# DOMINATION NUMBER, INDEPENDENT DOMINATION NUMBER AND 2-INDEPENDENCE NUMBER IN TREES 

NasRin Dehgardi ${ }^{1}$<br>Department of Mathematics and Computer Science Sirjan University of Technology, Sirjan, I.R. Iran<br>e-mail: n.dehgardi@sirjantech.ac.ir<br>Seyed Mahmoud Sheikholeslami, Mina Valinavaz<br>Department of Mathematics Azarbaijan Shahid Madani University, Tabriz, I.R. Iran<br>e-mail: s.m.sheikholeslami<br>m.valinavaz@azaruniv.ac.ir<br>Hamideh Aram<br>Department of Mathematics<br>Gareziaeddin Center, Khoy Branch<br>Islamic Azad University, Khoy, Iran<br>e-mail: hamideh.aram@gmail.com<br>AND<br>Lutz Volkmann<br>Lehrstuhl II für Mathematik<br>RWTH Aachen University, 52056 Aachen, Germany<br>e-mail: volkm@math2.rwth-aachen.de


#### Abstract

For a graph $G$, let $\gamma(G)$ be the domination number, $i(G)$ be the independent domination number and $\beta_{2}(G)$ be the 2-independence number. In this paper, we prove that for any tree $T$ of order $n \geq 2,4 \beta_{2}(T)-3 \gamma(T) \geq 3 i(T)$, and we characterize all trees attaining equality. Also we prove that for every tree $T$ of order $n \geq 2, i(T) \leq \frac{3 \beta_{2}(T)}{4}$, and we characterize all extreme trees.


[^0]Keywords: 2-independence number, domination number, independent domination number.
2010 Mathematics Subject Classification: 05C69.

## 1. Introduction

In this paper, $G$ is a simple graph with vertex set $V=V(G)$ and edge set $E=E(G)$. The order $|V|$ of $G$ is denoted by $n=n(G)$. For every vertex $v \in V(G)$, the open neighborhood of $v$ is the set $N_{G}(v)=N(v)=\{u \in V(G) \mid$ $u v \in E(G)\}$ and the closed neighborhood of $v$ is the set $N_{G}[v]=N[v]=N(v) \cup\{v\}$. The degree of a vertex $v \in V$ is $\operatorname{deg}_{G}(v)=\operatorname{deg}(v)=|N(v)|$. The minimum degree and the maximum degree of a graph $G$ are denoted by $\delta=\delta(G)$ and $\Delta=\Delta(G)$, respectively. The open neighborhood of a set $S \subseteq V$ is the set $N_{G}(S)=N(S)=\bigcup_{v \in S} N(v) \backslash S$, and the closed neighborhood of $S$ is the set $N_{G}[S]=N[S]=N(S) \cup S$. A leaf of a tree $T$ is a vertex of degree 1, a support vertex is a vertex adjacent to a leaf and a strong support vertex is a vertex adjacent to at least two leaves. We denote the set of all leaves of a tree $T$ by $L(T)$. For $r, s \geq 1$, a double star $S(r, s)$ is a tree with exactly two vertices that are not leaves, with one adjacent to $r$ leaves and the other to $s$ leaves. For a vertex $v$ in a rooted tree $T$, let $C(v)$ denote the set of children of $v$. Let $D(v)$ denote the set of descendants of $v$ and $D[v]=D(v) \cup\{v\}$. The maximal subtree at $v$ is the subtree of $T$ induced by $D[v]$, and is denoted by $T_{v}$. We denote the set of leaves adjacent to a vertex $v$ by $L_{v}$.

A set $S$ of vertices in a graph $G$ is a dominating set if every vertex of $V \backslash S$ is adjacent to some vertex in $S$. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set in $G$. A dominating set of minimum cardinality of $G$ is called a $\gamma(G)$-set. The literature on the subject of domination parameters in graphs has been surveyed and detailed in the two books [10, 11].

A subset $S \subseteq V(G)$ is said to be independent if $E(G[S])=\emptyset$, where $G[S]$ is the subgraph induced by $S$. The independent domination number (respectively, the independence number) of $G$ denoted by $i(G)$ (respectively, $\beta(G)$ ) is the size of the smallest (respectively, the largest) maximal independent set in $G$. It is well known that an independent set is maximal if and only if it is also dominating. Hence, we can say that the domination, which is defined even for non-independent sets, is the property which makes an independent set maximal. Furthermore, every set which is both independent and dominating is a minimal dominating set of $G$. This leads to the well known inequality chain

$$
\gamma(G) \leq i(G) \leq \beta(G)
$$

Fink and Jacobson $[7,8]$ generalized the concepts of independent and dominating sets. Let $k$ be a positive integer. A set $S$ of vertices in a graph $G$ is $k$-independent if the maximum degree of the subgraph induced by $S$ is at most $k-1$. The maximum cardinality of a $k$-independent set of $G$ is the $k$-independence number of $G$ and is denoted $\beta_{k}(G)$. A $k$-independent set of $G$ with maximum cardinality is called a $\beta_{k}(G)$-set. The subset $S$ is $k$-dominating if every vertex of $V \backslash S$ has at least $k$ neighbors in $S$. The $k$-domination number $\gamma_{k}(G)$ is the minimum cardinality of a $k$-dominating set of $G$.

Relationships between two parameters $\gamma_{k}(G)$ and $\beta_{k}(G)$ have been studied by several authors. Favaron [5] proved that for any graph $G$ and positive integer $k, \gamma_{k}(G) \leq \beta_{k}(G)$. Also, Favaron [6] proved that for every graph $G$ and positive integer $k \leq \Delta, \beta_{k}(G)+\gamma_{\Delta-k+1}(G) \geq n$. Jacobson, Peters and Rall [12] showed that for every graph $G$ and positive integer $k \leq \delta, \beta_{k}(G)+\gamma_{\delta-k+1}(G) \leq n$. Hansberg, Meierling and Volkmann [9] showed that if $G$ is a connected $r$-partite graph and $k$ is an integer such that $\Delta \geq k$, then $\gamma_{k}(G) \leq \frac{\beta(G)}{r}(r(r-1)+k-1)$. For more information on $k$-independence number and $k$-domination see [2].

The relation between 2-independent set and some domination parameters have been studied by several authors (see for example [1, 3, 4, 13]).

Motivated by the aforementioned works, we consider the difference of $\beta_{2}(T)-$ $\gamma(T)$ for trees and prove that for any tree $T$ of order $n \geq 2, \frac{4 \beta_{2}(T)}{3}-\gamma(T) \geq i(T)$ and characterize all extreme trees. Also we prove that for every $T$ of order $n \geq 2$, $i(T) \leq \frac{3 \beta_{2}(T)}{4}$, and we classify all trees attaining this inequality.
2. A Lower Bound on the Difference $\frac{4 \beta_{2}(T)}{3}-\gamma(T)$

In this section we show that for every tree $T$ of order $n \geq 2, \frac{4 \beta_{2}(T)}{3}-\gamma(T) \geq i(T)$ and we characterize all extreme trees. We proceed with some definitions and lemmas.

A subdivision of an edge $u v$ is obtained by replacing the edge $u v$ with a path $u w v$, where $w$ is a new vertex. The subdivision graph $S(G)$ is the graph obtained from $G$ by subdividing each edge of $G$ once. The subdivision star $S\left(K_{1, t}\right)$ for $t \geq 1$, is called a healthy spider $S_{t}$. A wounded spider $S_{t, q}(0 \leq q \leq t-1)$ is the tree obtained from $K_{1, t}(t \geq 1)$ by subdividing $q$ edges of $K_{1, t}$. Note that stars are wounded spiders. A spider is a healthy or a wounded spider.

Lemma 1. Let $T^{\prime}$ be a tree and $v \in V\left(T^{\prime}\right)$. If $T$ is the tree obtained from $T^{\prime}$ by adding a path $P_{4}=u_{1} u_{2} u_{3} u_{4}$ and joining $v$ to $u_{2}$, then $\gamma(T)+i(T) \leq \gamma\left(T^{\prime}\right)+$ $i\left(T^{\prime}\right)+4$ and $\beta_{2}(T)=\beta_{2}\left(T^{\prime}\right)+3$.

Proof. Clearly, any (independent) dominating set of $T^{\prime}$ can be extended to a (independent) dominating set of $T$ by adding $u_{1}, u_{3}$ and this implies that $\gamma(T)+$

$$
i(T) \leq \gamma\left(T^{\prime}\right)+i\left(T^{\prime}\right)+4 .
$$

Also, obviously any $\beta_{2}\left(T^{\prime}\right)$-set can be extended to an 2 -independent set of $T$ by adding $u_{1}, u_{3}, u_{4}$ yielding $\beta_{2}(T) \geq \beta_{2}\left(T^{\prime}\right)+3$. On the other hand, if $S$ is a $\beta_{2}(T)$-set then clearly $\left|S \cap\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}\right| \leq 3$ and so $S \cap V\left(T^{\prime}\right)$ is a 2 independent set of $T^{\prime}$ of size at least $\beta_{2}(T)-3$ implying that $\beta_{2}(T) \leq \beta_{2}\left(T^{\prime}\right)+3$. Thus $\beta_{2}(T)=\beta_{2}\left(T^{\prime}\right)+3$.

Lemma 2. Let $T^{\prime}$ be a tree and $v \in V\left(T^{\prime}\right)$. If $T$ is the tree obtained from $T^{\prime}$ by adding a path $P_{3}=u_{1} u_{2} u_{3}$ and joining $v$ to $u_{1}$, then $\gamma(T) \leq \gamma\left(T^{\prime}\right)+1, i(T) \leq$ $i\left(T^{\prime}\right)+1$ and $\beta_{2}(T)=\beta_{2}\left(T^{\prime}\right)+2$.

Proof. Clearly, any (independent) dominating set of $T^{\prime}$ can be extended to a (independent) dominating set of $T$ by adding $u_{2}$ and this implies that $\gamma(T) \leq$ $\gamma\left(T^{\prime}\right)+1$ and $i(T) \leq i\left(T^{\prime}\right)+1$.

Also, obviously any $\beta_{2}\left(T^{\prime}\right)$-set can be extended to an 2 -independent set of $T$ by adding $u_{2}, u_{3}$ yielding $\beta_{2}(T) \geq \beta_{2}\left(T^{\prime}\right)+2$. On the other hand, if $S$ is a $\beta_{2}(T)$ set then clearly $\left|S \cap\left\{u_{1}, u_{2}, u_{3}\right\}\right| \leq 2$ and hence $S \cap V\left(T^{\prime}\right)$ is a 2-independent set of $T^{\prime}$ of size at least $\beta_{2}(T)-2$ implying that $\beta_{2}(T) \leq \beta_{2}\left(T^{\prime}\right)+2$. Thus $\beta_{2}(T)=\beta_{2}\left(T^{\prime}\right)+2$.

Lemma 3. If $T$ is a spider of order $n \geq 2$, then $\gamma(T)+i(T) \leq \frac{4 \beta_{2}(T)}{3}$ with equality if and only if $T=P_{4}$.

Proof. If $T=S_{t}$ is a healthy spider for some $t \geq 1$, then obviously $\gamma(T)+i(T)=$ $2 t$ because $\gamma(T)=t$ and $i(T)=t$. Also $\beta_{2}(T)=2 t$. Hence $\gamma(T)+i(T)=\beta_{2}(T)<$ $\frac{4 \beta_{2}(T)}{3}$. Now let $T=S_{t, q}$ be a wounded spider. If $q=0$, then $T$ is a star and we have $\gamma(T)+i(T)=2 \leq t=\beta_{2}(T)<\frac{4 \beta_{2}(T)}{3}$. Suppose $q>0$. If $t=2$, then $T=P_{4}$ and clearly $\gamma(T)+i(T)=\frac{4 \beta_{2}(T)}{3}$. If $t \geq 3$, then clearly $\gamma(T)+i(T)=2 q+2$ and $\beta_{2}(T)=t+q$ and so $\gamma(T)+i(T)<\frac{4 \beta_{2}(T)}{3}$.

Next we introduce a family $\mathcal{T}$ of trees $T$ that can be obtained from a sequence $T_{1}, T_{2}, \ldots, T_{k}$ of trees such that $T_{1}=P_{4}$, and if $k \geq 2$, then $T_{i+1}$ can be obtained recursively from $T_{i}$ by the operation $\mathcal{T}_{1}$ for $1 \leq i \leq k-1$.
Operation $\mathcal{T}_{1}$. If $v \in T_{i}$ is a support vertex, then $\mathcal{T}_{1}$ adds a path $P_{4}=u_{1} u_{2} u_{3} u_{4}$ and joins $v$ to $u_{2}$.

Observation 4. Let $T \in \mathcal{T}$. Then the following conditions are satisfied.

1. Every support vertex is adjacent to exactly one leaf.
2. Every vertex of $T$ is a leaf or support vertex.
3. Both of $L(T)$ and $V(T)-L(T)$ are $\gamma(T)$-set.
4. $L(T)$ is a $i(T)$-set.
5. $L(T) \subset \beta_{2}(T)$-set.
6. $\beta_{2}(T)=|L(T)|+|V(T)-L(T)| / 2=3 \gamma(T) / 2$.

Theorem 5. If $T$ is a tree of order $n \geq 2$, then

$$
\begin{equation*}
\gamma(T)+i(T) \leq \frac{4 \beta_{2}(T)}{3} \tag{1}
\end{equation*}
$$

with equality if and only if $T \in \mathcal{T}$.
Proof. The proof is by induction on $n$. The results are trivial for trees of order $n=2,3,4$. Let $n \geq 5$ and suppose that for every non-trivial tree $T$ of order less than $n$ the results are true. Let $T$ be a tree of order $n$. If $\operatorname{diam}(T)=2$, then $T$ is a star and clearly $\gamma(T)+i(T)=2<\frac{4 \beta_{2}(T)}{3}$ by Lemma 3. If $\operatorname{diam}(T)=3$, then $T$ is a double star $D S_{r, s}$. Since $r+s \geq 3$, if we suppose $r \geq s$, then we have $r \geq 2$. If $r \geq s \geq 2$, then $\gamma(T)+i(T)=s+3<\frac{4(r+s)}{3}=\frac{4 \beta_{2}(T)}{3}$. If $s=1$, then $\gamma(T)+i(T)=4<\frac{4(r+2)}{3}=\frac{4 \beta_{2}(T)}{3}$. Hence, we may assume that $\operatorname{diam}(T) \geq 4$.

Let $v_{1} v_{2} \cdots v_{D}$ be a diametrical path in $T$ such that $\operatorname{deg}\left(v_{2}\right)$ is as large as possible. Root $T$ at $v_{D}$. Consider the following cases.

Case 1. $\operatorname{deg}_{T}\left(v_{2}\right) \geq 4$. Suppose $T^{\prime}=T-\left\{v_{1}\right\}$. Clearly, any $\gamma(T)$-set and any $\gamma\left(T^{\prime}\right)$-set contains $v_{2}$ and this implies that $\gamma(T)=\gamma\left(T^{\prime}\right)$. Let $S$ be a $i\left(T^{\prime}\right)$-set. If $v_{2} \in S$, then $S$ is an independent dominating set of $T$ and if $v_{2} \notin S$, then $S \cup\left\{v_{1}\right\}$ is an independent dominating set of $T$ yielding $i(T) \leq i\left(T^{\prime}\right)+1$. On the other hand, if $S$ is a $\beta_{2}\left(T^{\prime}\right)$-set such that $\left|S \cap L\left(T^{\prime}\right)\right|$ is as large as possible, then clearly $v_{2} \notin S$ and $S \cup\left\{v_{1}\right\}$ is a 2-independent set of $T$ implying that $\beta_{2}(T) \geq|S|+1=\beta_{2}\left(T^{\prime}\right)+1$. By the induction hypothesis, we have

$$
\gamma(T)+i(T) \leq \gamma\left(T^{\prime}\right)+i\left(T^{\prime}\right)+1 \leq \frac{4 \beta_{2}\left(T^{\prime}\right)}{3}+1 \leq \frac{4 \beta_{2}(T)-1}{3}<\frac{4 \beta_{2}(T)}{3} .
$$

Case 2. $\operatorname{deg}_{T}\left(v_{2}\right)=3$. Assume that $L_{v_{2}}=\left\{v_{1}, z\right\}$. First let $\operatorname{deg}\left(v_{3}\right)=2$. Suppose $T^{\prime}=T-T_{v_{3}}$. As Case 1, we have $\gamma(T)=\gamma\left(T^{\prime}\right)+1$ and $i(T) \leq i\left(T^{\prime}\right)+1$. On the other hand, if $S$ is a $\beta_{2}\left(T^{\prime}\right)$-set, then $S \cup\left\{v_{1}, v_{2}\right\}$ is a 2 -independent set of $T$ yielding $\beta_{2}(T) \geq|S|+2=\beta_{2}\left(T^{\prime}\right)+2$. By the induction hypothesis, we have

$$
\gamma(T)+i(T) \leq \gamma\left(T^{\prime}\right)+i\left(T^{\prime}\right)+2 \leq \frac{4 \beta_{2}\left(T^{\prime}\right)}{3}+2 \leq \frac{4 \beta_{2}(T)-2}{3}<\frac{4 \beta_{2}(T)}{3} .
$$

Now let $\operatorname{deg}\left(v_{3}\right) \geq 3$. Let $L_{v_{3}}=\left\{x_{1}, \ldots, x_{l}\right\}$. If $L_{v_{3}} \neq \emptyset$, then let $C_{2}=$ $\left\{y_{1}, \ldots, y_{k}\right\}$ be the children of $v_{3}$ with depth 1 and degree 2 , if any, and redlet $z_{1}, \ldots, z_{t}$ be the children of $v_{3}$ with depth 1 and degree 3 where $z_{1}=v_{2}$. Let $T^{\prime}=T-T_{v_{3}}$. Clearly, any $\gamma\left(T^{\prime}\right)$-set can be extended to a dominating set of $T$ by adding $v_{3}$ and its children of depth 1 and this yields $\gamma(T) \leq \gamma\left(T^{\prime}\right)+\left|C_{2}\right|+t+1$. Also, any $i\left(T^{\prime}\right)$-set can be extended to an independent dominating set of $T$ by
adding all children of $v_{3}$ implying that $i(T) \leq i\left(T^{\prime}\right)+\left|C_{2}\right|+t+\left|L_{v_{3}}\right|$. On the other hand, any $\beta_{2}\left(T^{\prime}\right)$-set, can be extended to a 2 -independent set of $T$ by adding $L_{v_{3}}, y_{1}, \ldots, y_{k}$ and their children, if any, and the children of $z_{1}, \ldots, z_{t}$ yielding $\beta_{2}(T) \geq \beta_{2}\left(T^{\prime}\right)+\left|L_{v_{3}}\right|+2 t+2\left|C_{2}\right|$. It follows from the induction hypothesis that

$$
\begin{aligned}
\gamma(T)+i(T) & \leq \gamma\left(T^{\prime}\right)+i\left(T^{\prime}\right)+2\left|C_{2}\right|+2 t+\left|L_{v_{3}}\right|+1 \\
& \leq \frac{4 \beta_{2}\left(T^{\prime}\right)}{3}+2\left|C_{2}\right|+2 t+\left|L_{v_{3}}\right|+1 \\
& \leq \frac{4 \beta_{2}(T)-8\left|C_{2}\right|-8 t-4\left|L_{v_{3}}\right|}{3}+2\left|C_{2}\right|+2 t+\left|L_{v_{3}}\right|+1 \\
& \leq \frac{4 \beta_{2}(T)-2\left|C_{2}\right|-2 t-\left|L_{v_{3}}\right|+3}{3} \leq \frac{4 \beta_{2}(T)}{3} .
\end{aligned}
$$

We claim that the equality does not hold. Suppose, to the contrary, that $\gamma(T)+$ $i(T)=\frac{4 \beta_{2}(T)}{3}$. Then all inequalities occurring the above chain must be equalities and this holds if and only if $\gamma\left(T^{\prime}\right)+i\left(T^{\prime}\right)=\frac{4 \beta_{2}\left(T^{\prime}\right)}{3},\left|C_{2}\right|=0, t=1$ and $\left|L_{v_{3}}\right|=1$. Thus $\operatorname{deg}_{T}\left(v_{3}\right)=3$ and $v_{3}$ is adjacent with a leaf $w$. By the induction hypothesis, we have $T^{\prime} \in \mathcal{T}$. It follows from Observation 4 that $v_{4}$ is either a leaf or is a weak support vertex. We distinguish the following subcases.

Subcase 2.1. $\operatorname{deg}_{T}\left(v_{4}\right)=2$. If diam $(T)=4$, then clearly $\gamma(T)+i(T)<\frac{4 \beta_{2}(T)}{3}$ which is a contradiction. Let $\operatorname{diam}(T) \geq 5$. Let $T^{\prime}=T-T_{v_{4}}$. Clearly, any $\gamma\left(T^{\prime}\right)$ set can be extended to a dominating set of $T$ by adding $v_{3}, v_{2}$, any $i\left(T^{\prime}\right)$-set can be extended to a dominating set of $T$ by adding $v_{3}, v_{1}, z$, and any $\beta_{2}\left(T^{\prime}\right)$-set can be extended to a 2 -independent set of $T$ by adding $v_{3}, w, v_{1}, z$. By the induction hypothesis, we obtain $\gamma(T)+i(T)<\frac{4 \beta_{2}(T)}{3}$ a contradiction.

Subcase 2.2. $v_{4}$ is a support vertex. Let $T^{\prime}=T-T_{v_{2}}$. Clearly, any $\gamma\left(T^{\prime}\right)$-set can be extended to a dominating set of $T$ by adding $v_{2}$ and any $\beta_{2}\left(T^{\prime}\right)$-set can be extended to a 2 -independent set of $T$ by adding $v_{1}, z$. Let $S^{\prime \prime}$ be a $i\left(T^{\prime}\right)$-set. If $v_{3} \notin S^{\prime}$, then let $S=S^{\prime} \cup\left\{v_{2}\right\}$ and if $v_{3} \in S^{\prime}$, then let $S=\left(S^{\prime} \backslash\left\{v_{3}\right\}\right) \cup\left\{w, v_{2}\right\}$. Obviously, $S$ is an independent dominating set of $T$ yielding $i(T) \leq i\left(T^{\prime}\right)+1$. By the induction hypothesis, we obtain $\gamma(T)+i(T)<\frac{4 \beta_{2}(T)}{3}$, a contradiction. This proved our claim.

Case 3. $\operatorname{deg}_{T}\left(v_{2}\right)=2$. If $\operatorname{deg}_{T}\left(v_{3}\right)=2$, then let $T^{\prime}=T-T_{v_{3}}$. By Lemma 2 and the induction hypothesis, we have $\gamma(T)+i(T)<\frac{4 \beta_{2}(T)}{3}$. Let $\operatorname{deg}_{T}\left(v_{3}\right) \geq 3$. By the choice of diametrical path we may assume that all children of $v_{3}$ with depth 1, have degree 2. First we suppose that there is a pendant path $v_{3} z_{2} z_{1}$. Let $T^{\prime}=T-T_{v_{2}}$. Clearly, any $\gamma\left(T^{\prime}\right)$-set and any $i\left(T^{\prime}\right)$-set can be extended to a dominating set of $T$ by adding $v_{1}$ yielding $\gamma(T) \leq \gamma\left(T^{\prime}\right)+1$ and $i(T) \leq i\left(T^{\prime}\right)+1$. Let $S^{\prime}$ be a $\beta_{2}\left(T^{\prime}\right)$-set. If $v_{3} \notin S^{\prime}$, then let $S=S^{\prime} \cup\left\{v_{1}, v_{2}\right\}$ and if $v_{3} \in S^{\prime}$, then let $S=\left(S^{\prime} \backslash\left\{v_{3}\right\}\right) \cup\left\{v_{1}, v_{2}, z_{1}, z_{2}\right\}$. Obviously, $S$ is a 2 -independent set of $T$ yielding
$\beta_{2}(T) \geq \beta_{2}\left(T^{\prime}\right)+2$. By the induction hypothesis, we obtain $\gamma(T)+i(T)<\frac{4 \beta_{2}(T)}{3}$. Now let all children of $v_{3}$ with exception $v_{2}$ are leaves. If $\operatorname{deg}_{T}\left(v_{3}\right) \geq 4$, then as above we can see that $\gamma(T)+i(T)<\frac{4 \beta_{2}(T)}{3}$. Henceforth, we assume that $\operatorname{deg}_{T}\left(v_{3}\right)=3$. Let $w$ be the leaf adjacent to $v_{3}$. Suppose $T^{\prime}=T-T_{v_{3}}$. By the induction hypothesis and Lemma 1 we have

$$
\gamma(T)+i(T)=\gamma\left(T^{\prime}\right)+i\left(T^{\prime}\right)+4 \leq \frac{4 \beta_{2}\left(T^{\prime}\right)}{3}+4 \leq \frac{4 \beta_{2}(T)-3}{3}+4=\frac{4 \beta_{2}(T)}{3} .
$$

If the equality holds, then we must have $\gamma\left(T^{\prime}\right)+i\left(T^{\prime}\right)=\frac{4 \beta_{2}\left(T^{\prime}\right)}{3}$ and it follows from the induction hypothesis that we have $T^{\prime} \in \mathcal{T}$. Thus each vertex of $T^{\prime}$ is either a leaf or a support vertex. We claim that $v_{4}$ is not a leaf in $T^{\prime}$. Suppose, to the contrary, that $v_{4}$ is a leaf in $T^{\prime}$. If $\operatorname{diam}(T)=4$, then $T$ is a wounded spider and by Lemma 3 we have $\gamma(T)+i(T)<\frac{4 \beta_{2}(T)}{3}$, a contradiction. Let $\operatorname{diam}(T) \geq 5$. Since $v_{5}$ is not a strong support vertex, we observe that $v_{6}$ is a support vertex too. We consider two subcases.

Subcase 3.1. $\operatorname{deg}\left(v_{5}\right)=2$. Let $T^{\prime \prime}=T-T_{v_{4}}$ and let $w, v_{5}$ be two leaves adjacent to $v_{6}$ in $T^{\prime \prime}$. It follows from the induction hypothesis that $T^{\prime \prime} \notin \mathcal{T}$ and so $\gamma\left(T^{\prime \prime}\right)+i\left(T^{\prime \prime}\right)<\frac{4 \beta_{2}\left(T^{\prime \prime}\right)}{3}$. As above cases, we can see that $\gamma(T) \leq \gamma\left(T^{\prime \prime}\right)+2$, $i(T) \leq i\left(T^{\prime}\right)+2$ and $\beta_{2}(T) \geq \beta_{2}\left(T^{\prime \prime}\right)+3$. This implies that

$$
\gamma(T)+i(T) \leq \gamma\left(T^{\prime \prime}\right)+i\left(T^{\prime \prime}\right)+4<\frac{4 \beta_{2}\left(T^{\prime \prime}\right)}{3}+4=\frac{4 \beta_{2}(T)}{3},
$$

which is a contradiction.
Subcase 3.2. $\operatorname{deg}\left(v_{5}\right) \geq 3$. Since $T^{\prime} \in \mathcal{T}$ and $v_{4}$ is a leaf, every vertex $z \in N_{T}\left(v_{5}\right) \backslash\left\{v_{4}\right\}$ is a support vertex. Let $T^{\prime \prime}=T-T_{v_{4}}$ and let $u$ be a leaf adjacent to $v_{6}$ in $T^{\prime \prime}$. As above, we have $\gamma(T) \leq \gamma\left(T^{\prime \prime}\right)+2$ and $i(T) \leq i\left(T^{\prime}\right)+2$. Let $S^{\prime}$ be a $\beta_{2}\left(T^{\prime \prime}\right)$-set. If $v_{5} \notin S^{\prime}$ or $v_{5} \in S$ and $z \notin S^{\prime}$ for each $z \in N_{T}\left(v_{5}\right) \backslash\left\{v_{4}\right\}$, then $S=S^{\prime} \cup\left\{v_{4}, w, v_{2}, v_{1}\right\}$ is a 2 -independent set of $T$ yielding $\beta_{2}(T) \geq \beta_{2}\left(T^{\prime \prime}\right)+4$ and by the induction hypothesis we obtain

$$
\gamma(T)+i(T) \leq \gamma\left(T^{\prime \prime}\right)+i\left(T^{\prime \prime}\right)+4 \leq \frac{4 \beta_{2}\left(T^{\prime \prime}\right)}{3}+4<\frac{4 \beta_{2}(T)}{3}
$$

a contradiction again. Assume that $v_{5} \in S^{\prime}$ and $z \in S^{\prime}$ for some $z \in N_{T}\left(v_{5}\right) \backslash\left\{v_{4}\right\}$ We may assume, without loss of generality, that $z=v_{6}$. Then $u \notin S^{\prime}$ and the set $S=\left(S^{\prime} \backslash\left\{v_{5}\right\}\right) \cup\left\{u, v_{4}, w, v_{2}, v_{1}\right\}$ is a 2 -independent set of $T$ yielding $\beta_{2}(T) \geq \beta_{2}\left(T^{\prime \prime}\right)+4$ and as above we get a contradiction.

Consequently, $v_{4}$ is a support vertex of $T^{\prime}$. Now $T$ can be obtained from $T^{\prime}$ by operation $\mathcal{T}_{1}$ and so $T \in \mathcal{T}$. This completes the proof.

The next result is an immediate consequence of Theorem 5.
Corollary 6. If $T$ is a tree of order $n \geq 2$, then $\gamma(T) \leq \frac{2 \beta_{2}(T)}{3}$.

## 3. Independent Domination and 2-Independence of Trees

In this section we show that for any $T$ of order $n \geq 2, i(T) \leq \frac{3 \beta_{2}(T)}{4}$ and we characterize all extreme trees. First we introduce a family $\mathcal{F}$ of trees $T$ that can be obtained from a sequence $T_{1}, T_{2}, \ldots, T_{k}$ of trees such that $T_{1}=D S_{2,2}$, and if $k \geq 2$, then $T_{i+1}$ can be obtained recursively from $T_{i}$ by the operation $\mathcal{O}$ for $1 \leq i \leq k-1$.
Operation $\mathcal{O}$. If $v \in V\left(T_{i}\right)$ is a strong support vertex with $\left|L_{v}\right|=2$, then operation $\mathcal{O}$ adds a double star $D S_{2,2}$ and joins a support vertex of $D S_{2,2}$ to $v$.

Observation 7. If $T \in \mathcal{F}$, then

1. $L(T)$ is a $\beta_{2}(T)$-set of $T$ and so $\beta_{2}(T)=\frac{2 n(T)}{3}$,
2. every strong support vertex is adjacent with exactly two leaves,
3. $|L(T)|=2|V(T)-L(T)|$,
4. $i(T)=\frac{n(T)}{2}$,
5. $i(T)=\frac{3 \beta_{2}(T)}{4}$.

Theorem 8. If $T$ is a tree of order $n \geq 2$, then

$$
\begin{equation*}
i(T) \leq \frac{3 \beta_{2}(T)}{4} \tag{2}
\end{equation*}
$$

with equality if and only if $T \in \mathcal{F}$.
Proof. The proof is by induction on $n$. The statements clearly hold for all trees of order $n=2,3,4$. Let $n \geq 5$, and suppose that for every nontrivial tree $T$ of order less than $n$ the results are true. Let $T$ be a tree of order $n$. If $\operatorname{diam}(T)=2$, then $T$ is a star and clearly $i(T)=1<\frac{3 \beta_{2}(T)}{4}$. If $\operatorname{diam}(T)=3$, then $T$ is a double star $D S_{r, s}$ for some $r \geq s \geq 1$. If $r \geq s \geq 2$, then

$$
i(T)=s+1 \leq \frac{3(r+s)}{4}=\frac{3 \beta_{2}(T)}{4}
$$

with equality if and only if $r=s=2$ and this if and only if $T \in \mathcal{F}$. If $s=1$, then $i(T)=2<\frac{3(r+2)}{4}=\frac{3 \beta_{2}(T)}{4}$. Hence we may assume that $\operatorname{diam}(T) \geq 4$. Let $v_{1} v_{2} \cdots v_{D}$ be a diametrical path in $T$ such that $t=\operatorname{deg}\left(v_{2}\right)$ is as large as possible. Let $L_{v_{2}}=\left\{z_{1}=v_{1}, z_{2}, \ldots, z_{t-1}\right\}$. Let $k_{1}$ be the number of children of $v_{3}$ with depth $0, k_{2}$ be the number of children of $v_{3}$ with depth 1 and degree at most three and $k_{3}$ be the number of children of $v_{3}$ with depth 1 and degree at least four. First let $2 k_{2}+5 k_{3}>k_{1}$. Assume that $T^{\prime}=T-T_{v_{3}}$. Clearly any $i\left(T^{\prime}\right)$-set can be extended by adding all children of $v_{3}$ to an independent dominating set of $T$ and so $i(T) \leq i\left(T^{\prime}\right)+k_{1}+k_{2}+k_{3}$. On the other hand, any $\beta_{2}\left(T^{\prime}\right)$-set can be extended to a 2 -independent set of $T$ by adding all leaves in
$L_{v_{3}}$, all children of $v_{3}$ with degree at most three and one of their children, and all leaves adjacent to the children of $v_{3}$ with degree at least four implying that $\beta_{2}(T) \geq \beta_{2}\left(T^{\prime}\right)+k_{1}+2 k_{2}+3 k_{3}$. By the induction hypothesis, we obtain

$$
\begin{aligned}
i(T) & \leq i\left(T^{\prime}\right)+k_{1}+k_{2}+k_{3} \leq \frac{3 \beta_{2}\left(T^{\prime}\right)}{4}+k_{1}+k_{2}+k_{3} \\
& \leq \frac{3 \beta_{2}(T)-3 k_{1}-6 k_{2}-9 k_{3}}{4}+k_{1}+k_{2}+k_{3} \\
& \leq \frac{3 \beta_{2}(T)}{4}+\frac{k_{1}-2 k_{2}-5 k_{3}}{4}<\frac{3 \beta_{2}(T)}{4} .
\end{aligned}
$$

Henceforth, we assume that $2 k_{2}+5 k_{3} \leq k_{1}$. This implies that $v_{3}$ is a strong support vertex, that is $k_{1} \geq 2$. Consider the following cases.

Case 1. $t \geq 4$. Let $w_{1}, w_{2} \in L_{v_{3}}$ and let $T^{\prime}=T-\left\{z_{1}, z_{2}, w_{1}, w_{2}\right\}$. If $S^{\prime}$ is a $\beta_{2}\left(T^{\prime}\right)$-set, then the set $S=\left(S^{\prime} \backslash\left\{v_{2}, v_{3}\right\}\right) \cup L_{v_{2}} \cup L_{v_{3}}$ if $\left|S^{\prime} \cap\left\{v_{2}, v_{2}\right\}\right|=2$, and $S=\left(S^{\prime} \backslash\left\{v_{2}, v_{3}\right\}\right) \cup\left\{z_{1}, z_{2}, w_{1}, w_{2}\right\}$ if $\left|S^{\prime} \cap\left\{v_{2}, v_{3}\right\}\right| \leq 1$, is a 2-independent set of $T$ yielding $\beta_{2}(T) \geq \beta_{2}\left(T^{\prime}\right)+3$. Now we show that $i(T) \leq i\left(T^{\prime}\right)+2$. Let $D^{\prime}$ be a $i\left(T^{\prime}\right)$-set. Since $D^{\prime}$ is independent, we have $\left|D^{\prime} \cap\left\{v_{3}, v_{2}\right\}\right| \leq 1$. If $\left|D^{\prime} \cap\left\{v_{3}, v_{2}\right\}\right|=0$, then $\left(D^{\prime}-L_{v_{2}}\right) \cup\left\{v_{2}\right\}$ is a $i\left(T^{\prime}\right)$-set. Hence we may assume that $\left|D^{\prime} \cap\left\{v_{3}, v_{2}\right\}\right|=1$. Let $D=D^{\prime} \cup\left\{z_{1}, z_{2}\right\}$ if $v_{3} \in D^{\prime}$, and $D=D^{\prime} \cup\left\{w_{1}, w_{2}\right\}$ if $v_{2} \in D^{\prime}$. Clearly, $D$ is an independent dominating set of $T$ and so $i(T) \leq i\left(T^{\prime}\right)+2$. By the induction hypothesis, we obtain

$$
i(T) \leq i\left(T^{\prime}\right)+2 \leq \frac{3 \beta_{2}\left(T^{\prime}\right)}{4}+2<\frac{3 \beta_{2}(T)}{4}
$$

Case 2. $t=3$ and $k_{1} \geq 3$. Let $w_{1}, w_{2}, w_{3} \in L_{v_{3}}$ and $T^{\prime}=T-\left\{z_{1}, z_{2}, w_{1}, w_{2}\right\}$. If $S^{\prime}$ is a $\beta_{2}\left(T^{\prime}\right)$-set, then the set $S=\left(S^{\prime} \backslash\left\{v_{2}, v_{3}\right\}\right) \cup L_{v_{2}} \cup L_{v_{3}}$ if $\left|S^{\prime} \cap\left\{v_{1}, v_{2}\right\}\right|=2$, and $S=\left(S^{\prime} \backslash\left\{v_{2}, v_{3}\right\}\right) \cup\left\{z_{1}, z_{2}, w_{1}, w_{2}\right\}$ if $\left|S^{\prime} \cap\left\{v_{2}, v_{3}\right\}\right| \leq 1$, is a 2-independent set of $T$ yielding $\beta_{2}(T) \geq \beta_{2}\left(T^{\prime}\right)+3$. As above, we can see that $i(T) \leq i\left(T^{\prime}\right)+2$ and by the induction hypothesis, we have $i(T) \leq i\left(T^{\prime}\right)+2 \leq \frac{3 \beta_{2}\left(T^{\prime}\right)}{4}+2<\frac{3 \beta_{2}(T)}{4}$.

Case 3. $t=3$ and $k_{1}=2$. We deduce from $2 k_{2}+5 k_{3} \leq k_{1}$ that $k_{2} \leq 1$ and $k_{3}=0$. Since $t=\operatorname{deg}\left(v_{2}\right)=3$, then $k_{2}=1$. This yields $\operatorname{deg}_{T}\left(v_{3}\right)=4$ and $T_{v_{3}}=D S_{2,2}$. Let $L_{v_{3}}=\left\{w_{1}, w_{2}\right\}$ and $T^{\prime}=T-T_{v_{3}}$. Clearly, every $i\left(T^{\prime}\right)$-set can be extended to an independent dominating set of $T$ by adding $v_{2}, w_{1}, w_{2}$ yielding $i(T) \leq i\left(T^{\prime}\right)+3$. On the other hand, any $\beta_{2}\left(T^{\prime}\right)$ can be extended to a 2 -independent set by adding $z_{1}, z_{2}, w_{1}, w_{2}$ and so $\beta_{2}(T) \geq \beta_{2}\left(T^{\prime}\right)+4$. By the induction hypothesis we have

$$
i(T) \leq i\left(T^{\prime}\right)+3 \leq \frac{3 \beta_{2}\left(T^{\prime}\right)}{4}+3 \leq \frac{3\left(\beta_{2}(T)-4\right)}{4}+3 \leq \frac{3 \beta_{2}(T)}{4}
$$

If the equality holds, then we must have $i\left(T^{\prime}\right)=\frac{3 \beta_{2}\left(T^{\prime}\right)}{4}$ and this if and only if $T^{\prime} \in \mathcal{F}$. Hence each vertex of $T^{\prime}$ is either a leaf or a strong support vertex. Now
we show that $v_{4}$ is a support vertex of $T^{\prime}$. Assume that $v_{4}$ is not a support vertex of $T^{\prime}$. Then $v_{4}$ is a leaf of $T^{\prime}$ and $v_{5}$ is its support vertex in $T^{\prime}$. Let $T^{\prime \prime}=T-T_{v_{4}}$. Then clearly $T^{\prime \prime} \notin \mathcal{F}$ and so $i\left(T^{\prime \prime}\right)<\frac{3 \beta_{2}\left(T^{\prime \prime}\right)}{4}$. Obviously, every $i\left(T^{\prime}\right)$-set can be extended to an independent dominating set of $T$ by adding $v_{2}, z_{1}, z_{2}$ yielding $i(T) \leq i\left(T^{\prime}\right)+3$, and any $\beta_{2}\left(T^{\prime}\right)$ can be extended to a 2 -independent set by adding $z_{1}, z_{2}, w_{1}, w_{2}$ and so $\beta_{2}(T) \geq \beta_{2}\left(T^{\prime}\right)+4$. Therefore

$$
i(T) \leq i\left(T^{\prime \prime}\right)+3<\frac{3 \beta_{2}\left(T^{\prime}\right)}{4}+3 \leq \frac{3\left(\beta_{2}(T)-4\right)}{4}+3 \leq \frac{3 \beta_{2}(T)}{4}
$$

which is a contradiction. Thus $v_{4}$ is a support vertex. Now $T$ can be obtained from $T^{\prime}$ be operation $\mathcal{O}$ and so $T \in \mathcal{F}$.

Case 4. $\quad t=2$. Let $w_{1}, w_{2} \in L_{v_{3}}$ and $T^{\prime}=T-\left\{v_{1}, v_{2}\right\}$. Clearly, any $i\left(T^{\prime}\right)$-set can be extended to an independent dominating set of $T$ by adding $v_{1}$, and this implies that $i(T) \leq i\left(T^{\prime}\right)+1$. On the other hand, for any $\beta_{2}\left(T^{\prime}\right)$-set $S^{\prime}$, the set $S=\left(S^{\prime} \backslash\left\{v_{3}\right\}\right) \cup L_{v_{3}} \cup\left\{v_{1}, v_{2}\right\}$ is a 2 -independent set of $T$ yielding $\beta_{2}(T) \geq \beta_{2}\left(T^{\prime}\right)+2$. It follows from the induction hypothesis that

$$
i(T) \leq i\left(T^{\prime}\right)+1 \leq \frac{3 \beta_{2}\left(T^{\prime}\right)}{4}+1<\frac{3 \beta_{2}(T)}{4}
$$

and the proof is complete.

## References

[1] J. Amjadi, N. Dehgardi, S.M. Sheikholeslami and M. Valinavaz, Independent Roman domination and 2-independence in trees, Discrete Math. Algorithms Appl. 10 (2018) 1850052.
doi:10.1142/S1793830918500520
[2] M. Chellali, O. Favaron, A. Hansberg and L. Volkmann, $k$-domination and $k$ independence in graphs: A survey, Graphs Combin. 28 (2012) 1-55. doi:10.1007/s00373-011-1040-3
[3] M. Chellali and N. Meddah, Trees with equal 2-domination and 2-independence numbers, Discuss. Math. Graph Theory 32 (2012) 263-270.
doi:10.7151/dmgt. 1603
[4] N. Dehgardi, Mixed Roman domination and 2-independence in trees, Commun. Comb. Optim. 3 (2018) 79-91. doi:10.22049/CCO.2018.25964.1062
[5] O. Favaron, On a conjecture of Fink and Jacobson concerning $k$-domination and $k$-dependence, J. Combin. Theory Ser. B 39 (1985) 101-102. doi:10.1016/0095-8956(85)90040-1
[6] O. Favaron, Graduate course in the University of Blida (2005), unpublished.
[7] J.F. Fink and M.S. Jacobson, n-domination in graphs, in: Graph Theory with Applications to Algorithms and Computer Science (Wiley, New York, 1985) 283-300.
[8] Fink and M.S. Jacobson, On n-domination, n-dependence and forbidden subgraphs, in: Graph Theory with Applications to Algorithms and Computer Science (Wiley, New York, 1985) 301-311.
[9] A. Hansberg, D. Meierling and L. Volkmann, Independence and $k$-domination in graphs, Int. J. Comput. Math. 88 (2011) 905-915. doi:10.1080/00207160.2010.482664
[10] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, 1998).
[11] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, Inc., New York, 1998).
[12] M.S. Jacobson, K. Peters and D.F. Rall, On n-irredundance and n-domination, Ars Combin. 29 (1990) 151-160.
[13] N. Meddah and M. Chellali, Roman domination and 2-independence in trees, Discrete Math. Algorithms Appl. 9 (2017) 1750023.
doi:10.1142/S1793830917500239


[^0]:    ${ }^{1}$ Corresponding author.

