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Abstract

For a graph G, let γ(G) be the domination number, i(G) be the indepen-
dent domination number and β2(G) be the 2-independence number. In this
paper, we prove that for any tree T of order n ≥ 2, 4β2(T )−3γ(T ) ≥ 3i(T ),
and we characterize all trees attaining equality. Also we prove that for every

tree T of order n ≥ 2, i(T ) ≤ 3β2(T )
4 , and we characterize all extreme trees.
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1. Introduction

In this paper, G is a simple graph with vertex set V = V (G) and edge set
E = E(G). The order |V | of G is denoted by n = n(G). For every vertex
v ∈ V (G), the open neighborhood of v is the set NG(v) = N(v) = {u ∈ V (G) |
uv ∈ E(G)} and the closed neighborhood of v is the setNG[v] = N [v] = N(v)∪{v}.
The degree of a vertex v ∈ V is degG(v) = deg(v) = |N(v)|. The minimum

degree and the maximum degree of a graph G are denoted by δ = δ(G) and
∆ = ∆(G), respectively. The open neighborhood of a set S ⊆ V is the set
NG(S) = N(S) =

⋃
v∈S N(v) \ S, and the closed neighborhood of S is the set

NG[S] = N [S] = N(S) ∪ S. A leaf of a tree T is a vertex of degree 1, a support

vertex is a vertex adjacent to a leaf and a strong support vertex is a vertex adjacent
to at least two leaves. We denote the set of all leaves of a tree T by L(T ). For
r, s ≥ 1, a double star S(r, s) is a tree with exactly two vertices that are not
leaves, with one adjacent to r leaves and the other to s leaves. For a vertex v in
a rooted tree T , let C(v) denote the set of children of v. Let D(v) denote the
set of descendants of v and D[v] = D(v) ∪ {v}. The maximal subtree at v is the
subtree of T induced by D[v], and is denoted by Tv. We denote the set of leaves
adjacent to a vertex v by Lv.

A set S of vertices in a graph G is a dominating set if every vertex of V \ S
is adjacent to some vertex in S. The domination number γ(G) is the minimum
cardinality of a dominating set in G. A dominating set of minimum cardinality
of G is called a γ(G)-set. The literature on the subject of domination parameters
in graphs has been surveyed and detailed in the two books [10, 11].

A subset S ⊆ V (G) is said to be independent if E(G[S]) = ∅, where G[S] is
the subgraph induced by S. The independent domination number (respectively,
the independence number) of G denoted by i(G) (respectively, β(G)) is the size
of the smallest (respectively, the largest) maximal independent set in G. It is well
known that an independent set is maximal if and only if it is also dominating.
Hence, we can say that the domination, which is defined even for non-independent
sets, is the property which makes an independent set maximal. Furthermore,
every set which is both independent and dominating is a minimal dominating set
of G. This leads to the well known inequality chain

γ(G) ≤ i(G) ≤ β(G).
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Fink and Jacobson [7, 8] generalized the concepts of independent and dom-
inating sets. Let k be a positive integer. A set S of vertices in a graph G is
k-independent if the maximum degree of the subgraph induced by S is at most
k−1. The maximum cardinality of a k-independent set of G is the k-independence
number of G and is denoted βk(G). A k-independent set of G with maximum
cardinality is called a βk(G)-set. The subset S is k-dominating if every vertex
of V \ S has at least k neighbors in S. The k-domination number γk(G) is the
minimum cardinality of a k-dominating set of G.

Relationships between two parameters γk(G) and βk(G) have been studied
by several authors. Favaron [5] proved that for any graph G and positive integer
k, γk(G) ≤ βk(G). Also, Favaron [6] proved that for every graph G and positive
integer k ≤ ∆, βk(G) + γ∆−k+1(G) ≥ n. Jacobson, Peters and Rall [12] showed
that for every graph G and positive integer k ≤ δ, βk(G) + γδ−k+1(G) ≤ n.
Hansberg, Meierling and Volkmann [9] showed that if G is a connected r-partite

graph and k is an integer such that ∆ ≥ k, then γk(G) ≤ β(G)
r

(r(r − 1) + k − 1).
For more information on k-independence number and k-domination see [2].

The relation between 2-independent set and some domination parameters
have been studied by several authors (see for example [1, 3, 4, 13]).

Motivated by the aforementioned works, we consider the difference of β2(T )−

γ(T ) for trees and prove that for any tree T of order n ≥ 2, 4β2(T )
3 − γ(T ) ≥ i(T )

and characterize all extreme trees. Also we prove that for every T of order n ≥ 2,
i(T ) ≤ 3β2(T )

4 , and we classify all trees attaining this inequality.

2. A Lower Bound on the Difference
4β2(T )

3 − γ(T )

In this section we show that for every tree T of order n ≥ 2, 4β2(T )
3 −γ(T ) ≥ i(T )

and we characterize all extreme trees. We proceed with some definitions and
lemmas.

A subdivision of an edge uv is obtained by replacing the edge uv with a path
uwv, where w is a new vertex. The subdivision graph S(G) is the graph obtained
from G by subdividing each edge of G once. The subdivision star S(K1,t) for
t ≥ 1, is called a healthy spider St. A wounded spider St,q (0 ≤ q ≤ t − 1) is the
tree obtained from K1,t (t ≥ 1) by subdividing q edges of K1,t. Note that stars
are wounded spiders. A spider is a healthy or a wounded spider.

Lemma 1. Let T ′ be a tree and v ∈ V (T ′). If T is the tree obtained from T ′ by

adding a path P4 = u1u2u3u4 and joining v to u2, then γ(T ) + i(T ) ≤ γ(T ′)+
i(T ′) + 4 and β2(T ) = β2(T

′) + 3.

Proof. Clearly, any (independent) dominating set of T ′ can be extended to a
(independent) dominating set of T by adding u1, u3 and this implies that γ(T )+
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i(T ) ≤ γ(T ′) + i(T ′) + 4.

Also, obviously any β2(T
′)-set can be extended to an 2-independent set of

T by adding u1, u3, u4 yielding β2(T ) ≥ β2(T
′) + 3. On the other hand, if S

is a β2(T )-set then clearly |S ∩ {u1, u2, u3, u4}| ≤ 3 and so S ∩ V (T ′) is a 2-
independent set of T ′ of size at least β2(T )− 3 implying that β2(T ) ≤ β2(T

′)+3.
Thus β2(T ) = β2(T

′) + 3.

Lemma 2. Let T ′ be a tree and v ∈ V (T ′). If T is the tree obtained from T ′ by

adding a path P3 = u1u2u3 and joining v to u1, then γ(T ) ≤ γ(T ′) + 1, i(T ) ≤
i(T ′) + 1 and β2(T ) = β2(T

′) + 2.

Proof. Clearly, any (independent) dominating set of T ′ can be extended to a
(independent) dominating set of T by adding u2 and this implies that γ(T ) ≤
γ(T ′) + 1 and i(T ) ≤ i(T ′) + 1.

Also, obviously any β2(T
′)-set can be extended to an 2-independent set of T

by adding u2, u3 yielding β2(T ) ≥ β2(T
′)+2. On the other hand, if S is a β2(T )-

set then clearly |S ∩ {u1, u2, u3}| ≤ 2 and hence S ∩ V (T ′) is a 2-independent
set of T ′ of size at least β2(T ) − 2 implying that β2(T ) ≤ β2(T

′) + 2. Thus
β2(T ) = β2(T

′) + 2.

Lemma 3. If T is a spider of order n ≥ 2, then γ(T ) + i(T ) ≤ 4β2(T )
3 with

equality if and only if T = P4.

Proof. If T = St is a healthy spider for some t ≥ 1, then obviously γ(T )+i(T ) =
2t because γ(T ) = t and i(T ) = t. Also β2(T ) = 2t. Hence γ(T )+i(T ) = β2(T ) <
4β2(T )

3 . Now let T = St,q be a wounded spider. If q = 0, then T is a star and we

have γ(T )+ i(T ) = 2 ≤ t = β2(T ) <
4β2(T )

3 . Suppose q > 0. If t = 2, then T = P4

and clearly γ(T ) + i(T ) = 4β2(T )
3 . If t ≥ 3, then clearly γ(T ) + i(T ) = 2q+ 2 and

β2(T ) = t+ q and so γ(T ) + i(T ) < 4β2(T )
3 .

Next we introduce a family T of trees T that can be obtained from a sequence
T1, T2, . . . , Tk of trees such that T1 = P4, and if k ≥ 2, then Ti+1 can be obtained
recursively from Ti by the operation T1 for 1 ≤ i ≤ k − 1.

Operation T1. If v ∈ Ti is a support vertex, then T1 adds a path P4 = u1u2u3u4
and joins v to u2.

Observation 4. Let T ∈ T . Then the following conditions are satisfied.

1. Every support vertex is adjacent to exactly one leaf.

2. Every vertex of T is a leaf or support vertex.

3. Both of L(T ) and V (T )− L(T ) are γ(T )-set.

4. L(T ) is a i(T )-set.
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5. L(T ) ⊂ β2(T )-set.

6. β2(T ) = |L(T )|+ |V (T )− L(T )|/2 = 3γ(T )/2.

Theorem 5. If T is a tree of order n ≥ 2, then

γ(T ) + i(T ) ≤
4β2(T )

3
(1)

with equality if and only if T ∈ T .

Proof. The proof is by induction on n. The results are trivial for trees of order
n = 2, 3, 4. Let n ≥ 5 and suppose that for every non-trivial tree T of order less
than n the results are true. Let T be a tree of order n. If diam(T ) = 2, then

T is a star and clearly γ(T ) + i(T ) = 2 < 4β2(T )
3 by Lemma 3. If diam(T ) = 3,

then T is a double star DSr,s. Since r+ s ≥ 3, if we suppose r ≥ s, then we have

r ≥ 2. If r ≥ s ≥ 2, then γ(T ) + i(T ) = s + 3 < 4(r+s)
3 = 4β2(T )

3 . If s = 1, then

γ(T ) + i(T ) = 4 < 4(r+2)
3 = 4β2(T )

3 . Hence, we may assume that diam(T ) ≥ 4.
Let v1v2 · · · vD be a diametrical path in T such that deg(v2) is as large as

possible. Root T at vD. Consider the following cases.

Case 1. degT (v2) ≥ 4. Suppose T ′ = T −{v1}. Clearly, any γ(T )-set and any
γ(T ′)-set contains v2 and this implies that γ(T ) = γ(T ′). Let S be a i(T ′)-set.
If v2 ∈ S, then S is an independent dominating set of T and if v2 6∈ S, then
S ∪ {v1} is an independent dominating set of T yielding i(T ) ≤ i(T ′) + 1. On
the other hand, if S is a β2(T

′)-set such that |S ∩ L(T ′)| is as large as possible,
then clearly v2 6∈ S and S ∪ {v1} is a 2-independent set of T implying that
β2(T ) ≥ |S|+ 1 = β2(T

′) + 1. By the induction hypothesis, we have

γ(T ) + i(T ) ≤ γ(T ′) + i(T ′) + 1 ≤
4β2(T

′)

3
+ 1 ≤

4β2(T )− 1

3
<

4β2(T )

3
.

Case 2. degT (v2) = 3. Assume that Lv2 = {v1, z}. First let deg(v3) = 2.
Suppose T ′ = T −Tv3 . As Case 1, we have γ(T ) = γ(T ′)+1 and i(T ) ≤ i(T ′)+1.
On the other hand, if S is a β2(T

′)-set, then S ∪ {v1, v2} is a 2-independent set
of T yielding β2(T ) ≥ |S|+2 = β2(T

′)+2. By the induction hypothesis, we have

γ(T ) + i(T ) ≤ γ(T ′) + i(T ′) + 2 ≤
4β2(T

′)

3
+ 2 ≤

4β2(T )− 2

3
<

4β2(T )

3
.

Now let deg(v3) ≥ 3. Let Lv3 = {x1, . . . , xl}. If Lv3 6= ∅, then let C2 =
{y1, . . . , yk} be the children of v3 with depth 1 and degree 2, if any, and redlet
z1, . . . , zt be the children of v3 with depth 1 and degree 3 where z1 = v2. Let
T ′ = T −Tv3 . Clearly, any γ(T ′)-set can be extended to a dominating set of T by
adding v3 and its children of depth 1 and this yields γ(T ) ≤ γ(T ′) + |C2|+ t+ 1.
Also, any i(T ′)-set can be extended to an independent dominating set of T by
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adding all children of v3 implying that i(T ) ≤ i(T ′) + |C2| + t + |Lv3 |. On the
other hand, any β2(T

′)-set, can be extended to a 2-independent set of T by adding
Lv3 , y1, . . . , yk and their children, if any, and the children of z1, . . . , zt yielding
β2(T ) ≥ β2(T

′)+ |Lv3 |+2t+2|C2|. It follows from the induction hypothesis that

γ(T ) + i(T ) ≤ γ(T ′) + i(T ′) + 2|C2|+ 2t+ |Lv3 |+ 1

≤
4β2(T

′)

3
+ 2|C2|+ 2t+ |Lv3 |+ 1

≤
4β2(T )− 8|C2| − 8t− 4|Lv3 |

3
+ 2|C2|+ 2t+ |Lv3 |+ 1

≤
4β2(T )− 2|C2| − 2t− |Lv3 |+ 3

3
≤

4β2(T )

3
.

We claim that the equality does not hold. Suppose, to the contrary, that γ(T ) +

i(T ) = 4β2(T )
3 . Then all inequalities occurring the above chain must be equalities

and this holds if and only if γ(T ′)+ i(T ′) = 4β2(T ′)
3 , |C2| = 0, t = 1 and |Lv3 | = 1.

Thus degT (v3) = 3 and v3 is adjacent with a leaf w. By the induction hypothesis,
we have T ′ ∈ T . It follows from Observation 4 that v4 is either a leaf or is a weak
support vertex. We distinguish the following subcases.

Subcase 2.1. degT (v4) = 2. If diam(T ) = 4, then clearly γ(T )+ i(T ) < 4β2(T )
3

which is a contradiction. Let diam(T ) ≥ 5. Let T ′ = T −Tv4 . Clearly, any γ(T ′)-
set can be extended to a dominating set of T by adding v3, v2, any i(T ′)-set can
be extended to a dominating set of T by adding v3, v1, z, and any β2(T

′)-set can
be extended to a 2-independent set of T by adding v3, w, v1, z. By the induction
hypothesis, we obtain γ(T ) + i(T ) < 4β2(T )

3 a contradiction.

Subcase 2.2. v4 is a support vertex. Let T ′ = T − Tv2 . Clearly, any γ(T ′)-set
can be extended to a dominating set of T by adding v2 and any β2(T

′)-set can
be extended to a 2-independent set of T by adding v1, z. Let S

′ be a i(T ′)-set. If
v3 6∈ S′, then let S = S′ ∪ {v2} and if v3 ∈ S′, then let S = (S′ \ {v3}) ∪ {w, v2}.
Obviously, S is an independent dominating set of T yielding i(T ) ≤ i(T ′)+1. By

the induction hypothesis, we obtain γ(T ) + i(T ) < 4β2(T )
3 , a contradiction. This

proved our claim.

Case 3. degT (v2) = 2. If degT (v3) = 2, then let T ′ = T − Tv3 . By Lemma 2

and the induction hypothesis, we have γ(T ) + i(T ) < 4β2(T )
3 . Let degT (v3) ≥ 3.

By the choice of diametrical path we may assume that all children of v3 with
depth 1, have degree 2. First we suppose that there is a pendant path v3z2z1.
Let T ′ = T − Tv2 . Clearly, any γ(T ′)-set and any i(T ′)-set can be extended to a
dominating set of T by adding v1 yielding γ(T ) ≤ γ(T ′)+1 and i(T ) ≤ i(T ′)+1.
Let S′ be a β2(T

′)-set. If v3 6∈ S′, then let S = S′∪{v1, v2} and if v3 ∈ S′, then let
S = (S′ \{v3})∪{v1, v2, z1, z2}. Obviously, S is a 2-independent set of T yielding
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β2(T ) ≥ β2(T
′)+2. By the induction hypothesis, we obtain γ(T )+ i(T ) < 4β2(T )

3 .
Now let all children of v3 with exception v2 are leaves. If degT (v3) ≥ 4, then

as above we can see that γ(T ) + i(T ) < 4β2(T )
3 . Henceforth, we assume that

degT (v3) = 3. Let w be the leaf adjacent to v3. Suppose T ′ = T − Tv3 . By the
induction hypothesis and Lemma 1 we have

γ(T ) + i(T ) = γ(T ′) + i(T ′) + 4 ≤
4β2(T

′)

3
+ 4 ≤

4β2(T )− 3

3
+ 4 =

4β2(T )

3
.

If the equality holds, then we must have γ(T ′) + i(T ′) = 4β2(T ′)
3 and it follows

from the induction hypothesis that we have T ′ ∈ T . Thus each vertex of T ′ is
either a leaf or a support vertex. We claim that v4 is not a leaf in T ′. Suppose, to
the contrary, that v4 is a leaf in T ′. If diam(T ) = 4, then T is a wounded spider

and by Lemma 3 we have γ(T )+i(T ) < 4β2(T )
3 , a contradiction. Let diam(T ) ≥ 5.

Since v5 is not a strong support vertex, we observe that v6 is a support vertex
too. We consider two subcases.

Subcase 3.1. deg(v5) = 2. Let T ′′ = T − Tv4 and let w, v5 be two leaves
adjacent to v6 in T ′′. It follows from the induction hypothesis that T ′′ 6∈ T and

so γ(T ′′) + i(T ′′) < 4β2(T ′′)
3 . As above cases, we can see that γ(T ) ≤ γ(T ′′) + 2,

i(T ) ≤ i(T ′) + 2 and β2(T ) ≥ β2(T
′′) + 3. This implies that

γ(T ) + i(T ) ≤ γ(T ′′) + i(T ′′) + 4 <
4β2(T

′′)

3
+ 4 =

4β2(T )

3
,

which is a contradiction.

Subcase 3.2. deg(v5) ≥ 3. Since T ′ ∈ T and v4 is a leaf, every vertex
z ∈ NT (v5) \ {v4} is a support vertex. Let T ′′ = T − Tv4 and let u be a leaf
adjacent to v6 in T ′′. As above, we have γ(T ) ≤ γ(T ′′) + 2 and i(T ) ≤ i(T ′) + 2.
Let S′ be a β2(T

′′)-set. If v5 6∈ S′ or v5 ∈ S and z /∈ S′ for each z ∈ NT (v5)\{v4},
then S = S′∪{v4, w, v2, v1} is a 2-independent set of T yielding β2(T ) ≥ β2(T

′′)+4
and by the induction hypothesis we obtain

γ(T ) + i(T ) ≤ γ(T ′′) + i(T ′′) + 4 ≤
4β2(T

′′)

3
+ 4 <

4β2(T )

3
,

a contradiction again. Assume that v5 ∈ S′ and z ∈ S′ for some z ∈ NT (v5)\{v4}
We may assume, without loss of generality, that z = v6. Then u 6∈ S′ and
the set S = (S′ \ {v5}) ∪ {u, v4, w, v2, v1} is a 2-independent set of T yielding
β2(T ) ≥ β2(T

′′) + 4 and as above we get a contradiction.
Consequently, v4 is a support vertex of T ′. Now T can be obtained from T ′

by operation T1 and so T ∈ T . This completes the proof.

The next result is an immediate consequence of Theorem 5.

Corollary 6. If T is a tree of order n ≥ 2, then γ(T ) ≤ 2β2(T )
3 .
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3. Independent Domination and 2-Independence of Trees

In this section we show that for any T of order n ≥ 2, i(T ) ≤ 3β2(T )
4 and we

characterize all extreme trees. First we introduce a family F of trees T that can
be obtained from a sequence T1, T2, . . . , Tk of trees such that T1 = DS2,2, and
if k ≥ 2, then Ti+1 can be obtained recursively from Ti by the operation O for
1 ≤ i ≤ k − 1.

Operation O. If v ∈ V (Ti) is a strong support vertex with |Lv| = 2, then
operation O adds a double star DS2,2 and joins a support vertex of DS2,2 to v.

Observation 7. If T ∈ F , then

1. L(T ) is a β2(T )-set of T and so β2(T ) =
2n(T )

3 ,

2. every strong support vertex is adjacent with exactly two leaves,

3. |L(T )| = 2|V (T )− L(T )|,

4. i(T ) = n(T )
2 ,

5. i(T ) = 3β2(T )
4 .

Theorem 8. If T is a tree of order n ≥ 2, then

i(T ) ≤
3β2(T )

4
,(2)

with equality if and only if T ∈ F .

Proof. The proof is by induction on n. The statements clearly hold for all trees
of order n = 2, 3, 4. Let n ≥ 5, and suppose that for every nontrivial tree T of
order less than n the results are true. Let T be a tree of order n. If diam(T ) = 2,

then T is a star and clearly i(T ) = 1 < 3β2(T )
4 . If diam(T ) = 3, then T is a double

star DSr,s for some r ≥ s ≥ 1. If r ≥ s ≥ 2, then

i(T ) = s+ 1 ≤
3(r + s)

4
=

3β2(T )

4
,

with equality if and only if r = s = 2 and this if and only if T ∈ F . If s = 1,
then i(T ) = 2 < 3(r+2)

4 = 3β2(T )
4 . Hence we may assume that diam(T ) ≥ 4.

Let v1v2 · · · vD be a diametrical path in T such that t = deg(v2) is as large as
possible. Let Lv2 = {z1 = v1, z2, . . . , zt−1}. Let k1 be the number of children
of v3 with depth 0, k2 be the number of children of v3 with depth 1 and degree
at most three and k3 be the number of children of v3 with depth 1 and degree
at least four. First let 2k2 + 5k3 > k1. Assume that T ′ = T − Tv3 . Clearly
any i(T ′)-set can be extended by adding all children of v3 to an independent
dominating set of T and so i(T ) ≤ i(T ′) + k1 + k2 + k3. On the other hand, any
β2(T

′)-set can be extended to a 2-independent set of T by adding all leaves in
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Lv3 , all children of v3 with degree at most three and one of their children, and
all leaves adjacent to the children of v3 with degree at least four implying that
β2(T ) ≥ β2(T

′) + k1 + 2k2 + 3k3. By the induction hypothesis, we obtain

i(T ) ≤ i(T ′) + k1 + k2 + k3 ≤
3β2(T

′)

4
+ k1 + k2 + k3

≤
3β2(T )− 3k1 − 6k2 − 9k3

4
+ k1 + k2 + k3

≤
3β2(T )

4
+

k1 − 2k2 − 5k3
4

<
3β2(T )

4
.

Henceforth, we assume that 2k2 + 5k3 ≤ k1. This implies that v3 is a strong
support vertex, that is k1 ≥ 2. Consider the following cases.

Case 1. t ≥ 4. Let w1, w2 ∈ Lv3 and let T ′ = T − {z1, z2, w1, w2}. If S′ is
a β2(T

′)-set, then the set S = (S′ \ {v2, v3}) ∪ Lv2 ∪ Lv3 if |S′ ∩ {v2, v2}| = 2,
and S = (S′ \ {v2, v3}) ∪ {z1, z2, w1, w2} if |S′ ∩ {v2, v3}| ≤ 1, is a 2-independent
set of T yielding β2(T ) ≥ β2(T

′) + 3. Now we show that i(T ) ≤ i(T ′) + 2.
Let D′ be a i(T ′)-set. Since D′ is independent, we have |D′ ∩ {v3, v2}| ≤ 1. If
|D′ ∩ {v3, v2}| = 0, then (D′ − Lv2) ∪ {v2} is a i(T ′)-set. Hence we may assume
that |D′∩{v3, v2}| = 1. Let D = D′∪{z1, z2} if v3 ∈ D′, and D = D′∪{w1, w2} if
v2 ∈ D′. Clearly, D is an independent dominating set of T and so i(T ) ≤ i(T ′)+2.
By the induction hypothesis, we obtain

i(T ) ≤ i(T ′) + 2 ≤
3β2(T

′)

4
+ 2 <

3β2(T )

4
.

Case 2. t = 3 and k1 ≥ 3. Let w1, w2, w3 ∈ Lv3 and T ′ = T −{z1, z2, w1, w2}.
If S′ is a β2(T

′)-set, then the set S = (S′\{v2, v3})∪Lv2∪Lv3 if |S
′∩{v1, v2}| = 2,

and S = (S′ \ {v2, v3}) ∪ {z1, z2, w1, w2} if |S′ ∩ {v2, v3}| ≤ 1, is a 2-independent
set of T yielding β2(T ) ≥ β2(T

′) + 3. As above, we can see that i(T ) ≤ i(T ′) + 2

and by the induction hypothesis, we have i(T ) ≤ i(T ′)+2 ≤ 3β2(T ′)
4 +2 < 3β2(T )

4 .

Case 3. t = 3 and k1 = 2. We deduce from 2k2 + 5k3 ≤ k1 that k2 ≤ 1
and k3 = 0. Since t = deg(v2) = 3, then k2 = 1. This yields degT (v3) = 4 and
Tv3 = DS2,2. Let Lv3 = {w1, w2} and T ′ = T − Tv3 . Clearly, every i(T ′)-set
can be extended to an independent dominating set of T by adding v2, w1, w2

yielding i(T ) ≤ i(T ′) + 3. On the other hand, any β2(T
′) can be extended to

a 2-independent set by adding z1, z2, w1, w2 and so β2(T ) ≥ β2(T
′) + 4. By the

induction hypothesis we have

i(T ) ≤ i(T ′) + 3 ≤
3β2(T

′)

4
+ 3 ≤

3(β2(T )− 4)

4
+ 3 ≤

3β2(T )

4
.

If the equality holds, then we must have i(T ′) = 3β2(T ′)
4 and this if and only if

T ′ ∈ F . Hence each vertex of T ′ is either a leaf or a strong support vertex. Now
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we show that v4 is a support vertex of T ′. Assume that v4 is not a support vertex
of T ′. Then v4 is a leaf of T ′ and v5 is its support vertex in T ′. Let T ′′ = T −Tv4 .

Then clearly T ′′ 6∈ F and so i(T ′′) < 3β2(T ′′)
4 . Obviously, every i(T ′)-set can

be extended to an independent dominating set of T by adding v2, z1, z2 yielding
i(T ) ≤ i(T ′) + 3, and any β2(T

′) can be extended to a 2-independent set by
adding z1, z2, w1, w2 and so β2(T ) ≥ β2(T

′) + 4. Therefore

i(T ) ≤ i(T ′′) + 3 <
3β2(T

′)

4
+ 3 ≤

3(β2(T )− 4)

4
+ 3 ≤

3β2(T )

4
,

which is a contradiction. Thus v4 is a support vertex. Now T can be obtained
from T ′ be operation O and so T ∈ F .

Case 4. t = 2. Let w1, w2 ∈ Lv3 and T ′ = T − {v1, v2}. Clearly, any
i(T ′)-set can be extended to an independent dominating set of T by adding v1,
and this implies that i(T ) ≤ i(T ′) + 1. On the other hand, for any β2(T

′)-set
S′, the set S = (S′ \ {v3}) ∪ Lv3 ∪ {v1, v2} is a 2-independent set of T yielding
β2(T ) ≥ β2(T

′) + 2. It follows from the induction hypothesis that

i(T ) ≤ i(T ′) + 1 ≤
3β2(T

′)

4
+ 1 <

3β2(T )

4
,

and the proof is complete.
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