
Discussiones Mathematicae
Graph Theory 41 (2021) 75–82
doi:10.7151/dmgt.2167

ON THE n-PARTITE TOURNAMENTS WITH EXACTLY

n − m + 1 CYCLES OF LENGTH m

Qiaoping Guo and Wei Meng

School of Mathematical Sciences

Shanxi University, Taiyuan, 030006, China

e-mail: guoqp@sxu.edu.cn
mengwei@sxu.edu.cn

Abstract

Gutin and Rafiey [Multipartite tournaments with small number of cycles,
Australas J. Combin. 34 (2006) 17–21] raised the following two problems:
(1) Let m ∈ {3, 4, . . . , n}. Find a characterization of strong n-partite tour-
naments having exactly n−m+1 cycles of length m; (2) Let 3 ≤ m ≤ n and
n ≥ 4. Are there strong n-partite tournaments, which are not themselves
tournaments, with exactly n − m + 1 cycles of length m for two values of
m? In this paper, we discuss the strong n-partite tournaments D containing
exactly n −m + 1 cycles of length m for 4 ≤ m ≤ n − 1. We describe the
substructure of such D satisfying a given condition and we also show that,
under this condition, the second problem has a negative answer.
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1. Introduction

An n-partite or multipartite tournament is an orientation of a complete n-partite
graph. A tournament is an n-partite tournament with exactly n vertices. A
digraph D is transitive if, for every pair of arcs xy and yz in D such that x 6= z,
the arc xz is also in D. It is easy to show that a tournament is transitive if and
only if it is acyclic.

A digraph D is said to be strong, if for every pair of vertices x and y, D
contains a path from x to y and a path from y to x. A directed path from x to
y in D is denoted by an (x, y)-path. An l-cycle is a cycle of length l. A cycle or
path in a digraph D is Hamiltonian if it includes all the vertices of D.

In 1966, Moon discussed the number of m-cycle in a strong tournament.

http://dx.doi.org/10.7151/dmgt.2167


76 Q. Guo and W. Meng

Theorem 1 (Moon [9]). Let T be a strong tournament of order n. Then T
contains at least n−m+ 1 cycles of length m for 3 ≤ m ≤ n.

The tournaments which gain the lower bound in Theorem 1 were character-
ized by Burzio and Demaria [2] for m = 3, Douglas [3] for m = n and Las Vergnas
[8] for 4 ≤ m ≤ n − 1. We list the result of Las Vergnas especially because we
will use it to prove our main results.

Theorem 2 (Las Vergnas [8]). Every strong tournament of order n having exactly

n − m + 1 cycles of given length m with 4 ≤ m ≤ n − 1 is isomorphic to Qn,

where Qn is a tournament of order n ≥ 3 obtained by reversing the arcs in the

unique Hamiltonian path of a transitive tournament.

In 2002, Volkmann extended Theorem 1 from tournaments to multipartite
tournaments.

Theorem 3 (Volkmann [10]). Let D be a strong n-partite tournament. Then D
contains at least n−m+ 1 cycles of length m for 3 ≤ m ≤ n.

It is notable that the bound in Theorem 3 is sharp which can be seen in [4]
for n = 3 and in [6] for 4 ≤ m ≤ n. In addition, Gutin and Rafiey [6] raised the
following two interesting and natural problems.

Problem 4 (Gutin and Rafiey [6]). Given m ∈ {3, 4, . . . , n}, find a characteri-

zation of strong n-partite tournaments having exactly n−m+ 1 cycles of length

m.

Problem 5 (Gutin and Rafiey [6]). Let 3 ≤ m ≤ n and n ≥ 4. Are there

strong n-partite tournaments, which are not themselves tournaments, with exactly

n−m+ 1 cycles of length m for two values of m?

Problem 4 seems to be especially interesting for the case m = n which was
already solved by Gutin et al. in [7]. In this paper, we investigate strong n-partite
tournaments D, which are not themselves tournaments and contain exactly n−
m + 1 cycles of length m for any given 4 ≤ m ≤ n − 1. We prove that if D has
an (n− 1)-cycle with no pair of vertices from the same partite set, then D must
contain some given multipartite tournament as its subdigraph.

As far as Problem 5, Gutin and Rafiey [6] gave a negative answer for two
values n− 1 and n of m. This also implies that Problem 5 has a negative answer
for n = 4. In this paper, we give a necessary condition to Problem 5 and show
that if a strong n-partite tournamentD, which is not itself a tournament, contains
exactly n−m+1 cycles of length m for two values of m ∈ {4, 5, . . . , n− 1}, then
there is no an (n − 1)-cycle with no pair of vertices from the same partite set
in D.
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2. Terminology and Preliminaries

We assume that the reader is familiar with the standard terminology on digraphs
and refer the reader to [1].

Let D be a digraph with the vertex set V (D) and the arc set A(D). We
call the number of vertices of D the order of D. A subdigraph induced by a
subset A ⊆ V (D) is denoted by D〈A〉. We use V (D)\V (A) to stand for the set
of vertices which are in V (D) but not in V (A).

If xy is an arc in D, then we say that x dominates y and write x → y. For
two disjoint subsets X and Y of V (D), if every vertex of X dominates every
vertex of Y , we say X dominates Y and write X → Y . Furthermore, X ⇒ Y
denotes the property that there is no arc from Y to X.

The out-neighborhood N+(x) of a vertex x is the set of vertices dominated by
x and the in-neighborhood N−(x) of a vertex x is the set of vertices dominating
x. The numbers d+(x) = |N+(x)| and d−(x) = |N−(x)| are the outdegree and
indegree of x, respectively. The global irregularity of D is defined as ig(D) =
max{max{d+(x), d−(x)}−min{d+(y), d−(y)} : x, y ∈ V (D)}. We denote by D−1

the inverse digraph of D.

In order to present our main results, we define a class of n-partite tourna-
ments Dn of order n + 1 as described in the following figure, where 3 ≤ m ≤ n,
{v2, . . . , vm−2, vm, . . . , vn} → y → v1, y and vm−1 belong to the same partite set
and vi → vj for all 1 < j + 1 < i ≤ n.
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The following two theorems on cycles in strong n-partite tournaments are
very useful to prove our main results.

Theorem 6 (Guo and Volkmann [5]). Every partite set of a strong n-partite
tournament, n ≥ 3, contains a vertex which lies on an m-cycle for each m ∈
{3, 4, . . . , n}.

Theorem 7 (Gutin and Rafiey [6]). Let D be a strong n-partite tournament

containing exactly n−m+1 cycles of length m for some m ∈ {3, 4, . . . , n}. Then

every m-cycle of D has no pair of vertices from the same partite set.
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3. Main Results

Before presenting the main results, we first prove the following lemma.

Lemma 8. Let D be a strong n-partite tournament, n ≥ 5, containing exactly

n−m+1 cycles of length m for some 3 ≤ m ≤ n−1. If D has an (n−1)-cycle C
with no pair of vertices from the same partite set, then the following statements

hold.

(a) There are no two vertices u,w in V (D)\V (C) such that C ⇒ u → w ⇒ C.

(b) There exists a vertex v /∈ V (C) such that D〈V (C) ∪ {v}〉 is strong.

Proof. Let V1, V2, . . . , Vn be the partite sets of D. Suppose, without loss of
generality, that C = v1v2 · · · vn−1v1 with vi ∈ Vi, i = 1, 2, . . . , n− 1. By Theorem
1, D〈V (C)〉 contains at least (n− 1)−m+1 = n−m cycles C1, C2, . . . , Cn−m of
length m.

(a) Suppose to the contrary that there exist two vertices u,w ∈ V (D)\V (C)
such that C ⇒ u → w ⇒ C. Obviously, u /∈ Vn or w /∈ Vn. Assume, without loss
of generality, that w ∈ Vj for some 1 ≤ j ≤ n−1. Since n ≥ 5, there exist at least
two vertices vk and vt, such that u,w, vk and vt are in different partite sets. If
m = 3, then uwvku and uwvtu are two m-cycles different from C1, C2, . . . , Cn−m.
This contradicts the fact that D contains exactly n −m + 1 cycles of length m.
If m ≥ 4, then uwvj−1vj · · · vj+m−4u (if u /∈ Vj+m−4) or uwvj+1vj+2 · · · vj+m−2u
(if u ∈ Vj+m−4) is an m-cycle with w, vj ∈ Vj or u, vj+m−4 ∈ Vj+m−4 (where all
indices are modulo n− 1). This is impossible by Theorem 7.

(b) Assume that there is no vertex v ∈ V (D)\V (C) such that D〈V (C)∪{v}〉
is strong. Let S = {x ∈ V (D)\V (C) : C ⇒ x} and T = {z ∈ V (D)\V (C) :
z ⇒ C}. Since D is strong, we have that S and T are non-empty and there are
vertices u ∈ S and w ∈ T such that u → w. Thus, we have C ⇒ u → w ⇒ C,
which contradicts (a).

Theorem 9. Let D be a strong n-partite tournament which is not itself a tourna-

ment and contains exactly n−m+1 cycles of length m for some 4 ≤ m ≤ n− 1.
If D has an (n − 1)-cycle C with no pair of vertices from the same partite set,

then D contains some Di or D−1
i as its subdigraph for i ∈ {n − 1, n}, where Di

is defined in Section 2.

Proof. Let V1, V2, . . . , Vn be the partite sets of D and let C = v1v2 · · · vn−1v1,
vi ∈ Vi, i = 1, 2, . . . , n−1. By Theorem 1, D〈V (C)〉 contains at least n−m cycles
C1, C2, . . . , Cn−m of length m. By Theorem 6, there exists a vertex in Vn, say x,
which lies on an m-cycle Cn−m+1 different from C1, C2, . . . , Cn−m. We consider
the following two cases.

Case 1. D〈V (C) ∪ {x}〉 is not strong. Since D contains exactly n − m + 1
cycles of length m, we have that D〈V (C)〉 contains exactly n−m cycles of length
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m. By Theorem 2, D〈V (C)〉 is isomorphic to Qn−1. So we may assume that
vi → vj for all 1 < j+1 < i ≤ n− 1. Since D〈V (C)∪{x}〉 is not strong, we have
that C → x or x → C.

First we consider the case C → x. Let S = {u ∈ V (D)\(V (C) ∪ {x}) :
D〈V (C) ∪ {u}〉 is strong}. By Lemma 8(b), S is not empty. Since D is strong,
there is a path from x to S. Let P = x1x2 · · ·xt (x1 = x) be such a path and
assume that the P is of minimum length. That is, xt ∈ S and D〈V (C) ∪ {xi}〉
is not strong for each i ∈ {1, 2, . . . , t − 1}. Since C → x1 and x1 → x2, we have
x2 /∈ V (C). If t > 2, then by Lemma 8(a), we have C ⇒ x2. Successively, we can
get that xi /∈ V (C) and C ⇒ xi for all i ∈ {2, 3, . . . , t− 1} when t > 2.

If there exist two vertices vi, vj on C such that xt → {vi, vj}, then,
when t > m − 1, we have that xtvixt−(m−2)xt−(m−3) · · ·xt (if xt−(m−2) /∈ Vi) or
xtvjxt−(m−2)xt−(m−3) · · ·xt (if xt−(m−2) ∈ Vi) is an m-cycle different from C1, C2,
. . . , Cn−m+1, a contradiction; when t = m − 1, it is clear that xtvix1 · · ·xt
and xtvjx1 · · ·xt are two m-cycles different from C1, C2, . . . , Cn−m, a contradic-
tion; when t ≤ m − 2, it is easy to see that xtvivi+1 · · · vi+(m−1−t)x1 · · ·xt and
xtvjvj+1 · · · vj+(m−1−t)x1 · · ·xt are two m-cycles different from C1, C2, . . . , Cn−m,
a contradiction.

Therefore, xt has only one out-neighbor on C. We will show that xt → v1. In
fact, if xt → vi and i ≥ 2, then we have that xtvi · · · vi+m−2xt (when i+m− 2 ≤
n − 1 and xt /∈ Vi+m−2) or xtvi · · · vi+m−3vi−1xt (when i + m − 2 ≤ n − 1 and
xt ∈ Vi+m−2) or xtvi · · · vn−1v1 · · · vm−n+i−1xt (when i + m − 2 ≥ n and xt /∈
Vm−n+i−1) or xtvi · · · vn−1v2 · · · vm−n+ixt (when i+m−2 ≥ n and xt ∈ Vm−n+i−1)
is an m-cycle different from C1, C2, . . . , Cn−m+1, a contradiction. So we have
{v2, v3, . . . , vn−1} ⇒ xt. Furthermore, if vm−1 → xt, then xtv1v2 · · · vm−1xt is an
m-cycle different from C1, C2, . . . , Cn−m+1, a contradiction. So xt ∈ Vm−1. Let
xt = y. Then D contains Dn−1 as its subdigraph.

For the case x → C, by considering the inverse of D, it is easy to see that D
contains D−1

n−1 as its subdigraph.

Case 2. D〈V (C) ∪ {x}〉 is strong. In this case, D〈V (C) ∪ {x}〉 is a strong
tournament of order n. By Theorem 1, D〈V (C) ∪ {x}〉 contains at least n −
m + 1 cycles of length m. Note that D contains exactly n − m + 1 cycles of
length m. We have that D〈V (C) ∪ {x}〉 contains exactly n − m + 1 cycles of
length m. By Theorem 2, D〈V (C) ∪ {x}〉 is isomorphic to Qn. So we may
assume that C ′ = v1v2 · · · vnv1 is an n-cycle of D〈V (C) ∪ {x}〉 satisfying vi ∈ Vi

and vi → vj for all 1 < j + 1 < i ≤ n. Obviously, C1 = v1v2 · · · vmv1, C2 =
v2v3 · · · vm+1v2, . . . , Cn−m+1 = vn−m+1vn−m+2 · · · vnvn−m+1 are n−m+ 1 cycles
of length m of D.

Claim 10. There exists a vertex y ∈ V (D)\V (C ′) such that D〈V (C ′) ∪ {y}〉 is

strong.
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Proof. Assume that there is no vertex y ∈ V (D)\V (C ′) such thatD〈V (C ′)∪{y}〉
is strong. Let S = {x ∈ V (D)\V (C ′) : C ′ ⇒ x} and T = {z ∈ V (D)\V (C ′) : z ⇒
V (C ′)}. Since D is strong, we have that S and T are non-empty and there
are vertices u ∈ S and w ∈ T such that u → w. Suppose that u ∈ Vi and
w ∈ Vj for 1 ≤ i 6= j ≤ n. Then uwvj+1vj+2 · · · vj+m−2u (if i 6= j + m −
2) or uwvj+2vj+3 · · · vj+m−1u (if i = j + m − 2) is an m-cycle different from
C1, C2, . . . , Cn−m+1. Note that D contains exactly n−m+ 1 cycles of length m.
This is a contradiction.

By Claim 10, there are two vertices va, vb (1 ≤ a, b ≤ n), such that va → y
→ vb. Assume that vk is the first vertex from v1 to vn dominating y.

Claim 11. vi ⇒ y for all k ≤ i ≤ n.

Proof. Otherwise, there exists some index t such that either vt → y → vt+1

(k ≤ t ≤ n − 1) or y, vt+1 ∈ Vt+1 but vt → y → vt+2 (k ≤ t ≤ n − 2). We still
assume that t is such a minimum index.

If t ≤ n − m + 1, then either vtyvt+1 · · · vt+m−2vt or vtyvt+2 · · · vt+m−1vt is
an m-cycle different from C1, C2, . . . , Cn−m+1, a contradiction.

If n−m+2 ≤ t ≤ n− 2, then either vtyvt+1 · · · vnvn−m+2 · · · vt or vtyvt+2 · · ·
vnvn−m+1 · · · vt is an m-cycle different from C1, C2, . . . , Cn−m+1, a contradiction.

If t = n− 1, then y → vn and vn−1yvnvn−m+2 · · · vn−1 is an m-cycle different
from C1, C2, . . . , Cn−m+1, a contradiction.

Claim 12. y → v1.

Proof. If y ∈ V1, then y → v2 (otherwise, k = 2 and {v2, v3, . . . , vn} → y
by Claim 11, which contradicts the assumption that D〈V (C ′) ∪ {y}〉 is strong).
By Claim 11, we have vn → y. Therefore, D〈v2, . . . , vn, y〉 is a strong tour-
nament. Then y is in an m-cycle of D〈v2, . . . , vn, y〉, which is different from
C1, C2, . . . , Cn−m+1, a contradiction.

Therefore, y /∈ V1. If v1 → y, then {v2, v3, . . . , vn} ⇒ y by Claim 11, which
contradicts the assumption that D〈V (C ′)∪{y}〉 is strong. So we have y → v1.

By Claim 12, we have that 2 ≤ k ≤ n and y ⇒ vm−1. Otherwise, yv1v2
· · · vm−1y is an m-cycle different from C1, C2, . . . , Cn−m+1, a contradiction.

If k = 2, then by m ≥ 4 and Claim 11, we have y ∈ Vm−1, and hence,
{v2, v3, . . . , vn} ⇒ y → v1. Now, D contains Dn as its subdigraph.

If 2 < k < m − 1, then y ∈ Vm−1, y → v2 and vm → y. Thus, yv2 · · · vmy is
an m-cycle different from C1, C2, . . . , Cn−m+1, a contradiction.

If m − 1 ≤ k ≤ n − 1, then 1 ≤ k −m + 2 ≤ k − 2 and y ⇒ vk−m+2. Now
vkyvk−m+2 · · · vk (if y → vk−m+2) or vk+1yvk−m+3 . . . vk+1 (if y ∈ Vk−m+2) is an
m-cycle different from C1, C2, . . . , Cn−m+1, a contradiction.
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If k = n, then vn → y ⇒ {v1, v2 · · · vn−1} by the choice of k. It is easy to
see that y ∈ Vn−m+2, as otherwise yvn−m+2 · · · vny is an m-cycle different from
C1, C2, . . . , Cn−m+1, a contradiction. Now D contains D−1

n as its subdigraph.

Theorem 13. Let D be a strong n-partite tournament, n ≥ 5, which is not itself

a tournament. If D contains an (n − 1)-cycle with no pair of vertices from the

same partite set, then D does not contain exactly n −m + 1 cycles of length m
for two values of m ∈ {4, 5, . . . , n− 1}.

Proof. Let m and m1 be two distinct values from the set {4, 5, . . . , n − 1} and
assume that D has exactly n−m+1 cycles of length m. Let V1, V2, . . . , Vn be the
partite sets of D. By Theorem 9, D contains some Di or D

−1
i as its subdigraph

for i ∈ {n− 1, n}.

If D contains Dn−1 (D−1
n−1) as its subdigraph, then let C = v1v2 · · · vn−1v1

be an (n− 1)-cycle of Dn−1 (D−1
n−1)) with vi ∈ Vi (i = 1, 2, . . . , n− 1), vi → vj for

all 1 < j + 1 < i ≤ n − 1, y ∈ Vm−1, {v2, v3, . . . , vn−1} ⇒ y → v1 (y ∈ Vn−m+1

and vn−1 → y ⇒ {v1, v2, . . . , vn−2}). By Theorem 1, D〈V (C)〉 contains at least
(n − 1) − m1 + 1 = n − m1 cycles of length m1. Note that yv1v2 · · · vm1−1y
(vn−1yvn−(m1−1)vn−(m1−2) · · · vn−1) is another m1-cycle of Dn−1(D

−1
n−1)). In ad-

dition, there exists a vertex in Vn, say x, which is in an m1-cycle of D different
from the above m1-cycles. Thus, D contains at least n−m1 + 2 cycles of length
m1.

If D contains Dn (D−1
n ) as its subdigraph, then let C = v1v2 · · · vnv1 be an n-

cycle of Dn (D−1
n ) with vi ∈ Vi (i = 1, 2, . . . , n), vi → vj for all 1 < j+1 < i ≤ n,

y ∈ Vm−1, {v2, v3, . . . , vn} ⇒ y → v1 (y ∈ Vn−m+2, vn → y ⇒ {v1, v2, . . . , vn−1}).
By Theorem 1, D〈V (C)〉 contains at least n −m1 + 1 cycles of length m1. It is
easy to see that yv1v2 · · · vm1−1y (vnyvn−(m1−2)vn−(m1−3) · · · vn) is another m1-
cycle of Dn (D−1

n ). Then D contains at least n−m1+2 cycles of length m1. The
theorem is complete.

In 2004, Winzen [11] showed that an n-partite tournament D with n ≥ 4 and
ig(D) ≤ 2 contains a strong subtournament of order p for every p ∈ {3, 4, . . . ,
n − 1}. So D contains an (n − 1)-cycle with no pair of vertices from the same
partite set, which yields the following result.

Corollary 14. If D is a strong n-partite tournament with n ≥ 5 and ig(D) ≤ 2,
which is not itself a tournament, then D does not contain exactly n−m+1 cycles

of length m for two values of m ∈ {4, 5, . . . , n− 1}.
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