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1. Introduction

Employing concepts and results from modern algebra and universal algebra, also
when linked to the first-order logic of algebraic models [16], but transplanted from
the algebraic context to the world of relational structures – and in particular the
case of graphs – can deliver fruitful results. Two such concepts are those of
tensor products [2] and of congruences [4], and another one is that of structural
properties which are axiomatizable in an apt first-order logical language [3]. In
this paper we introduce and study the notion of a radical in graph theory and
show that it produces equally interesting results.

The concept of a radical in a mathematical structure first arose in ring theory
in [14]. It is typically motivated by the idea of “improving” a ring by forming a
quotient ring by collapsing to zero some ideal of “bad” elements of the ring. A
“bad” element in a ring may, for instance, be a nilpotent one, of which some power
is zero. Now there are many theories of radicals on mathematical structures in
the literature, for example in the contexts of universal algebra (see for instance
[12] and [13] by Hoehnke), of category theory (see for instance [17] by Veldsman),
of ring theory (developed by Amitsur and Kurosh in the 1950’s, see for instance
[11] by Gray or [10] by Gardner and Wiegandt and in the context of model theory
(see for instance [5] and [6] by Buys and Heidema). The most general approach
to radical theory is to be found in [15] by Marki, Mlitz and Wiegandt.

Radical theory for graphs is not new. Already in 1975 Fried and Wiegandt
[9] developed a radical theory in the category of graphs which admit loops, there
called connectednesses and disconnectednesses. Their approach was class based
in the spirit of the general radical theory for groups and rings as developed by
Kurosh and Amitsur. Our approach to radicals presented here will be one that
imitates the one proposed by Hans-Jürgen Hoehnke in 1966 using congruences
on universal algebras. Already congruences (and quotients) on graphs have been
defined in [4] where it was introduced for graphs that do not admit loops (simple
graphs). Such a class is too restrictive on the permissible mappings and the
radical theory degenerates to triviality. We will redefine graph congruences for
the more general case where a graph may have a loop at some vertices and develop
the necessary tools (isomorphism theorems and subdirect products) required for
the radical theory to follow.

For those notions on graphs in general not defined here, we refer the reader to
[8]. Except when explicitly stated otherwise, all graphs considered are undirected
and unlabelled, without multiple edges, and have non-empty vertex sets. A
graph may have loops at some edges. There is, in general, no upper bound
on the cardinalities of sets we use, except that – to ensure that the class of all
graphs together constitute a proper set – they all lie below some fixed inaccessible
cardinal.
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If x and y are elements of some set, we shall denote an ordered pair formed
by them by (x, y) and the unordered pair {x, y} formed by them by xy (= yx).
As with ordered pairs of the form (x, x), we do allow unordered pairs xx.

A graph G with vertex set V and edge set E will typically be denoted by
G = (V,E); when we are dealing with different graphs, we may use the notation
VG for V and, similarly, EG for E. A (graph) homomorphism is an edge preserving
mapping from the vertex set of a graph into the vertex set of a graph. A strong
homomorphism is a homomorphism that sends ”no edges” to ”no edges” and if
it is also a bijection, it is called an isomorphism. For a graph G = (VG, EG), a
subgraph H = (VH , EH) of G is a graph with VH ⊆ VG and EH ⊆ EG. When
EH = {ab | a, b ∈ VH and ab ∈ EG}, then H is called a strong subgraph (or
induced subgraph) of G. For a homomorphism f : G → H, the image graph f(G)
will always be the induced subgraph of H on the vertex set f(VG). In general,
unless mentioned otherwise, if a subset VH of VG is regarded as a graph, it will
be the subgraph induced by G on VH . There are two (non-isomorphic) one-vertex
graphs, called the trivial graphs; the one with a loop T0 and the one without a
loop T.

2. Congruences on Graphs

As motivation for the definition and much of the subsequent results on graph
congruences, we acknowledge [4].

Definition 2.1. Let G = (VG, EG) be a graph. A congruence on G is a pair
θ = (∼, E) such that:

(i) ∼ is an equivalence relation on VG;

(ii) E is a set of unordered pairs of elements from V with EG ⊆ E ; and

(iii) (Substitution Property of E with respect to ∼) when x, y, x′, y′ ∈ VG,
x ∼ x′, y ∼ y′, and xy ∈ E , then x′y′ ∈ E .

A strong congruence on G is a pair θ = (∼, E) where ∼ is an equivalence relation
on VG and E = {xy | x, y ∈ VG and there are x′, y′ ∈ VG with x ∼ x′, y ∼ y′ and
x′y′ ∈ EG}.

It can easily be verified that a strong congruence is also a congruence. Con-
gruences can be partially ordered by the relation ”contained in”. Indeed, for two
congruences α = (∼α, Eα) and β = (∼β , Eβ) on G, α is contained in β, writ-
ten as α ⊆ β, if ∼α⊆∼β and Eα ⊆ Eβ . Let ≎ denote the identity relation on
VG (i.e., x ≎ y if and only if x = y). The congruence ιG := (≎, EG) on G, is
called the identity congruence on G and is the smallest congruence on G. It is,
in fact, a strong congruence on G. The universal congruence on G is the pair
υG = (!, E) where ! is the universal relation (i.e., a ! b for all a, b ∈ VG)
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and E = {ab | a, b ∈ VG}. Clearly, any congruence on G is contained in υG. As
will be seen later, the next example is the prototype of all graph congruences.

The kernel of a homomorphism. Given any graph homomorphism f : G −→
H, we define a congruence on G, called the kernel of f and written as ker f =
(∼f , Ef ), by ∼f= {(x, y) | x, y ∈ VG, f(x) = f(y)} and Ef = {uv | u, v ∈ VG,
f(u)f(v) ∈ EH}. It is immediately clear that ker f is a congruence on G. With
f is also associated the strong kernel of f, written as sker f = (∼f , Esf ) with
the same equivalence relation but Esf = {xy | x, y ∈ VG and there are x′, y′ ∈ VG

with x ∼ x′, y ∼ y′ and x′y′ ∈ EG}. This is a strong congruence on G and sker
f ⊆ ker f ; in fact, if θ = (∼f , E) is any congruence on G for some E , then sker
f ⊆ θ. If f is a strong homomorphism, then ker f = sker f. As is to be expected,
it can easily be shown that injectivity of a homomorphism is equivalent to the
equivalence relation ∼f coinciding with ≎ . Moreover, the kernel of f is the
identity congruence on G if and only if f is an injective strong homomorphism.
If f is a strong surjective homomorphism, then it is an isomorphism if and only
if the kernel of f is the identity congruence.

More examples. Given any equivalence ∼ on the vertices of a graph G, the set
E = {xy | x, y ∈ VG and there are x′, y′ ∈ VG with x ∼ x′, y ∼ y′ and x′y′ ∈ EG}
always gives a strong congruence ρ = (∼, E) on G. For another congruence on G,
let x ∼ y be equality (i.e., x ≎ y) and xy ∈ E to mean that there is a (finite)
path from x to y in G. Then (≎, E) is a congruence on G and should one think of
(VG, E) as a graph, then it is the graph obtained from G = (VG, EG) by replacing
each connected component of G by a complete graph on the vertex set of that
component. More generally: the construction on a graph G = (VG, EG) of leaving
VG intact while extending EG to some edge set E yielding the new graph (VG, E)
corresponds to the congruence (≎, E) on G. This correspondence is made clear
in the next item.

Quotients. Given any congruence θ = (∼, E) on a graph G = (VG, EG), we
define a new graph, denoted by G/θ = (VG/θ, EG/θ) and called the quotient of
G modulo θ, by taking VG/θ := {[x] | x ∈ VG} and EG/θ := {[x][y] | xy ∈ E}.
The natural or canonical mapping pθ : G → G/θ given by pθ(x) = [x] is a
surjective homomorphism with ker pθ = θ. In particular, for θ = ιG we have G/ιG
isomorphic to G. If θ is a strong congruence, then pθ is a strong homomorphism
with sker pθ = θ. In general, if we take θ = (≎, E) for some suitable E to make θ
a congruence on G, then G/θ is the graph with vertex set VG/θ = VG and edge set
EG/θ = E (here we identify [x] = {x} with x). If υG is the universal congruence
on G, then G/υG is isomorphic to the trivial graph T0 with a loop.

The lattice of congruences. For a given graph G, we denote the set of all
congruences on G by C(G). We already know that C(G) is a partially ordered set
with respect to containment ⊆ . We can say more. Any collection of congruences
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{θi = (∼i, Ei) | i ∈ I} ⊆ C(G) has a greatest lower bound in C(G) given by
⋂

i∈I θi = (∼, E) where a ∼ b ⇔ a ∼i b for all i ∈ I and ab ∈ E ⇔ ab ∈ Ei for
all i ∈ I. Moreover, {θi = (∼i, Ei) | i ∈ I} also has a least upper bound given by
⋃

i∈I θi = (∼, E) where a ∼ b ⇔ there are i1, i2, . . . , in ∈ I and ai1 , ai2 , ..., ain ∈
V, n ≥ 2, such that a = ai1 ∼i1 ai2 ∼i2 ai3 ∼i3 · · · ∼in−2

ain−1
∼in−1

ain = b
and E = {ab | a, b ∈ V and there is an i ∈ I and a′b′ ∈ Ei with a′ ∼ a and
b′ ∼ b}. It can easily be verified that

⋃

i∈I θi is the least upper bound in C(G) for
{θi = (∼i, Ei) | i ∈ I}.

When dealing with radicals, the basic tools are the appropriate versions of
the algebraic isomorphism theorems for graph congruences.

Isomorphism theorems for congruences. Let f : G → H be a graph homo-
morphism with θ = (∼, E) a congruence on G and α = (∼α, Eα) a congruence on
H. By f(θ) we mean the pair (f(∼), f(E)) where f(∼) = {(f(a), f(b)) | a, b ∈
VG, a ∼ b} and f(E) = {f(a)f(b) | ab ∈ E}. Of course, this need not be a congru-
ence on H, but nevertheless it will be compared to α in the usual sense, meaning
f(θ) ⊆ α if and only if f(∼) ⊆∼α and f(E) ⊆ Eα. We start with two auxiliary
results.

Proposition 2.2. Let f : G → H be a graph homomorphism. Then f(ker f) ⊆
ιH and if ρ = (∼ρ, Eρ) is a congruence on G with f(ρ) ⊆ ιH , then ρ ⊆ ker f.

Proof. Let a, b ∈ VG with a ∼f b. Then f(a) = f(b) and so f(∼f ) ⊆ ≎ . Let
ab ∈ Ef . Then f(a)f(b) ∈ EH and hence f(ker f) ⊆ ιH . Let ρ = (∼ρ, Eρ) be
a congruence on G with f(ρ) ⊆ ιH . Then f(∼ρ) ⊆ ≎ and hence, if a, b ∈ VG

with a ∼ρ b, then f(a) = f(b) and thus a ∼f b. Let ab ∈ Eρ. Since f(ρ) ⊆ ιH ,
f(a)f(b) ∈ EH and so ab ∈ Ef .

Proposition 2.3. Let f : G → H and g : G → K be surjective graph homo-
morphisms. Then ker f = (∼f , Ef ) ⊆ ker g = (∼g, Eg) if and only if there is a
homomorphism h : H → K such that h ◦ f = g.

Proof. Suppose ker f = (∼f , Ef ) ⊆ ker g = (∼g, Eg), i.e., ∼f⊆ ∼g and Ef ⊆ Eg.
Define h : H → K by h(y) = g(x) where x ∈ VG with f(x) = y. This map is
well-defined, for if f(x′) = y = f(x), then x ∼f x′ and so x ∼g x′ which gives
g(x) = g(x′). Clearly h ◦ f = g. Next it is shown that h preserves edges: Let ab ∈
EH . By the surjectivity of f, there are a′, b′ ∈ VG with f(a′) = a and f(b′) = b.
Thus f(a′)f(b′) ∈ EH and so a′b′ ∈ Ef ⊆ Eg which gives g(a′)g(b′) ∈ EK , i.e.,
h(a)h(b) ∈ EK .

Conversely, suppose the homomorphism h with h ◦ f = g exists. If f(a) =
f(b), then g(a) = h(f(a)) = h(f(b)) = g(b) and hence ∼f⊆ ∼g . Let ab ∈ Ef .
Then f(a)f(b) ∈ EH and hence h(f(a))h(f(b)) ∈ EK which gives g(a)g(b) ∈ EK .
Thus ab ∈ Eg and Ef ⊆ Eg follows.
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Theorem 2.4 (First Isomorphism Theorem). Let f : G → H be a homomor-
phism. Then G/ ker f is isomorphic to f(G) where f(G) is the induced subgraph
of H on f(VG). If f is surjective, then G/ ker f is isomorphic to H. Moreover, if
f is a surjective strong homomorphism, then G/skerf is isomorphic to H.

Proof. Let θ = ker f and let pθ : G → G/θ be the canonical quotient map given
by pθ(x) = [x]. Then we have two surjective homomorphisms f : G → f(G) and
pθ with ker f = θ = ker pθ and the previous proposition gives two homomorphisms
h : f(G) → G/θ and k : G/θ → f(G) with h ◦ f = pθ and k ◦ pθ = f. From this
we conclude that k is an isomorphism.

Let G be a graph with induced subgraph H. Then a congruence θ = (∼, E) on
G induces a congruence H ∩ θ = (∼H , EH) on H with ∼H= (VH × VH)∩ ∼
= {(a, b) | a, b ∈ VH and a ∼ b} and EH = {ab | a, b ∈ VH} ∩ E = {ab | a, b ∈ VH

with ab ∈ E}. The mapping f : H → G/θ defined by f(a) = [a] for all a ∈ VH

is a homomorphism with ker f = H ∩ θ. Now f(VH) is a set of vertices of G/θ
on which we form the induced subgraph of G/θ, denoted by (H + θ)/θ. Then, by
the First Isomorphism Theorem, we have:

Theorem 2.5 (Second Isomorphism Theorem). Let H be an induced subgraph
of a graph G. Let θ be a congruence on G. Then H ∩ θ as defined above is a
congruence on H and H/H ∩ θ ∼= (H + θ)/θ where the latter graph is the induced
subgraph of G/θ on the vertex set {[a] | a ∈ VH}.

Theorem 2.6 (Third Isomorphism Theorem). Let G be a graph with two con-
gruences θ1 = (∼1, E1) and θ2 = (∼2, E2) on G for which θ1 ⊆ θ2. Then θ2/θ1 :=
(∼, E) is a congruence on G/θ1 where [a]1 ∼ [b]1 ⇔ a ∼2 b and [a]1[b]1 ∈ E ⇔
ab ∈ E2. Moreover, (G/θ1)/(θ2/θ1) is isomorphic to G/θ2.

Proof. Clearly ∼ is an equivalence relation on G/θ1 and EG/θ1 = {[a]1[b]1 | ab ∈
E1} ⊆ {[a]1[b]1 | ab ∈ E2} = E since θ1 ⊆ θ2. Moreover, to verify the Substitution
Property of E with respect to ∼, suppose [a]1[b]1 ∈ E with [a]1 ∼ [a′]1 and
[b]1 ∼ [b′]1. This means ab ∈ E2 with a ∼2 a′ and b ∼2 b′. Thus a′b′ ∈ E2 and so
[a′]1[b

′]1 ∈ E . Hence θ2/θ1 is a congruence on G/θ1.
Define a mapping f : G/θ1 → G/θ2 by f([a]1) = [a]2. It can be checked that

this is a surjective homomorphism with ker f = θ2/θ1. By the First Isomorphism
Theorem we conclude that (G/θ1)/(θ2/θ1) ∼= G/θ2.

A related result often used is:

Theorem 2.7. Let G be a graph with θ a fixed congruence on G. Any congruence
ξ of the graph G/θ is of the form α/θ for some congruence α on G with θ ⊆ α.
Moreover, there is a one-to-one correspondence between {α | α is a congruence on
G with θ ⊆ α} and C(G/θ) which preserves inclusions, intersections and unions
of congruences.
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Proof. Let ξ = (∼ξ, Eξ) be a congruence on G/θ. Define a congruence α =
(∼α, Eα) on G by a ∼α b ⇔ [a]θ ∼ξ [b]θ and Eα = {ab | [a]θ[b]θ ∈ Eξ}. It
is straightforward to verify that θ ⊆ α and that α/θ = ξ. Moreover, for two
congruences α and β on G with θ ⊆ α and θ ⊆ β, the equality α/θ = β/θ holds if
and only if α = β which establishes the required one-to-one correspondence. The
preservation of inclusions, intersections and unions under this correspondence can
easily be verified.

Products and subdirect products of graphs. For an index set I, let Gi =
(Vi, Ei) be a graph for all i ∈ I. The product

∏

i∈I Gi of the graphs Gi is the
graph

∏

i∈I Gi = (
∏

i∈I Vi, E) where
∏

i∈I Vi is just the usual Cartesian product
of the sets Vi and E = {fg | f, g ∈

∏

i∈I Vi with f(i)g(i) ∈ Ei for all i ∈ I}. For
every j ∈ I, the j-th projection πj :

∏

i∈I Gi → Gj defined by πj(f) = f(j) for all
f ∈

∏

i∈I Vi is a surjective homomorphism. An induced subgraph H of
∏

i∈I Gi

is called a subdirect product of the graphs Gi, i ∈ I, provided the restriction of
each projection πj to H is a surjective mapping onto Gj . As in universal algebra,
subdirect products can be expressed in terms of congruences and quotients.

Theorem 2.8. For each i ∈ I, let θi be a congruence on a graph G = (VG, EG)
with θ =

⋂

i∈I θi. Then G/θ is isomorphic to a subdirect product of the quotient
graphs G/θi, i ∈ I.

Proof. For each j ∈ I, let θj = (∼j , Ej) with pj : G → G/θj the canonical
homomorphism, say Gj = G/θj = (Vj , Ej); Vj = {[a]j | a ∈ VG} and Ej =
{[a]j [b]j | ab ∈ Ej}. Let P = (VP , EP ) be the product of the graphs Gi = G/θi, i ∈
I with πj : P → Gj the j-th projection. This means VP = {a | a : I →

⋃

i∈I G/θi
a function with a(i) ∈ Vi for all i ∈ I}, EP = {ab | a, b ∈ VP and a(i)b(i) ∈ Ei for
all i ∈ I} and πj(a) = a(j).

Define a function f : G → P by f(a) = fa where fa : I →
⋃

i∈I G/θi is the
function defined by fa(j) = [a]j = pj(a) for all j ∈ I. Thus πj◦f = pj for all j and
it can easily be verified that f is a homomorphism with ker f = θ =

⋂

i∈I θi.

In particular, it then follows that:

Corollary 2.9. A graph G is a subdirect product of graphs Gi, i ∈ I, if and only
if for every i ∈ I there are congruences θi on G with Gi isomorphic to G/θi and
⋂

i∈I θi = ιG.

Proof. The necessity is clear in view of the theorem; so suppose that G is a
subdirect product of the graphs Gi = (VGi

, EGi
) for all i ∈ I. If P denotes the

product P =
∏

i∈I Gi with πj : P → Gj the j-th projection, then G is an induced
subgraph of P and πj(G) = Gj for j ∈ I. Let θj = kerπj , say θj = (∼j , Ej).
Thus G/θj ∼= Gj for all j ∈ I. Let

⋂

i∈I θi = (∼, E). To complete the proof, we
show

⋂

i∈I θi = ιG. For a, b ∈ VG, a ∼ b ⇔ a ∼j b for all j ∈ I ⇔ a(j) = πj(a) =
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πj(b) = b(j) for all j ∈ I ⇔ a = b. Furthermore, ab ∈ E ⇔ a, b ∈ VG and ab ∈ Ej
for all j ∈ I ⇔ a, b ∈ VG and πj(a)πj(b) ∈ EG for all j ∈ I ⇔ a, b ∈ VG and
ajbj ∈ EGj

for all j ∈ I ⇔ a, b ∈ VG and ab ∈ EP ⇔ ab ∈ EG and we are done.

Although not required for what follows, it may be worthwhile to investigate a
graph theoretical version of a classical result in Universal Algebra commonly
known as Birkhoff’s Theorem [1]. A graph G is called subdirectly irreducible if
it is not a subdirect product of graphs (or equivalently, any intersection of non-
identity congruences is not the identity congruence). Birkhoff’s Theorem states
that an algebra with more than one element is a subdirect product of subdirectly
irreducible algebras. One may then want to investigate subdirectly irreducible
graphs more closely, but these matters will not be pursued here.

It also makes sense to form the product of congruences. For each graph
Gi = (Vi, Ei), let θi = (∼i, Ei) be a congruence on Gi, i ∈ I. Then

∏

i∈I θi = (∼, E)
is the congruence on G =

∏

i∈I Gi defined by: For a, b ∈ G, a ∼ b ⇔ a(j) ∼j b(j)
for all j ∈ I and ab ∈ E ⇔ a(j)b(j) ∈ Ej for all j ∈ I. This congruence can
be described in another way. Let πj : G → Gj be the j-th projection and
pj : Gj → Gj/θj the canonical quotient map. Then fj = pj ◦ πj : G → Gj/θj
is a homomorphism and by the universal property of the product

∏

i∈I(Gi/θi),
there is a unique homomorphism f : G →

∏

i∈I(Gi/θi) such that π′
j ◦ f = fj for

all j ∈ I where π′
j :

∏

i∈I(Gi/θi) → Gj/θj is the j-th projection. More explicitly,
f is given by f(a) = a, say, where a ∈ VG and a : I →

⋃

i∈I Gi/θi is the map
a(j) = [a(j)]θj . Then ker f =

∏

i∈I θi. Indeed, we record and prove this in:

Proposition 2.10. For each i ∈ I, let θi = (∼i, Ei) be a congruence on the
graph Gi. Let

∏

i∈I θi = (∼, E) be the product congruence on G =
∏

i∈I Gi as
defined above. For each j ∈ I, let fj : G → Gj/θj be the canonical surjective
homomorphism as above with f : G →

∏

i∈I(Gi/θi) the unique homomorphism
for which π′

j ◦ f = fj for all j ∈ I where π′
j :

∏

i∈I(Gi/θi) → Gj/θj is the j-th
projection. Then ker f =

∏

i∈I θi.

Proof. Let G′ =
∏

i∈I(Gi/θi) and G′
j = Gj/θj . Let ker f = (∼′, E ′) and choose

a, b ∈ G. Then a ∼′ b ⇔ f(a) = f(b) ⇔ a(j) ∼j b(j) for all j ∈ I ⇔ a ∼ b.
Furthermore, ab ∈ E ′ ⇔ f(a)f(b) ∈ EG′ ⇔ [a(j)]θj [b(j)]θj ∈ EG′ for all j ∈ I ⇔
a(j)b(j) ∈ Ej for all j ∈ I ⇔ ab ∈ E . Hence ker f =

∏

i∈I θi.

3. The Hoehnke Radical of a Graph

We now define a Hoehnke radical on graphs in terms of congruences. At the
outset, we firstly need to specify the universum in which this is to be done.
For radical theory this is usually in a prescribed universal class. A class W of
graphs is called a universal class if it is non-empty, closed under homomorphic
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images and closed under the taking of subgraphs (= strongly hereditary). It
should also be mentioned that we do not distinguish between isomorphic graphs
(e.g., in the definition below, if G and H are isomorphic graphs in W, then
ρ(G) = ρ(H)). From the definition, it follows that W contains a one-vertex graph,
and consequently the class T = {T0, T} of all trivial graphs in W. Note that there
is a unique congruence on T0 (ιT0

= υT0
) but on T it is possible to define two

different congruences (ιT 6= υT ). All considerations relating to the radicals of
graphs will be inside the class W. A class of graphs M in W is an abstract class
provided it contains the trivial graph T0 and it is closed under isomorphic copies.
All subclasses of W under consideration will be assumed to be abstract, even
though it may not always be explicitly stated. Since G/υG ∼= T0 for any graph
G, there is always at least one congruence θ on a graph G for which G/θ is in
any abstract class. For a class M in W, we use M to denote the subdirect closure
of M, i.e., the class of all graphs that are subdirect products of graphs from M.
Clearly M ⊆ M and we say M is subdirectly closed if M = M. In the definition
below, we will need the image of a congruence under a homomorphism as defined
in the lines preceeding Proposition 2.2.

Definition 3.1. A Hoehnke radical on W is a function ρ that assigns to every
graph G in W a congruence ρ(G) = ρG on G such that

(H1) for every homomorphism f : G → H, f(ρ(G)) ⊆ ρ(f(G)); and

(H2) ρ(G/ρG) = ιG/ρG
, the identity congruence on G/ρG.

For a radical ρ, if ρ(G) = ιG, then G is called semisimple (actually, ρ-
semisimple), the class Sρ = {G ∈ W | ρ(G) = ιG} is called the associated
semisimple class and Rρ = {G ∈ W | G/ρG is a trivial graph} is the associated
radical class.

There are other types of general radicals as well, like Plotkin radicals, Kurosh-
Amitsur radicals, etc. By radical we will mean a Hoehnke radical as defined
above and if we need another type of radical, it will be called appropriately.
The original motivation in ring theory for collapsing congruence classes of ring
elements (modulo the radical ideal of the ring) to single elements of the quotient
ring – namely some “badness” in their structural behaviour – can be transferred
to radicals on graphs, but only with a pinch of salt. After all, in graphs there are
no “zero” vertices, and hence no concept “nilpotency”. And yet, in the examples
of graph radicals which follow, we suggest contextual reasons for squashing the
individuality out of vertices which are in the same congruences class.

Another remark here is important. As mentioned earlier, a radical theory
for universal classes of graphs like the ones under discussion here, has already
been developed earlier in [9] by Fried and Wiegandt. In this theory, they defined
and investigated the graph theoretical versions of the Kurosh-Amitsur (KA for
short) radical classes called connectednesses and the semisimple classes called
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disconnectednesses. This terminology is highly suggestive of the examples of
such classes. For example, the class of all connected graphs is a radical class
(= connectedness), the corresponding radical congruence partitions any graph
into its connected components and the resulting quotient graph reduces each
component to a single vertex with a loop to end up with a rather disconnected
graph in the corresponding semisimple class (= disconnectedness).

Hoehnke radicals are much more general than KA-radicals and what we will
present here will not contribute anything new to the KA-radical theory of graphs.
But what is new here, is the Hoehnke radicals of graphs and then the subsequent
requirements on these radicals that will lead to the KA-radicals. Once this has
been done (in Section 5), we will give examples.

For a Hoehnke radical ρ on W, note that {T0} ⊆ Sρ ∩ Rρ ⊆ T ⊆ Rρ and
the radical class Rρ is always homomorphically closed (and thus also strongly
homomorphically closed). Next we really get to the essence of the radical and
show that a Hoehnke radical is very general and is always of a prescribed form.

Theorem 3.2. Let ρ be a mapping that assigns to any graph G in W a congruence
ρ(G) = ρG on G. Then ρ is a Hoehnke radical on W if and only if there is an
abstract class of graphs M in W such that for all G in W, ρ(G) =

⋂

{θ | θ is a
congruence on G for which G/θ ∈ M}. Furthermore, Sρ = M.

Proof. Let ρ be a Hoehnke radical. Then the semisimple class Sρ = {G ∈ W |
ρ(G) = ιG} is an abstract class. We show that ρ(G) = ϕ where ϕ =

⋂

{θ | θ is a
congruence on G for which G/θ ∈ Sρ}. By (H2), ρ(G/ρG) ∈ Sρ and so ϕ ⊆ ρ(G)
since ρ(G) is just one of these θ’s. Let θ be any congruence on G for which
G/θ ∈ Sρ. If pθ : G → G/θ is the canonical quotient map, then by (H1) we have
pθ(ρ(G)) ⊆ ρ(pθ(G)) = ρ(G/θ) = ιG/θ. This means ρ(G) ⊆ θ, hence ρ(G) ⊆ ϕ
and ρ(G) =

⋂

{θ | θ is a congruence on G for which G/θ ∈ Sρ} follows.

We still have to show Sρ = Sρ. Suppose a graph G is a subdirect product
of graphs Gi ∈ Sρ, i ∈ I. By Theorem 2.8 we know that there are congruences
αi on G with G/αi = Gi ∈ Sρ and

⋂

i∈I αi = ιG. But then ρ(G) =
⋂

{θ | θ is a
congruence on G for which G/θ ∈ Sρ} ⊆

⋂

i∈I αi = ιG and hence G ∈ Sρ.

Conversely, suppose ρ(G) =
⋂

{θ | θ is a congruence on G for which G/θ ∈
M} for all G in W where M is some abstract class of graphs in W. For (H1),
let θ be a congruence on G and consider the canonical surjective homomorphism
f : G → G/θ. We show that f(ρ(G)) ⊆ ρ(f(G)) = ρ(G/θ). Let α be a congruence
on G/θ with (G/θ)/α ∈ M. By the Third Isomorphism Theorem, α is of the
form α = β/θ for some congruence β on G with θ ⊆ β and G/β is isomorphic to
(G/θ)/α ∈ M. Hence ρ(G) ⊆ β and so f(ρ(G)) ⊆ β/θ = α from which it can
be concluded that f(ρ(G)) ⊆ ρ(G/θ). For (H2), using the Third Isomorphism
Theorem again, we have
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ρ(G/ρG) =
⋂

{α | α is a congruence on G/ρG with (G/ρG)/α ∈ M}

=
⋂

{β/ρG | β is a congruence on G, ρG ⊆ β and

G/β ∼= (G/ρG)/(β/ρG) ∈ M}

= ρG/ρG = ιG/ρG
,

which gives (H2).

Lastly we show Sρ = M. For this we first observe that M ⊆ Sρ since G/ιG ∼=
G ∈ M which gives ρ(G) = ιG. Then M ⊆ Sρ = Sρ, the last equality follows from
the first part of the proof. If G ∈ Sρ, then ιG = ρ(G) =

⋂

{θ | θ is a congruence
on G for which G/θ ∈ M} which means G is a subdirect product of graphs from
M (Corollary 2.9) and hence in M.

To emphasize the salient features of the radical contained in the above result,
we repeat them in the next corollary.

Corollary 3.3. (1) The semisimple class of any Hoehnke radical is subdirectly
closed.

(2) For a Hoehnke radical ρ, ρ(G) is the smallest congruence on G for which
G/ρ(G) is semisimple (i.e., if θ is a congruence on G with G/θ ∈ Sρ, then
ρ(G) ⊆ θ). Or, equivalently, G/ρ(G) is the largest semisimple image of G (in
the following sense: if g : G → H is a surjective homomorphism with H ∈ Sρ,
then there is a homomorphism h : G/ρ(G) → H such that h ◦ p = g where
p : G → G/ρ(G) is the canonical quotient map).

(3) For any abstract class of graphs M in W, define ρ(G) =
⋂

{θ | θ ∈ C(G)
with G/θ ∈ M} for all G ∈ W. Then ρ is a Hoehnke radical with Sρ = M and
every semisimple graph is a subdirect product of graphs from M.

Number (3) above is really the holy grail of radical theory. One would like
to have a nice, well-behaved class of graphs M and then, if a graph is semisimple
with respect to the corresponding radical, it is a subdirect product of graphs from
the class M. Properties of the class or of the graphs inside the class M may lead
to stronger representations as is often seen, for example, in the radical theory of
rings.

In general radical theory, hereditariness has proven to be a useful property.
A class M of graphs is said to be hereditary (respectively strongly hereditary) if
G ∈ M implies all the induced subgraphs of G (respectively all the subgraphs
of G) are in M. Our next result shows that hereditariness is retained under
subdirect closures.

Proposition 3.4. If the class M ⊆ W is hereditary, then so is its subdirect
closure M.
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Proof. Let G ∈ M; say G is the subdirect product of the graphs G/θi ∈ M
where θi is a congruence on G for all i ∈ I with

⋂

i∈I θi = ιG. Let H be an
induced subgraph of G. Then H ∩ θi is a congruence on H and by the Second
Isomorphism Theorem, we have H/H∩θi ∼= (H+θi)/θi where the right hand side
is the induced subgraph of G/θi ∈ M on the vertex set {[a] | a ∈ H}. Since M is
hereditary, H/H ∩ θi ∈ M. From

⋂

i∈I(H ∩ θi) = H ∩
(
⋂

i∈I θi
)

= H ∩ ιG = ιH
and Corollary 2.9 we get H ∈ M.

4. Radicals of Congruences and Products

In this section we shall extend the radical concept from the radical of a graph
to the radical of a congruence on a graph. For a Hoehnke radical ρ on W and a
congruence θ on a graph G, we know that ρ(G/θ) is a congruence on G/θ and
consequently of the form θ∗/θ for some congruence θ∗ on G. In order to get our
hands on this congruence θ∗, we need the radical of a congruence. Recall that
a closure operator on a poset 〈P,≺〉 (see [7], p. 145) is a mapping c : P → P
which is extensive, order preserving and idempotent. We utilize this concept as
it applies to the lattice 〈C(G),⊆〉 of congruences of a graph.

Let ρ be a Hoehnke radical on the universal class W. For G ∈ W and
θ a congruence on G, we define the radical ρ∗ of the congruence θ, denoted
by ρ∗(θ), as the kernel of the composition of the canonical homomorphisms
G → G/θ → (G/θ)/(ρ(G/θ)). We do have a more explicit description of ρ∗(θ); in
fact ρ∗(θ) = θ∗ where θ∗ is the congruence on G with θ ⊆ θ∗ and ρ(G/θ) = θ∗/θ.
This follows easily from the properties of congruences treated in Section 2. More-
over, note that, by the Third Isomorphism Theorem, G/θ∗ ∼= (G/θ)/(θ∗/θ) =
(G/θ)/ρ(G/θ) ∈ Sρ. In fact, in the theorem below we will see that θ∗ is the
smallest congruence on G with the properties θ ⊆ θ∗ and G/θ∗ ∈ Sρ. Another
description of ρ∗ as well as its main properties are given in the next result.

Theorem 4.1. Let ρ be a Hoehnke radical on the universal class W and let ρ∗

be the associated radical of congruences. Then:

(1) For any G ∈ W and congruence θ on G, ρ∗(θ) =
⋂

{α | α is a congruence
on G with θ ⊆ α and G/α semisimple}.

(2) The mapping ρ∗ : C(G) → C(G) is a closure operator on the poset 〈C(G),⊆〉.

(3) For any G, ρ∗(ιG) = ρ(G) and ρ∗(ρ(G)) = ρ(G).

Proof. (1) Let α be a congruence on G with θ ⊆ α and G/α semisimple. Then
α/θ is a congruence on G/θ and (G/θ)/(α/θ) ∼= G/α ∈ Sρ; hence θ∗/θ =
ρ(G/θ) ⊆ α/θ by Corollary 3.3(2). Thus ρ∗(θ) = θ∗ ⊆

⋂

{α | α is a congruence
on G with θ ⊆ α and G/α semisimple}. The equality then follows immediately
since θ∗ is just one of the α’s over which the intersection is taken.
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(2) Let θ be a congruence on G. Already we know θ ⊆ θ∗ = ρ∗(θ). Now
θ∗∗/θ∗ = ρ(G/θ∗) = ρ((G/θ)/(θ∗/θ)) = ρ((G/θ)/ρ(G/θ)) = ιG/θ by (H2); hence
ρ∗(ρ∗(θ)) = ρ∗(θ∗) = θ∗∗ = θ∗ = ρ∗(θ). Lastly, for a closure operation, we have
to show ρ∗ is order preserving. Let α, β be two congruences on G with α ⊆ β.
Now β∗ is a congruence on G with α ⊆ β∗ and G/β∗ ∈ Sρ. Thus, by (1), we get
α∗ ⊆ β∗.

(3) The first equality follows immediately from Theorem 3.2 by taking θ = ιG,
for the second we call on the idempotency of ρ∗.

Corollary 4.2. ρ∗(C(G)) = {ρ∗(θ) | θ ∈ C(G)} is a sub-meet-semilattice of
〈C(G),⊆〉, called the poset of ρ∗-radical congruences on G.

Proof. For α, β ∈ C(G), we need to show ρ∗(α)∩ρ∗(β) ∈ ρ∗(C(G)), i.e., α∗∩β∗ =
γ∗ for some γ ∈ C(G). Let γ = α∗ ∩ β∗. Then γ is a congruence on G and
γ∗/γ = ρ(G/γ) = ιG/γ . This last equality follows since G/γ = G/(α∗ ∩β∗) which
is a subdirect product of G/α∗ and G/β∗. We know that both G/α∗ and G/β∗

are semisimple and that Sρ is closed under subdirect products; hence also G/γ
is semisimple. We conclude that ρ∗(α) ∩ ρ∗(β) = α∗ ∩ β∗ = γ = γ∗ = ρ∗(γ) ∈
ρ∗(C(G)).

In general, using the same argument as in the above proof, it can be shown
that for any collection of congruences θi, i ∈ I, on a graph G, ρ∗(

⋂

i∈I θ
∗
i ) =

ρ∗(
⋂

i∈I ρ
∗(θi)) =

⋂

i∈I ρ
∗(ρ∗(θi)) =

⋂

i∈I ρ
∗(θi) =

⋂

i∈I θ
∗
i . Another property we

want to emphasize, already suggested by (3) in the above theorem and the proof
of the corollary, is that for a congruence θ on G, ρ∗(θ) = θ ⇔ θ∗ = θ ⇔ θ∗/θ =
ρ(G/θ) = ιG/θ ⇔ G/θ is semisimple.

Radicals and products. We consider radicals on direct products of graphs. In
particular, if ρ is a radical on W and for all i ∈ I we have Gi ∈ W with also G =
∏

i∈I Gi in W, we want to know the relationship between ρ(G) and the ρ(Gi)’s.
It will be shown that ρ(G) ⊆

∏

i∈I ρ(Gi). This corresponds to what is known for
products and radical theory in general and no other general results are known.

Proposition 4.3. Let ρ be a radical on W and for all i ∈ I, let Gi ∈ W with
G =

∏

i∈I Gi in W. Then ρ(G) ⊆
∏

i∈I ρ(Gi).

Proof. We use Proposition 2.10 with θi = ρ(Gi) for all i ∈ I. Then Gi/θi =
Gi/ρ(Gi) ∈ Sρ. Any direct product is also a subdirect product, so by Corol-
lary 3.3(1) we have

∏

i∈I Gi/θi ∈ Sρ. Since f : G →
∏

i∈I Gi/θi is a surjective
homomorphism and G/ ker f ∼=

∏

i∈I Gi/θi ∈ Sρ, Corollary 3.3 gives ρ(G) ⊆
ker f =

∏

i∈I θi =
∏

i∈I ρ(Gi) as required.
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5. Kurosh-Amitsur Radicals: Connectednesses and

Disconnectednesses

The basis for general radical theory is to be found in the fundamental work of
Wedderburn, Köthe and Jacobson on the structure of algebras and rings, see [10].
These led to the axiomatization of radicals, independently formulated by Kurosh
and Amitsur in the early 1950’s. Subsequently these general radicals became
known as Kurosh-Amitsur radicals and form the basis of general radical theory
which spread to and found applications, not only in algebra, but also in topology,
graphs, Petri nets, etc. Here we will discuss KA-radicals in the universal class W
of graphs. We will not pursue these radicals in detail here. We will only look at
their relation to the Hoehnke radicals discussed above.

A class R ⊆ W is a connectedness (= KA-radical class) if it satisfies the
following condition. A graph G ∈ W is in R if and only if every non-trivial
homomorphic image of G has a non-trivial induced subgraph which is in R.

A class S ⊆ W is a disconnectedness (= KA-semisimple class) if it satisfies
the following condition: A graph G ∈ W is in S if and only if every non-trivial
induced subgraph of G has a non-trivial homomorphic image which is in S.

Unless mentioned otherwise, most of the statements to follow are standard
radical theoretical results and will not be verified. For proofs, and many addi-
tional statements and properties, see for example Fried and Wiegandt [9]. The
class of trivial graphs T is always contained in any connectedness and also in
any disconnectedness. It is easy to find examples of connectednesses and discon-
nectednesses. If M ⊆ W is a hereditary class, then UM = {G ∈ W | G has no
non-trivial homomorphic image in M} is a connectedness and if H ⊆ W is a ho-
momorphically closed class, then DH = {G ∈ W | G has no non-trivial induced
subgraph in H} is a disconnectedness.

Proposition 5.1 [9]. Any connectedness is homomorphically closed and any dis-
connectedness is strongly hereditary and closed under subdirect products.

From the preceding, we thus have: If R is a connectedness, then DR is a
disconnectedness and if S is a disconnectedness, then US is a connectedness.
Moreover, it can be shown that a class R ⊆ W is a connectedness if and only
if R = UDR and a class S ⊆ W is a disconnectedness if and only if S = DUS.
For a Hoehnke radical ρ, one always has Rρ = USρ. One of the features of KA-
semisimple classes in general radical theory is that any object in the universal
class under consideration has a maximal semisimple image. This is the main result
from [9] which we recall here for our purposes. As noted earlier, whenever a subset
of vertices of a graph is considered as a graph and nothing else is mentioned, it
is the subgraph induced by the graph on this set of vertices.
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Theorem 5.2 [9]. Let R be a connectedness with corresponding disconnected-
ness S. Then

(a) For every G ∈ W, there is a strong homomorphism sG : G → GS with
GS ∈ S and if f : G → H is any surjective homomorphism with H ∈ S,
then there is a homomorphism g : GS → H such that g ◦ h = f . (In
categorical terms, this means S is an epi-reflective subcategory of W.) GS is
called the maximal S-image of G.

(b) For every a ∈ GS , s
−1

G (a) ∈ R and it is maximal in the sense that it is not
contained in any other induced subgraph of G which is in R.

(c) If H is an induced subgraph of G with H ∈ R, then there is an a ∈ GS with
H ⊆ s−1

G (a).

On occasion we need to extend a congruence on a subgraph to a congruence
on the graph leaving the equivalence classes on the subgraph intact. This will
be done as follows. Let H be an induced subgraph of the graph G and suppose
θH = (∼H , EH) is a congruence on H. Define a congruence θH = (∼G, EG) on G
as follows.

For a, b ∈ G, we let a ∼G b =

{

a ∼H b, if both a, b ∈ VH ,

a = b, if both a, b ∈ VG − VH .

Considering the various cases, it can be checked that ∼G is an equivalence

on VG with [a]G =

{

[a]H , if a ∈ VH ,
{a}, if a ∈ VG − VH .

Let EG = {ab |there are a′, b′ ∈ VG with a ∼G a′, b ∼G b′ and a′b′ ∈ EH ∪EG}.
Then EH ∪EG ⊆ EG and it can be shown that EG has the Substitution Property;
hence θH = (∼G, EG) is a congruence on G. This will be our canonical extension of
a congruence on an induced subgraph to a congruence on the graph. Moreover,
it follows readily that if θH is a strong congruence on H, then θH is a strong
congruence on G.

Two properties that a Hoehnke radical ρ on W may satisfy are:

Completeness. If θ is a strong congruence on G ∈ W with [a]θ ∈ Rρ for all
a ∈ VG, then θ ⊆ ρG.

Idempotence. For G ∈ W and all a ∈ VG, [a]ρG ∈ Rρ.

Then we have

Theorem 5.3. Let ρ be a Hoehnke radical on W which is complete, idempotent
and such that for all G ∈ W, ρG is a strong congruence on G. Then Sρ is a
disconnectedness and Rρ = USρ is a connectedness. Conversely, suppose S is
a disconnectedness in W with corresponding connectedness R. Then there is a
Hoehnke radical ρ on W which is complete, idempotent and for all G ∈ W, ρG is
a strong congruence on G. Moreover, Sρ = S and Rρ = US = R.
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Proof. Let ρ be a Hoehnke radical on W which fulfils the requirements as spec-
ified. By definition, to show that Sρ is a disconnectedness, we show that a graph
G ∈ W is in Sρ if and only if every non-trivial induced subgraph of G has a
non-trivial homomorphic image which is in Sρ. Let G ∈ Sρ, i.e., ρG = ιG. Let H
be a non-trivial induced subgraph of G. It will be shown that H/ρH is non-trivial.
If H/ρH is trivial, then H ∈ Rρ and VH = [a]ρH for arbitrary a ∈ VH . Let ρH be
the extension of ρH to a congruence on G. Since ρH is a strong congruence, so is
ρH . The ρH -equivalence classes in G are H = [a] for any a ∈ VH ; otherwise they
are [b] = {b} for b ∈ VG−VH . In both cases, they are in Rρ and by the complete-
ness we get the contradiction ρH ⊆ ρG = ιG. Thus H/ρH is non-trivial and the
canonical homomorphism H → H/ρH ∈ Sρ is the required map. Suppose now G
is a graph for which every non-trivial induced subgraph has a non-trivial homo-
morphic image in Sρ. We need to show G ∈ Sρ, i.e., ρG = ιG. Let ρG = (∼G, EG).
For any a ∈ VG, the idempotence of ρ gives [a]ρG ∈ Rρ. If [a]ρG is non-trivial,
then by the assumption it has a non-trivial homomorphic image, say H, in Sρ.
But Rρ is homomorphically closed, hence H ∈ Sρ ∩Rρ ⊆ T which contradicts H
non-trivial. Thus [a]ρG = {a} for all a ∈ VG. This means the strong homomor-
phism G → G/ρG is a bijection and thus an isomorphism. Hence ρG = ιG. Thus
Sρ is a disconnectedness and then Rρ a connectedness follows from the equality
Rρ = USρ.

Conversely, let S be a disconnectedness in W with corresponding connect-
edness R = US. For each G ∈ W, let sG : G → Gs be the maximal S-image
of G as given in Theorem 5.2. Amongst others, this means that sG is a strong
homomorphism and Gs ∈ S. Then ρG = ker sG is a strong congruence on G and
G/ρG

∼= Gs ∈ S. Moreover, the canonical map pG : G → G/ρG is a strong
homomorphism and it is an isomorphism if and only if ρG = ιG and hence, if and
only if G ∈ S. Next we show ρ is a Hoehnke radical. For (H1), let f : G → H
be a surjective homomorphism. By the maximality of Gs, there is a homomor-
phism h : Gs → Hs such that h ◦ sG = sH ◦ f. Then f(ρG) ⊆ ρH . If a, b ∈ VG

with a ∼ρG b, then sG(a) = sG(b) which gives h(sG(a)) = h(sG(b)) and thus
sH(f(a)) = sH(f(b)). Hence f(a) ∼ρH f(b). If ab ∈ EρG , then sG(a)sG(b) ∈ EGs

and so sH(f(a))sH(f(b)) = h(sG(a))h(sG(b)) ∈ EHS
. This gives f(a)f(b) ∈ EρH .

The validity of (H2) is clear since G/ρG
∼= Gs ∈ S and the remarks above. Thus

ρ is a Hoehnke radical on W with Sρ = S and R = US = USρ = Rρ.

ρ is complete: Let θ = (∼θ, Eθ) be a strong congruence on G with [a]θ ∈ Rρ

for all a ∈ VG. It must be shown that θ ⊆ ρG = ker sG = (∼sG , EsG). By Theorem
5.2(c), for every a ∈ VG, there is a ta ∈ VGs with sG([a]θ) = ta. Thus a ∼θ

b ⇒ sG(a) = sG(b) and so a ∼sG b. We still need Eθ ⊆ EsG . Let ab ∈ Eθ. Then
there are a′, b′ ∈ VG with a ∼θ a′, b ∼θ b′ and a′b′ ∈ EG. Hence sG(a)sG(b) =
sG(a

′)sG(b
′) ∈ EGs which gives ab ∈ EsG .
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ρ is idempotent: By definition, ρG = ker sG = (∼ρG , EρG). For any a ∈ VG,
let sG(a) = ta, say, for some ta ∈ Gs. Then s−1

G (ta) = [a]ρG . Indeed, b ∈ [a]ρG ⇔
ta = sG(a) = sG(b) ⇔ b ∈ s−1

G (ta). By Theorem 5.2 we know s−1

G (ta) ∈ R = Rρ

from which the idempotence follows.

In view of this result, a Hoehnke radical ρ which is complete, idempotent and
for which ρG is a strong congruence for all G, is called a KA-radical. We conclude
with a number of examples. In view of the above result, for a disconnectedness
S, the kernel of the maximal S-image of any graph gives a KA-radical which is
also a Hoehnke radical. However, it may be more instructive to rather explicitly
give examples of Hoehnke radicals (which could give rise to KA-radicals).

Examples. In the examples below, the universal class W is the class of all
undirected graphs which admit loops. The first two examples are trivial but
should be mentioned.

(1) For each graph G, let ρG = ιG. Then ρ is a KA-radical with Rρ = T and
Sρ = W.

(2) For each graph G, let ρG = υG. Then ρ is a complete and idempotent
Hoehnke radical, but not a KA-radical since υG need not be a strong congruence.
Here Rρ = W and Sρ = {T0}.

(3) For each graph G, let ρG = (≎, EρG) where EρG = {ab | a, b ∈ VG and
there is a path from a to b}. It can easily be verified that ρG is a congruence
on G, but it is not a strong congruence. Because a homomorphism preserves
edges, condition (H1) follows. For (H2), note that there is a path from [a] to [b]
in G/ρG ⇔ there is a path from a to b in G ⇔ ab ∈ EρG ⇔ [a][b] ∈ EG/ρG

from
which we get ρ(G/ρG) = ιG/ρG

. It can also be verified that ρ is complete and
idempotent even though not a KA-radical. Here we have Rρ = T and Sρ = {G |
every connected component of G is complete}.

(4) Let ρG = (∼ρG , EρG) where a ∼ρG b ⇔ a = b or there is a path from a to b
and EρG = {ab | there are a′, b′ ∈ VG with a ∼ρG a′, b ∼ρG b′ and a′b′ ∈ EG}. Then
ρG is a strong congruence on G and ρ is a Hoehnke radical with Rρ = {G |if G is
not trivial, then it is connected} and Sρ = {G | the only edges of G are loops}.
It is then easy to see that ρ is complete and idempotent; hence ρ is a KA-radical,
Rρ is a connectedness and Sρ a disconnectedness.
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