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Abstract

Define the zeroth-order Randić index as R0(G) =
∑

x∈V (G)
1√

dG(x)
,

where dG(x) denotes the degree of the vertex x. In this paper, we present
two sufficient conditions for graphs and triangle-free graphs, respectively, to
be super edge-connected in terms of the zeroth-order Randić index.
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1. Introduction

Throughout this paper, we consider finite undirected simple connected graphs.
Let G be such a graph with vertex set V = V (G) and edge set E = E(G). Then
the order and size of G are n = |V | and m = |E|, respectively. The degree

of a vertex u ∈ V is the number of edges incident with u in G, denoted by

1Natural Science Funds of China (No.11501490, 61373019, 13071107) and by the Natural
Science Foundation of Shandong Province (No. ZR2015AM006).

2Corresponding author.

http://dx.doi.org/10.7151/dmgt.2164


972 Z. He and M. Lu

d(u) = dG(u). The minimum of all the vertex degrees of G is called the minimum

degree of G, and denoted by δ = δ(G). The distance between two vertices u and
v of G is the length of a shortest path connecting them in G. The maximum of
distances over all pairs of vertices of G is called the diameter of G, and denoted
by diam(G).

A vertex-cut in a graph G is a set X of vertices of G such that G − X is
disconnected. The vertex-connectivity or simply the connectivity κ = κ(G) of a
graph G is the minimum cardinality of a vertex-cut of G if G is not complete,
and κ(G) = n − 1 if G is the complete graph Kn of order n. An edge-cut of
a connected graph G is a set of edges whose removal disconnects G. The edge-

connectivity λ(G) is defined as the minimum cardinality of an edge-cut over all
edge-cuts of G. An edge-cut S is a minimum edge-cut or a λ-cut, if |S| = λ(G),
and an edge-cut S is trivial, if S consists of edges adjacent to a vertex of minimum
degree. Notice that λ(G) ≤ δ(G), and a graph G with λ(G) = δ(G) is said to
be maximally edge-connected, or λ-optimal for simplicity. Other terminology and
notation needed will be introduced as it naturally occurs in the following and we
use Bondy and Murty [3] for those not defined here.

The zeroth-order Randić index R0(G) was defined by in Kier and Hall in 1986
[12, 13] as

R0(G) =
∑

x∈V (G)

1
√

dG(x)
.

Let R(G) =
∑

u∈V (G)
1

dG(u) , which is the known inverse degree of a graph.

Sufficient conditions for whether a graph is maximally edge-connected were
given by several researchers.

Theorem 1. Let G be a connected graph of order n, minimum degree δ and

edge-connectivity λ. Then λ = δ if

(a) ([4]) δ ≥
⌊

n
2

⌋

;

(b) ([14]) d(u) + d(v) ≥ n− 1 for all pairs u, v of nonadjacent vertices;

(c) ([6]) R(G) < 2 + 2/δ(δ + 1) + (n− 2δ)/(n− δ − 2)(n− δ − 1);

(d) ([6]) G is triangle-free and R(G) < 4−4(δ−1)(1/2δ(2δ+2))+1/(n−2δ)(n−
2δ + 2));

(e) ([5]) R0(G) < 2δ−1/2 + δ1/2 + (δ − 1)(δ + 1)−1/2 + (δ − 1)(n− δ − 1)−1/2 −
(δ − 2)(n− δ − 2)−1/2;

(f) ([5]) If G is triangle-free and R0(G) < min{γ1(−1/2, δ), γ2(−1/2, δ)}, then
λ = δ, where γ1(−1/2, δ) = 3δ1/2 +δ−1/2 +(δ−1)(δ+1)−1/2−

√
2(δ−1)(n−

2δ)−1/2 +
√

2(δ − 1)(n − 2δ + 2)−1/2, γ2(−1/2, δ) = 2δ1/2 + δ−1/2 + 2δ(δ +
1)−1/2 −

√
2(δ − 2)(n− 2δ − 2)−1/2 +

√
2(δ − 2)(n− 2δ)−1/2.

Other sufficient conditions, depending on paraments not directly related to
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the vertex degree, for graphs to be maximally edge-connected were given by
several authors.

Bauer et al. [1] proposed the concept of super-connectedness. A graph G is
called super-edge-connected or super-λ if every minimum edge-cut is trivial; that
is, if every minimum edge-cut consists of edges incident with a vertex of minimum
degree. Thus every super edge-connected graph is also maximally edge-connected.
The study of super edge-connected graphs has a particular significance in the
design of reliable networks [2]. Most of known sufficient conditions for a graph G
to be super-λ are closely related to those in the preceding theorem.

Theorem 2. Let G be a connected graph. Then G is super-λ if

(a) (Kelmans [11]) n ≤ 2δ(G) − 1;

(b) (Fiol [10]) d(u) + d(v) ≥ n for all pairs u and v of nonadjacent vertices and

G is different from Kn/2 ×K2;

(c) (Fiol [10]) diam(G) = 2 and G contains no Kδ with all its vertices of degree δ;

(d) (Fiol [10]) G is a bipartite graph with δ ≥ 3 and n ≤ 4δ − 3;

(e) (Soneoka [17]) n > δ((∆ − 1)diam(G)−1 − 1/(∆ − 2) + 1) + (∆ − 1)diam(G)−1;

(f) (Tian [19]) R(G) < 2 + (n− 2δ)/(n− δ − 1)(n− δ);

(g) (Tian [19]) G is triangle-free and R(G) < 2 + 1/δ(δ + 1) + (n− 2δ− 1)/(n−
δ − 1)(n− δ − 2).

In [6] Dankelmann et al. gave sufficient conditions for graphs to be maximally
edge-connected in terms of the inverse degree, the minimum degree and the order
of a graph. In [19] Tian et al. gave sufficient conditions for graphs to be super
edge-connected in terms of the inverse degree, the minimum degree and the order
of a graph.

Motivated by the results of Dankelmann et al. [6] and Tian et al. [19], in this
paper we give sufficient conditions for arbitrary graphs and triangle-free graphs
to be super edge-connected in terms of the zeroth-order general Randić index,
minimum degree and the order.

2. Preliminary Lemmas

In this section, we will list or prove some lemmas which will be used in our later
proofs.

Lemma 3 (Lin et al. [15]). Let x1, x2 ∈ N and α ∈ R. If x1 − 2 ≥ x2 ≥ 1, then

(i) (x1 − 1)α + (x2 + 1)α < xα1 + xα2 if α < 0 or α > 1;

(ii) (x1 − 1)α + (x2 + 1)α > xα1 + xα2 if 0 < α < 1.
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Lemma 4 (Su [18]). Let x1, . . . , xp and A be positive reals with
∑p

i=1 xi ≤ A.
For any real number α < 0, we have

(i)
∑p

i=1 x
α
i ≥ p1−αAα;

(ii) if, in addition x1, . . . , xp, A are positive integers, and a, b are integers with

A = ap + b and 0 ≤ b < p, then
∑p

i=1 x
α
i ≥ (p− b)aα + b(a + 1)α.

Lemma 5 [18]. Let Φ(x) be a continuous function on interval [L,R] and l+ r =
L + R for l, r ∈ [L,R]. Then

(i) Φ(L) + Φ(R) ≥ Φ(l) + Φ(r) if Φ(x) is convex;

(ii) Φ(L) + Φ(R) ≤ Φ(l) + Φ(r) if Φ(x) is concave.

We say that a graph is triangle-free if it does not contain a triangle as a
subgraph.

Lemma 6 (Dankelmann and Volkmann [7]). Let G be a triangle-free graph of

order n ≤ 4δ − 1. Then λ = δ.

A complete r-partite graph Kn1,n2,...,nr
is a simple graph whose vertices can

be partitioned into r (r ≥ 2) sets so that each pair of vertices is connected by an
edge if and only if they belong to different sets of the partition.

The Turán graph Tn,r is the complete r-partite graph with b partite sets of
size a + 1 and r − b partite sets of size a, where a =

⌊

n
r

⌋

and b = n− ra.
The following is a famous result due to Turán [20].

Lemma 7 (Turán [20]).
(i) Among all the n-vertex simple graphs with no (r + 1)-clique, Tn,r has the

maximum number of edges.

(ii) |E(Tn,r)| ≤
⌊

(

1 − 1
r

)

n2

2

⌋

.

For two subsets X and Y of V (G), let [X,Y ] be the set of edges with one
endpoint in X and the other one in Y , and |[X,Y ]| denotes the cardinality of
[X,Y ].

The following lemma was proved by Dankelmann and Volkmann [8].

Lemma 8 (Dankelmann and Volkmann [8]). Let G be a connected graph. If there

exist two disjoint, nonempty sets X,Y ⊂ V (G), X∪Y = V (G), and | [X,Y ]| < δ,
then |X| ≥ δ + 1 and |Y | ≥ δ + 1.

The result above also can be found in other literature, e.g. Dankelmann and
Volkmann [7] and Plesńık and Znám [16].

Lemma 9. Let x be a real number. Then x−
1

2 +
(

x + 1
2

)− 1

2 ≤ (x + 1)−
1

2 +
(

x− 1
2

)− 1

2 .

Proof. Let h(t) = t−
1

2 −
(

t− 1
2

)− 1

2 . Clearly, h(t) is increasing for t ≥ 1, so we

get h(x+1) ≥ h(x), i.e., x−
1

2 +
(

x + 1
2

)− 1

2 ≤ (x+1)−
1

2 +
(

x− 1
2

)− 1

2 , as desired.
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3. Main Result

Theorem 10. Let G be a connected graph of order n, minimum degree δ and

edge-connectivity λ. If

(1) R0(G) < min

{

L1

(

−1

2
, δ

)

, L2

(

−1

2
, δ

)}

,

then G is super-λ, where L1

(

−1
2 , δ

)

= δ
1

2 + δ(n− δ)−
1

2 + (n− 2δ)(n− δ − 1)−
1

2 ,

L2

(

−1
2 , δ

)

= (δ + 1)δ−
1

2 + δ(δ + 1)−
1

2 + δ(n− δ − 1)−
1

2 − (δ − 1)(n− δ − 2)−
1

2 .

Proof. In view of Theorem 2(a), we may assume n ≥ 2δ. Suppose to the contrary
that G is not super-λ. Let S be a λ-cut such that each of two components of
G − S have at least two vertices, and let W and T denote the vertex sets of
the two components of G − S. We claim that δ ≤ |W |, |T | ≤ n − δ. Assume
|W | ≤ δ − 1. Then δ ≥ 3 and λ(G) = | [W,W ]| ≥ δ|W | − |W |(|W | − 1) ≥
δ|W | − (δ − 1)(|W | − 1) = δ − 1 + |W | ≥ δ + 1 > δ, a contradiction (because
it is well known that λ(G) ≤ δ(G)). Similarly, we have |T | ≥ δ. Therefore,
δ ≤ |W |, |T | ≤ n− δ.

If λ(G) < δ(G), then by Theorem 1(e), we have

R0(G) ≥ 2δ−
1

2 + δ
1

2 + (δ − 1)(δ + 1)−
1

2 + (δ − 1)(n− δ − 1)−
1

2

− (δ − 2)(n− δ − 2)−
1

2

= L2

(

−1

2
, δ

)

+ δ−
1

2 − (δ + 1)−
1

2 + (n− δ − 2)−
1

2 − (n− δ − 1)−
1

2

≥ L2

(

−1

2
, δ

)

(since x−
1

2 is a decreasing function for x > 0),

a contradiction to equation (1). Thus we assume that λ(G) = δ(G) in the follow-
ing argument.

Each vertex in T is adjacent to at most |T | − 1 vertices of T , and exactly δ
edges join vertices of T to vertices of W . Hence

∑

t∈T d(t) ≤ |T |(|T | − 1) + δ. If
δ < |T |, then by Lemma 4

∑

t∈T

d−
1

2 (t) ≥ (|T | − δ)(|T | − 1)−
1

2 + δ|T |− 1

2

= [(|T | − 1) + (1 − δ)](|T | − 1)−
1

2 + δ|T |− 1

2

= (|T | − 1)
1

2 + (|T | − 1)−
1

2 − δ
[

(|T | − 1)−
1

2 − |T |− 1

2

]

.

If |T | = δ, then
∑

t∈T d(t) ≤ |T |2, by Lemma 4,
∑

t∈T d−
1

2 (t) ≥ |T | 12 . The
same argument is also valid for W . Now we consider two cases.
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Case 1. |W | = δ or |T | = δ. Assume, without loss of generality, that |W | = δ
and |T | = n− δ. If n = 2δ, then

R0(G) =
∑

w∈W

d−
1

2 (w) +
∑

t∈T

d−
1

2 (t) ≥ 2δ
1

2

= δ
1

2 + δ(n− δ)−
1

2 + (n− 2δ)(n− δ − 1)−
1

2 = L1

(

−1

2
, δ

)

,

a contradiction to equation (1). Thus we suppose that n > 2δ. By the above
argument,

R0(G) =
∑

w∈W

d−
1

2 (w) +
∑

t∈T

d−
1

2 (t)

≥ |W | 12 + (|T | − 1)
1

2 + (|T | − 1)−
1

2 − δ
[

(|T | − 1)−
1

2 − |T |− 1

2

]

= δ
1

2 + (n− δ − 1)
1

2 + (n− δ − 1)−
1

2 − δ
[

(n− δ − 1)−
1

2 − (n− δ)−
1

2

]

= δ
1

2 + δ(n− δ)−
1

2 + (n− 2δ)(n− δ − 1)−
1

2 = L1

(

−1

2
, δ

)

,

a contradiction to equation (1).

Case 2. |W | ≥ δ + 1 and |T | ≥ δ + 1. Since G has a vertex v of degree δ,
without loss of generality, assume v ∈ W . Then

∑

w∈W\{v} d(w) ≤ (|W |−1)2+δ.
If |W | = δ+1, then

∑

w∈W\{v} d(w) ≤ |W |(|W |−1) = δ(δ+1), by Lemma 4,

we have
∑

w∈W d−
1

2 (w) ≥ δ−
1

2 + δ(δ + 1)−
1

2 . Hence

R0(G) =
∑

w∈W

d−
1

2 (w) +
∑

t∈T

d−
1

2 (t) ≥ δ−
1

2 + δ(δ + 1)−
1

2

+ (n− δ − 2)
1

2 + (n− δ − 2)−
1

2 − δ
[

(n− δ − 2)−
1

2 − (n− δ − 1)−
1

2

]

= δ−
1

2 + δ(δ + 1)−
1

2 + (n− 2δ − 1)(n− δ − 2)−
1

2 + δ(n− δ − 1)−
1

2

= L2

(

−1

2
, δ

)

+ (n− δ − 2)
1

2 − δ
1

2

≥ L2

(

−1

2
, δ

)

(since x
1

2 is an increasing function for x > 0),

a contradiction to equation (1).
If |W | ≥ δ + 2, then by Lemma 4, we have

∑

w∈W

d−
1

2 (w) ≥ δ−
1

2 + (|W | − 1 − δ)(|W | − 1)−
1

2 + δ|W |− 1

2

= δ−
1

2 + (|W | − 1)
1

2 − δ
[

(|W | − 1)−
1

2 − |W |− 1

2

]

.
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Hence

R0(G) =
∑

w∈W

d−
1

2 (w) +
∑

t∈T

d−
1

2 (t)

≥ δ−
1

2 + (|W | − 1)
1

2 − δ
[

(|W | − 1)−
1

2 − |W |− 1

2

]

+ (|T | − 1)
1

2

+ (|T | − 1)−
1

2 − δ
[

(|T | − 1)−
1

2 − |T |− 1

2

]

= δ−
1

2 + (|W | − 1)
1

2 + (|T | − 1)
1

2 + (|T | − 1)−
1

2

− δ
[

(|W | − 1)−
1

2 − |W |− 1

2 + (|T | − 1)−
1

2 − |T |− 1

2

]

.

To minimize the right-hand side of the last inequality, consider the function
h1(x) = (x − 1)−

1

2 − x−
1

2 . It is easy to verify that h
′′

1(x) > 0 for x > 1, so
h1(t) is convex. By |W |, |T | ≥ δ + 1, |W | + |T | = n, and Lemma 5, we have

(|W | − 1)−
1

2 − |W |− 1

2 + (|T | − 1)−
1

2 − |T |− 1

2

≤ δ−
1

2 − (δ + 1)−
1

2 + (n− δ − 2)−
1

2 − (n− δ − 1)−
1

2 .

Note that h2(x) = x−
1

2 is a decreasing function and h3(x) = x
1

2 is an increasing
function for x > 0. We have

R0(G) =
∑

w∈W

d−
1

2 (w) +
∑

t∈T

d−
1

2 (t) ≥ δ−
1

2 + δ
1

2 + δ
1

2 + (n− δ − 2)−
1

2

− δ
[

δ−
1

2 − (δ + 1)−
1

2 + (n− δ − 2)−
1

2 − (n− δ − 1)−
1

2

]

= (δ + 1)δ−
1

2 + δ(δ + 1)−
1

2 + δ(n− δ − 1)−
1

2 − (δ − 1)(n− δ − 2)−
1

2

=  L2

(

−1

2
, δ

)

,

a contradiction to equation (1).

We present a class of graphs to show that the condition in Theorem 10 cannot
be improved.

Example 11. Let n and δ be arbitrary integers with n ≥ 2δ ≥ 4. Furthermore,
let G1

∼= Kδ with vertex set V (G1) = {u1, u2, . . . , uδ} and let H2
∼= Kn−δ with

vertex set V (G2) = {v1, v2, . . . , vn−δ}. We define the graph G as the union of G1

and G2 together with δ − 1 edges u1v1, u2v2, . . . , uδvδ. Then n(G) = n, δ(G) = δ
and

R0(G) = δ
1

2 + δ(n− δ)−
1

2 + (n− 2δ)(n− δ − 1)−
1

2 = L1

(

−1

2
, δ

)

.
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But it is easy to see that G is not super-λ.

Now we pay our attention to the maximally edge-connected triangle-free
graphs. In the following we shall use the following four functions

H1

(

−1

2
, t

)

= (2t− 1)t−
1

2 +
n(n− 2t + 2)−

1

2

√
2

+
(n− 4t + 2)(n− 2t)−

1

2

√
2

;

H2

(

−1

2
, t

)

= (2t− 1)t−
1

2 +
√

2t(n− 2t + 3)−
1

2 +
√

2(n− 3t + 1)(n−2t+1)−
1

2 ;

H3

(

−1

2
, t

)

= 3t
1

2 + t(t + 1)−
1

2 −
√

2t(n− 2t)−
1

2 +
√

2t(n− 2t + 2)−
1

2 ;

H4

(

−1

2
, t

)

= 2t
1

2 + 2t(t + 1)−
1

2 −
√

2(t− 1)(n− 2t− 2)−
1

2 +
√

2t(n− 2t)−
1

2 .

Theorem 12. Let G be a connected triangle-free graph of order n, minimum

degree δ and edge-connectivity λ. If

(2) R0(G) < min

{

H1

(

−1

2
, δ

)

, H2

(

−1

2
, δ

)

, H3

(

−1

2
, δ

)

, H4

(

−1

2
, δ

)}

,

then G is super-λ.

Proof. Suppose to the contrary that G is not super-λ. Let F be a λ-cut such
that each of two components of G− F have at least two vertices, and let W and
T denote the vertex sets of the two components. By the proof of Theorem 2.8 of
[19] we get that 2δ − 1 ≤ |W |, |T | ≤ n− 2δ + 1.

If λ(G) < δ(G), then 2δ ≤ |W |, |T | ≤ n − 2δ (see, for example, [9]) and by
Theorem 1(f)

R0(G) ≥ min

{

γ1

(

−1

2
, δ

)

, γ2

(

−1

2
, δ

)}

,

where γ1
(

−1
2 , δ

)

= H3

(

−1
2 , δ

)

+ δ−
1

2 − (δ + 1)−
1

2 +
√

2
[

(n − 2δ)−
1

2 − (n − 2δ +

2)−
1

2

]

≥ H3

(

−1
2 , δ

)

, γ2
(

−1
2 , δ

)

= H4

(

−1
2 , δ

)

+
√

2
[

(2δ)−
1

2 − (n− 2δ)−
1

2

]

+
√

2
[

(n− 2δ − 2)−
1

2 − (n− 2δ)−
1

2

]

≥ H4

(

−1
2 , δ

)

. Therefore, we have

R0(G) ≥ min

{

H3

(

−1

2
, δ

)

, H4

(

−1

2
, δ

)}

,

a contradiction to equation (2). Thus we assume that λ(G) = δ(G) in the follow-
ing.

We know that | [W,W ]| ≤
⌊

|W |2

4

⌋

by Turán’s Theorem, and thus

∑

w∈W

d(w) ≤ 2

⌊ |W |2
4

⌋

+ δ.
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If |W | is even, then
∑

w∈W d(w) ≤ |W | |W |
2 + δ. By Lemma 4, we obtain

(3)
∑

w∈W

d−
1

2 (w) ≥ (|W | − δ)

( |W |
2

)− 1

2

+ δ

( |W |
2

+ 1

)− 1

2

.

If |W | is odd, then
∑

w∈W d(w) ≤ |W | |W |−1
2 + |W |−1

2 + δ. If |W | > 2δ − 1,
then by Lemma 4, we obtain

(4)
∑

w∈W

d−
1

2 (w) ≥
[ |W | + 1

2
− δ

] [ |W | − 1

2

]− 1

2

+

[ |W | − 1

2
+ δ

] [ |W | + 1

2

]− 1

2

.

If |W | = 2δ − 1, then
∑

w∈W d(w) ≤ |W | |W |+1
2 . By Lemma 4, we have

(5)
∑

w∈W

d−
1

2 (w) ≥ |W |
( |W | + 1

2

)− 1

2

= (2δ − 1)δ−
1

2 .

If |W |, |T | = 2δ − 1, then by Lemma 4, we have

R0(G) =
∑

w∈W

d−
1

2 (w) +
∑

t∈T

d−
1

2 (t) ≥ 2(2δ − 1)δ−
1

2

= (2δ − 1)δ−
1

2 +
n(n− 2δ + 2)−

1

2

√
2

+
(n− 4δ + 2)(n− 2δ)−

1

2

√
2

= H1

(

−1

2
, δ

)

,

a contradiction to (2). Thus, we assume in the following that one of |W |, |T | is
not equal to 2δ − 1, say |T | > 2δ − 1 whenever |W | = 2δ − 1. We consider five
cases.

Case 1. n is even and |W | = 2δ− 1. As n is even and |W | = 2δ− 1, we know
that |T | = n− |W | is odd. Thus by inequalities (4) and (5),

R0(G) =
∑

w∈W

d−
1

2 (w) +
∑

t∈T

d−
1

2 (t) ≥ (2δ − 1)δ−
1

2

+

[ |T | − 1

2
+ δ

] [ |T | + 1

2

]− 1

2

+

[ |T | + 1

2
− δ

] [ |T | − 1

2

]− 1

2

= (2δ − 1)δ−
1

2 +

[

n− 2δ

2
+ δ

] [

n− 2δ + 2

2

]− 1

2

+

[

n− 2δ + 2

2
− δ

] [

n− 2δ

2

]− 1

2

= (2δ − 1)δ−
1

2

+
n(n− 2δ + 2)−

1

2

√
2

+
(n− 4δ + 2)(n− 2δ)−

1

2

√
2

= H1

(

−1

2
, δ

)

,

a contradiction to (2).
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Case 2. n is odd and |W | = 2δ − 1. Since n is odd and |W | = 2δ − 1, we
know that |T | = n− |W | is even. Thus by inequalities (3) and (5),

R0(G) =
∑

w∈W

d−
1

2 (w) +
∑

t∈T

d−
1

2 (t)

≥ (2δ − 1)δ−
1

2 + (|T | − δ)

[ |T |
2

]− 1

2

+ δ

[ |T |
2

+ 1

]− 1

2

= (2δ − 1)δ−
1

2 + (n− 3δ + 1)

[

n− 2δ + 1

2

]− 1

2

+ δ

[

n− 2δ + 3

2

]− 1

2

= (2δ − 1)δ−
1

2 +
√

2δ(n− 2δ + 3)−
1

2 +
√

2(n− 3δ + 1)(n− 2δ + 1)−
1

2

= H2

(

−1

2
, δ

)

,

a contradiction to (2).

Case 3. n and |W | are both even, and |W | > 2δ − 1. Immediately, we have
that |T | = n− |W | is also even. Thus by inequality (3),

R0(G) =
∑

w∈W

d−
1

2 (w) +
∑

t∈T

d−
1

2 (t)

≥ (|W | − δ)

[ |W |
2

]− 1

2

+ δ

[ |W |
2

+ 1

]− 1

2

+ (|T | − δ)

[ |T |
2

]− 1

2

+ δ

[ |T |
2

+ 1

]− 1

2

= (|W | − δ)

[ |W |
2

]− 1

2

+ δ

[ |W |
2

+ 1

]− 1

2

+ (n− |W | − δ)

[

n− |W |
2

]− 1

2

+ δ

[

n− |W |
2

+ 1

]− 1

2

=
√

2|W | 12 +
√

2(n− |W |) 1

2 − δh(|W |),

where h(|W |) =
[

|W |
2

]− 1

2 −
[

|W |
2 + 1

]− 1

2

+
[

n−|W |
2

]− 1

2 −
[

n−|W |
2 + 1

]− 1

2

.

Define a function f1(x) =
(

x
2

)− 1

2 −
(

x
2 + 1

)− 1

2 . It is easy to verify that

f
′′

1 (x) > 0 for x > 0 , hence the function f1(x) is convex. By |W |, |T | ∈ [2δ, n−2δ]

and Lemma 5, we have f1(|W |)+f1(n−|W |) ≤ f1(2δ)+f1(n−2δ) and f2(x) = x
1

2

is an increasing function for x > 0, thus

R0(G) ≥ (2δ)
1

2

2−
1

2

+
(2δ)

1

2

2−
1

2

−δ

[

δ−
1

2 − (δ + 1)−
1

2 +

(

n− 2δ

2

)− 1

2

−
(

n− 2δ

2
+ 1

)− 1

2

]

= 3δ
1

2 + δ(δ + 1)−
1

2−
√

2δ(n− 2δ)−
1

2 +
√

2δ(n− 2δ + 2)−
1

2 = H3

(

−1

2
, δ

)

,

a contradiction to (2).
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Case 4. n is even, |W | is odd and |W | > 2δ + 1. Then |T | = n− |W | is odd.
Since |W |, |T | ≥ 2δ + 1 and by (4),

R0(G) =
∑

w∈W

d−
1

2 (w) +
∑

t∈T

d−
1

2 (t)

≥
[ |W | − 1

2
+ δ

] [ |W | + 1

2

]− 1

2

+

[ |W | + 1

2
− δ

] [ |W | − 1

2

]− 1

2

+

[

n− |W | − 1

2
+ δ

] [

n− |W | + 1

2

]− 1

2

+

[

n− |W | + 1

2
− δ

] [

n− |W | − 1

2

]− 1

2

=
(|W | + 1)

1

2

√
2

− (|W | + 1)−
1

2

2−
1

2

+
(|W | − 1)

1

2

√
2

+
(|W | − 1)−

1

2

2−
1

2

+
(n− |W | + 1)

1

2

√
2

− (n− |W | + 1)−
1

2

2−
1

2

+
(n− |W | − 1)

1

2

√
2

+
(n− |W | − 1)−

1

2

2−
1

2

− δ

[

( |W | − 1

2

)− 1

2

−
( |W | + 1

2

)− 1

2

+

(

n− |W | − 1

2

)− 1

2

−
(

n− |W | + 1

2

)− 1

2

]

.

Define a function f3(x) =
(

x−1
2

)− 1

2 −
(

x+1
2

)− 1

2 . It is easy to verify that f
′′

3 (x) > 0
for x > 0. Hence f3(x) is convex. Then we have

f3(|W |) + f3(n− |W |) ≤ f3(2δ + 1) + f3(n− 2δ − 1).

Note that f2(x) = x
1

2 is an increasing function and f4(x) = x−
1

2 is a decreasing
function for x > 0. Hence

R0(G) ≥ (2δ + 2)
1

2

√
2

− (2δ + 2)−
1

2

2−
1

2

+
(2δ)

1

2

√
2

+
(n− 2δ − 2)−

1

2

2−
1

2

+
(2δ + 2)

1

2

√
2

− (2δ + 2)−
1

2

2−
1

2

+
(2δ)

1

2

√
2

+
(n− 2δ − 2)−

1

2

2−
1

2

− δ

[

δ−
1

2 − (δ + 1)−
1

2 +
(n− 2δ − 2)−

1

2

2−
1

2

− (n− 2δ)−
1

2

2−
1

2

]

= δ
1

2 + 3δ(δ + 1)−
1

2 −
√

2(δ − 2)(n− 2δ − 2)−
1

2 +
√

2δ(n− 2δ)−
1

2

= H4(−
1

2
, δ) + δ(δ + 1)−

1

2 − δ
1

2 +
√

2(n− 2δ − 2)−
1

2 ≥ H4

(

−1

2
, δ

)

,

a contradiction to (2).

Case 5. n is odd and |W | > 2δ − 1. Assume without loss of generality that
|W | is odd and |T | is even. Then we have |W | ≥ 2δ + 1 and |T | ≥ 2δ. Thus by
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inequalities (3) and (4), we have

R0(G) =
∑

w∈W

d−
1

2 (w) +
∑

t∈T

d−
1

2 (t)

≥
[ |W | − 1

2
+ δ

] [ |W | + 1

2

]− 1

2

+

[ |W | + 1

2
− δ

] [ |W | − 1

2

]− 1

2

+ (|T | − δ)

[ |T |
2

]− 1

2

+ δ

[ |T |
2

+ 1

]− 1

2

=
(|W | + 1)

1

2

√
2

− (|W | + 1)−
1

2

2−
1

2

+
(|W | − 1)

1

2

√
2

+
(|W | − 1)−

1

2

2−
1

2

+
(n− |W |) 1

2

2−
1

2

− δ

[

( |W | − 1

2

)− 1

2

−
( |W | + 1

2

)− 1

2

+

(

n− |W |
2

)− 1

2

−
(

n− |W |
2

+1

)− 1

2

]

.

By Lemma 9, we obtain
(

n−|W |
2

)− 1

2

+
(

n−|W |+1
2

)− 1

2 ≤
(

n−|W |
2 + 1

)− 1

2

+
(

n−|W |−1
2

)− 1

2

, i.e.,
(

n−|W |
2

)− 1

2−
(

n−|W |
2 + 1

)− 1

2 ≤
(

n−|W |−1
2

)− 1

2−
(

n−|W |+1
2

)− 1

2

.

Since f3(x) =
(

x−1
2

)− 1

2 −
(

x+1
2

)− 1

2 is convex and

f3(|W |) + f3(n− |W |) ≤ f3(2δ + 1) + f3(n− 2δ − 1).

Note that f2(x) = x
1

2 is an increasing function and f4(x) = x−
1

2 is a decreasing
function x > 0. Therefore, we have

R0(G) =
∑

w∈W

d−
1

2 (w) +
∑

t∈T

d−
1

2 (t)

≥ (2δ + 2)
1

2

√
2

− (2δ + 2)−
1

2

2−
1

2

+
(2δ)

1

2

√
2

+
(n− 2δ − 2)−

1

2

2−
1

2

+
(2δ)

1

2

2−
1

2

− δ

[

(

2δ

2

)− 1

2

−
(

2δ + 2

2

)− 1

2

+

(

n− 2δ − 2

2

)− 1

2

−
(

n− 2δ

2

)− 1

2

]

= 2δ
1

2 + 2δ(δ + 1)−
1

2 −
√

2(δ − 1)(n− 2δ − 2)−
1

2 +
√

2δ(n− 2δ)−
1

2

= H4

(

−1

2
, δ

)

,

a contradiction to (2).

We present a class of graphs to show that the condition in Theorem 12 cannot
be improved.
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Example 13. For arbitrary integers δ and n ≥ 4δ−1, let G1
∼= Kδ−1,δ with vertex

set V (Kδ−1,δ) = W ∪T (where W = {w1, w2, . . . , wδ−1} and T = {t1, t2, . . . , tδ}).
Let G2

∼= Kn−2δ+1

2
,n−2δ+1

2

with vertex set V (G2) = X∪Y (where X = {x1, x2, . . . ,
xn−2δ+1

2

} and Y = {y1, y2, . . . , yn−2δ+1

2

}). We define the graph G as the union of

G1 and G2 together with the δ edges t1x1, t2x2, . . . , tδxδ. Clearly, G is triangle-
free, has order n and minimum degree δ and

R0(G) = (2δ − 1)δ−
1

2 +
√

2δ(n− 2δ + 3)−
1

2

+
√

2(n− 3δ + 1)(n− 2δ + 1)−
1

2 = H3

(

−1

2
, δ

)

,

but it is easy to see that G is not super-λ.
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