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Abstract

A double Roman dominating function on a digraph D with vertex set
V (D) is defined in [G. Hao, X. Chen and L. Volkmann, Double Roman

domination in digraphs, Bull. Malays. Math. Sci. Soc. (2017).] as a
function f : V (D) → {0, 1, 2, 3} having the property that if f(v) = 0, then
the vertex v must have at least two in-neighbors assigned 2 under f or one
in-neighbor w with f(w) = 3, and if f(v) = 1, then the vertex v must
have at least one in-neighbor u with f(u) ≥ 2. A set {f1, f2, . . . , fd} of
distinct double Roman dominating functions on D with the property that
∑d

i=1
fi(v) ≤ 3 for each v ∈ V (D) is called a double Roman dominating

family (of functions) on D. The maximum number of functions in a double
Roman dominating family on D is the double Roman domatic number of D,
denoted by ddR(D). We initiate the study of the double Roman domatic
number, and we present different sharp bounds on ddR(D). In addition, we
determine the double Roman domatic number of some classes of digraphs.

Keywords: digraph, double Roman domination, double Roman domatic
number.
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1. Terminology and Introduction

For notation and graph theory terminology, we in general follow Haynes, Hedet-
niemi and Slater [6]. Specifically, let D be a finite digraph with neither loops nor
multiple arcs (but pairs of opposite arcs are allowed) with vertex set V (D) = V
and arc setA(D) = A. The integers n = n(D) = |V (D)| andm = m(D) = |A(D)|
are the order and the size of the digraph D, respectively. For two different ver-
tices u, v ∈ V (D), we use uv to denote the arc with tail u and head v, and
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we also call v an out-neighbor of u and u an in-neighbor of v. For v ∈ V (D),
the out-neighborhood and in-neighborhood of v, denoted by N+

D (v) = N+(v) and
N−

D (v) = N−(v), are the sets of out-neighbors and in-neighbors of v, respectively.
The closed out-neighborhood and closed in-neighborhood of a vertex v ∈ V (D) are
the sets N+

D [v] = N+[v] = N+(v) ∪ {v} and N−

D [v] = N−[v] = N−(v) ∪ {v},
respectively. The out-degree and in-degree of a vertex v are defined by d+D(v) =
d+(v) = |N+(v)| and d−D(v) = d−(v) = |N−(v)|. The maximum out-degree, max-

imum in-degree, minimum out-degree and minimum in-degree of a digraph D are
denoted by ∆+(D) = ∆+, ∆−(D) = ∆−, δ+(D) = δ+ and δ−(D) = δ−, respec-
tively. A digraph D is r-out-regular when ∆+(D) = δ+(D) = r and r-in-regular
when ∆−(D) = δ−(D) = r. If D is r-out-regular and r-in-regular, then D is
called r-regular. The underlying graph of a digraph D is the graph obtained by
replacing each arc uv or symmetric pairs uv, vu of arcs by the edge uv. A digraph
D is connected if the underlying graph of D is connected. If X is a nonempty
subset of the vertex set V (D) of a digraph D, then D[X] is the subdigraph of D
induced by X. A digraph D is bipartite if its underlying graph is bipartite. Let
K∗

n be the complete digraph of order n, Cn the oriented cycle of order n and K∗

p,q

the complete bipartite digraph with partite sets X and Y , where |X| = p and
|Y | = q.

In this paper we continue the study of double Roman dominating functions
and double Roman domatic numbers in graphs and digraphs (see, for example,
[1–5, 7, 9, 11]). Inspired by an idea of the work [4], we defined in [5] the double
Roman domination number of a digraph as follows. A double Roman dominating

function (DRD function) on a digraph D is a function f : V (D) → {0, 1, 2, 3}
having the property that if f(v) = 0, then the vertex v must have at least two
in-neighbors assigned 2 under f or one in-neighbor w with f(w) = 3, and if
f(v) = 1, then the vertex v must have at least one in-neighbor u with f(u) ≥ 2.
The double Roman domination number γdR(D) equals the minimum weight of
a double Roman dominating function on D, and a double Roman dominating
function of D with weight γdR(D) is called a γdR(D)-function of D.

A set {f1, f2, . . . , fd} of distinct double Roman dominating functions on D
with the property that

∑d
i=1 fi(v) ≤ 3 for each v ∈ V (D) is called a double Roman

dominating family (of functions) on D. The maximum number of functions in
a double Roman dominating family (DRD family) on D is the double Roman

domatic number of D, denoted by ddR(D). The double Roman domatic number
is well-defined and ddR(D) ≥ 1 for each digraph D since the set consisting of any
DRD function forms a DRD family on D.

Our purpose in this work is to initiate the study of the double Roman domatic
number of a digraph. We first present basic properties and sharp bounds for the
double Roman domatic number of a digraph. In addition, we determine the
double Roman domatic number of some classes of digraphs.
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2. Properties of the Double Roman Domatic Number

In this section we present basic properties and bounds on the double Roman
domatic number.

Theorem 1. If D is a digraph of order n, then

γdR(D) · ddR(D) ≤ 3n.

Moreover, if we have the equality γdR(D) · ddR(D) = 3n, then for each DRD

family {f1, f2, . . . , fd} on D with d = ddR(D), each fi is a γdR(D)-function and
∑d

i=1 fi(v) = 3 for all v ∈ V (D).

Proof. Let {f1, f2, . . . , fd} be a DRD family on D with d = ddR(D), and let
v ∈ V (G). Then

d · γdR(D) =
d

∑

i=1

γdR(D) ≤
d

∑

i=1

∑

v∈V (D)

fi(v)

=
∑

v∈V (D)

d
∑

i=1

fi(v) ≤
∑

v∈V (D)

3 = 3n.

If γdR(D) · ddR(D) = 3n, then the two inequalities occuring in the proof be-
come equalities. Hence for the DRD family {f1, f2, . . . , fd} on D and for each i,
∑

v∈V (D) fi(v) = γdR(D). Thus each fi is a γdR(D)-function, and
∑d

i=1 fi(v) = 3
for each v ∈ V (D).

Theorem 2. If D is a digraph, then ddR(D) ≤ δ−(D) + 1.

Proof. If ddR(D) = 1, then clearly ddR(D) ≤ δ−(D) + 1. Assume next that
ddR(D) ≥ 2, and let {f1, f2, . . . , fd} be a DRD family on D such that d = ddR(D).
Assume that v is a vertex of minimum in-degree. Since

∑

x∈N−[v] fi(x) = 2 holds
for at most one index i ∈ {1, 2, . . . , d}, we deduce that

3d− 1 ≤
d

∑

i=1

∑

x∈N−[v]

fi(x) =
∑

x∈N−[v]

d
∑

i=1

fi(x) ≤
∑

x∈N−[v]

3 = 3(δ−(D) + 1).

This implies d ≤ δ−(D) + 4/3 and thus ddR(D) ≤ δ−(D) + 1.

Corollary 3. Let D be a digraph of order n. Then ddR(D) ≤ n, and if δ−(D)
= 0, then ddR(D) = 1.
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Example 4. Let p, n be integers with 1 ≤ p ≤ n − 1. Let H be the digraph
of order n with vertex set {v1, v2, . . . , vn} such that H[{v1, v2, . . . , vp}] is iso-
morphic to the complete digraph K∗

p , there exist all arcs from {v1, v2, . . . , vp} to
{vp+1, vp+2, . . . , vn} and all arcs from vp+1 to {v1, v2, . . . , vp}. Then δ−(H) =
p and thus ddR(H) ≤ p + 1 according to Theorem 2. Define the functions
fi : V (H) → {0, 1, 2, 3} by fi(vi) = 3 and fi(x) = 0 for x ∈ V (H) \ {vi} for
1 ≤ i ≤ p and fp+1(vp+1) = fp+1(vp+2) = · · · = fp+1(vn) = 3 and fp+1(vi) =
0 for 1 ≤ i ≤ p. Then f1, f2, . . . , fp+1 are DRD functions on H such that
f1(x)+ f2(x)+ · · ·+ fp+1(x) = 3 for each x ∈ V (H). Therefore {f1, f2, . . . , fp+1}
is a double Roman dominating family on H and thus ddR(H) ≥ p + 1 and so
ddR(H) = p + 1 = δ−(H) + 1. This example demonstrates that Theorem 2 is
sharp.

Theorem 5. If D is a bipartite digraph with δ−(D) ≥ 1, then ddR(D) ≥ 2.

Proof. Let X,Y be a bipartition of D. Define the functions f, g : V (D) → {0, 1,
2, 3} by f(x) = 3 for x ∈ X and f(y) = 0 for y ∈ Y and g(x) = 0 for x ∈ X
and g(y) = 3 for y ∈ Y . Since δ−(D) ≥ 1, we observe that f and g are DRD
functions on D such that f(v) + g(v) = 3 for each vertex v ∈ V (D). Thus {f, g}
is a double Roman dominating family on D and so ddR(D) ≥ 2.

Theorems 2 and 5 imply the next result immediately.

Corollary 6. If Cn is an oriented cycle of even order, then ddR(Cn) = 2.

Following an idea of Zelinka [10], we prove a lower bound for the double
Roman domatic number.

Theorem 7. If D is a digraph of order n, then

ddR(D) ≥
⌊

n

n− δ−(D)

⌋

.

Proof. Let S ⊆ V (D) with |S| ≥ n − δ−(D). If v ∈ V (D) \ S, then |N−[v]| ≥
1 + δ−(D) implies N−(v) ∩ S 6= ∅. Thus the function f : V (D) → {0, 1, 2, 3}
with f(x) = 3 for x ∈ S and f(x) = 0 for x ∈ V (D) \ S is a DRD function on
D. Hence one can take any ⌊n/(n − δ−(D))⌋ disjoint subsets of V (D), each of
cardinality n − δ−(D). Each of these subsets is a DRD function on D, and this
leads to the desired result.

Corollary 8. Let D be a digraph of order n ≥ 2. Then ddR(D) = n if and only

if D is isomorphic to the complete digraph K∗

n.
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Proof. If D is isomorphic to the complete digraph K∗

n, then Theorem 7 implies
that ddR(K

∗

n) ≥ n. Applying Theorem 2, we obtain ddR(K
∗

n) = n.

Conversely, assume that ddR(D) = n. If D is not isomorphic to the complete
digraph K∗

n, then δ−(D) ≤ n − 2, and Theorem 2 leads to the contradiction
n = ddR(D) ≤ n− 1.

Proposition 9. Let D be a digraph of order n ≥ 2. If D has 1 ≤ p ≤ n vertices

of out-degree n− 1, then ddR(D) ≥ p.

Proof. Let v1, v2, . . . , vp be the vertices of out-degree n− 1. Define fi : V (D) →
{0, 1, 2, 3} by fi(vi) = 3 and fi(x) = 0 for x 6= vi for 1 ≤ i ≤ p. Then f1, f2, . . . , fp
are DRD functions on D such that f1(x) + f2(x) + · · · + fp(x) ≤ 3 for each
x ∈ V (D). Therefore {f1, f2, . . . , fp} is a double Roman dominating family on D
and thus ddR(D) ≥ p.

Corollary 8 shows that Proposition 9 is sharp for p = n. The next example
will demonstrate that Proposition 9 is also sharp for each p with 1 ≤ p ≤ n− 1.

Example 10. Let p, n be integers with 1 ≤ p ≤ n − 1. Let Q be the digraph
of order n with vertex set {v1, v2, . . . , vn} such that Q[{v1, v2, . . . , vp}] is isomor-
phic to the complete digraph K∗

p and there exist all arcs from {v1, v2, . . . , vp}
to {vp+1, vp+2, . . . , vn}. Then δ−(Q) = p − 1 and thus ddR(Q) ≤ p according
to Theorem 2. Define the function fi : V (H) → {0, 1, 2, 3} by fi(vi) = 3 and
fi(x) = 0 for x ∈ V (H) \ {vi} for 1 ≤ i ≤ p. Then f1, f2, . . . , fp are DRD func-
tions on Q such that f1(x)+f2(x)+ · · ·+fp(x) ≤ 3 for each x ∈ V (Q). Therefore
{f1, f2, . . . , fp} is a double Roman dominating family on Q and thus ddR(Q) ≥ p
and so ddR(Q) = p.

Theorem 11. Let D be a digraph of order n ≥ 2 and let k be an integer with

2 ≤ k ≤ n. If ∆+(D) ≤ (n− k)/(k − 1), then ddR(D) ≤ n/k.

Proof. Let {f1, f2, . . . , fd} be a DRD family on D with d = ddR(D). According
to [5], we can assume, without loss of generality, that no vertex of fi is assigned
the value 1. In [5], the authors show this for γdR(D)-functions, however, the
same proof works for each DRD function. Since ∆+(D) ≤ (n − k)/(k − 1), we
observe that fi(x) ≥ 2 for at least k different vertices for each i ∈ {1, 2, . . . , d}.
Because of

∑d
i=1 fi(v) ≤ 3 for each v ∈ V (D), we deduce the desired result that

ddR(D) ≤ n/k.

Example 12. If D is an (n− 2)-regular digraph of order n ≥ 2, then ddR(D) =
⌊n/2⌋.

Proof. Applying Theorem 7, we deduce that ddR(D) ≥ ⌊n/2⌋. In addition,
Theorem 11 implies for k = 2 that ddR(D) ≤ ⌊n/2⌋ and thus ddR(D) = ⌊n/2⌋.
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Example 12 shows that Theorem 11 is sharp for k = 2.

Example 13. Let p ≥ 3 be an integer. If K∗

p,p is the complete bipartite digraph,
then ddR(K

∗

p,p) = p.

Proof. Since p ≥ 3, it is straightforward to verify that γdR(K
∗

p,p) = 6. Thus
Theorem 1 implies that ddR(K

∗

p,p) ≤ p. Let now X = {u1, u2, . . . , up} and Y =
{v1, v2, . . . , vp} be a bipartition of K∗

p,p. Define fi : V (Kp,p) → {0, 1, 2, 3} by
fi(ui) = fi(vi) = 3 and fi(uj) = fi(vj) = 0 for 1 ≤ i, j ≤ p and i 6= j. Then fi is
a DRD function on K∗

p,p for 1 ≤ i ≤ p such that f1(x) + f2(x) + · · ·+ fp(x) = 3
for each x ∈ V (K∗

p,p). Therefore {f1, f2, . . . , fp} is a double Roman dominating
family on K∗

p,p and thus ddR(K
∗

p,p) ≥ p. This yields to ddR(K
∗

p,p) = p.

Example 13 demonstrates that Theorem 1 is sharp, and that Theorem 11 is
sharp for k = 2.

Example 14. If Cn is an oriented cycle of odd order n, then ddR(Cn) = 1.

Proof. Let k = (n+ 1)/2 in Theorem 11. Then ∆+(Cn) = 1 = (n− k)/(k − 1)
and therefore Theorem 11 implies that ddR(Cn) ≤ n/k = (2n)/(n+1) < 2. Thus
ddR(Cn) = 1.

3. Nordhaus-Gaddum Type Results

Results of Nordhaus-Gaddum type study the extreme values of the sum or prod-
uct of a parameter on a graph or digraph and its complement. In their classical
paper [8], Nordhaus and Gaddum discussed this problem for the chromatic num-
ber of graphs. We establish such inequalities for the double Roman domatic
number of digraphs.

The complement D of a digraph D is the digraph with vertex set V (D) such
that for any two distinct vertices u, v the arc uv belongs to D if and only if uv
does not belong to D. As an application of Theorem 2 we will prove the following
Nordhaus-Gaddum type result.

Theorem 15. If D is a digraph of order n, then

ddR(D) + ddR(D) ≤ n+ 1.

If ddR(D) + ddR(D) = n+ 1, then D is in-regular.

Proof. Since δ−(D) = n− 1−∆−(D), Theorem 2 implies that

ddR(D) + ddR(D) ≤ (δ−(D) + 1) + (δ−(D) + 1)

= δ−(D) + 1 + (n−∆−(D)− 1) + 1 ≤ n+ 1,
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and this is the desired bound. IfD is not in-regular, then ∆−(D)−δ−(D) ≥ 1, and
thus the inequality chain above leads to the better bound ddR(D) + ddR(D) ≤ n.

Corollary 8 leads to ddR(K
∗

n) + ddR(K∗
n) = n + 1, and therefore equality in

Theorem 15. For some special digraphs we can improve Theorem 15.

Corollary 16. Let D be a digraph of order n ≥ 3. If ∆+(D) ≤ n−2 and ∆+(D)
≤ n− 2, then

ddR(D) + ddR(D) ≤ n,

and if n is odd, then

ddR(D) + ddR(D) ≤ n− 1.

Proof. It follows from Theorem 11 for k = 2 that ddR(D) ≤ n/2 and ddR(D) ≤
n/2. Therefore ddR(D) + ddR(D) ≤ n and if n is odd, then ddR(D) + ddR(D) ≤
n− 1.

Example 17. If D = K∗

p,p for p ≥ 3, then it follows from Corollary 8 and Exam-

ple 13 that ddR(K
∗

p,p) + ddR(K∗
p,p) = 2p = n(K∗

p,p). This example demonstrates
that Corollary 16 is sharp for n even.

Example 18. Let n = 2r + 1 for an integer r ≥ 1. We define the circulant

tournament T (n) of order n as follows. Let {u1, u2, . . . , un} be the vertex set
of T (n), and for each i, the arcs go from ui to the vertices ui+1, ui+2, . . . , ui+r,
where the indices are taken modulo n. Note that T (n) is r-regular. Applying
Theorem 11 for k = 2, we deduce that ddR(T (n)) ≤ r.

Now define the function fi : V (T (n)) → {0, 1, 2, 3} by fi(ui) = fi(ui+r+1) = 3
for 1 ≤ i ≤ r and fi(x) = 0 otherwise. Then fi is a DRD function on T (n) for
1 ≤ i ≤ r such that f1(x) + f2(x) + · · · + fr(x) ≤ 3 for each x ∈ V (T (n)).
Therefore {f1, f2, . . . , fr} is a double Roman dominating family on T (n) and
thus ddR(T (n)) ≥ r and so ddR(T (n)) = r.

Since T (n) is also a circulant tournament, we observe that ddR(T (n)) = r and
thus ddR(T (n)) + ddR(T (n)) = 2r = n − 1. This example shows that Corollary
16 is sharp for n odd too.

4. Bounds on γdR(D) + ddR(D)

In this section we make use of the following known results.

Proposition 19 [5]. If D is a connected digraph of order n ≥ 4, then γdR(D) ≤
2n− 2.

Proposition 20 [5]. Let D be a connected digraph of order n ≥ 2. Then γdR(D)
= 3 if and only if ∆+(D) = n− 1.
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The upper bound on the product γdR(D) · ddR(D) ≤ 3n in Theorem 1 leads
to upper bounds on the sum of these two parameters.

Theorem 21. If D is a connected digraph of order n ≥ 5, then

γdR(D) + ddR(D) ≤ 2n− 1.

Proof. Let d = ddR(D). If d = 1, then it follows from Proposition 19 that
γdR(D) + ddR(D) ≤ (2n− 2) + 1 = 2n− 1.

Let now d ≥ 2. According to Corollary 3, we have 2 ≤ d ≤ n. Theorem 1
implies that

γdR(D) + ddR(D) ≤ 3n

ddR(D)
+ ddR(D).

Using these bounds and the fact that the function g(x) = x+(3n)/x is decreasing
for 2 ≤ x ≤

√
3n and increasing for

√
3n ≤ x ≤ n, we deduce that

γdR(D) + ddR(D) ≤ 3n

ddR(D)
+ ddR(D)

≤ max

{

3n

2
+ 2, 3 + n

}

=
3n

2
+ 2.

Since n ≥ 5, we obtain

γdR(D) + ddR(D) ≤
⌊

3n

2

⌋

+ 2 ≤ 2n− 1,

and the proof is complete.

Since γdR(C4)+ddR(C4) = 8, γdR(C3)+ddR(C3) = 6 and γdR(C2)+ddR(C2) =
5, we observe that Theorem 21 is not valid for 2 ≤ n ≤ 4 in general.

Example 22. LetH be the digraph of order n ≥ 5 with vertex set {v1, v2, . . . , vn}
and edge set {v2v1, v3v1, . . . , vnv1}. Then γdR(H) = 2(n − 1) and ddR(H) = 1
and thus γdR(H) + ddR(H) = 2n − 1. This example shows that Theorem 21 is
sharp.

Theorem 23. If D is a bipartite digraph of order n with δ−(D) ≥ 1, then

γdR(D) + ddR(D) ≤ 3n

2
+ 2.

Proof. According to Corollary 3 and Theorem 5, we have 2 ≤ ddR(D) ≤ n.
Now we obtain the desired bound analogously to the second part of the proof of
Theorem 21.
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Example 24. If H1 is isomorphic to pC2 with an integer p ≥ 1, then γdR(H1) =
(3n)/2 and ddR(H1) = 2 with n = 2p. Thus γdR(H1) + ddR(H1) = (3n)/2 + 2.

If H2 is isomorphic to pC4 with an integer p ≥ 1, then γdR(H2) = (3n)/2 and
ddR(H2) = 2 with n = 4p. Thus γdR(H2) + ddR(H2) = (3n)/2 + 2.

These examples show that Theorem 23 is sharp.

Theorem 25. If D is a digraph of order n ≥ 2, then

γdR(D) + ddR(D) ≥ 4,

with equality if and only if D contains a vertex v with d+D(v) = n− 1 and d−D(v)
= 0.

Proof. Since γdR(D) ≥ 3 and ddR(D) ≥ 1, the lower bound is immediate.

If there exists a vertex v with d+D(v) = n− 1 and d−D(v) = 0 then γdR(D) = 3
by Proposition 20 and ddR(D) = 1 by Corollary 3 and thus γdR(D)+ddR(D) = 4.

Conversely, assume that γdR(D)+ddR(D) = 4. Then the bounds γdR(D) ≥ 3
and ddR(D) ≥ 1 lead to γdR(D) = 3 and ddR(D) = 1. Therefore Proposition 20
implies that ∆+(D) = n− 1. Let v be a vertex with d+D(v) = n− 1. Now we will
show that d−D(v) = 0. Suppose that d−D(v) ≥ 1. Then there exists an arc wv for a
vertex w ∈ V (D)\{v}. Define the functions f, g : V (D) → {0, 1, 2, 3} by f(v) = 3
and f(x) = 0 for x ∈ V (D) \ {v} and g(v) = 0 and g(x) = 3 for x ∈ V (D) \ {v}.
We observe that f and g are DRD functions on D such that f(x) + g(x) = 3 for
each vertex x ∈ V (D). Thus {f, g} is a double Roman dominating family on D
and so ddR(D) ≥ 2. This yields to the contradiction γdR(D)+ ddR(D) ≥ 5. Thus
d−D(v) = 0, and the proof is complete.
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