
Discussiones Mathematicae
Graph Theory 40 (2020) 875–884
doi:10.7151/dmgt.2162

TREES WITH DISTINGUISHING INDEX EQUAL
DISTINGUISHING NUMBER PLUS ONE

Saeid Alikhani

Department of Mathematics, Yazd University, 89195-741, Yazd, Iran

e-mail: alikhani@yazd.ac.ir

Sandi Klavžar
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Abstract

The distinguishing number (index) D(G) (D′(G)) of a graph G is the
least integer d such that G has an vertex (edge) labeling with d labels that
is preserved only by the trivial automorphism. It is known that for every
graph G we have D′(G) ≤ D(G)+1. In this note we characterize finite trees
for which this inequality is sharp. We also show that if G is a connected
unicyclic graph, then D′(G) = D(G).
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1. Introduction

Let G = (V (G), E(G)) be a graph and let Aut(G) be its automorphism group.
A labeling φ : V (G) → [r] is distinguishing if no non-trivial element of Aut(G)
preserves all the labels; such a labeling φ is a distinguishing r-labeling. More
formally, φ is a distinguishing labeling if for every α ∈ Aut(G), α 6= id, there
exists x ∈ V (G) such that φ(x) 6= φ(α(x)). The distinguishing number D(G) of
a graph G is the smallest r such that G admits a distinguishing r-labeling.

The introduction of the distinguishing number in 1996 by Albertson and
Collins [1] was a great success, by now about one hundred papers were written
motivated by this seminal paper. The core of the research has been done on
the invariant D itself, either on finite [6, 11, 15] or infinite graphs [9, 17, 21];
see also the references therein. Extensions to group theory (cf. [14, 23]) and
arbitrary relational structures [16] were also investigated, as well as variations
of the concept such as the distinguishing chromatic number [5, 8]. Moreover,
very recently the game distinguishing number was introduced in [10]. It is hence
a bit surprising that the following variation of the distinguishing number—its
edge version—was introduced only in 2015 by Kalinowski and Piĺsniak [13]. The
distinguishing index D′(G) of a graph G is the smallest integer d such that G has
an edge labeling with d labels that is preserved only by the trivial automorphism.

Generally D′(G) can be arbitrary smaller than D(G), for instance if p ≥ 6,
then D′(Kp) = 2 and D(Kp) = p. Conversely, there is an upper bound on D′(G)
in terms of D(G). In [13, Theorem 11] (see also [18, Theorem 8] for an alternative
proof) it is proved that if G is a connected graph of order at least 3, then

(1) D′(G) ≤ D(G) + 1 .

In this paper we give a characterisation of the finite trees which achieve equality.
We further show that if G is a connected unicyclic graph, then D′(G) = D(G),
showing that the inequality is never sharp for unicyclic graphs.

2. Preliminaries

Graphs considered in this note will be simple and connected. With the exception
of Section 5, they will also be finite. For a positive integer k we will use the
notation [k] = {1, . . . , k}.

A tree T is unicentric if its center (that is, the subgraph induced by the
vertices of minimum eccentricity) consists of a single vertex and is bicentric oth-
erwise. In the latter case the center is isomorphic to K2 and will also be identified
with its edge.

If T is a bicentric tree with central edge e = vw, we denote by Tv and Tw the
components of T − e, where v ∈ Tv and w ∈ Tw.
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We will treat Tv and Tw as rooted trees with roots v and w respectively. Hence
we make the following (obvious) definitions for rooted trees. An automorphism
of a rooted tree is an automorphism of the underlying unrooted tree which fixes
the root. Analogously, an isomorphism of rooted trees is an isomorphism which
maps the root of one tree to the root of the other. An edge or vertex labeling
of a rooted tree is called distinguishing, if the only automorphism (of the rooted
tree) which preserves it is the identity.

For rooted trees there is also a natural correspondence between vertex and
edge labelings. Let T be a rooted tree with root v. Let f : V (T ) → [k] be a
vertex labeling of T . Define f ′v : E(T ) → [k] as follows. If e = xy ∈ E(T ),
where dT (y, v) < dT (x, v), then set f ′v(e) = f(x). Here dT denotes the standard
shortest-path distance function in the tree T . Since each non-root vertex of T has
a unique predecessor in T , the labeling f ′v is well-defined. It is also not hard to
see, that this procedure is reversible (up to the colour of the root). We will call f ′v
the (edge) co-labeling of f with respect to the root v. The following observation
will be useful.

Observation 2.1. A labeling f of a rooted tree is distinguishing if and only
if the co-labeling f ′v is distinguishing. In particular (since we can reverse the
construction and the colour of the root plays no role) the distinguishing index and
the distinguishing number of rooted trees are always equal.

To conclude the section we describe the class of trees B(h, d) from [13] which
forms a key motivation for this note. Its precise definition is lengthy, hence we
define it here a bit briefly; for additional details see [13].

Let Th,d be a unicentric tree with the central vertex v0 in which all leaves are
at distance h from v0 and all non-leaves are of degree d. Similarly, let T ′

h,d be a
unicentric tree with the central vertex v0 which is of degree d − 1, all leaves are
at distance h from v0, and all the other vertices have degree d. Let now h ≥ 1
and d ≥ 2. Then in T ′

h,d select ` of its levels h1, . . . , h`, where 0 ≤ hi ≤ h − 2,
i ∈ [`]. Select ` trees T ′

k1,d
, . . . , T ′

k`,d
, where 1 ≤ ki ≤ h − hi − 1, and construct

the tree T ′
h,d

([
T ′
k1,d

]
h1
, . . . ,

[
T ′
k`,d

]
h`

)
by attaching T ′

ki,d
, i ∈ [`], to every vertex

of the hi-th level of T ′
h,d. Iteratively, we can repeat this operation for any tree

attached in the previous stages. Let T0 be the constructed tree. The construction
is completed by taking two copies of T0 and joining their central vertices by an
edge. In this way a tree from B(h, d) is obtained.

3. Extremal Trees

A characterisation of finite trees T for which D′(G) = D(G) + 1 was suggested
in [13, Theorem 9]. While equality holds for every tree in the class B(h, d),
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there are further trees for which the inequality is sharp as the following example
demonstrates. Let T be the tree which consists of a central edge with four paths
of length 2 attached to each endpoint. The tree T together with a distinguishing
2-labeling demonstrating that D(T ) = 2 is shown in Figure 1. On the other hand,
it is easy to verify that D′(T ) = 3. But T does not belong to the set B(h, d) which
was claimed to contain all trees with D′ = D + 1.

Figure 1. A tree T with D(T ) = 2, D′(T ) = 3 and T 6∈ B(h, d).

In this section, we give a complete characterisation of finite trees with D′ =
D+ 1, thus correcting the flaw in [13, Theorem 9]. Define a family T as follows.
It consists of those trees T of order at least 3, for which the following conditions
are fulfilled.

1. T is a bicentric tree with the central edge e = vw.

2. There is an isomorphism between the rooted trees Tv and Tw.

3. There is a unique distinguishing edge-labeling of the rooted tree Tv using
D(T ) labels.

The following theorem now states that the family T contains all finite trees with
D′(T ) = D(T ) + 1.

Theorem 3.1. Let T be a finite tree of order at least 3. Then

D′(T ) =

{
D(T ) + 1 if T ∈ T ,
D(T ) otherwise.
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Before we prove this theorem, we state and prove a couple of auxiliary results.
Both of them are essentially contained in the proof of [13, Theorem 9].

Lemma 3.2. If T is a unicentric tree, then D′(T ) = D(T ).

Proof. This follows from Observation 2.1 by noting that every automorphism
of a unicentric tree must fix the central vertex (and thus can be seen as an
automorphism of a rooted tree).

Lemma 3.3. If T 6= K2 is a bicentric tree, then D(T ) ≤ D′(T ) ≤ D(T ) + 1.

Proof. Throughout the proof let e = vw be the central edge of T . Note that
every automorphism of T either fixes both v and w, or swaps them.

For the first inequality let f ′ be a distinguishing edge labeling and pick a
vertex labeling f such that f ′ is the co-labeling of f on Tv and Tw. Observation 2.1
makes sure that no automorphism which fixes both v and w preserves the labeling
f . If there is an automorphism which swaps v and w and preserves the labeling
f , then this automorphism would also preserve the labeling f ′.

For the second inequality start with a distinguishing vertex labeling f and
label the edges of Tu and Tv by the corresponding co-labelings respectively. Label
the central edge e arbitrarily. This ensures by Observation 2.1 that no automor-
phism which fixes both v and w preserves the resulting edge-labeling. To ensure
that the same is true for every automorphism which swaps v and w, relabel one
of the edges in Tv using an additional label D(T ) + 1.

As we already said in the introduction, the right-hand side inequality in
Lemma 3.3 actually holds for all connected graphs.

Proof of Theorem 3.1. Observe first that the result is clearly true if T is an
asymmetric tree, because in this case D(T ) = D′(T ) = 1 and T /∈ T . If T is
a unicentric tree, then D′(T ) = D(T ) holds by Lemma 3.2. Hence assume in
the rest of the proof that T is a bicentric tree with the central edge e = vw and
D(T ) ≥ 2. By Lemma 3.3 we get D(T ) ≤ D′(T ) ≤ D(T ) + 1. Let Tv and Tw be
the components of T − vw with v ∈ Tv and w ∈ Tw.

Suppose first that Tv and Tw are not isomorphic. Then for any α ∈ Aut(T ) we
have α(v) = v and α(w) = w. Let f : V (T )→ [D(T )] be a distinguishing vertex
labeling. Let f ′ : E(T ) → [D(T )] be defined as follows. Set f ′(vw) = 1, and on
Tv and Tw let f ′ coincide with the co-labelings of f |Tv and f |Tw, respectively.
Then f ′ is a distinguishing edge labeling and hence D′(T ) ≤ D(T ) and equality
holds by Lemma 3.3.

Suppose next that Tv and Tw are isomorphic and that Tv admits two non-
isomorphic distinguishing edge labelings (as a rooted tree) with D(T ) labels, say
g′ and g′′. Let now f ′ : E(T ) → [D(T )] be defined as follows. Set f ′(vw) = 1,
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and on Tv and Tw let f ′ coincide with g′ and g′′, respectively. Then f ′ is a
distinguishing edge labeling and hence again D′(T ) = D(T ).

Until now we have proved that D′(T ) = D(T ) unless T ∈ T . To complete
the proof we need to show that if T ∈ T , then D′(T ) = D(T ) + 1. Suppose on
the contrary that this is not the case. So let T ∈ T be such that D′(T ) = D(T )
and let f ′ : E(T ) → [D(T )] be a distinguishing edge labeling of T . Thus the
restrictions of f ′ to Tv and Tw, respectively, are distinguishing edge labelings of
D(T ) labels. Since Tv and consequently its isomorphic copy Tw admit unique
v-distinguishing edge D(T )-labelings, there exists α ∈ Aut(T ) that exchanges Tv
with Tw and preserves f , a contradiction. We conclude that D′(T ) = D(T )+1.

The example from Figure 1 can be generalized as follows. Let k ≥ 2 and let Tk
be a bicentric tree in which at each of the endvertices of the central edge precisely
tt paths of length t are attached. (Note that T2 is the tree from Figure 1.) Then
it is straighforward to verify that Tk ∈ T .

4. Unicyclic Graphs

In this section we prove that among the unicyclic graphs the upper bound (1) is
never attained.

Theorem 4.1. If G is a connected unicyclic graph, then D′(G) = D(G).

Proof. Let C = v1v2 · · · vtv1 be the cycle of G, where 3 ≤ t ≤ n. Let Ti, i ∈ [t],
be the maximal subgraph of G that contains vi and no other vertex of C. Then
Ti is a tree, consider it as a rooted tree with the root vi. It is possible that Ti
is a single vertex graph. If G = Ct, then the result holds because D′ = D holds
for all cycles, see [13, Proposition 5]. The result also clearly holds if Aut(G) is
trivial, hence assume in the rest of the proof that D(G) ≥ 2 and D′(G) ≥ 2.

We first show that D(G) ≤ D′(G). For this purpose, let f ′ be a distinguishing
edge labeling of G and define a vertex labeling f as follows. On V (Ti)\{vi}, let f
be such that f ′ is the co-labeling of f restricted to Ti. Then, by Observation 2.1,
f is a distinguishing labeling of V (Ti) \ {vi} provided that vi is fixed. If t ≥ 6,
then let f |C be a distinguishing 2-labeling of C. If 3 ≤ t ≤ 5 and f ′|C uses at
least three labels, then let f |C be a distinguishing 3-labeling of C. In the last
case we have 3 ≤ t ≤ 5 and f ′|C uses two labels. Then label the vertices of C
with two colors as shown in Figure 2 for all possible edge labelings of C with two
colors. In all the cases one can verify that if an automorphism α of C preserves
f |C, then α also preserves f ′|C. Since f ′ is distinguishing we conclude that f is
also distinguishing, and consequently D(G) ≤ D′(G).

To show that also D′(G) ≤ D(G) holds, we proceed similarly as above. Let f
be a distinguishing vertex labeling of G and define an edge labeling f ′ as follows.
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Figure 2. All non-equivalent edge 2-labelings of C and their respective transformations
to vertex 2-labelings of C.

On each Ti let f ′ be the co-labeling of f |Ti (with respect to the root vi). If t ≥ 6,
then set f ′|C to be a distinguishing edge 2-labeling of C. If 3 ≤ t ≤ 5 and f |C
uses at least three labels, then let f ′|C be a distinguishing edge 3-labeling of
C. Finally, if 3 ≤ t ≤ 5 and f |C uses two labels, then let f ′|C be as shown in
Figure 3 for all possible vertex labelings of C, respectively.

Again we can verify that if an automorphism α of C preserves f ′|C, then α
also preserves f |C. So f ′ is distinguishing and we conclude thatD′(G) ≤ D(G).

5. Concluding Remarks

In our main result, Theorem 3.1, we have characterized the finite trees T for which
D′(T ) = D(T ) + 1 holds. The three conditions that define the corresponding
class T are conceptually simple. Nevertheless, it would be interesting to have a
structural description of the class T . Hence we pose the following question.

Problem 5.1. Find a constructive characterization of the class of trees T .

The second question implicit in this paper is, whether Theorem 4.1 can be
extended to graphs with multiple cycles. We note that a proof similar to ours also
works for graphs with exactly two cycles: they have to be edge disjoint, whence
every automorphism either fixes both of them or swaps them and hence there is a
vertex or an edge that must be fixed by every automorphism. If there are exactly
three cycles, then either they are edge disjoint or there are two cycles sharing an
edge and the third is the symmetric difference of the two, and again there is an
edge or a vertex fixed by every automorphism.
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Figure 3. All non-equivalent vertex 2-labelings of C and their respective transformations
to edge 2-labelings of C.

Unfortunately, these explicit structural descriptions soon become too compli-
cated to write out. Recently, Lehner and Smith [19] announced a proof of the fact
that any graph containing a cycle satisfies D′(G) ≤ D(G), but with a far more
involved proof. The fact that our proof still works for small numbers of cycles
suggests that there may be a simpler proof for an arbitrary number of cycles as
well. We hence pose the following problem.

Problem 5.2. Is there an elementary proof for the fact that D′(G) ≤ D(G) for
any graph with at least one cycle?

Finally we briefly discuss the case of infinite trees. Imrich et al. [12] extended
Theorem [13, Theorem 11] to infinite graphs, and proved that if G is a connected
infinite graph, then D′(G) ≤ D(G) + 1.

Similar to the finite case, we can construct examples where equality is achieved.
For this purpose, call a tree rayless, if it does not contain a ray, i.e., a one-sided
infinite path. By a result of Schmidt [20], every rayless tree contains a finite
subtree which is fixed by every automorphism. Hence we can call a rayless tree
unicentric or bicentric, depending on whether this finite subtree has one or two
central vertices. Hence the definition of the class T also makes sense for infinite,
rayless trees, and the same arguments as in the proof of Theorem 3.1 show that
these are the only rayless trees with D(T ) = D′(T ) + 1. Finally, let us note that
by [19], if a tree contains a ray, then D(T ) = D′(T ).
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