
Discussiones Mathematicae
Graph Theory 41 (2021) 167–181
doi:10.7151/dmgt.2170

ON IMPLICIT HEAVY SUBGRAPHS AND

HAMILTONICITY OF 2-CONNECTED GRAPHS

Wei Zheng a, Wojciech Wide lb

and

Ligong Wang a,1

aDepartment of Applied Mathematics, School of Science

Northwestern Polytechnical University

Xi’an, Shaanxi 710072, P.R. China
bUniv Rennes, INSA Rennes, CNRS, IRISA, Rennes, France

e-mail: zhengweimath@163.com
wwidel@irisa.fr
lgwangmath@163.com

Abstract

A graph G of order n is implicit claw-heavy if in every induced copy of
K1,3 in G there are two non-adjacent vertices with sum of their implicit de-
grees at least n. We study various implicit degree conditions (including, but
not limiting to, Ore- and Fan-type conditions) imposing of which on spe-
cific induced subgraphs of a 2-connected implicit claw-heavy graph ensures
its Hamiltonicity. In particular, we improve a recent result of [X. Huang,
Implicit degree condition for Hamiltonicity of 2-heavy graphs, Discrete Appl.
Math. 219 (2017) 126–131] and complete the characterizations of pairs of
o-heavy and f-heavy subgraphs for Hamiltonicity of 2-connected graphs.
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1. Introduction

We use [3] for terminology and notation not defined here. In the paper only finite,
simple and undirected graphs are considered.

1Corresponding author.
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Let G be a graph and H be a subgraph of G. For a vertex u ∈ V (G), the
neighbourhood of u in H is denoted by NH(u) = {v ∈ V (H) : uv ∈ E(G)} and the
degree of u in H is denoted by dH(u) = |NH(u)|. For two vertices u, v ∈ V (H),
the distance between u and v in H, denoted by dH(u, v), is the length of a
shortest (u, v)-path inH (if there are no (u, v)-paths inH, then dH(u, v) := +∞).
When there is no danger of ambiguity, we can use N(u), d(u) and d(u, v) in place
of NG(u), dG(u) and dG(u, v), respectively. We use N2(u) to denote the set of
vertices which are at distance two from u, i.e., N2(u) = {v ∈ V (G) : d(u, v) = 2}.

Let S be a graph. If there are no induced copies of S in G, then G is said
to be S-free. Similarly, for a family S of graphs, G is S-free if it is S-free for
every S ∈ S. If one demands G being S-free, then the family S is forbidden in
G. A cycle in a graph G is called its Hamilton cycle (or Hamiltonian cycle), if it
contains all vertices of G, and G is called Hamiltonian if it contains a Hamilton
cycle. Forbidden subgraph conditions and degree conditions are two important
types of sufficient conditions for the existence of Hamilton cycles in graphs.

The only connected graph of order at least three forbidding of which in a 2-
connected graph G implies Hamiltonicity of G, is the path P3 (we use Pi for a path
with i vertices). When disconnected subgraphs are also considered, forbidding of
3K1 also ensures Hamiltonicity. The former fact can be deduced from [17] and
the latter from Chvátal-Erdős theorem [13]. Actually, the graphs P3 and 3K1

are the only graphs of order at least three having this property. In [26], Li and
Vrána proved the necessity part of the following theorem.

Theorem 1 (Li and Vrána [26]). Let G be a 2-connected graph and S be a graph

of order at least three. Then G being S-free implies that G is Hamiltonian if and

only if S is P3 or 3K1.

The case with pairs of forbidden subgraphs other than P3 and 3K1 is much
more interesting. The complete characterization of forbidden pairs of connected
subgraphs for Hamiltonicity, based partially on results from [5, 14, 18] and [19],
was obtained by Bedrossian in [1]. The ‘only if’ part of the following theorem is
due to Faudree and Gould.

Theorem 2 (Bedrossian [1], Faudree and Gould [17]). Let R and S be connected

graphs with R, S 6= P3 and let G be a 2-connected graph. Then G being {R,S}-
free implies G is Hamiltonian if and only if (up to symmetry) R = K1,3 and

S = P4, P5, P6, C3, Z1, Z2, B,N or W (see Figure 1).

In [26], Li and Vrána considered pairs of forbidden subgraphs that are not
necessarily connected.

Theorem 3 (Li and Vrána [26]). Let R and S be graphs of order at least three

other than P3 and 3K1 and let G be a 2-connected graph. Then G being {R,S}-
free implies G is Hamiltonian if and only if (up to symmetry) R = K1,3 and S is

an induced subgraph of P6,W,N or K2 ∪ P4.
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Figure 1. Graphs B (bull), H (hourglass), N (net), D (deer), W (wounded) and Zi.

A widely studied way of relaxing the forbidden subgraph conditions for
Hamiltonicity is allowing the subgraphs in the graph, but with some requirements
regarding degrees of their vertices imposed on them. Some of these extensions
exploit the concept of implicit degree, introduced by Zhu et al. in [32].

Definition 1 (Zhu, Li and Deng [32]). Let v be a vertex of a graph G and
d(v) = l + 1. Set M2 = max{d(u) : u ∈ N2(v)}. If N2(v) 6= ∅ and d(v) ≥ 2, then
let d1 ≤ d2 ≤ d3 ≤ · · · ≤ dl ≤ dl+1 ≤ · · · be the degree sequence of vertices of
N(v) ∪N2(v). Define

d∗(v) =

{

dl+1, if dl+1 > M2,

dl, otherwise.

Then the implicit degree of v in G is defined as id(v) = max{d(v), d∗(v)}. If
N2(v) = ∅ or d(v) ≤ 1, then define id(v) = d(v).

Observe that, by the above definition, for every v ∈ V (G) the inequality
id(v) ≥ d(v) holds.

Some of the (implicit) degree conditions suitable for relaxing the forbidden
subgraph conditions originate from the following classical results.

Theorem 4 (Fan [15]). Let G be a 2-connected graph of order n ≥ 3. If

d(u, v) = 2 ⇒ max{d(u), d(v)} ≥ n/2

for every pair of vertices u and v in G, then G is Hamiltonian.

Theorem 5 (Ore [31]). Let G be a graph of order n. If for every pair of its

non-adjacent vertices the sum of their degrees is not less than n, then G is Hamil-

tonian.
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The authors of [32] prove a counterpart of Ore’s Theorem 5, where the degree
sum condition is replaced with the implicit degree sum condition. Theorems 4
and 5, and their extensions, gave rise to notions of f-heavy [30], o-heavy [7, 30],
implicit f-heavy [9] and implicit o-heavy graphs. Here, we cite the definitions of
o-heavy and f-heavy from [30] which are given as follows. Let G be a graph of
order n. A vertex v of G is called heavy (or implicit heavy) if d(v) ≥ n/2 (or
id(v) ≥ n/2). If v is not heavy (or not implicit heavy), we call it light (implicit

light, respectively). For a given graph H we say that G is H-o-heavy (or implicit

H-o-heavy) if in every induced subgraph of G isomorphic to H there are two non-
adjacent vertices with the sum of their degrees (implicit degrees, respectively) in
G at least n. And G is said to be H-f-heavy (or implicit H-f-heavy), if for every
subgraph S of G isomorphic to H, and every two vertices u, v ∈ V (S) holds

dS(u, v) = 2 ⇒ max{d(u), d(v)} ≥ n/2

(max{id(u), id(v)} ≥ n/2, respectively).
For a family of graphsH, G is said to be (implicit) H-o-heavy, ifG is (implicit)

H-o-heavy for every H ∈ H. Classes of H-f-heavy and implicit H-f-heavy graphs
are defined similarly. We note that the above definitions of H-f-heavy, H-o-heavy,
and H-f-heavy are also all from [30]. When a graph is implicit K1,3-o-heavy we
will call it implicit claw-heavy.

Observe that every H-free graph is trivially H-o-heavy and H-f-heavy. Fur-
thermore, every H-o-heavy (or H-f-heavy) graph is implicit H-o-heavy (implicit
H-f-heavy, respectively). Replacing forbidden subgraph conditions with condi-
tions expressed in terms of heavy subgraphs yielded the following extensions of
Theorem 2.

Theorem 6 (Li, Ryjáček, Wang and Zhang [25]). Let R and S be connected

graphs with R 6= P3, S 6= P3 and let G be a 2-connected graph. Then G being

{R,S}-o-heavy implies G is Hamiltonian if and only if (up to symmetry) R =
K1,3 and S = C3, P4, P5, Z1, Z2, B,N or W .

Theorem 7. Let R and S be connected graphs with R 6= P3, S 6= P3 and let G be

a 2-connected graph. Then G being {R,S}-f-heavy implies that G is Hamiltonian

if and only if (up to symmetry) R = K1,3 and S is one of the following:

– P4, P5, P6 (Chen, Wei and X. Zhang [11]),

– Z1 (Bedrossian, Chen and Schelp [2]),

– B (G. Li, Wei and Gao [27]),

– N (Chen, Wei and X. Zhang [10]),

– Z2, W (Ning and S. Zhang [30]).

Recently, motivated by the main result of [20], Li and Ning [23] introduced
another type of heavy subgraphs. We say that an induced subgraph H of G is
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c-heavy in G, if for every maximal clique C of H every non-trivial component of
H − C contains a vertex that is heavy in G. Graph G is said to be H-c-heavy

if every induced subgraph of G isomorphic to H is c-heavy. For a family H of
graphs, G is called H-c-heavy if G is H-c-heavy for every H ∈ H.

Observe that every graph is trivially {K1,3, C3, P3}-c-heavy, since removal of
a maximal clique from any of the three subgraphs results in a graph consisting of
trivial components (or an empty graph). With that remark in mind, the authors
of [23] extended Theorem 2 in the following way.

Theorem 8 (Li and Ning [23]). Let S be a connected graph of order at least three

and let G be a 2-connected claw-o-heavy graph. Then G being S-c-heavy implies

that G is Hamiltonian if and only if S = P4, P5, P6, Z1, Z2, B,N or W .

Similarly to implicit o-heavy and implicit f-heavy graphs, we can define im-

plicit H-c-heavy and implicit H-c-heavy graphs by replacing the degree condition
in the definition of c-heavy graphs with implicit degree condition. In the light of
the results presented so far, and noting that every implicit claw-f-heavy graph is
implicit claw-heavy, it seems worthwhile to tackle the following problems.

Problem 1. Characterize all graphs S such that every 2-connected implicit claw-
heavy and implicit S-o-heavy graph is Hamiltonian.

Problem 2. Characterize all graphs S such that every 2-connected implicit claw-
heavy and implicit S-f-heavy graph is Hamiltonian.

Problem 3. Characterize all graphs S such that every 2-connected implicit claw-
heavy and implicit S-c-heavy graph is Hamiltonian.

As byproducts of the proof of our main result, we obtained the following
partial answers to Problems 1–3.

Theorem 9. Let G be a 2-connected implicit claw-heavy graph. If G is implicit

S-o-heavy for S being a subgraph of K2 ∪ P4, then G is Hamiltonian.

Theorem 10. Let G be a 2-connected implicit claw-heavy graph. If G is implicit

S-f-heavy, with S being one of the graphs K1∪P3, K2∪P3, K1∪P4, K2∪P4, P4, Z1

and Z2, then G is Hamiltonian.

Theorem 10 implies in particular that every 2-connected implicit {K1,3, Z1}-
f-heavy graph is Hamiltonian. This fact has been proved before in [12].

Theorem 11. Let G be a 2-connected implicit claw-heavy graph. If G is implicit

S-c-heavy, with S being one of the graphs K1∪K2, 2K1∪K2, K1∪2K2, K2∪K2,

K1 ∪ P3, K2 ∪ P3, K1 ∪ P4, K2 ∪ P4, P4, P5 and P6, then G is Hamiltonian.
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Clearly, for S being any of the graphs K1 ∪K2, 2K1 ∪K2, K2 ∪K2 and K1 ∪
2K2, every graph is S-f-heavy. Observe also that each of the remaining subgraphs
of K2 ∪ P4 appear in each of Theorems 9–11. Hence, as corollaries from these
theorems and Theorems 6–8, we get the following complete characterizations of
heavy pairs of (not necessarily connected) subgraphs for Hamiltonicity.

Corollary 12. Let R and S be graphs other than P3 and 3K1, and let G be a

2-connected graph. Then G being {R,S}-o-heavy implies G is Hamiltonian if and

only if (up to symmetry) R = K1,3 and S is an induced subgraph of P5,W,N or

K2 ∪ P4.

Corollary 13. Let R and S be graphs other than P3 and 3K1, and let G be a

2-connected graph. Then G being {R,S}-f-heavy implies G is Hamiltonian if and

only if (up to symmetry) R = K1,3 and S is one of P4, P5, P6, Z1, Z2, B,N,W ,

K1 ∪ P3, K2 ∪ P3, K1 ∪ P4 and K2 ∪ P4.

Corollary 14. Let S be a graph of order at least three other than P3 and 3K1,

and let G be a 2-connected graph, claw-o-heavy graph. Then G being S-c-heavy
implies G is Hamiltonian if and only if S is one of P4, P5, P6, Z1, Z2, B, N , W ,

K1 ∪K2, 2K1 ∪K2, K1 ∪ 2K2, K2 ∪K2, K1 ∪P3, K2 ∪P3, K1 ∪P4 and K2 ∪P4.

We note that the assumption of the graph S being of order at least three in
Corollary 14 is necessary, since every graph is trivially {K1, 2K1,K2}-c-heavy.

For triples of forbidden subgraphs there are also many results. The follow-
ing are two well-known results of this type (graphs D and H, called deer and
hourglass, respectively, are represented in Figure 1).

Theorem 15 (Broersma and Veldman [5], Brousek [6]). Let G be a 2-connected
graph. If G is {K1,3, P7, D}-free, then G is Hamiltonian.

Theorem 16 (Faudree, Ryjáček and Schiermeyer [16], Brousek [6]). Let G be a

2-connected graph. If G is {K1,3, P7, H}-free, then G is Hamiltonian.

Note that the pair {K1,3, P6} that is present in Theorem 2 is missing in The-
orem 6. A construction of a 2-connected, claw-free and P6-o-heavy graph that
is not Hamiltonian can be found in [25]2. Since every P6-o-heavy graph is also
implicit {P7, D}-o-heavy, it is clear that Theorems 15 and 16 cannot be improved
by imposing the condition of implicit o-heaviness on all of their forbidden sub-
graphs. However, a slightly stronger implicit degree sum conditions are sufficient
to ensure Hamiltonicity. Our main result is the following.

2Nevertheless, the condition of P6-o-heaviness can be replaced with other degree conditions
on paths P6 to ensure Hamiltonicity of 2-connected claw-o-heavy graphs. We refer an interested
reader to [24] for details.
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Theorem 17. Let G be a 2-connected, implicit claw-heavy graph of order n
such that in every path v1v2v3v4v5v6v7 induced in G at least one of the following

conditions is satisfied:

(1) id(v4) ≥ n/2, or

(2) id(vi) + id(vj) ≥ n for some i ∈ {1, 2}, j ∈ {6, 7}.

If

(i) in every induced D of G with the set of vertices {u1, u2, u3, u4, u5, u6, u7} and

the set of edges {u1u2, u2u3, u3u4, u3u5, u4u5, u5u6, u6u7} at least one of the

following conditions is satisfied:

(a) id(u4) ≥ n/2, or

(b) id(ui) + id(uj) ≥ n for some i ∈ {1, 2, 4}, j ∈ {6, 7}, or

(ii) in every induced H of G with the set of vertices {u1, u2, u3, u4, u5} and the

set of edges {u1u2, u2u3, u1u3, u3u4, u3u5, u4u5} at least one of the following

conditions is satisfied:

(a) both u1 and u2 are implicit heavy, or

(b) id(ui) + id(uj) ≥ n for some i ∈ {1, 2}, j ∈ {4, 5},

then G is Hamiltonian.

Note that the conditions imposed on paths of order seven in Theorem 17
are satisfied in particular by implicit P7-f-heavy and implicit P7-c-heavy graphs.
Similarly, the conditions imposed on induced deers are satisfied by implicit D-
f-heavy graphs and implicit D-c-heavy graphs, and the conditions imposed on
hourglasses are satisfied by implicit H-c-heavy graphs, implicit H-f-heavy graphs
and implicit H-o-heavy graphs. Hence, Theorem 17 implies the following new
results.

Corollary 18. Let G be a 2-connected, implicit claw-heavy graph. If G is

– implicit {P7, D}-c-heavy or implicit {P7, H}-c-heavy, or

– implicit P7-f-heavy and implicit D-c-heavy, or

– implicit P7-f-heavy and implicit H-c-heavy, or

– implicit P7-f-heavy and implicit H-o-heavy, or

– implicit P7-c-heavy and implicit H-o-heavy, or

– implicit P7-c-heavy and implicit H-f-heavy,

then G is Hamiltonian.

Some previously known results, including recent extensions of Theorem 15
and Theorem 16, can also be deduced from Theorem 17.

Corollary 19 (Huang [21]). Let G be a 2-connected, implicit claw-heavy graph.

If G is P6-free, then G is Hamiltonian.
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Corollary 20 (Broersma, Ryjáček and Schiermeyer [4]). Let G be a 2-connected,
claw-f-heavy graph. If G is {P7, D}-free or {P7, H}-free, then G is Hamiltonian.

Corollary 21 (Cai and Li [8]). Let G be a 2-connected, implicit claw-f-heavy

graph. If G is {P7, D}-free or {P7, H}-free, then G is Hamiltonian.

Corollary 22 (Ning [29]). Let G be a 2-connected, claw-f-heavy graph. If G is

{P7, D}-f-heavy or {P7, H}-f-heavy, then G is Hamiltonian.

Corollary 23 (Huang [22]). Let G be a 2-connected, claw-f-heavy graph. If G is

implicit {P7, D}-f-heavy or implicit {P7, H}-f-heavy, then G is Hamiltonian.

Corollary 24 (Cai and Zhang [9]). Let G be a 2-connected, implicit claw-heavy

graph. If G is implicit {P7, D}-f-heavy or implicit {P7, H}-f-heavy, then G is

Hamiltonian.

The rest of the paper is organized as follows. In Section 2 we define some
auxiliary notions and present lemmas used throughout the proof. The proof of
Theorems 9, 10, 11 and 17 is presented in Section 3.

2. Preliminaries

In this section, we present two lemmas that will be used throughout the proofs of
our main results. They make use of the notion of an implicit heavy cycle, which is
a cycle that contains all implicit heavy vertices of a graph. For a vertex v ∈ V (G)
lying on a cycle C with a given orientation, we denote by v+ its successor on C
and by v− its predecessor. For a set A ⊂ V (C) the sets A+ and A− are defined
analogously, i.e., A+ = {v+ : v ∈ A} and A− = {v− : v ∈ A}. We write xCy for
the path from x ∈ V (C) to y ∈ V (C) following the orientation of C, and xCy
denotes the path from x to y opposite to the direction of C. Similar notation is
used for paths.

The next lemma is implicit in [28].

Lemma 25 (Li, Ning and Cai [28]). Every 2-connected graph contains an implicit

heavy cycle.

A cycle C is called nonextendable if there is no cycle longer than C in G
containing all vertices of C. We use E∗(G) to denote the set {xy : xy ∈ E(G)
or id(x) + id(y) ≥ n}.

Lemma 26 (Huang [21]). Let G be a 2-connected graph on n ≥ 3 vertices and

C be a nonextendable cycle of G of length at most n − 1. If P is an xy-path in

G such that V (C) ⊂ V (P ), then xy /∈ E∗(G).
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3. Proofs of Theorems 9–11 and 17

For a proof by contradiction suppose that a graph G satisfying the assumptions of
any of the Theorems 9, 10, 11 or 17 is not Hamiltonian. Then G is a 2-connected
implicit claw-heavy graph. By Lemma 25, there is an implicit heavy cycle in G.
Let C be a longest implicit heavy cycle in G and give C an orientation. From the
assumption of 2-connectivity of G it follows that there is a path P connecting
two vertices x1, x2 ∈ V (C) internally disjoint with C such that |V (P )| ≥ 3. Let
P = x1u1u2 · · ·urx2 be such a path of minimum length. Note that this implies
that P is induced unless x1x2 ∈ E(G). The following four claims, as readers
can see, also appeared in [9, 21, 22], since they are basic properties of a longest
implicit heavy cycle. We also use them to start our proof.

Claim 27. ukx
+

i /∈ E∗(G) and ukx
−

i /∈ E∗(G) for every k ∈ {1, 2, . . . , r} and

i ∈ {1, 2}.

Proof. Since P1 = x+
1
Cx1Puk and P2 = x−

1
Cx1Puk are paths such that V (C) ⊂

V (P1) and V (C) ⊂ V (P2), ukx
+
1

/∈ E∗(G) and ukx
−

1
/∈ E∗(G) by Lemma 26.

Similarly, ukx
+
2

/∈ E∗(G) and ukx
−

2
/∈ E∗(G).

Claim 28. x−
1
x+
1
∈ E∗(G) and x−

2
x+
2
∈ E∗(G).

Proof. If x−
1
x+
1

/∈ E(G), then the set {x1, x
−

1
, x+

1
, u1} induces a claw. By

Claim 27, we have id(u1) + id(x−
1
) < n and id(u1) + id(x+

1
) < n. Since G is

implicit claw-heavy, this implies that id(x−
1
)+ id(x+

1
) ≥ n. Thus, x−

1
x+
1
∈ E∗(G).

Similarly, x−
2
x+
2
∈ E∗(G).

Claim 29. x−
1
x−
2

/∈ E∗(G) and x+
1
x+
2

/∈ E∗(G).

Proof. Observe that the paths P1 = x−
1
Cx2Px1Cx−

2
and P2 = x+

1
Cx2Px1Cx+

2

are paths such that V (C) ⊂ V (P1) and V (C) ⊂ V (P2). Thus, the Claim follows
from Lemma 26.

Claim 30. x−
1
x+
1
∈ E(G) or x−

2
x+
2
∈ E(G).

Proof. Suppose to the contrary that x−
1
x+
1

/∈ E(G) and x−
2
x+
2

/∈ E(G). Then
id(x−

1
) + id(x+

1
) ≥ n and id(x−

2
) + id(x+

2
) ≥ n by Claim 28. Thus, id(x−

1
) +

id(x−
2
) ≥ n or id(x+

1
) + id(x+

2
) ≥ n, contradicting Claim 29.

By Claim 30, without loss of generality, we assume that x−
1
x+
1
∈ E(G). The

following two claims were proved in [9], here we omit their proofs.

Claim 31 (Cai and Zhang [9]). xix
−

3−i /∈ E∗(G) and xix
+

3−i /∈ E∗(G) for i ∈
{1, 2}.
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By Claim 31, there is a vertex in x+i Cx−
3−i not adjacent to xi in G for i = 1, 2.

Let yi be the first vertex in x+i Cx−
3−i not adjacent to xi in G for i = 1, 2. Let

u be any vertex of P other than x1 and x2 and let zi be an arbitrary vertex in
x+i Cyi for i = 1, 2.

Claim 32 (Cai and Zhang [9]). uz1, uz2, z1x2, z2x1, z1z2 /∈ E∗(G).

The proof splits now into subcases, depending on the conditions satisfied
by G.

Case 1. G is implicit K2 ∪ P4-o-heavy or implicit K2 ∪ P4-f-heavy. By
Claim 32, we have that both sets {y−

1
, y1, ur, x2, y

−

2
, y2} and {y−

2
, y2, u1, x1, y

−

1
, y1}

induce a graph isomorphic to K2 ∪ P4 in G.

Assume that G is implicit K2 ∪ P4-f-heavy. Since none of the vertices u1
and ur belongs to C, both these vertices are implicit light. This implies that
both y−

2
and y−

1
are implicit heavy, contradicting Claim 32. This contradiction

proves the part of Theorem 10 regarding implicit K2 ∪ P4-f-heavy graphs. By
taking induced subgraphs from {y−

1
, y1, ur, x2, y

−

2
, y2} and {y−

2
, y2, u1, x1, y

−

1
, y1}

corresponding to K1∪P4, P4, K1∪P3 and K2∪P3, we get the same contradiction
which can also prove the part of Theorem 10 regarding implicit K1 ∪ P4-f-heavy
graphs, implicit P4-f-heavy graphs, implicit K1 ∪ P3-f-heavy graphs and implicit
K2 ∪ P3-f-heavy graphs, respectively.

Consider now the case whenG is implicitK2∪P4-o-heavy. Then there is a pair
of nonadjacent vertices in both {y−

1
, y1, ur, x2, y

−

2
, y2} and {y−

2
, y2, u1, x1, y

−

1
, y1}

which have implicit degree sum not less than n. Let us focus on the set {y−
1
, y1, ur,

x2, y
−

2
, y2}. Since uz1, z1x2, z1z2 /∈ E∗(G) by Claim 32, it follows that the pair

of nonadjacent vertices with implicit degree sum at least n belongs to the set
{ur, x2, y

−

2
, y2}. Since uz2 /∈ E∗(G) by Claim32, we have id(x2) + id(y2) ≥ n.

Now by id(x1) + id(y1) + id(x2) + id(y2) ≥ 2n, we have id(x1) + id(y2) ≥ n or
id(x2) + id(y1) ≥ n, which contradicts Claim 32. This contradiction proves the
part of Theorem 9 regarding implicit K2 ∪ P4-o-heavy graphs, and the left part
regarding implicit S-o-heavy graphs for any proper subgraph S of K2 ∪ P4 is
implied by the validity of theorem for K2 ∪ P4. Thus, the proof of Theorem 9 is
completed.

Case 2. G is implicit S-f-heavy for S being one of Z1 and Z2. Suppose first
that G is implicit Z1-f-heavy. Then, since the vertex u1 is implicit light by the
choice of C and the set {x−

1
, x+

1
, x1, u1} induces Z1, both vertices x−

1
and x+

1
are

implicit heavy. Now it follows from Claim 29 that both x−
2

and x+
2

are implicit
light. Then x−

2
x+
2
∈ E(G), by Claim 28. But now the set {x−

2
, x+

2
, x2, ur} induces

Z1. A contradiction. Thus, G is Z2-f-heavy.

Suppose that r ≥ 2 or r = 1 and x1x2 /∈ E(G). Then one of the sets
{x−

1
, x+

1
, x1, u1, u2} or {x−

1
, x+

1
, x1, u1, x2} induces Z2. Similarly to the previous



On Implicit Heavy Subgraphs and Hamiltonicity of ... 177

paragraph, this implies that both x−
1

and x+
1

are implicit heavy, and in conse-
quence x−

2
and x+

2
are implicit light vertices forming an edge in G. But then either

{x−
2
, x+

2
, x2, ur, ur−1} or {x−

2
, x+

2
, x2, ur, x1} also induces a Z2, a contradiction.

Thus, r = 1 and x1x2 ∈ E(G). But now both sets {u1, x2, x1, y
−

1
, y1} and

{u1, x1, x2, y
−

2
, y2} induce Z2, implying that both y−

1
and y−

2
are implicit heavy.

This contradicts Claim 32. Together with Case 1, this contradiction completes
the proof of Theorem 10.

Case 3. G is implicit K1 ∪ P3-c-heavy.

Claim 33. x1 and x2 are implicit heavy.

Proof. By Claim 32, we have that both sets {x+
1
, x2, y

−

2
, y2} and {x+

2
, x1, y

−

1
, y1}

induce a graph isomorphic toK1∪P3 in G. Since G is implicitK1∪P3-c-heavy and
the independent vertex of K1 ∪P3 is a maximal clique, there is an implicit heavy
vertex in both sets {x2, y

−

2
, y2} and {x1, y

−

1
, y1}. If y1 or y−

1
is implicit heavy,

then none of the vertices of {x2, y
−

2
, y2} can be implicit heavy by Claim 32, a

contradiction. Hence, x1 is implicit heavy. Similarly, x2 is also implicit heavy.

Claim 34. x−
2
x+
2
∈ E(G).

Proof. By Claim 31 and Claim 33, we have that x−
2

and x+
2

are implicit light.
Since G is implicit claw-heavy, x−

2
x+
2
∈ E(G).

By Claim 29, there is a vertex in x+i Cx−
3−i not adjacent to x

−

i in G for i = 1, 2.
Let wi be the first vertex in x+i Cx−

3−i not adjacent to x−i in G for i = 1, 2. Note
that wi 6= x+i .

Claim 35. uw−

i /∈ E(G) and uwi /∈ E(G).

Proof. Suppose that uw−

1
∈ E(G). By Claim 27, we have that w−

1
6= x+

1
.

Then C ′ = x1Puw−

1
Cx−

1
w−

1
C̄x1 is a cycle such that V (C) ⊂ V (C ′), a con-

tradiction. Hence, uw−

1
/∈ E(G). We also have that uw1 /∈ E(G); otherwise,

C ′′ = x1Puw1Cx−
1
w−

1
C̄x1 is a cycle such that V (C) ⊂ V (C ′′), a contradiction.

By symmetry, we have that uw−

2
/∈ E(G) and uw2 /∈ E(G).

From Claim 27 and Claim 35 we have that {u, x−
1
, w−

1
, w1} induces a graph

isomorphic to K1 ∪ P3 in G. Since G is implicit K1 ∪ P3-c-heavy, there is an
implicit heavy vertex in the set {x−

1
, w−

1
, w1}. By Claim 31 and Claim 33 we

have that x−
1

is implicit light. If w−

1
is implicit heavy, then w−

1
6= x+

1
by Claim

31 and Claim 33. Thus P1 = w−

1
Cx−

2
x+
2
Cx−

1
w−

1
C̄x1Px2 is a path such that

V (C) ⊂ V (P1) and w−

1
x2 ∈ E∗(G), contradicting Lemma 26. If w1 is implicit

heavy, then P2 = w1Cx−
2
x+
2
Cx−

1
w−

1
C̄x1Px2 is a path such that V (C) ⊂ V (P2)

and w1x2 ∈ E∗(G), contradicting Lemma 26. Thus, the part of Theorem 11
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regarding implicit K1∪P3-c-heavy graphs is finished by these contradictions. The
validity of the remaining part of Theorem 11 will be completed in the following.

Case 4. G satisfies the assumptions of Theorem 17.

Claim 36. x1x2 ∈ E(G).

Proof. Suppose that x1x2 /∈ E(G). By the choice of P , Claim 27 and Claim 32
we have that P ′ = y1y

−

1
x1u1u2 . . . urx2y

−

2
y2 is an induced Pr+6, where r ≥ 1.

Let y1y
−

1
x1u1v5v6v7 be the path induced by the first seven vertices of P ′. Since

u1 is implicit light, it follows from the assumptions of Theorem 17 that for some
a ∈ {y1, y

−

1
} and b ∈ {v6, v7} the inequality id(a) + id(b) ≥ n holds. Since

b ∈ V (P ) ∪ {x2, y
−

2
, y2}, this contradicts Claim 32.

We complete the proof by considering two cases, depending on the value of
r. When r ≥ 2, we can use the method of the proof of Case 2 in [9] completely,
because the proof does not involve any heavy subgraphs other than the claw.
Here we omit the proof and consider the case when r = 1.

Suppose that r = 1. Then the set {y1, y
−

1
, x1, u1, x2, y

−

2
, y2} induces a D.

Since the vertex u1 is implicit light, Claim 32 implies that G does not satisfy
the conditions imposed on induced deers in Theorem 17. Hence, it satisfies the
conditions imposed on H.

Observe that {x−
1
, x+

1
, x1, u1, x2} induces an H. Now it follows from Claim 31

and Claim 32 that both vertices x−
1

and x+
1

are implicit heavy. Similarly as in
Case 2, this implies that both x−

2
and x+

2
are implicit light and x−

2
x+
2
∈ E(G). But

now the set {u1, x1, x2, x
−

2
, x+

2
} induces an H. By Claim 31 and Claim 32, this

contradicts the assumptions of Theorem 17. This final contradiction completes
the proof of Theorem 17.

Observe that every 2-connected implicit-claw-heavy graph that is implicit
S-c-heavy for S being one of K1 ∪K2, 2K1 ∪K2, K1 ∪ 2K2, K2 ∪K2, K2 ∪ P3,
K1 ∪P4, K2 ∪P4, P4, P5 and P6 satisfies the assumptions of Theorem 17. Hence,
together with Case 3, Case 4 completes also the proof of Theorem 11.
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