physical properties of
chemical compounds, in particular in structure activity/property relationships
studies.
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More recently, the mathematical properties of EDS have been extensively
investigated. For recent results on the EDS, see [3, 12, 21–24,26, 33].

Somewhat earlier, in 2000, Gupta et al. introduced the connective eccentricity
index (CEI), denoted by Cξ(G), which is defined [14] as

(4) Cξ(G) =
∑

u∈V (G)

dG(u)

εG(u)
.

For recent results on the CEI see [1, 32, 34] and the references cited therein.
Obviously, by considering the total contribution of each edge, one can rewrite
CEI as

(5) Cξ(G) =
∑

uv∈E(G)

[

1

εG(u)
+

1

εG(v)

]

.

Relationships between various eccentricity-based graph invariants have re-
ceived much attention over the past few decades, see e.g., [7–9, 18–20, 35]. Some
of these researches were motivated by conjectures created by the Grafitti [11] and
AutoGraphiX [2] software.

In this paper, we investigate the relationship between EM1, EM2, and EDS,
and the relationship between EM1, EM2, and CEI. We organize this paper as
follows. In Section 2, we first prove that EDS is greater than or equal to EM1

for any connected graph. Then we prove that EDS is greater than EM2 for trees.
Moreover, we compare EDS with EM2 for general connected graphs under some
restricted conditions. In Section 3, we first show that for trees, EM1 is greater
than or equal to CEI. Then we prove that EM2 is strictly greater than CEI for
trees with at least three vertices. In addition, we compare EM1 and EM2 with
CEI for general connected graphs under some restricted conditions.

2. Comparison of EM1 and EM2 with EDS

We begin our investigation by comparing EM1 and EM2 with EDS.

Theorem 1. Let G be a connected graph of order n. Then

ξd(G) ≥ EM1(G)

with equality if and only if G ∼= K2.

Proof. If G ∼= K2, then ξd(G) = EM1(G). Therefore, we assume that n ≥ 3. If
εG(v) = 1 for each v in G, then G ∼= Kn. Elementary calculation yields

ξd(Kn) = n(n− 1) > n = EM1(Kn).
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Then the statement of the theorem is true. So, we may assume that there exists
at least one vertex, say v, in G such that εG(v) ≥ 2. If so, then

DG(v) ≥ [dG(v)− 1] + [1 + 2 + · · ·+ εG(v)]

≥
1

2
εG(v) [εG(v) + 1] > εG(v).

Also, for any vertex u with εG(u) = 1, DG(u) = n− 1 > 1 = εG(u). Thus, by (1)
and (3),

ξd(G) > EM1(G).

This completes the proof.

Next, we examine the relationship between EM2 and EDS. We first compare
EM2 with EDS for trees. Then we compare EM2 with EDS for connected graphs
under given restricted conditions.

Before proceeding, we prove the following result.

Lemma 2. Let T be a tree. Then

(6)
∑

u∈V (T )

εT (u)
2 >

∑

xy∈E(T )

[εT (x)− 1][εT (y)− 1].

Proof. Let n be the order of T . If n = 2, then T ∼= P2, and

∑

u∈V (T )

εT (u)
2 = 1 + 1 = 2 > 0 =

∑

xy∈E(T )

[εT (x)− 1][εT (y)− 1] .

Hence, (6) follows readily. Therefore, we assume that n ≥ 3. Denote by d be the
diameter of T . Clearly, d ≥ 2.

We proceed by induction on the order n.
Note that n ≥ d+1. We first prove that the inequality (6) holds for the case

when n = d+ 1.
If n = d+ 1, then T ∼= Pn. If n is even, then

(7)
∑

u∈V (T )

εT (u)
2 = 2

[

(n

2

)2
+

(n

2
+ 1

)2
+ · · ·+ (n− 1)2

]

and

∑

xy∈E(T )

[εT (x)− 1][εT (y)− 1] = 2
[(n

2
− 1

)n

2
+

n

2

(n

2
+ 1

)

+ · · ·

· · · +(n− 3)(n− 2)
]

+
(n

2
− 1

)2
.(8)
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Thus, by (7) and (8),
∑

u∈V (T )

εT (u)
2 −

∑

xy∈E(T )

[εT (x)− 1][εT (y)− 1]

= 2
[n

2
+
(n

2
+ 1

)

+ · · ·+ (n− 2) + (n− 1)2
]

−
(n

2
− 1

)2

> 2(n− 1)2 −
(n

2
− 1

)2
=

7

4
n2 − 3n+ 1 > 0.

Consider now the case when n is odd. Then

(9)
∑

u∈V (T )

εT (u)
2 = 2

[

(n+ 1

2

)2
+
(n+ 3

2

)2
+ · · ·+ (n− 1)2

]

+
(n− 1

2

)2
,

∑

xy∈E(T )

[εT (x)− 1][εT (y)− 1] = 2

[

(n− 1

2
− 1

)(n+ 1

2
− 1

)

+
(n+ 1

2
− 1

)

·
(n+ 3

2
− 1

)

+ · · ·+ (n− 3)(n− 2)

]

.(10)

By (9) and (10), we have

∑

u∈V (T )

εT (u)
2 −

∑

xy∈E(T )

[εT (x)− 1] [εT (y)− 1] >
(n− 1

2

)2
> 0.

Thus, the inequality (6) holds for the case when n = d + 1. Now, let n ≥ d + 2
and assume that (6) holds for smaller values of n.

Let Pd+1 = v0v1 · · · vd−1vd be a diametrical path in T . For each 1 ≤ j ≤ d−1,
let Tj be a component containing vj of T \ {vj−1, vj+1}. Note that n ≥ d + 2.
Then |Tk| ≥ 2 for some k. Among all such subtrees Tk with |Tk| ≥ 2, we choose
any one, say Ti. Let u ∈ V (Ti) such that dT (u, vi) = max{dT (w, vi)|w ∈ V (Ti)}.
Then u is a pendent vertex which is farthest from vi among all vertices in Ti.

We have the following claim.

Claim 3. The vertex u cannot be the unique eccentric vertex of any vertex in T .

Proof. Suppose to the contrary that there exists a vertex, say z, in V (T ) such
that the unique eccentric vertex of z is u. Let T 1 be the component containing
v0 of T \ {vi}, and let T 2 be the component containing vd of T \ {vi}. First, we
assume that z ∈ V (Ti). Without loss of generality, suppose that i ≥ ⌊d/2⌋. (If
this is not so, then we can relabel all vertices of the diametrical path in a reverse
order.) By the assumption that the unique eccentric vertex of z is u, we have
dT (z, u) > dT (z, v0). But, at the same time,

dT (z, u) ≤ dT (z, vi) + dT (vi, u) ≤ dT (z, vi) + dT (vi, v0) = dT (z, v0),
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a contradiction. So z 6∈ V (Ti).

Now, it must be either z ∈ V (T 1) or z ∈ V (T 2). If z ∈ V (T 1), then by our
assumption,

dT (z, vi) + dT (vi, vd) = dT (z, vd) < dT (z, u) = dT (z, vi) + dT (vi, u) .

Thus, dT (vi, vd) < dT (vi, u), and then

d = dT (v0, vd) = dT (v0, vi) + dT (vi, vd) < dT (v0, vi) + dT (vi, u) = dT (v0, u),

a contradiction. So, z 6∈ V (T 1). Similarly, we can prove that z 6∈ V (T 2). This
completes the proof.

Let T
′

= T \ {u}. By our choice of u, T
′

is connected. In addition, the
diameter of T

′

is equal to d. By the assumption that i ≥ ⌊d/2⌋ and d ≥ 3, we
have εT (u) ≥ dT (v0, u) ≥ i + 1 ≥ ⌊d/2⌋ + 1 ≥ 2. By Claim 3, for each vertex in
w ∈ V (T ) \ {u}, εT (w) = εT ′ (w). By the induction hypothesis,

∑

w∈V (T
′
)

εT ′ (w)2 >
∑

xy∈E(T
′
)

[

εT ′ (x)− 1
] [

εT ′ (y)− 1
]

.(11)

Therefore,

∑

w∈V (T )

εT (w)
2 =

∑

w∈V (T
′
)

εT (w)
2 + εT (u)

2 =
∑

w∈V (T
′
)

εT ′ (w)2 + εT (u)
2

>
∑

xy∈E(T
′
)

[

εT ′ (x)− 1
][

εT ′ (y)− 1
]

+ εT (u)
2 (by (11))

>
∑

xy∈E(T
′
)

[

εT ′ (x)− 1
][

εT ′ (y)− 1] + [εT (u)− 1
][

εT (u)− 2
]

=
∑

xy∈E(T )\{ut}

[

εT (x)− 1
][

εT (y)− 1
]

+
[

εT (u)− 1
][

εT (u)− 2
]

=
∑

xy∈E(T )\{ut}

[

εT (x)− 1
][

εT (y)− 1
]

+
[

εT (u)− 1
][

εT (t)− 1
]

=
∑

xy∈E(T )

[

εT (x)− 1
][

εT (y)− 1
]

,

where t is the unique neighbor of u in T .

The proof is complete by mathematical induction.

Next, we compare EM2 with EDS for trees. We first need the following
result.
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Lemma 4. Let G be a connected graph with radius r ≥ 2. Then

ξd(G) ≥
∑

uv∈E(G)

[

εG(u) + εG(v)
]

+
∑

u∈V (G)

εG(u)
2.

Proof. It can be easily seen that

∑

uv 6∈E(G)

[εG(u) + εG(v)] dG(u, v) =
1

2

∑

u∈V (G)

∑

v∈V (G)\NG(u)

[

εG(u) + εG(v)
]

dG(u, v).

Let x be a vertex in G such that dG(u, x) = εG(u). Then εG(x) ≥ dG(u, x) =
εG(u). For the above specified u and x, it holds

[

εG(u) + εG(x)
]

dG(u, x) ≥ 2εG(u) · εG(u) = 2 εG(u)
2.

Since εG(u) ≥ r ≥ 2, V (G)\NG(u) 6= ∅. Moreover, if x is an eccentric vertex
of u in G, then x ∈ V (G) \NG(u). So

∑

v∈V (G)\NG(u)

[

εG(u) + εG(v)
]

dG(u, v) ≥ 2 εG(u)
2

and then
∑

uv 6∈E(G)

[

εG(u) + εG(v)
]

dG(u, v) ≥
∑

u∈V (G)

εG(u)
2.

According to (3),

ξd(G) =
∑

uv∈E(G)

[

εG(u) + εG(v)
]

+
∑

uv 6∈E(G)

[

εG(u) + εG(v)
]

dG(u, v)

≥
∑

uv∈E(G)

[

εG(u) + εG(v)
]

+
∑

u∈V (G)

εG(u)
2.

This completes the proof.

Theorem 5. Let T be a tree. Then

ξd(T ) > EM2(T ).

Proof. Let n be the order of T . If the radius of T is 1, then T is a star. Thus,
ξd(T ) = (n − 1)(4n − 5) and EM2(T ) = 2(n − 1). So, the statement of the
theorem is true as n ≥ 2. Now, we may suppose that the radius of T is at least
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two. According to Lemmas 2 and 4,

ξd(T ) ≥
∑

uv∈E(T )

[

εT (u) + εT (v)
]

+
∑

w∈V (T )

εT (w)
2

>
∑

uv∈E(T )

[

εT (u) + εT (v)
]

+
∑

uv∈E(T )

[

εT (u)− 1
] [

εT (v)− 1
]

=
∑

uv∈E(T )

εT (u) εT (v) + (n− 1) >
∑

uv∈E(T )

εT (u) εT (v) = EM2(T ).

This completes the proof.

In what follows, we compare EM2 with EDS for connected graphs under
given restricted conditions.

Theorem 6. Let G be a connected graph with radius r and maximum degree △.

If r ≥ △, then

ξd(G) ≥ EM2(G).

Proof. Let n be the order of G. If n = 2, then G ∼= K2, and ξd(G) > EM2(G),
as claimed. Now, we assume that n ≥ 3. According to (2), we can rewrite the
second Zagreb eccentricity indices as

(12) EM2(G) =
1

2

∑

x∈V (G)



εG(x) ·
∑

y∈NG(x)

εG(y)



 .

For any edge xy ∈ E(G) and any vertex u ∈ V (G) \ {x, y}, it holds

dG(y, u)− dG(x, u) ≤ 1,

implying that

(13) εG(y) ≤ εG(x) + 1.

Thus, by (12) and (13),

EM2(G) ≤
∑

x∈V (G)

εG(x) ·
1

2

[

dG(x)(εG(x) + 1)
]

.(14)

As proved in Theorem 1, for each x ∈ V (G), we have

DG(x) ≥
1

2
εG(x)

[

εG(x) + 1
]

.
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Note that εG(x) ≥ r ≥ △ ≥ dG(x). Therefore, for each x ∈ V (G),

(15) DG(x) ≥
1

2
dG(x)

[

εG(x) + 1
]

.

So, by (3), (14) and (15),

ξd(G) ≥ EM2(G).

This completes the proof.

3. Comparison of EM1 and EM2 with CEI

In order to find the relationship between EM1, EM2, and CEI, we first consider
the following three special graphs.

For the complete graph Kn,

Cξ(Kn) = n(n− 1), EM1(Kn) = n, EM2(Kn) =
n(n− 1)

2
,

implying that Cξ(Kn) > EM1(Kn) and Cξ(Kn) > EM2(Kn) for n ≥ 2.

For the star Sn (n ≥ 3),

Cξ(Sn) =
3(n− 1)

2
, EM1(Sn) = 4n− 3, EM2(Sn) = 2(n− 1),

implying that Cξ(Sn) < EM1(Sn) and Cξ(Sn) < EM2(Sn) for n ≥ 3.

For the cycle Cn,

Cξ(Cn) = n
2

⌊n/2⌋
, EM1(Cn) = EM2(Cn) = n (⌊n/2⌋)2 ,

implying that Cξ(Cn) < EM1(Cn) = EM2(Cn) for n ≥ 4, and Cξ(Cn) >
EM1(Cn) = EM2(Cn) for n = 3.

From the above examples, it is seen that in the general case, the graph
invariants EM1, EM2, and CEI are not comparable. Bearing this in mind, in
what follows we examine the relationship between EM1, EM2, and CEI for trees.
We first compare EM1 with CEI.

Theorem 7. Let T be a tree of order n. Then

EM1(T ) ≥ Cξ(T )

with equality if and only if T ∼= P2.
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Proof. If n = 2, then T ∼= P2, and Cξ(T ) = 2 = EM1(T ). If n = 3, then
T ∼= P3, and EM1(T ) = 9 > 3 = Cξ(T ). Assume therefore that n ≥ 4. Let
d be the diameter of T . If d = 2, then T ∼= Sn. It can be easily seen that
EM1(T ) = 4n − 3 and Cξ(T ) = 3

2(n − 1). Thus, EM1(T ) > Cξ(T ). Now, we
assume that d ≥ 3. Then εT (x) ≥ 2 for each vertex x in T . Thus, for each edge
uv,

[εT (u)− 1] [εT (v)− 1] ≥ 1

and
1

εT (u)
+

1

εT (v)
≤

1

2
+

1

2
= 1.

Thus, for each edge uv,

(16) [εT (u)− 1] [εT (v)− 1]−

(

1

εT (u)
+

1

εT (v)

)

≥ 0.

By (6) and (16),

EM1(T )− Cξ(T ) =
∑

w∈V (T )

εT (w)
2 −

∑

uv∈E(T )

(

1

εT (u)
+

1

εT (v)

)

>
∑

uv∈E(T )

[

[εT (u)−1][εT (v)−1]−

(

1

εT (u)
+

1

εT (v)

)]

≥ 0.

This completes the proof.

Next, we compare EM1 with CEI for connected graphs under given restricted
conditions.

We first state a result due to Ilić, Yu and Feng.

Lemma 8 [23]. Let G be a connected graph of order n. For each vertex v in G,

it holds

(17) εG(v) ≤ n− dG(v).

Moreover, all equalities hold together if and only if G ∼= P4 or G ∼= Kn \ iK2, (for
0 ≤ i ≤ ⌊n/2⌋), where for each i, Kn \ iK2 is the graph obtained by removing i
independent edges from G.

Remark 9. The path P2 also achieves the equality of (17) in Lemma 8.

Theorem 10. Let G be a connected graph of order n with radius r. If r ≥
⌈

√

n/2
⌉

, then

EM1(G) ≥ Cξ(G)

with equality if and only if G ∼= P2.
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Proof. Since r ≥
⌈

√

n/2
⌉

, εG(x) ≥
√

n/2 for each vertex x in G. By Lemma

8,

εG(x)
2 −

dG(x)

εG(x)
≥ εG(x)

2 −
n− εG(x)

εG(x)
(18)

=
εG(x)

[

εG(x)
2 + 1

]

− n

εG(x)

≥
εG(x) · 2εG(x)− n

εG(x)
(19)

≥ 0.(20)

Therefore, by (1) and (4),

EM1(G)− Cξ(G) =
∑

u∈V (G)

[

εG(u)
2 −

dG(u)

εG(u)

]

≥ 0.

We now consider the equality condition. If EM1(G) = Cξ(G), then all
inequalities (18)–(20) becomes equalities for each x in G. Thus, εG(x) = n −
dG(x), εG(x) = 1 and εG(x) =

√

n/2 hold together for each x in G. Therefore,
G ∼= P2.

Conversely, if G ∼= P2, then EM1(G) = Cξ(G).

Theorem 11. Let T be a tree of order n. Then

EM2(T ) > Cξ(T )

for n ≥ 3, and
EM2(T ) < Cξ(T )

for n = 2.

Proof. If n = 2, then T ∼= P2, and Cξ(T ) = 2 > 1 = EM2(T ). Now, we assume
that n ≥ 3. According to (2) and (5),

EM2(T )− Cξ(T ) =
∑

uv∈E(T )

[

εT (u) εT (v)−

(

1

εT (u)
+

1

εT (v)

)]

.

Let d be the diameter of T . If d ≥ 3, then εT (x) ≥ 2 for each vertex x in T .
Thus, for each edge uv,

εT (u) εT (v) ≥ 4

and
1

εT (u)
+

1

εT (v)
≤

1

2
+

1

2
= 1 .
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Therefore, EM2(T ) > Cξ(T ) for d ≥ 3.

If d = 2, then T ∼= Sn. Then EM2(T ) = 2(n − 1) and Cξ(T ) = 3
2(n − 1).

Again, EM2(T ) > Cξ(T ).

This completes the proof.

Remark 12. In Theorems 7 and 11, we restricted the consideration to trees.
Already for general connected graphs, the statements of Theorems 7 and 11
may be violated. For instance, consider a graph with diameter two, say the
complete bipartite graph K2,n−2 (n ≥ 5). It is easy to check that Cξ(K2,n−2) =
2n(n−2), EM1(K2,n−2) = 4n, and EM2(K2,n−2) = 8(n−2). Thus, Cξ(K2,n−2) >
EM1(K2,n−2) and Cξ(K2,n−2) > EM2(K2,n−2), contradicting to Theorems 7 and
11.

By the same reasoning as in Theorem 11, we can prove the following result.

Theorem 13. Let G be a connected graph with diameter at least three. Then

EM2(G) > Cξ(G).

4. Concluding Remarks

In this paper, we have investigated the relationships between the Zagreb eccen-
tricity indices and the eccentric distance sum, and the relationships between the
Zagreb eccentricity indices and the connective eccentricity index. We proved that
the eccentric distance sum is always greater than or equal to the first Zagreb ec-
centricity index for any connected graph. However, for the comparison of the
second Zagreb eccentricity index with the eccentric distance sum, and the com-
parison of the first and second Zagreb eccentricity indices with the connective
eccentricity index, the considerations had to be restricted to trees; in the case of
general connected graphs these eccentricity-based invariants are not comparable.

For trees, we proved that the eccentric distance sum is always greater than
the second Zagreb eccentricity index, and that the first Zagreb eccentricity index
is always greater than or equal to the connective eccentricity index. Moreover, the
second Zagreb eccentricity index is always greater than the connective eccentricity
index for trees of order 3 or greater.

In addition, we compared the eccentric distance sum with the second Zagreb
eccentricity index, and compared the first and second Zagreb eccentricity indices
with the connective eccentricity index for general connected graphs under some
restricted conditions.

Comparing these indices for connected graphs under other restricted condi-
tions seem to be interesting, and remains as an open problem.
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