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Abstract

Define the zeroth-order Randié¢ index as R%(G) = e \/ﬁ;
where dg(x) denotes the degree of the vertex x. In this paper, we present
two sufficient conditions for graphs and triangle-free graphs, respectively, to

be super edge-connected in terms of the zeroth-order Randi¢ index.
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1. INTRODUCTION

Throughout this paper, we consider finite undirected simple connected graphs.
Let G be such a graph with vertex set V = V(G) and edge set E = E(G). Then
the order and size of G are n = |V| and m = |E|, respectively. The degree
of a vertex u € V is the number of edges incident with w in G, denoted by
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d(u) = dg(u). The minimum of all the vertex degrees of G is called the minimum
degree of G, and denoted by 6 = 0(G). The distance between two vertices u and
v of G is the length of a shortest path connecting them in G. The maximum of
distances over all pairs of vertices of G is called the diameter of G, and denoted
by diam(G).

A wertex-cut in a graph G is a set X of vertices of G such that G — X is
disconnected. The vertez-connectivity or simply the connectivity k = k(G) of a
graph G is the minimum cardinality of a vertex-cut of G if GG is not complete,
and k(G) = n — 1 if G is the complete graph K, of order n. An edge-cut of
a connected graph G is a set of edges whose removal disconnects G. The edge-
connectivity A(G) is defined as the minimum cardinality of an edge-cut over all
edge-cuts of G. An edge-cut S is a minimum edge-cut or a A-cut, if |S| = A\(G),
and an edge-cut S is trivial, if S consists of edges adjacent to a vertex of minimum
degree. Notice that A(G) < §(G), and a graph G with A\(G) = §(G) is said to
be mazimally edge-connected, or A-optimal for simplicity. Other terminology and
notation needed will be introduced as it naturally occurs in the following and we
use Bondy and Murty [3] for those not defined here.

The zeroth-order Randié¢ index R°(G) was defined by in Kier and Hall in 1986

[12, 13] as
RY(G) = L
xg(:c) da()

Let R(G) = X yev(q) ﬁ(u), which is the known inverse degree of a graph.
Sufficient conditions for whether a graph is maximally edge-connected were
given by several researchers.

Theorem 1. Let G be a connected graph of order n, minimum degree § and
edge-connectivity \. Then \ = ¢ if

(a) ([4) 0= 5];

(b) ([14]) d(u) + d(v) > n — 1 for all pairs u, v of nonadjacent vertices;

(c) ([6]) R(G) <2+4+2/6(0+1)+(n—2)/(n—056—-2)(n—06—1);

(d) ([6]) G is triangle-free and R(G) < 4—4(6—1)(1/26(26+2))+1/(n—26)(n—
20+ 2));

(e) ([5]) RUG) <2672+ 624+ (s —1)(6+1)" 2+ (0 —-1)(n—6-1)"1/2—
(6 —2)(n—6—2)"12

(f) ([5]) If G is triangle-free and R°(G) < min{y1(—1/2,8),72(—1/2,6)}, then
A =3, where y1(—1/2,8) = 3612+ 6712 4+ (6 —1)(6+1)"/2 =20 - 1)(n—
20)712 4 V/2(6 — 1)(n — 20 + 2)7V/2, 49(—=1/2,8) = 26Y/2 + 6712 £ 25(6 +
D~Y2 —/2(6 — 2)(n — 26 —2)" Y2 +V/2(5 — 2)(n — 26)" /2,

Other sufficient conditions, depending on paraments not directly related to
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the vertex degree, for graphs to be maximally edge-connected were given by
several authors.

Bauer et al. [1] proposed the concept of super-connectedness. A graph G is
called super-edge-connected or super-A if every minimum edge-cut is trivial; that
is, if every minimum edge-cut consists of edges incident with a vertex of minimum
degree. Thus every super edge-connected graph is also maximally edge-connected.
The study of super edge-connected graphs has a particular significance in the
design of reliable networks [2]. Most of known sufficient conditions for a graph G
to be super-\ are closely related to those in the preceding theorem.

Theorem 2. Let G be a connected graph. Then G is super-\ if
(a) (Kelmans [11]) n <24(G) — 1;

(b) (Fiol [10]) d(u) + d(v) > n for all pairs w and v of nonadjacent vertices and
G s different from K, 5 X Ko;

(c¢) (Fiol [10]) diam(G) = 2 and G contains no K with all its vertices of degree §;
(d) (Fiol [10]) G is a bipartite graph with 6 > 3 and n < 46 — 3;

(e) (Soneoka [17]) n > §((A — 1)#em(E) =1 _ 1 /(A —2) + 1) + (A — 1)dem(@)-1,
(f) (Tian [19]) R(G) <2+ (n—2d)/(n—06 —1)(n —9);

(g) (Tian [19]) G is triangle-free and R(G) <2+1/6(0+1)+(n—20—1)/(n—

§—1)(n—5—2).

In [6] Dankelmann et al. gave sufficient conditions for graphs to be maximally
edge-connected in terms of the inverse degree, the minimum degree and the order
of a graph. In [19] Tian et al. gave sufficient conditions for graphs to be super
edge-connected in terms of the inverse degree, the minimum degree and the order
of a graph.

Motivated by the results of Dankelmann et al. [6] and Tian et al. [19], in this
paper we give sufficient conditions for arbitrary graphs and triangle-free graphs
to be super edge-connected in terms of the zeroth-order general Randi¢ index,
minimum degree and the order.

2. PRELIMINARY LEMMAS

In this section, we will list or prove some lemmas which will be used in our later
proofs.

Lemma 3 (Lin et al. [15]). Let z1,29 € N and o € R. If x1 —2 > x9 > 1, then
(i) (x1 =D+ (ra+ D <a2f+25 ifa<0 ora>1,;
(i) (x1 =)+ (x2+1)*>af+25 if0<a< 1.
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Lemma 4 (Su [18]). Let z1,...,xp and A be positive reals with Y % z; < A.
For any real number o < 0, we have
(i) 20y af 2 pime A%
(ii) of, in addition x1,...,xp, A are positive integers, and a, b are integers with
A=ap+band 0<b<p, then >0 _ 2% > (p—b)a® + bla + 1)*.
Lemma 5 [18]. Let ®(x) be a continuous function on interval [L, R] and l+1r =
L+ R forl,r € [L,R]. Then
(i) ®(L) + (R) > ®(1) + ©(r) if (x) is convex;
(ii) ®(L) + P(R) < (1) + @(r) if D(x) is concave.
We say that a graph is triangle-free if it does not contain a triangle as a
subgraph.

Lemma 6 (Dankelmann and Volkmann [7]). Let G be a triangle-free graph of
ordern <46 — 1. Then A = 0.

A complete r-partite graph Ky, pn,,.. n, is a simple graph whose vertices can
be partitioned into r (r > 2) sets so that each pair of vertices is connected by an
edge if and only if they belong to different sets of the partition.

The Turdn graph T, , is the complete r-partite graph with b partite sets of
size a + 1 and r — b partite sets of size a, where a = L%J and b =n — ra.

The following is a famous result due to Turdn [20].

Lemma 7 (Turan [20]).
(i) Among all the n-vertex simple graphs with no (r + 1)-clique, T, , has the
mazimum number of edges.

(i) 1B < | (1-1) 2],

For two subsets X and Y of V(G), let [X,Y] be the set of edges with one
endpoint in X and the other one in Y, and |[X,Y]| denotes the cardinality of
[(X,Y].

The following lemma was proved by Dankelmann and Volkmann [8].

Lemma 8 (Dankelmann and Volkmann [8]). Let G be a connected graph. If there
exist two disjoint, nonempty sets X, Y C V(G), XUY =V(G), and | [ X,Y]]| < 0,
then | X| >0+ 1 and |Y| >0+ 1.

The result above also can be found in other literature, e.g. Dankelmann and
Volkmann [7] and Plesnik and Znam [16].

_1
Lemma 9. Let z be a real number. Then x~ % + (:U—I— %) 2 < (z+ 1)_% +
1
-y
_1
Proof. Let h(t) =t72 — (t—3) 2. Clearly, h(t) is increasing for ¢ > 1, so we
_1 _1
get h(x+1) > h(z), ie., R (z+3) 2< (:H—l)’% +(z—1)72, as desired. m

[N
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3. MAIN RESuLT

Theorem 10. Let G be a connected graph of order n, minimum degree § and
edge-connectivity A. If

(1) R%°(G) < min {Ll <—;,5> . Lo (—i,&)},

then G is super-A, where Ly (—%,68) = 52 + d(n — 5)7% +(n—20)(n—0— 1)7%,
Ly (=3,0) = (64+1)6 2 4+6(6+1)2+6n—56—1)"2 (6 —1)(n—35—2)"2.

Proof. In view of Theorem 2(a), we may assume n > 20. Suppose to the contrary
that G is not super-A. Let S be a A-cut such that each of two components of
G — S have at least two vertices, and let W and T denote the vertex sets of
the two components of G — S. We claim that 6 < |[W/|,|T| < n — . Assume
[W| < §—1. Then 6 > 3 and \(G) = |[W,W]| > §|W| — [W[|(|W| - 1) >
SIWl -G -1)(W|-1)=6d—-1+|W| >d+1 >4, a contradiction (because
it is well known that A\(G) < 0(G)). Similarly, we have |T'| > 6. Therefore,
S < |W|,|T| <n—0.
If A\(G) < 6(@G), then by Theorem 1(e), we have

RYG) >26 2462+ —1)(6+1) 2+ —1)(n—0—1)"2

—(6-2)(n—56-2)"2

— Lo (~5.8) +8E @) E 02 E - (a1

1
> Ly (—2, 5) (since 277 s a decreasing function for z > 0),

a contradiction to equation (1). Thus we assume that A(G) = §(G) in the follow-
ing argument.

Each vertex in T is adjacent to at most |T'| — 1 vertices of T, and exactly &
edges join vertices of T" to vertices of W. Hence >, . d(t) < |T|(|T'| — 1) +0. If
d < |T|, then by Lemma 4

Zd_%(t) > (T = 6)(|IT] — 1)*% + 5|T\’%
teT
= 071~ 1)+ (= 8T = 1) + ol

= (7= D} + (1= 1F =5 [(T) - )7 - T3]

If |T| = §, then Y ,p d(t) < |T|2, by Lemma 4, ,cpd"2(t) > |T|2. The
same argument is also valid for W. Now we consider two cases.
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Casel. |W| =0 or |T| = 0. Assume, without loss of generality, that [W| =§
and |T| =n — 0. If n = 20, then

R(G) = Y d 2(w)+ Y d 3 (t) > 282

weWw teT
=62 406(n—08)"24(n—20)(n—56-1)"

[N

Il

h

iy

|
| =

(o9
N—

a contradiction to equation (1). Thus we suppose that n > 2§. By the above
argument,

RUG) = Y d2(w)+ Y d 3(1)

weW teT
WIE + (7] = )% + (7] - )72 =5 [(T] - 1)7% — 7| 4]

Y

— ==+ (= 6-1)F =5 (n-0-1)7F — (n—0)7}

1
— I (—2, 5) ,
a contradiction to equation (1).

Case 2. |[W| > ¢+ 1 and |T| > § + 1. Since G has a vertex v of degree 9,
without loss of generality, assume v € W. Then }_, cyn g,y d(w) < ([W]— 1)246.
If[W]=0+1, then }_ ey oy d(w) < [W|([W]|—=1) =6(6+1), by Lemma 4,

we have > d_%(w) > 673 + 0(0 + 1)_%. Hence

[NIE

=62 4+0(n—0) "2+ —28)(n—6—1)"

RG) =Y d2(w)+ Y d2(t)>6 2 +5(8+1)2
weWw teT
F(n—0-22+n-6-272-5|(n-6-2)2—(n—5—1)"2

=52+ +1) 2+ (n—20—1)(n—6—2)"2 +8(n—35—1)"2

N|=

1

= L, <—2,5> t(n—6-2)7—6
1 . 1, . : :

> Lo <2, 5> (since z2 is an increasing function for z > 0),

a contradiction to equation (1).
If W] > 6 + 2, then by Lemma 4, we have

N dE(w) > 5+ (W] - 1= 8)(W| 1) +5[W| 2
weW
= 67F+ (W] = 1) =8 [(W] - )72 — W73 ]
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Hence
RY(G) = Z d*%(w) —i-zd*%(t)
weWw teT
> 673 (W] = )2 = [(W] = )%~ [W]73] + (17| - 1)

+ (T = 1)7% =8 [(T) = )73 = |T|73]
— (W] = 1% + (T = 1)z +(|T| —1)"2
=6 [(IW] =178 = (W] + (7| - 1)7F - 7173

To minimize the {ight—halnd side of the last inequality, consider the function
hi(z) = (x —1)"2 —z72. It is easy to verify that h(z) > 0 for z > 1, so
hi(t) is convex. By |[W|,|T| > d + 1, |W|+ |T| = n, and Lemma 5, we have

(W] =1)"2 = [W[72 +(IT| = 1)"2 — |T| ">
1 1 1 1
<520+ 2+ (n-6-22~-(n—-0-1)"2.

Note that ho(z) = 272 is a decreasing function and hs(z) = 27 is an increasing
function for x > 0. We have
RG) =D d3(w)+ Y d3(t)> 82 +62+62+(n—35—2)73

weW teT
_1

—5[5—%—(5+1)—%+(n—5—2> P (n—6—1)3

= (6 +1)0 2 +6(0+1) 2 +8(n—-6—1)"2—(5—1)(n—0—2)"2

1
= L2 <_275) )

a contradiction to equation (1). |

We present a class of graphs to show that the condition in Theorem 10 cannot
be improved.

Example 11. Let n and § be arbitrary integers with n > 20 > 4. Furthermore,
let G; & K with vertex set V(G1) = {u1,ug,...,us} and let Hy = K,,_5 with
vertex set V(Gy) = {v1,v9,...,v,_s5}. We define the graph G as the union of G
and G2 together with 6 — 1 edges ujv1, ugva, ..., usvs. Then n(G) =n, 6(G) =d
and

RYG) =62 +8(n—0)"2+(n—20)(n—0-1)"2=1I, <_;,5) :
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But it is easy to see that G is not super-A.

Now we pay our attention to the maximally edge-connected triangle-free
graphs. In the following we shall use the following four functions

1

H; (—;,t) = (2t — 1)t*% + n(n — f2+ 2)"2 + (n4t+%n —2t)” 77
Hy (;t> = (20— 1)t72 +V2t(n — 2t +3)"2 +v2(n — 3t + 1)(n—2t+1)"3;
Hs (—;,t> = 3t

Hy (—;,t) =203 4+ 20(t +1)77 — V2(t — 1)(n — 2t —2)72 + V2t(n — 2t)"2.

l\.’)

-

FH(t+1)72 — V2t — 26) 73 +V2t(n — 2 + 2)7F;

[N

Theorem 12. Let G be a connected triangle-free graph of order n, minimum
degree & and edge-connectivity A. If

(2)  R%°G) < min {H1 (—i,é) ,Hy (—i,é) , Hs <—; 5> JHy (—; 5) } ,

then G is super-\.

Proof. Suppose to the contrary that G is not super-A. Let F' be a A-cut such
that each of two components of G — F have at least two vertices, and let W and
T denote the vertex sets of the two components. By the proof of Theorem 2.8 of
[19] we get that 206 — 1 < |W|,|T| <n—2§ + 1.

If A\(G) < 0(G), then 20 < |W|,|T| < n — 20 (see, for example, [9]) and by

Theorem 1(f)
ez (4)on (19}

1

where v (—3,6) = Hsz (—3,9) 62 —(0+1)2+ f[(n—%) %—(n—25+
2)78| = Hy(=3,9), % (=}6) = Hi(~4,0) + V2[(20) "% = (n—20) "3
V2 [(n -2 — 2)75 —(n— 25)7%} > Hy (—1,6). Therefore, we have

R%(G) > min {H3 <—;,5> ,Hy <—;,5> },

a contradiction to equation (2). Thus we assume that A(G) = §(G) in the follow-
ing.
2
We know that | [W, W]| < L%J by Turdn’s Theorem, and thus

> d(w) <2 VTQJ + 4.

weW
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If [W|is even, then )y d(w) < \W\M + 9. By Lemma 4, we obtain

(3) S di(w) \W\—5)<|V2V|> +5<|V2V|+1>5.

weW

If W] is odd, then 3, oy d(w) < (WL 4 WL 5016 ) > 25 — 1,
then by Lemma 4, we obtain

5 o= [ ] e )

weW
If [W|=2§—1, then ) .y d(w) < |W|% By Lemma 4, we have
1
_1 [W|+1\ 2 1
) d ) > W | —— 0—1)6"
) X iwzw (M) T =@ na.

If |W/|,|T| = 26 — 1, then by Lemma 4, we have

=N dr(w)+ > dE(t) > 2(25 —1)6 3

weW teT . .
1 nn—20+2)"2 (n—40+2)(n—25)"2
= (20— 1)0"2 + +

1
= Hl <256> ’

a contradiction to (2). Thus, we assume in the following that one of |W/|, |T| is
not equal to 20 — 1, say |T'| > 20 — 1 whenever |W| = 2§ — 1. We consider five
cases.

Case 1. nis even and |W| =20 —1. As nis even and |W| = 26 — 1, we know
that |T'| = n — |W| is odd. Thus by inequalities (4) and (5),

RU(G) = > 4z +Zd (20 —1)5~2
weWw teT L L
IT| -1 7| +1172 (1Tl +r [T -1
+ [2 +4 5 + 5 ) 5
:(25—1(5%—1—[” 2(5 ][n—225+2}

l\)\»—l

+[n—25—|—2 5] [n—25] (25— 1)5

1

n(n—20+2)"2 (n—46+2)(n—26)"2 1
i V2 =it (-:),

a contradiction to (2).

t\:'
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Case 2. n is odd and |W| = 20 — 1. Since n is odd and |W| = 20 — 1, we
know that |T'| = n — |W] is even. Thus by inequalities (3) and (5),

=N dr(w) + Y d i)

weWw teT
1

> (26— 1)0=% + (|T] - ){m]_ﬂ ['T|+1] ’

l\J)—l

2 2

n—20+1 7%_’_5 n—20+3] 2
2 2

= (26— 1)672 +V26(n —25+3)"2 +V2(n— 30+ 1)(n — 25 + 1) 2

1
= H2 <_275> )

a contradiction to (2).

:(25—1)55+(n—35+1)[

Case 3. n and |W| are both even, and |W| > 2§ — 1. Immediately, we have
that |T'| = n — |W] is also even. Thus by inequality (3),

=N dE(w)+ Y dE (1)

wew = 1 | |
o 1 B
- [Wm_%” [v;/\ H] - [n _2|W|]_é
iy [n 2IWI + 1} 3 _ VEIWE +v3(n— [WE — (W),

e I
1

Define a function fi(z) = (%) 2 — (3 +1) 2. It is easy to verify that
fi (z) > 0for z > 0, hence the function fi(z) is convex. By |W|,|T| € [26,n—24]

and Lemma 5, we have fi(|W|)+ fi(n—|W|) < f1(20)+ fi(n—26) and fo(x) = 3
is an increasing function for x > 0, thus

1 1 i B
e P NN C I PE S N (” - 25) 2 <n -2 1) 2
272 272 2 9

=

1
= 362 +5(6+1)"2—v/28(n— 26)"7 +v20(n — 26 +2)"2 = Hy <—2, 5),

a contradiction to (2).
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Case 4. n is even, |W| is odd and |W| > 20 + 1. Then |T| = n — |[W] is odd.
Since |W|,|T| > 26 + 1 and by (4),

=N dE(w)+ > dE (1)

weW teT L L
144 Wi+1]72  [IW][+1 [W|—1]"2
> - = L
[ 2 * 2 0 2
+[n W - 5} [n—|W|+1} %+[n W+ 1 5] [n_yVQV\_1]é
LR R L VR (LU R S rww—wé
V2 273 V2 23
L= WD (e WD) (e W] =12 (0 (W] 1)
V2 273 V2 923

[un
[un

[y e ey ey

—_= _l 1"
Define a function f3(z) = (£52)" 2 — (1) 2. It is easy to verify that f5 (z) > 0
for z > 0. Hence f3(x) is convex. Then we have

=

[(W]) + fa(n = [W]) < f3(26 + 1) + f3(n — 25 — 1).

1

Note that fa(x) = 27 is an increasing function and f4(x) = 72 is a decreasing

function for = > 0. Hence

25+2)7 (264272 (262 (n—25-2)z
R(G) > ( —
@) 2 V2 9-3 * V2 * 273
(20+2)3  (20+2)2 . (26)2 . (n—26—2)"2
V2 273 V2 273
_1 _1
s 5,%_(54_1)7%_’_(71725:2) 2 _(n—Qf) 2]
2732 273

= 571306+ 1)7F — V2(6 — 2)(n — 20 — 2)72 +v20(n — 26)2

I
S
|
|
>,
S~—
+
>,
—~
>,
+
(-
\_/
l\J
|
>,
NI
+
®
3
|
[\)
<,
|
[\G)
\_/
w\»-t
/’r\
—_
>,
~_

a contradiction to (2).

Case 5. n is odd and |[W| > 2§ — 1. Assume without loss of generality that
|W|is odd and |T'| is even. Then we have |W| > 2§ 4+ 1 and |T'| > 2§. Thus by
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inequalities (3) and (4), we have

=S dE(w) + > dE(t)
weW teT

Bl ey

1
T| T2
(Ir — +1
o5 o5
_ (WD (WD (W-n: (W=7 (n - [W])2
V2 273 V2 273 273

_ 5[<\W\2— 1>—%_ <\W|2+ 1>—5+ (n _2,W,>—;_ <n - H)_; |

By Lemma 9, we obtain <
_1
2

1

1

n—|wl-1\"2 . n—|W|
—5 ,l.e., 5

Since f(x) = (551) 72 — (2£1)”

2

1 1 1
T2 n—|W|+1\) 2 n—|W| 2

1 1

2 %% 2

1 _
|W|+1> 7 (nwaw 1)

is convex and

l\‘:h—t’ N

[(W]) + fa(n = [W]) < f3(26 + 1) + f3(n — 25 — 1).

Note that fo(x) = 27 is an increasing function and fy(z) = 277 is a decreasing

function x > 0. Therefore, we have

RUG) = Y d3(w)+ Y d3(1)

weW ) teT ) L ) L
@+t @roh o) (oo (@)
V2 2732 V2 2-2 22

(Y E (22 E, (mo2-2\TE no25)
2 2 2 2
= 262 +20(0+1)72 —V2(6 — 1)(n — 26 — 2)"2 + v/26(n — 20)"2
1
:H4 <_276)7
a contradiction to (2).

We present a class of graphs to show that the condition in Theorem 12 cannot
be improved.
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Example 13. For arbitrary integers d and n > 46—1, let G1 = K;_1 5 with vertex
set V(Ks5-15) = WUT (where W = {wi,wa,...,ws_1} and T' = {t1,t2,...,ts5}).
Let Gy = Kwyw with vertex set V(G2) = XUY (where X = {z1,29,...,
x%m} and 52/ = {y21,y2, ... ,y%m}). We define the graph G as the union of

G1 and G together with the § edges t1x1,tox2,. .., tsxs. Clearly, G is triangle-
free, has order n and minimum degree § and

RY(G) = (26— 1)672 +V28(n — 20+ 3) "2
FV2(n— 36+ 1)(n—20+1)"% = Hy (-i,a) ,

but it is easy to see that G is not super-A\.
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