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Abstract

A linear k-coloring of a graph is a proper k-coloring of the graph such
that any subgraph induced by the vertices of any pair of color classes is a
union of vertex-disjoint paths. A graph G is linearly L-colorable if there is
a linear coloring c of G for a given list assignment L = {L(v) : v ∈ V (G)}
such that c(v) ∈ L(v) for all v ∈ V (G), and G is linearly k-choosable if G
is linearly L-colorable for any list assignment with |L(v)| ≥ k. The smallest
integer k such that G is linearly k-choosable is called the linear list chromatic

number, denoted by lcl(G). It is clear that lcl(G) ≥
⌈

∆(G)
2

⌉

+1 for any graph

G with maximum degree ∆(G). The maximum average degree of a graph G,
denoted by mad(G), is the maximum of the average degrees of all subgraphs
of G. In this note, we shall prove the following. Let G be a graph, (1) if

mad(G) < 8
3 and ∆(G) ≥ 7, then lcl(G) =

⌈

∆(G)
2

⌉

+ 1; (2) if mad(G) < 18
7

and ∆(G) ≥ 5, then lcl(G) =
⌈

∆(G)
2

⌉

+1; (3) if mad(G) < 20
7 and ∆(G) ≥ 5,

then lcl(G) ≤
⌈

∆(G)
2

⌉

+ 2.
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1. Introduction

All graphs considered here are finite, simple and undirected. For a graph G,
denote by V (G), E(G), δ(G) and ∆(G) the vertex set, edge set, the minimum
degree and the maximum degree, respectively. For a vertex v ∈ V (G), let N(v)
and d(v) be the neighborhood and the degree of v in G, respectively. The closed
neighborhood of a vertex v ∈ V (G), denoted by N [v], is defined to be N(v) ∪ v.
A k-vertex (k−-vertex and k+-vertex, respectively) is a vertex with degree k (at
most k and at least k, respectively). A 2-vertex v ∈ V (G) is called an (a, b)-vertex
if it is adjacent to an a-vertex and a b-vertex, and an (a, b+)-vertex is defined
similarly. The maximum average degree mad(G) of a graph G is defined as

mad(G) = max
{

2|E(H)|
|V (H)| : H ⊆ G

}

, where H ⊆ G signified that H is a subgraph

of G.
A proper k-coloring of a graph G is a mapping φ from V (G) to the set of

colors {1, 2, . . . , k} such that φ(u) 6= φ(v) whenever uv ∈ E(G). A linear k-

coloring of a graph is a proper k-coloring of the graph such that any subgraph
induced by the vertices of any pair of color classes is a union of vertex-disjoint
paths. The linear chromatic number lc(G) of a graph G is the smallest number
k such that G has a linear k-coloring. A graph G is linearly L-colorable if for a
given list assignment L = {L(v) : v ∈ V (G)}, there exists a linear coloring c of
G such that c(v) ∈ L(v) for all v ∈ V (G). If G is linearly L-colorable for any
list assignment with |L(v)| ≥ k for all v ∈ V (G), then G is said to be linearly

k-choosable. The smallest integer k such that the graph G is linearly k-choosable
is called the linear list chromatic number, denoted by lcl(G). The concept of
linear coloring was first introduced by Yuster [8], and linear list colorings were
first investigated by Esperet, Montassier and Raspaud [4].

It is clear that the linear chromatic number lc(G) of a graph G with maximum

degree ∆(G) has a trivial lower bound lc(G) ≥
⌈

∆(G)
2

⌉

+1, then lcl(G) ≥ lc(G) ≥
⌈

∆(G)
2

⌉

+ 1. Esperet et al. [4] proved that trees with maximum degree ∆(G)

satisfy lcl(G) =
⌈

∆(G)
2

⌉

+ 1. This equality suggests that the linear list chromatic

numbers of sparse graphs (with mad(G) < 3) might be close to the trivial lower
bound. Cranston and Yu [1] asked: Does there exist a constant C such that every

sparse graph G satisfies lc(G) ≤
⌈

∆(G)
2

⌉

+C? Some authors have proved that for

the class of some sparse graphs, such constant C exists and is close to or equal
to 1. We list the currently known results about this subject as follows.

Theorem 1. Let G be a graph.

(i) (Esperet et al. [4]) If mad(G) < 8
3 , then lcl(G) ≤

⌈

∆(G)
2

⌉

+ 3.

(ii) (Wang and Wu [7]) If mad(G) < 14
5 , then lc(G) ≤

⌈

∆(G)
2

⌉

+ 2.
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(iii) (Cranston and Yu [1]) If mad(G) < 3 and ∆(G) ≥ 9, then lcl(G) ≤
⌈

∆(G)
2

⌉

+2.

(iv) (Cranston and Yu [1]) If mad(G) < 12
5 and ∆(G) ≥ 3, then lcl(G) =

⌈

∆(G)
2

⌉

+ 1.

A planar graph is a graph that can be drawn on the Euclidean plane such
that its edges meet at their ends only. The girth of a graph G, denoted g(G),
is the length of a shortest cycle of G. For a planar graph G with girth g, we
have mad(G) < 2g

g−2 by Euler’s formula. So we can get some results from above
results. Li, Wang and Raspaud [5] also asked: Is there a constant C such that

every planar graph G has lc(G) ≤
⌈

∆(G)
2

⌉

+ C? About this question, there are

some other results as follows.

Theorem 2. Let G be a planar graph.

(i) (Cranston and Yu [1]) If g(G) ≥ 5, then lcl(G) ≤
⌈

∆(G)
2

⌉

+ 4.

(ii) (Dong et al. [2]) If g(G) ≥ 6, then lc(G) ≤
⌈

∆(G)
2

⌉

+ 3.

(iii) (Dong and Lin [3]) If g(G) ≥ 6 and ∆(G) ≥ 39, then lc(G) =
⌈

∆(G)
2

⌉

+ 1.

In this paper, we prove the following results.

Theorem 3. Let G be a graph.

(1) If mad(G) < 8
3 and ∆(G) ≥ 7, then lcl(G) =

⌈

∆(G)
2

⌉

+ 1.

(2) If mad(G) < 18
7 and ∆(G) ≥ 5, then lcl(G) =

⌈

∆(G)
2

⌉

+ 1.

(3) If mad(G) < 20
7 and ∆(G) ≥ 5, then lcl(G) ≤

⌈

∆(G)
2

⌉

+ 2.

Then the following results about planar graphs are implied immediately from
Theorem 3(1) and (2), respectively.

Theorem 4. Let G be a planar graph.

(1) If g(G) ≥ 8 and ∆(G) ≥ 7, then lcl(G) =
⌈

∆(G)
2

⌉

+ 1.

(2) If g(G) ≥ 9 and ∆(G) ≥ 5, then lcl(G) =
⌈

∆(G)
2

⌉

+ 1.

We will prove the three results of Theorem 3 by contradiction in the following
three sections, respectively. For convenience, we introduce some notations that
will be used. Let c be a coloring of G; we use c(v) to denote the color of v in c,
and c(S) = {c(v) : v ∈ S} for S ⊂ V (G). Let ci(v) be the set of colors appeared
i times in N(v). For a vertex v ∈ V (G), let n2(v) for clarity be the number of
2-vertices in N(v).
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2. Graphs with mad(G) < 8
3 and ∆(G) ≥ 7

In order to prove Theorem 3(1), we prove the following result instead, which
implies Theorem 3(1) immediately.

Theorem 5. Let M ≥ 7 be an integer. If G is a graph with mad(G) < 8
3 and

∆(G) ≤ M , then lcl(G) =
⌈

M
2

⌉

+ 1.

Proof. By contradiction, we suppose that Theorem 5 is false. Let G be a coun-
terexample with the fewest vertices, and L the list assignment of size

⌈

M
2

⌉

+ 1
such that G has no linear L-coloring. Let H be a proper subgraph of G. Clearly,
mad(H) < 8

3 and ∆(H) ≤ M . By the choice of G, we have lcl(H) =
⌈

M
2

⌉

+ 1,

while lcl(G) >
⌈

M
2

⌉

+ 1. In the proof we need some structural lemmas, Lemma
6 is well-known.

Lemma 6. The graph G is connected, and δ(G) ≥ 2.

Lemma 7 ([3] Lemma 2.2). Let v be a 2-vertex with N(v) = {v1, v2}. Then
⌈

d(v1)
2

⌉

+
⌈

d(v2)
2

⌉

≥
⌈

M
2

⌉

+ 1.

Lemma 8. Let v be a 3-vertex with N(v) = {v1, v2, v3} and n2(v) = 3. Then

v1, v2, v3 must be (3, 6+)-vertices.

Proof. Assume that v1 is a (3, 5−)-vertex, and ui is the neighbor of vi other than
v, where i = 1, 2, 3. Let G′ = G − {v, v1}. Then G′ has a linear L-coloring c by
the minimality of G. If c(v2) 6= c(v3), we can extend the linear L-coloring c of
G′ to v1 since |L(v1)\{c(u1), c2(u1)}| ≥ 2. Then we can color v with a color in
L(v)\{c(v1), c(v2), c(v3)} when c(v1) /∈ {c(v2), c(v3)}, or L(v)\{c(u1), c(v2), c(v3)}
when c(v1) ∈ {c(v2), c(v3)}. Clearly, there will be no bi-colored cycles created,
and we get a linear list coloring of G. If c(v2) = c(v3), we can extend the linear
L-coloring c of G′ to v1 since |L(v1)\{c(u1), c2(u1), c(v2)}| ≥ 1. Finally, we can
color v with a color in L(v)\{c(v1), c(v2), c(u2), c(u3)}, which ensure that no bi-
colored cycle passes vv2u2 or vv3u3. Thus, we also get a linear list coloring of G
extended from the linear L-coloring of G′. A contradiction.

Lemma 9. Let v be a 5-vertex with N(v) = {v1, . . . , v5} and n2(v) = 5. If v1,
v2, v3, v4 are (5, 3)-vertices, then v5 must be a (5, 4+)-vertex.

Proof. Suppose to the contrary, let v5 be a (5, 3)-vertex, and ui be the neighbor
of vi other than v for i ∈ {1, 2, . . . , 5}.

Let G′ = G−N [v]. Then G′ has a linear L-coloring c by the minimality of G.
There exist at least |L(v1)\{c(u1), c(N(u1))}| ≥ 2 available colors for v1. Since
|L(v2)\{c(v1), c(u2), c(N(u2))}| ≥ 1 and |L(v3)\{c(v1), c(v2), c(u3), c2(u3)}| ≥ 1,
we can extend the coloring c of G′ to v1, v2, v3 such that |{c(v1), c(v2), c(v3)}| = 3.
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Notice that there will be no bi-colored cycle passing vv1u1 or vv2u2. Then we
color v4 with a color in L(v4)\{c(u4), c(N(u4))}, and no bi-colored cycle will pass
vv4u4. Finally, we extend the coloring c to v5 and v in two different cases.

If |{c(v1), c(v2), c(v3), c(v4)}| = 4, we can linearly color v with a color in
L(v)\{c(v1), c(v2), c(v3), c(v4)}, and color v5 such that no bi-colored cycle passes
vv5u5 as |L(v5)\{c(u5), c(v), c(N(u5))}| ≥ 1. So we get a linear L-coloring of G.

If |{c(v1), c(v2), c(v3), c(v4)}| = 3, we can color v5 such that no bi-colored
cycle passing vv5u5 since |L(v5)\{c(v4), c(u5), c(N(u5))}| ≥ 1, and color v with a
color in L(v) \ {c(v1), c(v2), c(v3), c(v5)}. Thus, we get a linear L-coloring of G.

Therefore, we can extend the linear L-coloring c ofG′ toG, a contradiction.

Lemma 10. Let v be a 7-vertex with N(v) = {v1, v2, . . . , v7} and n2(v) = 7. If

v1, v2, . . . , v5 are (7, 2)-vertices, then at least one of v6 and v7 is a (7, 4+)-vertex.

Proof. Assume that v6 and v7 are (7, 3−)-vertices, and ui is the neighbor of vi
other than v for i = 1, 2, . . . , 7. LetG′ = G−N [v]. ThenG′ has a linear L-coloring
c by the minimality of G. First, we extend the linear L-coloring c of G′ to v7 and
v6 such that c(v6) 6= c(v7) and no bi-colored cycle passes vv7u7 or vv6u6 since
|L(v7)\{c(u7), c(N(u7))}| ≥ 2 and |L(v6)\{c(u6), c(N(u6)), c(v7)| ≥ 1. Next,
we can color v5 such that c(v5) /∈ {c(v6), c(v7)} and no bi-colored cycle passes
vv5u5 since |L(v5)\{c(u5), c(N(u5)), c(v6), c(v7)}| ≥ 1. Then we can color v4
with c(v4) /∈ {c(v5), c(v6), c(v7)} since |L(v4)\{c(u4), c(v5), c(v6), c(v7)}| ≥ 1.
Notice that |{c(v4), c(v5), c(v6), c(v7)}| = 4. Then we color v with a color in
L(v)\{c(v7), c(v6), c(v5), c(v4)}. Since |L(v3)\{c(u3), c(v), c(N(u3))}| ≥ 2 and
|L(v2)\{c(u2), c(v), c2(v), c(N(u2))}| ≥ 1 (|c2(v)| ≤ 1 now), we can color v3, v2
in order such that no bi-colored cycle passes vv3u3 or vv2u2. Finally, in order
to avoid bi-colored cycles passing vv1u1, we can color v1 with a color in L(v1)\
{c(u1), c(v), c2(v)} (|c2(v)| ≤ 2 now) when c(u1) 6= c(v), or color v1 with a color
in L(v1)\{c(u1), c2(v), c(N(u1))} when c(u1) = c(v). Thus, we get a linear list
coloring of G extended from the linear list coloring c of G′, a contradiction.

To complete our proof of Theorem 5, it suffices to derive a contradiction by
a discharging procedure. We define the initial charge function ω on V (G) by
ω(v) = d(v) − 8

3 for every v ∈ V (v). Since mad(G) < 8
3 , the sum of the initial

charge is negative. If we can make suitable discharging rules to redistribute
charges among vertices so that the final charge ω′(v) of every vertex v ∈ V (G) is
nonnegative, then we get a contradiction. The discharging rules are as follows.

R1. Every 8+-vertex sends 2
3 to each adjacent 2-vertex.

R2. Every 7-vertex sends 2
3 to each adjacent (7, 2)-vertex, 5

9 to each adjacent
(7, 3)-vertex, and 1

3 to each adjacent (7, 4+)-vertex.

R3. Every 6-vertex sends 5
9 to each adjacent 2-vertex.
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R4. Every 5-vertex sends 1
2 to each adjacent (5, 3)-vertex, 1

3 to each adjacent
(5, 4+)-vertex.

R5. Every 4-vertex sends 1
3 to each adjacent 2-vertex.

R6. Every 3-vertex sends 1
6 to each adjacent (3, 5)-vertex, and 1

9 to each adjacent
(3, 6+)-vertex.

Now we are going to show that ω′(v) ≥ 0 for all v ∈ V (G).
Let v be a 2-vertex with N(v) = {x, y} and d(x) ≤ d(y). If d(x) = 2, then

d(y) ≥ 7 by Lemma 7. By R1 and R2, ω′(v) = ω(v) + 2
3 = 2 − 8

3 + 2
3 = 0. If

d(x) = 3, then d(y) ≥ 5 by Lemma 7. Thus ω′(v) ≥ ω(v)+ 1
6 +

1
2 = 2− 8

3 +
2
3 = 0

or ω′(v) ≥ ω(v) + 1
9 + 5

9 = 2 − 8
3 + 2

3 = 0 by R6, R2, R3, and R4. Otherwise,
d(x) ≥ 4 and d(y) ≥ 5, we have ω′(v) ≥ ω(v) + 1

3 +
1
3 = 2− 8

3 +
2
3 = 0 by R5, R2,

R3, and R4.
Let v be a 3-vertex. If n2(v) = 3, then the vertices in N(v) must be (3, 6+)-

vertices by Lemma 8. Thus ω′(v) ≥ ω(v) − 3 × 1
9 = 3 − 8

3 − 1
3 = 0 by R6. If

n2(v) ≤ 2, then ω′(v) ≥ ω(v)− 2× 1
6 = 3− 8

3 − 1
3 = 0 by R6.

Let v be a 4-vertex. Then ω′(v) ≥ ω(v)− 4× 1
3 = 4− 8

3 − 4
3 = 0 by R5.

Let v be a 5-vertex. If n2(v) ≤ 4, then ω′(v) ≥ ω(v)− 4× 1
2 = 5− 8

3 − 2 > 0
by R4. If n2(v) = 5, then there are at most four (3, 5)-vertices in N(v) by Lemma
9. Thus ω′(v) = ω(v)− 4× 1

2 − 1
3 = 5− 8

3 − 7
3 = 0 by R4.

Let v be a 6-vertex. Then ω′(v) ≥ ω(v)− 6× 5
9 = 6− 8

3 − 10
3 = 0 by R3.

Let v be a 7-vertex. If n2(v) ≤ 6, then ω′(v) ≥ ω(v)− 6× 2
3 = 7− 8

3 − 4 > 0
by R2. When n2(v) = 7, if there are no more than four (7, 2)-vertices in N(v),
then ω′(v) ≥ ω(v) − 4 × 2

3 − 3 × 5
9 = 7 − 8

3 − 13
3 = 0 by R2; if there are five

(7, 2)-vertices in N(v), then at least one of the other neighbors is a (7, 4+)-vertex
from Lemma 10, and ω′(v) = ω(v)− 6× 2

3 − 1
3 = 7− 8

3 − 13
3 = 0 by R2.

Finally, if d(v) ≥ 8, then ω′(v) ≥ ω(v)− 2
3 × d(v) = d(v)

3 − 8
3 = d(v)−8

3 ≥ 0 by
R1.

Thus, we get the desired contradiction, and Theorem 5 is proved.

It is interesting that Cranston and Yu [1] cited an example (mad(K2,3) =
12
5

and lc(K2,3) ≥
⌈

∆(G)
2

⌉

+ 2) to illustrate that the bound in Theorem 1(iv) is

sharp. Similarly, the graph K2,4 satisfies lc(K2,4) ≥
⌈

∆
2

⌉

+ 2, ∆(K2,4) = 4 and
mad(K2,4) =

8
3 . So the hypothesis about ∆(G) in Theorem 3(1) is essential, and

we suspect it can be replaced by ∆(G) ≥ 5.

3. Graphs with mad(G) < 18
7 and ∆(G) ≥ 5

For Theorem 3(2), we prove the following result instead.

Theorem 11. Let M ≥ 5 be an integer. If G is a graph with mad(G) < 18
7 and

∆(G) ≤ M , then lcl(G) =
⌈

M
2

⌉

+ 1.
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Proof. By contradiction, we suppose that Theorem 11 is false. Let G be a
counterexample with the fewest vertices and L be a list assignment of size

⌈

M
2

⌉

+
1 ≥ 4 such that G has no linear L-coloring. In the proof we need some structural
lemmas, and it is clear that Lemma 6 and Lemma 7 are also true.

Lemma 12. Let v be a 3-vertex with N(v) = {v1, v2, v3} and n2(v) = 3. Then

v1, v2, v3 must be (3, 5+)-vertices.

Proof. Assume that v1 is a (3, 4−)-vertex, and ui is the neighbor of vi other than
v for i = 1, 2, 3. Let G′ = G − {v, v1}. Then G′ has a linear L-coloring c by the
minimality of G. If c(v2) 6= c(v3), there exist at least |L(v1)\{c(u1), c2(u1)}| ≥ 2
colors available for v1. If there is an available color α /∈ {c(v2), c(v3)} for
v1, then let c(v1) = α and c(v) ∈ L(v)\{c(v1), c(v2), c(v3)}. If the available
colors for v1 are exactly c(v2) and c(v3), then let c(v1) = c(v2) and c(v) ∈
L(v)\{c(v1), c(u2), c(v3)}. It is similar for c(v1) = c(v3). Thus we get a linear list
coloring of G extended from the linear L-coloring c of G′. If c(v2) = c(v3), we can
extend the linear list coloring c of G′ to v1 since |L(v1)\{c(u1), c2(u1), c(v2)}| ≥ 1.
There is at least |L(v)\{c(v1), c(v2), c(u2)| ≥ 1 color available for v. Thus, we
also get a linear list coloring of G. A contradiction.

Lemma 13. Let v be a 3-vertex with N(v) = {v1, v2, v3}. If v1 and v2 are (3, 3)-
vertices, then v3 must be a 4+-vertex.

Proof. Assume that v3 is a 3−-vertex, and ui is the neighbor of vi other than
v for i = 1, 2. Let G′ = G − {v, v1, v2}. Then G′ has a linear L-coloring c by
the minimality of G. We can extend the linear L-coloring c to v1 such that no
bi-colored cycle passes vv1u1 since |L(v1)\{c(u1), c(N(u1))}| ≥ 1.

If c(v1) = c(v3). Since |L(v2)\{c(v1), c(u2), c2(u2)}| ≥ 1, we can extend the
coloring c to v2. Finally, we can color v with a color in L(v)\{c(v1), c(v2), c2(v3)}
when |c2(v3)| = 1, or in L(v)\{c(v1), c(v2), c(u2)} when |c2(v3)| = 0. It is clear
that no bi-colored cycle passes v2vv3. Then we get a linear list coloring of G.

If c(v1) 6= c(v3). There is at least |L(v)\{c(v1), c(v3), c2(v3)}| ≥ 1 color
available for v. Finally, we can color v2 with a color in L(v2)\{c(v), c(u2), c2(u2)}
when c(v) 6= c(u2), or in L(v2)\{c(u2), c(N(u2))} when c(v) = c(u2). In this
process, there will be no bi-colored cycle passing vv2. Thus, we also get a linear
list coloring of G extended from the linear L-coloring c of G′. A contradiction.

Lemma 14. Let v be a 4-vertex with n2(v) = 4 in G. Then there are at most

two (4, 3)-vertices in N(v).

Proof. Let N(v) = {v1, . . . , v4}, and ui be the other neighbor of vi for i =
1, . . . , 4. Assume that v1, v2 and v3 are (4, 3)-vertices. Let G′ = G−N [v]. Then
G′ has a linear L-coloring c by the minimality of G. We can extend the linear
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L-coloring c of G′ to v4 since |L(v4)\{c(u4), c2(u4)}| ≥ 1. We can continue to
extend to v3 with c(v3) 6= c(v4) since |L(v3)\{c(u3), c2(u3), c(v4)}| ≥ 1. Then we
color v2 with a color in L(v2)\{c(u2), c(N(u2))}. Notice that no bi-colored cycle
passes vv2u2 or v3vv4. This signifies that any bi-colored cycle in G if there will be
must passes v1. Finally, we will extend the coloring c to v1 and v in two different
cases.

If c(v2) /∈ {c(v3), c(v4)}, we can choose a color from {L(v)\{c(v2), c(v3), c(v4)}
for v. Then there is at least |L(v1)\{c(v), c(u1), c2(u1)}| ≥ 1 when c(v) 6= c(u1),
or |L(v1)\{c(u1), c(N(u1))}| ≥ 1 when c(v) = c(u1) color available for v1, which
ensure no bi-colored cycle passes vv1u1. So we get a linear list coloring of G.

If c(v2) ∈ {c(v3), c(v4)}, suppose c(v2) = c(v3) (similarly for c(v2) = c(v4)).
If |c2(u1)| = 1, we color v1 with a color in L(v1)\{c(v2), c(u1), c2(u1)}, and
no bi-colored cycle passes vv1. If |c2(u1)| = 0, we color v1 with a color in
L(v1)\{c(v2), c(u1), c(v4)}, which ensure that no bi-colored cycle passes v1vv4.
Then we color v with a color in L(v)\{c(v1), c(v2), c(v4)}. Notice that no bi-
colored cycle passes v1vv3 since c(v1) 6= c(v3). Thus, we also get a linear list
coloring c of G. A contradiction.

Lemma 15. Let v be a 5-vertex with N(v) = {v1, . . . , v5}. If v1, v2, v3, v4 are

four (5, 2)-vertices, then v5 must be a 3+-vertex.

Proof. Assume that v5 is a 2-vertex, and ui is the neighbor of vi other than
v for i = 1, 2, . . . , 5. Let G′ = G − N [v]. Then G′ has a linear L-coloring
c by the minimality of G. We can extend the L-coloring c of G′ to v5 since
|L(v5)\{c(u5), c2(u5)}| ≥ 1, and continue to v4 such that c(v4) 6= c(v5) and no
bi-colored cycle passes v4u4 since |L(v4)\{c(u4), c(N(u4)), c(v5)}| ≥ 1, then to
v3 with c(v3) /∈ {c(v4), c(v5)} since |L(v3)\{c(u3), c(v4), c(v5)}| ≥ 1. We can
color v with a color in L(v)\{c(v5), c(v4), c(v3)}, and color v2 such that no bi-
colored cycle passes vv2u2 since |{L(v2)\{c(v), c(u2), c(N(u2))}| ≥ 1. Finally, we
can color v1 linearly since |L(v1)\{c(v), c2(v), c(u1)}| ≥ 1 when c(v) 6= c(u1), or
|L(v1)\{c(v), c2(v), c(N(u1))}| ≥ 1 when c(v) = c(u1). Note that c(v3) 6= c(v5),
there will be no bi-colored cycle created. Thus we can extend the linear L-coloring
c of G′ to G. A contradiction.

Lemma 16. Let v be a 5-vertex with N(v) = {v1, . . . , v5} and n2(v) = 5. If

v1, v2, v3 are (5, 2)-vertices, then at least one of v4 and v5 is a (5, 4+)-vertex.

Proof. Assume that v4 and v5 are (5, 3−)-vertices, and ui is the neighbor of vi
other than v for i = 1, . . . , 5. Let G′ = G − N [v]. Then G′ has a linear L-
coloring c by the minimality of G. We can extend the coloring c of G′ to v5 such
that no bi-colored cycle passes vv5u5 since |L(v5)\{c(u5), c(N(u5))}| ≥ 1, and
continue to v4 such that c(v4) 6= c(v5) as |L(v4)\{c(u4), c2(u4), c(v5)| ≥ 1, then
to v3 with c(v3) /∈ {c(v5), c(v4)} since |L(v3)\{c(u3), c(v4), c(v5)}| ≥ 1. Now we
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can color v with a color in L(v)\{c(v5), c(v4), c(v3)}, and color v2 such that no bi-
colored cycle passes vv2u2 since |L(v2)\{c(v), c(u2), c(N(u2))}| ≥ 1. Finally, we
can color v1 linearly since |L(v1)\{c(v), c2(v), c(u1)}| ≥ 1 when c(v) 6= c(u1), or
|L(v1)\{c(v), c2(v), c(N(u1))}| ≥ 1 when c(v) = c(u1). Note that c(v3) 6= c(v4),
there will be no bi-colored cycle created. Thus, we can extend the linear L-
coloring c of G′ to G. A contradiction.

We will derive a contradiction by a discharging procedure proceeded in G
to complete the proof of Theorem 11. In the discharging procedure, the initial
charge function ω is defined as ω(v) = d(v)− 18

7 for every vertex v ∈ V (G), and
the discharging rules are as follows.

R1. Every 6+-vertex sends 4
7 to each adjacent 2-vertex or 3-vertex.

R2. Every 5-vertex sends 4
7 to each adjacent (5, 2)-vertex, 3

7 to each adjacent
(5, 3)-vertex, 2

7 to each adjacent (5, 4+)-vertex, 1
7 to each adjacent 3-vertex.

R3. Every 4-vertex sends 3
7 to each adjacent (4, 3)-vertex, 2

7 to each adjacent
(4, 4+)-vertex, 1

7 to each adjacent 3-vertex.

R4. Every 3-vertex sends 2
7 to each adjacent (3, 3)-vertex, 1

7 to each adjacent
(3, 4+)-vertex.

Now we are going to show that ω′(v) ≥ 0 for all v ∈ V .

If d(v) ≥ 6, then ω′(v) ≥ ω(v)− 4
7 × d(v) = 3d(v)

7 − 18
7 = 3d(v)−18

7 ≥ 0 by R1.

Let v be a 5-vertex. If n2(v) ≤ 4, then ω′(v) ≥ ω(v) − 4 × 4
7 − 1

7 = 5 −
18
7 − 16

7 − 1
7 = 0 by R2. When n2(v) = 5, there are at most three (2, 5)-vertices

in N(v) by Lemma 15. If there are two or less (2, 5)-vertices in N(v), then
ω′(v) ≥ ω(v) − 2 × 4

7 − 3 × 3
7 = 5 − 18

7 − 8
7 − 9

7 = 0 by R2. If there are three
(2, 5)-vertices in N(v), then ω′(v) ≥ ω(v)− 3× 4

7 − 3
7 − 2

7 = 5− 18
7 − 12

7 − 5
7 = 0

by Lemma 16 and R2.

Let v be a 4-vertex. If n2(v) ≤ 3, then ω′(v) ≥ ω(v)−3× 3
7 −

1
7 = 4− 18

7 − 9
7 −

1
7 = 0 by R3. If n2(v) = 4, then ω′(v) ≥ ω(v)−2× 3

7 −2× 2
7 = 4− 18

7 − 6
7 −

4
7 = 0

by Lemma 14 and R3.

Let v be a 3-vertex. If n2(v) = 3, then the vertices in N(v) must be (3, 5+)-
vertices by Lemma 12. Thus ω′(v) ≥ ω(v) − 3 × 1

7 = 3 − 18
7 − 3

7 = 0 by R4. If
n2(v) = 2, then ω′(v) ≥ ω(v)− 2× 2

7 +
1
7 = 3− 18

7 − 4
7 +

1
7 = 0 by Lemma 13 and

all discharging rules, or ω′(v) ≥ ω(v)− 2
7 −

1
7 = 3− 18

7 − 3
7 = 0. If n2(v) ≤ 1, then

ω′(v) ≥ ω(v)− 2
7 = 3− 18

7 − 2
7 > 0 by R4.

Finally, let v be a 2-vertex with N(v) = {x, y} and d(x) ≤ d(y). If d(x) = 2,
then d(y) ≥ 5 by Lemma 7. By R1 and R2, ω′(v) = ω(v) + 4

7 = 2− 18
7 + 4

7 = 0.
When d(x) = 3, we have ω′(v) = ω(v) + 2× 2

7 = 2− 18
7 + 4

7 = 0 if d(y) = 3, and
ω′(v) = ω(v) + 1

7 + 3
7 = 2 − 18

7 + 4
7 = 0 if d(y) ≥ 4. Otherwise, d(x) ≥ 4 and

d(y) ≥ 4, we have ω′(v) ≥ ω(v) + 2
7 +

2
7 = 2− 18

7 + 4
7 = 0 by R1, R2, and R3. We

get the desired contradiction, and Theorem 11 is proved.
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Similarly, the condition ∆(G) in Theorem 3(2) must be ∆(G) ≥ 4.

4. Graphs with mad(G) < 20
7 and ∆(G) ≥ 5

Cranston and Yu [1] conjectured that the hypothesis ∆(G) ≥ 9 of Theorem 1(iii)
can be replaced by ∆(G) ≥ 7, even ∆(G) ≥ 5. Now, we prove Theorem 3(3) to
support their conjecture. In order to prove Theorem 3(3), we prove the following
theorem which implies Theorem 3(3) immediately.

Theorem 17. Let M ≥ 5 be an integer. If G is a graph with mad(G) < 20
7 and

∆(G) ≤ M , then lcl(G) ≤
⌈

M
2

⌉

+ 2.

Proof. Let G be a counterexample of the fewest vertices with mad(G) < 20
7 and

5 ≤ ∆(G) ≤ 8 (Theorem 17 is true for graphs G with ∆(G) ≥ 9 by Theorem
1(iii)). There exists an assignment L with |L| ≥

⌈

M
2

⌉

+ 2 ≥ 5 such that G is
not linearly L-choosable, but H has a linear L-coloring, where H is any proper
subgraph of G. Clearly, G is connected and δ(G) ≥ 2. In the proof we need some
structural lemmas.

Lemma 18. Let v be a 2-vertex with N(v) = {v1, v2}. Then
⌈

d(v1)
2

⌉

+
⌈

d(v2)
2

⌉

≥
⌈

M
2

⌉

+ 2.

Proof. Assume
⌈

d(v1)
2

⌉

+
⌈

d(v2)
2

⌉

≤
⌈

M
2

⌉

+1. Let G′ = G−v. Then G′ has a linear

L-coloring c by the minimality of G. If c(v1) 6= c(v2), we can color v with any color
in L(v)\{c(v1), c(v2), c2(v1), c2(v2)}. Then the number of available colors for v is

at least
⌈

M
2

⌉

+2−
(

2 +
⌊

d(v1)−1
2

⌋

+
⌊

d(v2)−1
2

⌋)

=
⌈

M
2

⌉

+2−
(⌈

d(v2)
2

⌉

+
⌈

d(v2)
2

⌉)

≥1.

Clearly, there will be no bi-colored cycle created. So we extend the linear L-
coloring c of G′ to G. Now we suppose c(v1) = c(v2). In order to color v linearly
and avoid bi-colored cycles created, the forbidden color set for v contains the color
c(v1), the colors appearing twice in N(v1) or N(v2), and the colors appearing in
both N(v1) and N(v2). So at most 1 + |c2(v1) ∪ c2(v2)| + |c1(v1) ∩ c1(v2)| ≤
⌈

d(v1)+d(v2)
2

⌉

≤
⌈

d(x)
2

⌉

+
⌈

d(y)
2

⌉

≤
⌈

M
2

⌉

+ 1 colors are forbidden for v. Thus, we

also can get a linear L-coloring of G. A contradiction.

Lemma 19. Let v be a 3-vertex of G with N(v) = {v1, v2, v3} and d(v1) ≤

d(v2) ≤ d(v3). If d(v1) = 2, then d(v2) ≥ 3 and
⌊

d(v2)+d(v3)
2

⌋

≥
⌈

M
2

⌉

+ 1.

Proof. We prove d(v2) ≥ 3 first. To the contrary, we assume d(v2) = 2. Let
G′ = G − {v, v1, v2}. Then G′ has a linear L-coloring c by the minimality of
G. The neighbors of v1 and v2 other than v are denoted by u1 and u2, respec-
tively. We can extend the coloring c of G′ to v1 such that c(v1) 6= c(v3) since
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|L(v1) \ {c(u1), c2(u1), c(v3)}| ≥ 1, which ensures that no bi-colored cycle passes
v1vv3. We can continue to extend to v since |L(v) \ {c(v1), c(v3), c2(v3)}| ≥ 1. If
c(v) 6= c(u2), which means that no bi-colored cycle passes vv2u2, we can color v2
linearly since |L(v2)\{c(v), c(u2), c2(u2)}| ≥ 1. When c(v) = c(u2), the number of
available colors for v2 is at least |L(v2)\{c(u2), c2(u2)}| ≥ 2. If there is an available
color α /∈ {c(v1), c(v3)} for v2, then we color v2 with α. Now we assume that the
available colors for v2 are exactly c(v1) and c(v3). Notice that |c2(u2)| =

⌊

M−1
2

⌋

and |c1(u2)| ≤ 1 now. To avoid bi-colored cycle created, the number of for-
bidden colors for v2 is at most |{c(u2), c(N(u2))}| = 1 + |c2(u2)| + |c1(u2)| ≤
1 +

⌊

M−1
2

⌋

+ 1 =
⌈

M
2

⌉

+ 1, so we can color v2 linearly. Thus, we get a linear
L-coloring of G extended from the linear L-coloring c of G′. A contradiction.

Now, we prove the inequality. Suppose to the contrary that, we have
⌊

d(v2)+d(v3)
2

⌋

≤
⌈

M
2

⌉

, and u1 is the neighbor of v1 other than v. Let G′ = G− v1,

then G′ has a linear L-coloring c by the minimality of G.

Case 1. c(v2) 6= c(v3). If c(v) 6= c(u1), then we can extend the coloring c to
v1 to get a linear L-coloring of G since |L(v1)\{c(v), c(u1), c2(u1)}| ≥ 1. If c(v) =
c(u1), the number of available colors for v1 is at least |L(v1)\{c(v), c2(u1)}| ≥ 2.
If there is a color α /∈ {c(v2), c(v3)} available for v, then we can extend c from
G′ to G by coloring v1 with α. Now we assume that L(v1)\{c(v), c2(u1)} =
{c(v2), c(v3)}. Notice that |c2(u1)| =

⌊

M−1
2

⌋

now. Then c(v2) and c(v3) appears
at most once in N(u1), but both of them could not appear in N(u1) at the same
time (otherwise |L(v1) \ {c(v), c2(u1)}| ≥

⌈

M
2

⌉

+ 2 − (1 +
⌊

M−3
2

⌋

) ≥ 3). So we
color v1 with c(v3) if c(v2) appears in N(u1), otherwise color v1 with c(v2). Then
there will be no bi-colored cycle created. Thus, we get a linear L-coloring of G
extended from the linear L-coloring c of G′.

Case 2. c(v2) = c(v3). If c(v) = c(u1), then we can color v1 linearly since
|L(v1)\{c(v2), c(v), c2(u1)}| ≥ 1, and no bi-colored cycle created. Now, suppose
c(v) 6= c(u1). We erase the color of v first, then we can extend the list coloring c to
v1 since |L(v1)\{c(v2), c(u1), c2(u1)}| ≥ 1. To avoid bi-colored cycle created, the
number of forbidden colors for v is at most 2+ |c2(v2)∪c2(v3)|+ |c1(v2)∩c1(v3)| ≤

2+
⌊

d(v2)−1+d(v3)−1
2

⌋

= 1+
⌊

d(v2)+d(v3)
2

⌋

≤
⌈

M
2

⌉

+1. We also can extend the linear

L-coloring c of G′ to G. A contradiction.

Lemma 20. Let v be a 4-vertex in G. Then n2(v) ≤ 3.

Proof. Let N(v) = {v1, . . . , v4}. Suppose to the contrary, let n2(v) = 4, and ui
be the neighbor of vi other than v for i = 1, . . . , 4. Let G′ = G−N [v]. Then G′

has a linear L-coloring c by the minimality of G. Since |L(vi)\{c(ui), c2(ui)}| ≥
2, we can color vi linearly with at least two different colors for i = 1, 2, 3, 4.
Finally, we can color v with a color in L(v)\c(N(v)) if |c(N(v)) = 4|, or in
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L(v)\{c(N(v)), c(ui)} if c(vi) = c(vj) for 1 ≤ i < j ≤ 4. And no bi-colored cycle
appears in this process. Thus, we get a linear list coloring of G extended from
the linear L-coloring c of G′, a contradiction.

Lemma 21. Let v be a 4-vertex with N(v) = {v1, . . . , v4}. If d(v1) = d(v2) =
d(v3) = 2 and v3 is a (4, 5)-vertex, then v4 must be a 4+-vertex.

Proof. Suppose to the contrary, let v4 be a 3−-vertex, and ui be the neighbor
of vi other than v for i = 1, 2, 3. Let G′ = G − {v, v1, v2, v3}, then G′ has a
linear L-coloring c by the minimality of G. We can extend the coloring c of G′

to v1 with c(v1) 6= c(v4) since |L(v1)\{c(u1), c2(u1), c(v4)}| ≥ 1. Then there are
at least |L(v2)\{c(u2), c2(u2)}| ≥ 2 colors available for v2.

If there is a color α /∈ {c(v1), c(v4)} available for v2, let c(v2) = α. If
|c2(v4)| = 1, we can choose a color for v in L(v)\{c(v1), c(v2), c(v4), c2(v4)},
and there will be no bi-colored cycle created passing vv4. Then, we color v3
with a color in L(v3)\{c(v), c(u3), c2(u3)} if c(v) 6= c(u3). When c(v) = c(u3),
in order to color v3 linearly (no bi-colored cycle created), we must forbidden
c(v), c2(N(u3)) and {c(v1), c(v2), c(v4)}∩ c1(N(u3)). Notice that d(u3) = 5, then
|c2(N(u3)) ∪ ({c(v1), c(v2), c(v4)} ∩ c1(N(u3)))| ≤ 3. So we can color v3 linearly
with a color in L(v3) \ {c(v), c2(N(u3)), {c(v1), c(v2), c(v4)} ∩ c1(N(u3))}. Thus,
we get a linear list coloring of G.

Suppose the available color set for v2 is exactly {c(v1), c(v4)}. Notice that
|c2(u2)| =

⌊

M−1
2

⌋

now. We color v2 with c(v4) first. If |c2(u3)| = 2, we color v3
with a color in L(v3)\{c(v4), c(u3), c2(u3)}. If |c2(u3)| ≤ 1, we color v3 with a color
in L(v3)\{c(v4), c(v1), c(u3), c2(u3)}. Notice d(u3) = 5, then no bi-colored cycle
passes v3u3. Finally, we can color v with a color in L(v)\{c(v1), c(v3), c(v4), c2(v4)}
if |c2(v4)| = 1, or in L(v)\{c(v1), c(v3), c(v4), c(u2)} if |c2(v4)| = 0. Clearly, there
will be no bi-colored cycle passing vv4. Then we extend the linear L-coloring c
of G′ to G, a contradiction.

Lemma 22. Let v be a 4-vertex with N(v) = {v1, . . . , v4}. If d(v1) = d(v2) =
d(v3) = 2 and v2, v3 are (4, 5)-vertices, then v4 must be a 5+-vertex.

Proof. Suppose to the contrary, let v4 be a 4−-vertex, and ui be the neighbor
of vi other than v for i = 1, 2, 3. Let G′ = G − {v, v1, v2, v3}. Then G′ has a
linear L-coloring c by the minimality of G. We can extend the coloring c of G′

to v1 with c(v1) 6= c(v4) since |L(v1)\{c(u1), c2(u1), c(v4)}| ≥ 1. Then there are
at least |L(v2)\{c(u2), c2(u2)}| ≥ 2 colors available for v2.

If there is an available color α /∈ {c(v1), c(v4)} for v2, let c(v2) = α. If
|c2(v4)| = 1, we color v with a color in L(v)\{c(v1), c(v2), c(v4), c2(v4)}. Then, we
color v3 with a color in L(v3)\{c(v), c(u3), c2(u3)} if c(v) 6= c(u3). If c(v) = c(u3),
we color v3 with a color in L(v3)\{c(u3), c2(u3)}, L(v3)\{c(u3), c1(u3), c2(u3)} or
L(v3)\{c(u3), c(v1), c(v2), c(v4)} when |c2(u3)| = 2, |c2(u3)| = 1 or |c2(u3)| = 0,
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respectively. Notice that v3 is a (4, 5)-vertex, it means d(u3) = 5, then there will
be no bi-colored cycle passing v3u3. Then we get a linear list coloring of G. If
|c2(v4)| = 0, we choose a color for v in L(v)\{c(v1), c(v2), c(v4), c(u3)}, then we
can color v3 linearly since |L(v3)\{c(v), c(u3), c2(u3)}| ≥ 1. We also get a linear
list coloring of G.

When the available color set for v2 is exactly {c(v1), c(v4)} (notice that
|c2(u2)| = 2, and there will be no bi-colored cycle passing v2u2), we can color v2
with c(v4). If |c2(u3)| = 2, we color v3 with a color in L(v3)\{c(v4), c(u3), c2(u3)};
if |c2(u3)| ≤ 1, we color v3 with a color in L(v3)\{c(v4), c(v1), c(u3), c2(u3)}.
Notice d(u3) = 5, there will be no bi-colored cycle passing v3u3. Finally, we
can color v with a color in L(v)\{c(v1), c(v3), c(v4), c2(v4)} if |c2(v4)| = 1, or in
L(v)\{c(v1), c(v3), c(v4)} if |c2(v4)| = 0. Then we extend the linear L-coloring c
of G′ to G, a contradiction.

To complete our proof of Theorem 17, it suffices to derive a contradiction
by a discharging procedure. We define the initial charge function ω on V (G) by
ω(v) = d(v)− 20

7 for every v ∈ V (G). The discharging rules are as follows.

R1. Every 5+-vertex sends
d(v)− 20

7

d(v) to each adjacent vertex.

R2. Every 4-vertex sends 3
7 to each adjacent (4, 5)-vertex, 1

3 to each adjacent
(4, 6)-vertex, 1

7 to each adjacent 3-vertex;

R3. Every 3-vertex sends 3
7 to each adjacent 2-vertex (if it has one).

Now we are going to show that ω′(v) ≥ 0 for all v ∈ V (G). We only need to
check the final charges of 4−-vertices from the discharging rules.

Let v be a 4-vertex in G. Then n2(v) ≤ 3 by Lemma 20. If n2(v) ≤ 2, then
ω′(v) ≥ ω(v) − 2 × 3

7 − 2 × 1
7 = 0 by R2. When n2(v) = 3, if three are three

(4, 6)-vertices in N(v), then ω′(v) ≥ ω(v) − 3 × 1
3 − 1

7 = 0; if there is only one
(4, 5)-vertex in N(v), then ω′(v) ≥ ω(v)− 2× 1

3 −
3
7 > 0 by Lemma 21 and R2; if

there are two or more (4, 5)-vertices in N(v), we have ω′(v) ≥ ω(v)−3× 3
7+

3
7 > 0

by Lemma 22 and R2.

Let v be a 3-vertex in G. Then n2(v) ≤ 1 by Lemma 19. If n2(v) = 0, then
ω′(v) = ω(v) = 3 − 20

7 > 0. When n2(v) = 1, if there is a 3-vertex in N(v), we
have ω′(v) ≥ ω(v)− 3

7 +
3
7 > 0 by Lemma 19 and R3; if there are two 4+-vertices

in N(v), then ω′(v) ≥ ω(v)− 3
7 + 2× 1

7 = 0.

Let v be a 2-vertex with N(v) = {x, y} and d(x) ≤ d(y). Clearly, d(x) ≥ 3 by
Lemma 18. If d(x) = 3, then d(y) ≥ 5 by Lemma 19, so ω′(v) ≥ ω(v) + 3

7 + 3
7 =

2 − 20
7 + 6

7 = 0 by R3 and R1. If d(x) = 4, then d(y) ≥ 5 by Lemma 18, so
ω′(v) ≥ ω(v)+ 3

7 +
3
7 = 2− 20

7 + 6
7 = 0, or ω′(v) ≥ ω(v)+ 1

3 +
11
21 = 2− 20

7 + 6
7 = 0.

Otherwise, d(x) ≥ 5 and d(y) ≥ 5, we have ω′(v) ≥ ω(v)+ 3
7 +

3
7 = 2− 20

7 + 6
7 = 0.

In summary, the proof of Theorem 3 is completed.
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