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Abstract

A graph G is edge k-choosable (respectively, total k-choosable) if, when-
ever we are given a list L(x) of colors with |L(x)| = k for each x ∈ E(G)
(x ∈ E(G) ∪ V (G)), we can choose a color from L(x) for each element x

such that no two adjacent (or incident) elements receive the same color.
The list edge chromatic index χ′

l
(G) (respectively, the list total chromatic
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number χ′′

l
(G)) of G is the smallest integer k such that G is edge (respec-

tively, total) k-choosable. In this paper, we focus on a planar graph G, with
maximum degree ∆(G) ≥ 7 and with some structural restrictions, satisfies
χ′

l
(G) = ∆(G) and χ′′

l
(G) = ∆(G) + 1.

Keywords: planar graph, list edge coloring, list total coloring.
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1. Introduction

All graphs considered in this article are finite, loopless, and without multiple
edges. A proper edge k-coloring of a graph G is a coloring of the edges of G with
k colors such that no two adjacent edges receive the same color. The chromatic

index χ′(G) is the smallest k such that G admits a proper edge k-coloring. The
list edge coloring, as an extension of the proper edge coloring, has attracted a lot
of attention. For any list assignment L : E(G) → P(N), a graph G = (V (G),
E(G)) is edge L-colorable if there exists a proper edge coloring φ of G such that
φ(e) ∈ L(e) for every edge e ∈ E(G), and we always say that G is edge L-

colorable and φ is a proper edge coloring for L. A graph G = (V (G), E(G)) is
said to be list edge k-colorable (or edge k-choosable) if G is edge L-colorable for
any list assignment L such that |L(e)| ≥ k for any edge e ∈ E(G). The list

edge chromatic index χ′

l(G) is the smallest k such that G is edge k-choosable.
The total coloring (respectively, proper (vertex) coloring), the total chromatic

number χ′′(G) (respectively, chromatic number χ(G)), the list total coloring

(respectively, list (vertex) coloring) and the list total chromatic number χ′′

l (G)
(respectively, list (vertex) chromatic number χl(G)) of a graph G are defined
similarly in terms of coloring edges and vertices.

Clearly, for any graph G, we have χ′

l(G) ≥ χ′(G) ≥ ∆(G) and χ′′

l (G) ≥
χ′′(G) ≥ ∆(G) + 1, where ∆(G) denotes the maximum degree of G. In terms of
the relationship between χ′

l(G) and χ′(G), there is a conjecture as follows.

Conjecture 1. For any graph G,

(a) χ′

l(G) = χ′(G);

(b) χ′′

l (G) = χ′′(G).

Vizing, Gupta, Albertson and Collins, and Bollobás and Harris (see [12] for
details), independently, posed part (a) of Conjecture 1, which is well known as
the list coloring conjecture or list edge coloring conjecture (LECC). As a natural
extension of part (a), part (b) of Conjecture 1 was posed by Borodin et al. [7], it
is also known as the list total coloring conjecture (LTCC).

It has been verified that Conjecture 1 holds for graphs with ∆ ≤ 2, outerpla-
nar graphs [17], etc. So far this conjecture remains open.
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For edge coloring, the well-known Vizing’s theorem shows that χ′(G) = ∆(G)
or χ′(G) = ∆(G)+1 for every graph G. For the list edge coloring, in 1984, along
with Vizing’s theorem, part (a) of Conjecture 1 implies that χ′

l(G) ≤ ∆(G) + 1.
Harris showed that χ′

l(G) ≤ 2∆(G)− 2 if G is a graph with ∆(G) ≥ 3 [9], which
implies χ′

l(G) ≤ ∆(G) + 1 for ∆(G) = 3. Later, Juvan et al. confirmed that
χ′

l(G) ≤ ∆ + 1 for a graph with ∆(G) = 4 [13]. For planar graphs, it is proved
that χ′

l(G) ≤ ∆(G)+1 if ∆(G) ≥ 9 by Borodin [8] and ∆(G) ≥ 8 by Bonamy [5].

For total colorings, Behzad [3] and Vizing [16] posed, independently, the
well-known total coloring conjecture (TCC) which says that every simple graph
of maximum degree ∆(G) admits a total (∆(G) + 2)-coloring. For the list total
coloring, TCC and part (b) of Conjecture 1 implies that χ′′

l (G) ≤ ∆(G)+2, which
is confirmed for graphs with maximum degree ∆(G) ≤ 3, for bipartite graphs [14]
and for planar graphs with ∆(G) ≥ 9 [11].

Recently, the strong version of Conjecture 1 that χ′

l(G) = ∆(G) and χ′′

l (G) =
∆(G)+1 has stimulated people’s interest. Note that χ′

l(G) = ∆(G) and χ′′

l (G) =
∆(G) + 1 are equivalent to χ′

l(G) = χ′(G) = ∆(G) and χ′′

l (G) = χ′′(G) =
∆(G) + 1. For planar graphs, the best known result is that if ∆(G) ≥ 12, a
planar graph G is list edge ∆(G)-colorable and list total (∆(G)+1)-colorable [7].
It is proved that χ′

l(G) = ∆(G) and χ′′

l (G) = ∆(G)+1 for a planar graph G with
∆(G) ≥ 7 and no triangle adjacent to a C4 [6], or with no cycle of length from
4 to k, where k ≥ 4 and (∆(G), k) ∈ {(7, 4), (6, 5), (5, 8)} [10], or with ∆(G) ≥ 7
and no adjacent cycles of length at most 4 [15], or with ∆(G) ≥ 8 and no cycle of
length 3 adjacent to a cycle of length 5 [15], or with ∆(G) ≥ 8 and no adjacent
4-cycles [18], or with ∆(G) ≥ 8 and no chordal 5-cycle [19].

In the paper, we discuss the list edge and total colorings of a planar graph
G with ∆(G) ≥ 7 and with structure restrictions. General 5-cycles contains
the following cases: (1) 5-cycles; (2) three 3-cycles C1, C2 and C3 with E(C1) ∩
E(C2)∩E(C3) 6= ∅. A wheelWn is the join Cn∨K1 of an n-cycle Cn = [v1v2 · · · vn]
and a single vertex v. In Wn, by inserting l vertices of degree 2 on each edge
vivi+1, i = 1, 2, . . . , n with vn+1 = v1, we call the obtained graph an l-cycle-

subdivision of Wn. A k−-cycle-subdivision of Wn is an l-cycle-subdivision of Wn

with 0 ≤ l ≤ k.

Theorem 2. Let G be a planar graph without general 5-cycles and 1−-cycle-
subdivisions of W3. If ∆(G) ≥ 7, then χ′

l(G) = ∆(G) and χ′′

l (G) = ∆(G) + 1.

For the restriction of cycles, we should state that the fact that no triangle
is adjacent to a 4-cycle not only contains the substructure of no chordal 5-cycle,
but also contains the substructure of no chordal 4-cycle. Hence, Theorem 2 is
different from that in [6].

In the proof of Theorem 2, we will use the method of contradiction. Let
G = (V,E) be a minimal counterexample to the statement of Theorem 2, in the
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sense that the quantity |V |+ |E| is minimum. Then G is connected. In terms of
the edge choosability, a minimal counterexample is called an LEC-minimal if G is
not edge ∆(G)-choosable, but it holds for each proper subgraph H of G. For the
total choosability, we define an LTC-minimal counterexample similarly. In the
following, we always assume that L is a list assignment such that G is not edge
L-colorable with |L(e)| = ∆(G) for any edge e ∈ E(G) or is not total L-colorable
with |L(x)| = ∆(G) + 1 for any element x ∈ V (G) ∪ E(G).

In Section 2, we will use two ways to discuss structure properties of LEC-
minimal counterexample and LTC-ones, respectively. For LEC-minimal coun-
terexamples in Section 2.1, we will use a theorem of Alon and Tarsi to obtain
main results, which focus on the list coloring through special orientations. For
LTC-minimal counterexamples in Section 2.2, we will use Combinatorial Nullstel-
lensatz to analyse the structures, which is effective with the help of MATLAB.
In Section 3, we will use discharging method to prove Theorem 2.

Some definitions and notations should be introduced. Let G be a graph with
the vertex set V (G) and edge set E(G). If v ∈ V (G), then its neighbor set
NG(v) (or simply N(v)) is the set of the vertices in G adjacent to v and the
degree dG(v) of v is |NG(v)|. We denote the maximum degree and minimum
degree of G by ∆(G) and δ(G), respectively. A k-, k+- and k−-vertex is a vertex
of degree k, at least k and at most k, respectively. A vertex u is called a k-

neighbor (respectively, k−-neighbor, k+-neighbor) of a vertex v if uv ∈ E(G) and
dG(u) = k (respectively, dG(u) ≤ k, dG(u) ≥ k). An edge uv is denoted by an
(a1, a2)-edge if dG(u) = a1 and dG(v) = a2. Similarly, we can define an (a+1 , a

+
2 )-

edge, an (a−1 , a
−

2 )-edge and an (a+1 , a
−

2 )-edge. Note that the length of a cycle is
the number of its edges, and a cycle of length k is called a k-cycle. A k-cycle
C can be denoted by C = [u1u2 · · ·uk], where u1, u2, . . . , uk are its consecutive
vertices. For convenience, a cycle C = [u1u2 · · ·un] is called an (a1, a2, . . . , an)-
cycle if the degree of the vertex ui is ai for i = 1, 2, . . . , n. For a given plane
graph G, F (G) denotes the face set of G. For f ∈ F (G), we use V (f) to denote
the set of vertices on the boundary of f . A face of G is said to be incident with
all edges and vertices in its boundary. The degree of a face f , denoted by dG(f),
is the number of edges incident with it, where a cut edge is counted twice. A
k-, k+- and k−-face in a plane graph G is defined analogously to counterparts of
a vertex and the notation of a k-face is the same to that of a k-cycle. For the
terminologies and notations not defined here, we follow [4].

2. Structure Properties of Minimal Counterexamples

To begin with, we display some known structural properties of a minimal coun-
terexample G, no matter G is LEC-minimal or LTC-minimal.
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Lemma 3 [20]. Let uv ∈ E(G) with dG(u) ≤
⌊

∆(G)
2

⌋

. Then dG(u) + dG(v) ≥

∆(G) + 2. Moreover, δ(G) ≥ 2.

Lemma 4 [20]. The subgraph induced by all edges joining 2-vertices to ∆(G)-
vertices in G is a forest.

Lemma 5 [6]. If ∆(G) ≥ 7 and there is no triangle adjacent to a C4 in G, then

G has no configurations (A1) and (A2) as follows, see Figure 1.
(1) For a vertex v1 with dG(v1) = 2, let u and w1 be its two neighbors, and

there is a path (v1, w1, v2, . . . , vp, wp, vp+1) (p ≥ 1) such that vi is adjacent to u

for each i ∈ {1, 2, . . . , p+1}, dG(vi) = 3 for each i ∈ {2, . . . , p} and dG(vp+1) = 2,
see (A1) in Figure 1.

(2) For a vertex v1 with dG(v1) = 2, let u and w1 be its two neighbors, and

there is a cycle (w1, v2, w2, . . . , wp−1, vp) such that vi is adjacent to u, dG(vi) = 3
for i = 2, . . . , p, see (A2) in Figure 1.

Figure 1

Lemma 6 [20]. For any integer k satisfying 2 ≤ k ≤
⌊

∆(G)
2

⌋

, let Xk = {x ∈

V (G) : dG(x) ≤ k} and Yk =
⋃

x∈Xk
NG(x). If Xk 6= ∅, then there exists a

bipartite subgraph Mk of G with partite sets Xk and Yk such that dMk
(x) = 1 for

every x ∈ Xk and dMk
(y) ≤ k − 1 for every y ∈ Yk.

In Lemma 6 we call y the k-master of x if xy ∈ Mk and x ∈ Xk, and we call
x the k-dependent of y.

We introduce some coloring notations. In a proper partial edge (respectively,
total) coloring φ, let Aφ(x) denote the set of colors which are still available for
coloring the element x ∈ E(G) (respectively, x ∈ V (G)∪E(G)) under the partial
coloring φ.

In the following, we will introduce two important theorems and show how to
use them to discuss structure properties of minimal counterexamples.
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2.1. Structure properties of LEC-minimal counterexamples

2.1.1. One lemma deduced by a theorem of Alon and Tarsi

Our approach is similar to the one used by Borodin, Kostochka and Woodall in
[7] except that we rely on the following theorem proved by Alon and Tarsi [1].
This intricate theorem reveals the connection between the list coloring of a graph
G and its orientations.

A digraph (directed graph) D is an ordered pair (V (D), A(D)) consisting of
the vertex set V (D) and arc set A(D). For any arc a = 〈u, v〉, we say that u is
the tail of a and v its head. The indegree d−D(v) of a vertex v in D is the number
of arcs with head v, and the outdegree d+D(v) of v is the number of arcs with tail
v. A directed cycle is denoted by a cyclic sequence u1u2 · · ·uku1 in which each
vertex dominates its successor. A subdigraph H of a directed graph D is called
Eulerian if the indegree d−H(v) of every vertex v of H is equal to its outdegree
d+H(v). Note that we do not assume that H is connected. H is even if it has an
even number of edges, otherwise it is odd. Let EE(D) and EO(D) denote the
numbers of even and odd Eulerian subgraphs of D, respectively. (For convenience
we assume that the empty subgraph is an even Eulerian subgraph.)

Theorem 7 [1]. Let D be a digraph. For each vertex v ∈ V (D), let f(v) be a

set of d+D(v)+ 1 distinct integers, where d+D(v) is the outdegree of v. If EE(D) 6=
EO(D), then there is a proper coloring c : V (D) → Z such that c(v) is in f(v)
for every vertex v. That is, if L is a list assignment such that |L(v)| = d+D(v)+ 1
for all vertices v in D, then D is L-choosable.

Based on the theorem, we construct orientations for some special graphs,
which is useful in the discussion of structural properties.

Figure 2. Graphs and their orientations.

Lemma 8. For a graph G, let L be a list assignment of V (G). If G is

(1) a 3-cycle C = [v1v2v3] in Figure 2(a) with |L(v1)| ≥ 1, |L(v2)| ≥ 2 and

|L(v3)| ≥ 3, or

(2) the graph in Figure 2(b) with |L(v1)| ≥ 3, |L(v2)| ≥ 3, |L(v3)| ≥ 2, |L(v4)|
≥ 2, |L(v5)| ≥ 4 and |L(v6)| ≥ 2, or
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(3) the graph in Figure 3(a) with |L(v1)| ≥ 3, |L(v2)| ≥ 2, |L(v3)| ≥ 2, |L(v4)|
≥ 3 and |L(v5)| ≥ 3, then G is L-choosable.

Figure 3. A graph and its orientation.

Proof. In the following, we will give an orientation of G; in each case, the re-
sulting directed graph is denoted by D.

(1) We give an orientation of the 3-cycle C = [v1v2v3] in Figure 2(a). It is
easy to check that there is no odd Eulerian subgraph and only one even Eulerian
subgraph ∅. Since L(v) = d+D(v)+1 for every vertex v in D, by Theorem 7, there
exists a proper coloring φ of G such that φ(v) ∈ L(v) for each vertex v ∈ V (G).

(2) An orientation of G is given in Figure 2(c). In D, we can check that there
are five even Eulerian subgraphs: ∅, C1

4 = [v1v4v5v6], C
2
4 = [v1v2v4v5], C

3
4 =

[v2v3v4v5], C
1
6 = [v1v2v3v4v5v6] and four odd Eulerian subgraphs: C1

3 = [v1v4v5],
C2
3 = [v2v4v5], C

1
5 = [v1v2v4v5v6], C

2
5 = [v1v2v3v4v5]. Since d+D(v1) = d+D(v2) = 2,

d+D(v3) = d+D(v4) = d+D(v6) = 1 and d+D(v5) = 3, by Theorem 7, there exists a
proper coloring φ of G such that φ(v) ∈ L(v) for each vertex v ∈ V (G).

(3) An orientation of G is given in Figure 3(b). In D, we can check that there
are four even Eulerian subgraphs: ∅, C1

4 = [v1v5v3v4], C
2
4 = [v1v2v3v4], C

3
4 =

[v2v3v4v5] and two odd Eulerian subgraphs: C1
3 = [v3v4v5], C

1
5 = [v1v5v2v3v4].

Since d+D(v1) = d+D(v4) = d+D(v5) = 2 and d+D(v2) = d+D(v3) = 1, by Theorem
7, there exists a proper coloring φ of G such that φ(v) ∈ L(v) for each vertex
v ∈ V (G).

2.1.2. Structure properties of LEC-minimal counterexamples

Lemma 9. Let G be an LEC-minimal counterexample with ∆(G) ≥ 7. Then G

contains none of the following configurations (see Figure 4).

(1) (B1) a (4, 4, 5−)-cycle.

(2) (B2) consisting of two (4, 5, 5)-cycles with a common 5-vertex.

(3) (B3) consisting of two (4, 5, 5)-cycles with a common (5, 5)-edge.

Proof. (1) We claim that G contains no edge uv with dG(u)+dG(v) ≤ ∆(G)+1.
Otherwise, by the minimality of G, there exists a proper edge coloring φ of
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Figure 4. In (B1), the degree of u3 is at most 5. Note that a vertex v is black if v has no

other neighbors than the ones already depicted, and a vertex v is white if it might have

more neighbors than the ones shown in the figures.

G′ = G−uv for the edge list assignment L. At the same time, dG′(u)+ dG′(v) ≤
∆(G) − 1. So there exists a color in L(uv) \ {φ(e)|e ∈ (EG(u) ∪ EG(v)) \ {uv}}
to color uv, where EG(u) (respectively, EG(v)) denotes the set of edges incident
with u (respectively v) in G. Hence, φ can be extended to a proper edge coloring
of G and G is edge ∆(G)-choosable, a contradiction.

(2) Suppose, to the contrary, that there exists the structure (B2) presented
in Figure 4. Let a = u1u2, b = u2u5, c = u3u5, d = u3u4, e = u4u5 and
f = u5u1, G

′ = G− {a, b, c, d, e, f} and let H be the line graph of the subgraph
of G induced by the edges a, b, c, d, e, f . Then H is isomorphic to the graph in
Figure 2(b). By the minimality of G, there exists a proper edge coloring φ of G′

for the edge list assignment L. Since min{|Aφ(a)|, |Aφ(d)|} ≥ ∆(G)− (2+3) ≥ 2,
min{|Aφ(b)|, |Aφ(c)|} ≥ ∆(G)− (1 + 3) ≥ 3 and min{|Aφ(e)|, |Aφ(f)|} ≥ ∆(G)−
(2 + 1) ≥ 4. Then by Lemma 8(2), φ can be extended to a proper edge coloring
of G and G is edge ∆(G)-choosable, a contradiction.

(3) Suppose, to the contrary, that there exists the structure (B3) presented
in Figure 4. Let a = u1u2, b = u2u3, c = u3u4, d = u4u1, e = u1u3, G′ =
G−{a, b, c, d, e} andH be the line graph of the subgraph ofG induced by the edges
a, b, c, d, e. Then H is isomorphic to the graph in Figure 3(a). By the minimality
of G, there exists a proper edge coloring φ of G′ for the edge list assignment L.
Since min{|Aφ(a)|, |Aφ(b)|, |Aφ(c)|, |Aφ(d)|, |Aφ(e)|} ≥ ∆(G)− (2+ 2) ≥ 3. Then
by Lemma 8(3), φ can be extended to a proper edge coloring of G and G is edge
∆(G)-choosable, a contradiction.

2.2. Structure properties of LTC-minimal counterexamples

In this section, we will construct special polynomials according to the definition
of total colorings, then we can deduce whether the corresponding graph is total
(∆(G) + 1)-choosable by Combinatorial Nullstellensatz. The process above aims
at solving the problem of forbidden configurations of LTC-minimal counterexam-



List Edge Coloring and List Total Coloring of Planar ... 1013

ples. Firstly, we introduce Combinatorial Nullstellensatz.

2.2.1. Combinatorial Nullstellensatz

Lemma 10 [2] (The Combinatorial Nullstellensatz). Let F be an arbitrary field,

and let P = P (x1, . . . , xn) be a polynomial in F [x1, . . . , xn]. Suppose the degree

deg(P ) of P equals
∑n

i=1 ki, where each ki is a non-negative integer, and suppose

the coefficient of
∏n

i=1 x
ki
i in P is non-zero. Then if S1, . . . , Sn are subsets of F

with |Si| > ki, there are s1 ∈ S1, . . . , sn ∈ Sn so that P (s1, . . . , sn) 6= 0.

From the assumptions of Combinatorial Nullstellensatz, we can see that
some special coefficients should be calculated. Since the constructed polyno-
mials are always complicated, we use partial derivatives and MATLAB to deter-
mine the coefficients of certain monomials. In fact, if P (x1, . . . , xm) is a poly-
nomial with deg(P ) = n, k1, . . . , km are nonnegative integers with

∑m
i=1 ki = n

and cP

(

xk11 xk22 · · ·xkmm

)

is the coefficient of the monomial
∏m

i=1 x
ki
i in P , then

∂nP

∂x
k1
1

∂x
k2
2

···∂x
km
m

= cP

(

xk11 xk22 · · ·xkmm

)

∏m
i=1 ki!.

2.2.2. Structure properties of LTC-minimal counterexamples

Lemma 11. Let G be an LTC-minimal counterexample. Then G contains no

configurations (B1), (B2) and (B3) (see Figure 4).

Proof. (1) To the contrary, suppose that there exists the structure (B1) in G.
Let G′=G \ {u1u2, u2u3, u3u1}. Then by the minimality of G, there exists a total
coloring of G′ for the list assignment L. In the total coloring above, erase the
colors of u1, u2, u3 and denote this partial total coloring by φ. Now, we use colors
x1, x2, . . . , x6 to color u1, u2, u3, u1u2, u2u3, u3u1, respectively. Then we have

P (x1, x2, . . . , x6) = (x1 − x2)(x1 − x3)(x1 − x4)(x1 − x6)(x2 − x3)(x2 − x4)

(x2 − x5)(x3 − x5)(x3 − x6)(x4 − x5)(x4 − x6)(x5 − x6).

In P , the coefficient of monomial x31x
3
2x3x4x

2
5x

2
6 is cP

(

x31x
3
2x3x4x

2
5x

2
6

)

= −2 6=
0 by MATLAB. Furthermore, min

{

|Aφ(u1)|, |Aφ(u2)|, |Aφ(u1u2)|
}

≥ ∆(G)+1−
4 ≥ 8−4 = 4, |Aφ(u3)| ≥ ∆(G)+1−6 ≥ 8−6 = 2, min

{

|Aφ(u2u3)|, |Aφ(u1u3)|
}

≥
∆(G)+1−(2+3) ≥ 8−5 = 3. By Lemma 10, we can find si ∈ Aφ(ui) for i = 1, 2, 3,
s4 ∈ Aφ(u1u2), s5 ∈ Aφ(u2u3) and s6 ∈ Aφ(u3u1) such that P (s1, s2, . . . , s6) 6= 0.
So φ can be extended to a total coloring of G and G is total L-choosable, a
contradiction.

(2) To the contrary, suppose that there exists the structure (B2) in G. Let
G′=G \ {u1u5, u1u2, u2u5, u3u5, u3u4, u4u5}. Then by the minimality of G, there
exists a total coloring of G′ for the list assignment L. In the total coloring above,



1014 L. Sun, J.-L. Wu, B. Wang and B. Liu

erase the colors of u1, u2, u3, u4, u5 and denote this partial total coloring by φ.
Now, we use colors x1, x2, . . . , x11 to color u1, u2, u3, u4, u5, u1u5, u1u2, u2u5,
u3u5, u3u4, u4u5, respectively. Then we have

P (x1, x2, . . . , x11) = (x1 − x2)(x1 − x5)(x1 − x6)(x1 − x7)(x2 − x5)

(x2 − x7)(x2 − x8)(x3 − x5)(x3 − x4)(x3 − x9)(x3 − x10)

(x4 − x5)(x4 − x10)(x4 − x11)(x5 − x6)(x5 − x8)(x5 − x9)

(x5 − x11)(x6 − x7)(x6 − x8)(x6 − x9)(x6 − x11)(x7 − x8)

(x8 − x9)(x8 − x11)(x9 − x10)(x9 − x11)(x10 − x11).

In P , we get that cP
(

x31x
3
4x

5
5x

4
6x

2
7x

2
8x

3
9x

2
10x

4
11

)

= −2 6= 0 by MATLAB.
Let (w1, w2, . . . , w11) = (u1, u2, u3, u4, u5, u1u5, u1u2, u2u5, u3u5, u3u4, u4u5), ai ≤
|Aφ(wi)| and wi is corresponding to xi, i = 1, 2, . . . , 11. Then we show a1, a2,

. . . , a11 in Table 1.

Table 1

By Lemma 10, we can find si ∈ Aφ(wi) for i = 1, 2, . . . , 11 such that P (s1,
s2, . . . , s11) 6= 0. So φ can be extended to a total coloring of G and G is total
L-choosable, a contradiction.

(3) To the contrary, suppose that there exists the structure (B3) in G. Let
G′=G \ {u1u2, u2u3, u3u4, u4u1, u1u3}. Then by minimality of G, there exists a
total coloring of G′ for the list assignment L. In the total coloring above, erase the
colors of u1, u2, u3, u4 and denote this partial total coloring by φ. Now, we use col-
ors x1, x2, . . . , x9 to color u1, u2, u3, u4, u1u2, u2u3, u3u4, u4u1, u1u3, respectively.
Then we have

P (x1, x2, . . . , x9) = (x1 − x2)(x1 − x3)(x1 − x4)(x1 − x5)(x1 − x9)

(x1 − x8)(x2 − x3)(x2 − x5)(x2 − x6)(x3 − x4)(x3 − x6)

(x3 − x9)(x3 − x7)(x4 − x7)(x4 − x8)(x5 − x9)(x5 − x6)

(x5 − x8)(x6 − x7)(x6 − x9)(x7 − x8)(x7 − x9)(x8 − x9).

In P , we get that cP
(

x31x
3
2x

3
3x

3
4x

3
5x

3
6x

3
7x

2
8

)

= −2 6= 0 by MATLAB. Let (w1, w2,

. . . , w9) = (u1, u2, u3, u4, u1u2, u2u3, u3u4, u4u1, u1u3), ai ≤ |Aφ(wi)| and wi is
corresponding to xi, i = 1, 2, . . . , 9. Then we show a1, a2, . . . , a9 in Table 2.

By Lemma 10, we can find si ∈ Aφ(wi) for i = 1, 2, . . . , 9 such that P (s1, s2,
. . . , s9) 6= 0. So φ can be extended to a total coloring of G and G is total
L-choosable, a contradiction.



List Edge Coloring and List Total Coloring of Planar ... 1015

Table 2

3. Proof of Theorem 2

Let G = (V,E) be a minimal-counterexample to the statement of Theorem 2
which is stated in Section 1. Let fk(y) (respectively, fk+(y), fk−(y)) denote
the number of k-faces (respectively, k+-faces, k−-faces) incident with y for any
element y ∈ V (G) ∪ E(G). For any face f ∈ F (G), nk(f), nk−(f) and nk+(f)
denote the number of the k-vertices, k−-vertices and k+-vertices incident with the
face f , respectively. Since G contains no general 5-cycles, we have the following
observation.

O1. For any vertex v ∈ V (G), f3(v) ≤
⌊

2d(v)
3

⌋

.

By Lemma 3, we can get the following result immediately.

O2. For any face f ∈ F (G), we have

(1) n3−(f) ≤
⌊

d(f)
2

⌋

.

(2) If n3−(f) ≥ 1 and 2n3−(f)+1 ≤ d(f)−1, then n4(f) ≤ d(f)−(2n3−(f)+1).

By Lemmas 3 and 6, it is easy to obtain the following.

O3. For any ∆(G)-vertex v in V (G), v has at most one 2-dependent, and for

any 2-vertex u, u has a 2-master.

For any ∆(G)-vertex v in V (G), except its 2-dependent, other 2-neighbors of
v are called 2-non-dependents of v. Since G contains no chordal 5-cycle, we have
the following results.

O4. (1) There is no 3-face adjacent to a 4-face.

(2) There are no consecutive adjacent three faces f1, f2 and f3 with dG(f1) =
dG(f2) = 3 and dG(f3) ≤ 4, fi is incident with vvi and vvi+1 for i = 1, 2, 3.

In [19], Theorem 2 was proved for ∆(G) ≥ 8. Hence, to prove Theorem 2, we
just consider the case ∆(G) = 7. In the following, we will use discharging method
to show the proof. By Euler’s formula, we have that

∑

y∈V (G)∪F (G)(d(y) − 4) =
−8. Let c(y) = d(y) − 4 for each y ∈ V (G) ∪ F (G). Then

∑

y∈V (G)∪F (G) c(y) =
−8 < 0. We will give discharging rules to redistribute the charges and check the
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final charge c′(y) ≥ 0 for each y ∈ V (G)∪F (G). Then a contradiction arises and
the proof is completed.

We use τ(y1 → y2) to denote the charge moved from y1 to y2, for y1, y2 ∈
V (G) ∪ F (G). Suppose that f = [v1v2v3] is a 3-face with dG(v1) ≤ dG(v2) ≤
dG(v3). Let (dG(v1), dG(v2), dG(v3)) → (c1, c2, c3) denote that the vertex vi gives
f the charge ci for i = 1, 2, 3.

R1. Let f ∈ F (G) and v be its incident vertex. Then τ(f → v) equals

R1.1. 1
2 if d(f) = 6 and d(v) ≤ 3.

R1.2. 1
4 if d(f) = 6 and d(v) = 4.

R1.3. 1
4 if d(f) = 6, d(v) ≥ 5 and f is incident with a (6+, 6+)-edge.

R1.4. 1
6 if d(f) = 6 and d(v) ≥ 5 and f is not incident with a (6+, 6+)-edge.

R1.5. 2
3 if d(f) ≥ 7 and d(v) = 2.

R1.6. 1
2 if d(f) ≥ 7 and d(v) = 3.

R1.7. 1
4 if d(f) ≥ 7 and d(v) ≥ 4.

R2. Let f = [v1v2v3] be a 3-face with dG(v1) ≤ dG(v2) ≤ dG(v3).

R2.1. (3−, 6+, 6+) →
(

0, 12 ,
1
2

)

.

R2.2. (4, 4, 6+) →
(

1
4 ,

1
4 ,

1
2

)

.

R2.3. (4, 5, 5) →
(

0, 12 ,
1
2

)

.

R2.4. (4, 5, 6+) →
(

1
4 ,

1
3 ,

1
2

)

.

R2.5. (4, 6+, 6+) →
(

0, 12 ,
1
2

)

.

R2.6 (5+, 5+, 5+) →
(

1
3 ,

1
3 ,

1
3

)

.

R3. Let v be a 3-vertex with f4−(v) = 2 in G and uv ∈ E(G). Then τ(u → v) is

R3.1. 1
4 if f4−(uv) = 2.

R3.2. 1
8 if f4−(uv) = 1.

R4. Let v be a 2-vertex in G and uv ∈ E(G). If v is a 2-dependent of u, then
τ(u → v) equals

R4.1. 5
3 if f3(v) = f4(v) = 1.

R4.2. 5
3 if f4(v) = 2.

R4.3. 7
6 if f3(v) = 1 and f7+(v) = 1.

R4.4. 4
3 if f4(v) = 1 and f6+(v) = 1.

R4.5. 1 if f6+(v) = 2.

If v is a 2-non-dependent of u, then τ(u → v) equals



List Edge Coloring and List Total Coloring of Planar ... 1017

R4.6. 1
3 if f3(v) = f4(v) = 1.

R4.7. 1
3 if f4(v) = 2.

R4.8. 1
6 if f3(v) = 1 and f7+(v) = 1.

R4.9. 1
6 if f4(v) = 1 and f6+(v) = 1.

According to the discharging rules for 2-vertices, we divide 2-vertices into
five types. Let v be a 2-dependent of u in G. v is said to be a A-2-dependent
of u if f3(v) = f4(v) = 1, B-2-dependent of u if f4(v) = 2, C-2-dependent of u
if f3(v) = 1, f7+(v) = 1, D-2-dependent of u if f4(v) = 1 and f6+(v) = 1 and
E-2-dependent of u if f6+(v) = 2. Similarly, we can define A-, B-, C-, D-, E-2-
non-dependents of u. At the same time, for a 3-vertex v in G and uv ∈ E(G), v
is called a 3-TB-vertex of u if f3(uv) = 2 and 3-QB-vertex of u if f4(uv) = 2.

Firstly, we discuss the final charge of each face f ∈ F (G). Let f = [v1v2v3]
be a 3-face with dG(v1) ≤ dG(v2) ≤ dG(v3). If dG(v1) ≤ 3, then by Lemma 3,
dG(v1), dG(v2) ≥ 6, and it follows that c′(f) ≥ 3 − 4 + 2 × 1

2 = 0 by R2.1. If
dG(v1) = 4, then by (B1), f is a (4, 4, 6+)-face or a (4, 5, 5)-face or a (4, 5, 6+)-face
or a (4, 6+, 6+)-face, and it follows that c′(f) ≥ 3− 4+min

{

2× 1
4 +

1
2 , 2×

1
2 ,

1
4 +

1
3 +

1
2

}

= 0 by R2.2–R2.5. If dG(v1) ≥ 5, then c′(f) ≥ 3− 4 + 3× 1
3 = 0 by R2.6

and Lemma 3. Let f be a 4-face in G. Then c′(f) = c(f) = 0. There is no 5-face
in G.

Let f be a 6-face in G. Suppose that f is not incident with any (6+, 6+)-
edge. If n3−(f) ≥ 1 and 2n3−(f) + 1 ≤ 5, then by O2(2), R1.1, R1.2 and
R1.4, c′(f) ≥ d(f) − 4 −

[

1
2n3−(f) +

1
4n4(f) +

1
6(d(f) − n3−(f) − n4(f))

]

=

d(f)−4− (13n3−(f)+
1
12n4(f)+

1
6d(f)) ≥ d(f)−4−

(

1
3n3−(f)+

d(f)
12 − 1

6n3−(f)−
1
12 + 1

6d(f)
)

= 3
4d(f) −

1
6n3−(f) −

47
12 ≥ 1

4 > 0, where n3−(f) ≤ 2. If n3−(f) ≥ 1
and 2n3−(f) = 6, then by Lemma 3, n4(f) = 0. Hence, by R1.1 and R1.4,
c′(f) ≥ 6 − 4 − 3 × 1

2 − 3 × 1
6 = 0. If n3−(f) = 0, then by R1.2 and R1.4,

c′(f) ≥ 6 − 4 −
(

1
4n4(f) +

1
6n5+(f)

)

≥ 1
2 . Suppose that f is incident with a

(6+, 6+)-edge. By Lemma 3 and R1.1 and R1.3, n3−(f) ≤ 2 and it follows that
c′(f) ≥ 6−4−6× 1

4 = 1
2 if n3−(f) = 0, c′(f) ≥ 6−4− 1

2−5× 1
4 = 1

4 if n3−(f) = 1,
and c′(f) ≥ 6− 4− 2× 1

2 − 4× 1
4 = 0 if n3−(f) = 2.

Let f be a 7+-face in G and d(f) = k. By Lemma 3 and R1.5–R1.7, c′(f) ≥
k− 4−

[

2
3n2(f)+

1
2n3(f)+

1
4(k−n2(f)−n3(f))

]

= 3
4k− 4− 5

12(n2(f)+n3(f))+
1
6n3(f) ≥

3
4k − 4 − 5

12(n2(f) + n3(f)). By O2(1), n2(f) + n3(f) ≤
⌊

k
2

⌋

. Hence,
by R1.5–R1.7, we have c′(f) ≥ 3

4(2t + 1) − 4 − 5
12 t ≥ 0 if k = 2t + 1 and t ≥ 3,

and c′(f) ≥ 3
4(2t)− 4− 5

12 t ≥
1
3 if k = 2t and t ≥ 4.

Now, we will check that the final charge c′(v) ≥ 0 for each vertex v ∈ V (G).
Let f i be the face incident with vvi, vvi+1, i = 1, 2, . . . , d(v) with vd(v)+1 = v1.
Let v be a 2-vertex in G. Then by Lemma 6, v has a 2-master. If f4−(v) = 2,
then c′(v) ≥ 2 − 4 + 5

3 + 1
3 = 0 by R4.1, R4.2, R4.6 and R4.7. If f3(v) = 1

and f5+(v) = 1, without loss of generality, assume that f1 is a 3-face, then since
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G contains no 5-cycle, f2 is a 7+-face. Hence, c′(v) ≥ 2 − 4 + 7
6 + 1

6 + 2
3 = 0

by R1.5, R4.3 and R4.8. If f4(v) = 1, then f6+(v) = 1 and it follows that
c′(v) ≥ 2 − 4 + 4

3 + 1
6 + 1

2 = 0 by R1.1, R4.4 and R4.9. If f6+(v) = 2, then
c′(v) ≥ 2− 4 + 1 + 2× 1

2 = 0 by R1.1 and R4.5.

Let v be a 3-vertex in G. Since G contains no 1−-cycle-subdivisions of W3,
then f4−(v) ≤ 2. If f4−(v) = 2, then c′(v) ≥ 3− 4 + 1

4 + 2× 1
8 + 1

2 = 0 by R1.1,
R1.6, R2.1 and R3. If f4−(v) ≤ 1, then c′(v) ≥ 3− 4 + 2× 1

2 = 0 by R1.1, R1.6
and R2.1. Let v be a 4-vertex in G, then by O1, f3(v) ≤ 2 and it follows that
f6+(v) ≥ 2. Hence, c′(v) ≥ 4 − 4 − 2 × 1

4 + 2 × 1
4 = 0 by R1.2, R1.3, R1.7 and

R2.2–R2.5.

Let v be a 5-vertex in G. By O1, f3(v) ≤ 3 and it follows that f6+(v) ≥ 2. If
f3(v) ≤ 2, then c′(v) ≥ 5−4−2× 1

2 = 0 by R2.3–R2.6. If f3(v) = 3, assume that
v is incident with two adjacent 3-faces with the common edge uv. If d(u) = 5,
since G contains no (B2) and (B3), we have c′(v) ≥ 5 − 4 − 1

2 − 2 × 1
3 + 1

6 = 0
by R1.4, R2.3 and R2.4. If d(u) = 4, since G contains no (B2), we have c′(v) ≥
5−4−2× 1

2−
1
3+2× 1

6 = 0 by R1.4, R2.3 and R2.4. If d(u) ≥ 6, then v is incident
with at most one (4, 5, 5)-face, and it follows that c′(v) ≥ 5−4−2× 1

3 −
1
2 +

1
6 = 0

by R1.4, R2.3 and R2.4. Let v be a 6-vertex in G. By O1, f3(v) ≤ 4 and it follows
that f6+(v) ≥ 2. If f3(v) ≤ 3, then c′(v) ≥ 6− 4− 3× 1

2 −max
{

1
4 +

1
8 , 3×

1
8

}

= 1
8

by R2 and R3. If f3(v) = 4, then by O4, f6+(v) = 2. Assume that f1, f2, f4, f5

are four 3-faces, then by O4 (2), f4−(v1) = f4−(v3) = f4−(v4) = f4−(v6) = 1, and
it follows that c′(v) ≥ 6− 4− 4× 1

2 − 2× 1
4 +2× 1

4 = 0 by Lemma 3, R1.3, R1.4,
R2 and R3.

Let v be a 7-vertex in G. By O1, f3(v) ≤ 4. Let n2A, n2B, n2C , n2D, n2E ,
n3TB and n3QB denote the number of A-, B-, C-, D-, E-2-non-dependents, 3-TB-
vertices and 3-QB-vertices of v in G, respectively. We will divide this problem
into several cases in terms of the number of different kinds of 2-dependents and
2-non-dependents.

(1) v has no 2-dependents in G. Then f3(v) ≤ 4 by O1.

(1.1) If f3(v) = 4, then v has no A-, B, D-2-non-dependents and at most two
C-2-non-dependents by O4. If v has two C-2-non-dependents, then n3TB = 0
by Lemma 4 and it follows that c′(v) ≥ 7 − 4 − 2 × 1

6 − 4 × 1
2 = 2

3 by R2.1
and R4.8. if v has one C-2-non-dependent, then n3TB ≤ 1 and it follows that
c′(v) ≥ 7 − 4 − 1

4 − 1
6 − 4 × 1

2 = 7
12 for n3TB = 1 by R2.1, R3.1 and R4.8;

c′(v) ≥ 7 − 4 − 1
6 − 4 × 1

2 = 5
6 for n3TB = 0 by R2.1 and R4.8. If n2C = 0, then

c′(v) ≥ 7− 4− 2× 1
4 − 4× 1

2 = 1
2 by R2.1 and R3.1.

(1.2) If f3(v) = 3, then v has at most one A-2-non-dependent by O4 and
no B-2-non-dependent. If v has one A-2-non-dependent, then c′(v) ≥ 7 − 4 −
1
3 − 1

4 − 3 × 1
2 = 17

12 by R2.1, R3.1 and R4.6. If v has no A-2-non-dependent,
then v has at most one D-2-non-dependent by O4. If n2A = 0 and n2D = 1,
then n2C ≤ 2 by O4. Hence, by R2.1, R3.1, R3.2, R4.8 and R4.9, we have
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c′(v) ≥ 7−4−3× 1
6−

1
8−3× 1

2 = 7
8 if n2C = 2; c′(v) ≥ 7−4−2× 1

6−
1
4−

1
8−3× 1

2 = 19
24

if n2C = 1; c′(v) ≥ 7− 4− 1
6 −

1
4 −

1
8 −

1
8 − 3× 1

2 = 5
12 if n2C = 0. If n2A = 0 and

n2D = 0, then n2C ≤ 3 by O4. Hence, by R2.1, R3.1, R3.2 and R4.8, we have
c′(v) ≥ 7−4−3× 1

6−3× 1
2 = 1 if n2C = 3; c′(v) ≥ 7−4−2× 1

6−2× 1
8−3× 1

2 = 11
12

if n2C = 2; c′(v) ≥ 7 − 4 − 1
6 − 1

4 − 2 × 1
8 − 3 × 1

2 = 19
24 if n2C = 1; c′(v) ≥

7− 4− 1
4 − 3× 1

8 − 3× 1
2 = 7

8 if n2C = 0.

(1.3) If f3(v) ≤ 2, then c′(v) ≥ 7−4−max
{

5× 1
3+2× 1

2 , 6×
1
3+

1
2 , 7×

1
3

}

= 1
3

by R2.1 and R4.

(2) v has one E-2-dependent in G. Then f3(v) ≤ 4 by O1.

(2.1) If f3(v) = 4, then v has no A-, B- and D-2-non-dependent and n2C ≤ 2
by Lemma 4 and f6+(v) = 3 by O4. Then by R2.1, R1.3–R1.7, R3.1, R4.5 and
R4.8, we have c′(v) ≥ 7− 4− 1− 2× 1

6 − 4× 1
2 + 3× 1

6 = 1
6 if n2C = 2; c′(v) ≥

7−4−1− 1
6−

1
4−4× 1

2+3× 1
6 = 1

12 if n2C = 1; c′(v) ≥ 7−4−1−2× 1
4−4× 1

2+3× 1
6 = 0

if n2C = 0.

(2.2) If f3(v) = 3, then n2A(v) ≤ 1 and n2B(v) = n2D(v) = 0 by Lemma 4
and O4. If n2A = 1, then n2C ≤ 1 by Lemma 4. Hence, by R2.1, R1.3–R1.7,
R3.1, R4.5, R4.6 and R4.8, we have c′(v) ≥ 7 − 4 − 1 − 1

3 − 1
6 − 3 × 1

2 = 0 if
n2C = 1; c′(v) ≥ 7− 4− 1− 1

3 −
1
4 − 3× 1

2 +
1
6 = 1

12 if n2C = 0. If n2A = 0, then
n2C ≤ 3 by Lemma 4. Hence, c′(v) ≥ 7− 4− 1− 3× 1

6 − 3× 1
2 = 0 by R2.1, R4.5

and R4.8.

(2.3) If f3(v) = 2, then n2A ≤ 2. If n2A = 2, then n2B = n2C = n2D = 0
by Lemma 4 and it follows that c′(v) ≥ 7 − 4 − 1 − 2 × 1

3 − 2 × 1
2 = 1

3 by R2.1,
R4.5 and R4.6. If n2A = 1, then n2B = n2D = 0 and n2C ≤ 1 by Lemma 4.
Hence, c′(v) ≥ 7 − 4 − 1 − 1

3 − 1
6 − 2 × 1

2 = 1
2 if n2C = 1 by R2.1, R4.5, R4.6

and R4.8; c′(v) ≥ 7 − 4 − 1 − 1
3 − 1

8 − 2 × 1
2 = 7

8 if n2C = 0 by R2.1, R3.2,
R4.5 and R4.6. If n2A(v) = 0, then n2B(v) ≤ 1 by O4. If n2B(v) = 1, then
c′(v) ≥ 7− 4− 1− 1

3 −
1
4 − 2× 1

8 − 2× 1
2 = 1

6 by R2.1, R3.1, R3.2, R4.5 and R4.7.
If n2B(v) = 0, then n3QB ≤ 1 by O4. By Lemma 5, Lemma 4, R2.1, R3.1, R3.2,
R4.5, R4.8 and R4.9, we have c′(v) ≥ 7 − 4 − 1 − 1

6 − 1
4 − 1

4 − 1
8 − 2 × 1

2 = 5
24

for n3QB = 1 and now n2D ≤ 1; c′(v) ≥ 7 − 4 − 1 − 3 × 1
6 − 1

8 − 2 × 1
2 = 3

8 for
n3QB = 0 and equality holds if n2D = 1 and n2C = 2.

(2.4) If f3(v) ≤ 1, then n3QB ≤ 4 by Lemma 5 and Lemma 4. Since G

contains no (A1) and (A2), we discuss this problem in two cases. If f3(v) = 1,
then c′(v) ≥ 7− 4− 1− 1

3 −
1
6 −

1
4 − 2× 1

8 −
1
2 = 1

2 by R2.1, R3.1, R3.2, R4.5 and
R4.7–R4.9. If f3(v) = 0, then c′(v) ≥ 7− 4− 1− 1

3 − 3× 1
4 − 2× 1

8 = 2
3 by R3.1,

R3.2, R4.5 and R4.7.

(3) v has one D-2-dependent in G. Then n2A ≤ 1 by O4.

(3.1) Suppose n2A = 1. Then by O4, 1 ≤ f3(v) ≤ 2. If f3(v) = 2, then
c′(v) ≥ 7 − 4 − 4

3 − 1
3 − 2 × 1

8 − 2 × 1
2 = 1

12 by R2.1, R3.2, R4.4 and R4.6. If
f3(v) = 1, then n3QB ≤ 2 and it follows that c′(v) ≥ 7−4− 4

3−
1
3−2× 1

4−
1
8−

1
2 = 5

24
by R2.1, R3.1, R3.2, R4.4 and R4.6.
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(3.2) Suppose n2A = 0. Then by O4, f3(v) ≤ 3. In the following, we will
use R1.3–R1.7, R2.1, R3.1, R3.2, R4.4 and R4.8. If f3(v) = 3, then n2C ≤ 2 by
Lemma 4 and O4. Hence, c′(v) ≥ 7 − 4 − 4

3 − 2 × 1
6 − 1

8 − 3 × 1
2 + 3 × 1

6 = 5
24

for n2C = 2; c′(v) ≥ 7 − 4 − 4
3 − 1

6 − 1
4 − 1

8 − 3 × 1
2 + 3 × 1

6 = 1
8 for n2C = 1;

c′(v) ≥ 7− 4− 4
3 −

1
4 − 2× 1

8 − 3× 1
2 + 3× 1

6 = 1
6 for n2C = 0. If f3(v) = 2, then

n2C ≤ 2 by Lemma 4 and O4. Hence, c′(v) ≥ 7−4− 4
3−2× 1

6−
1
4−

1
8−2× 1

2+
1
6 = 1

8
for n2C = 2; c′(v) ≥ 7 − 4 − 4

3 − 1
6 − 2 × 1

4 − 1
8 − 2 × 1

2 + 1
6 = 1

24 for n2C = 1;
c′(v) ≥ 7 − 4 − 4

3 − 3 × 1
4 − 1

8 − 2 × 1
2 + 2 × 1

6 = 1
8 for n2C = 0. If f3(v) = 1,

then n2C ≤ 1 and c′(v) ≥ 7 − 4 − 4
3 − 1

6 − 3 × 1
4 − 1

8 − 1
2 = 1

8 for n2C = 1;
c′(v) ≥ 7 − 4 − 4

3 − 3 × 1
4 − 2 × 1

8 − 1
2 = 1

6 for n2C = 0. If f3(v) = 0, then by
Lemma 5, c′(v) ≥ 7− 4− 4

3 − 5× 1
4 − 1

8 = 7
24 .

(4) v has one C-2-dependent in G. Then n2A ≤ 1 by O4.

(4.1) Suppose that n2A = 1. Then by O4, 2 ≤ f3(v) ≤ 3. If f3(v) = 3, then
n2C ≤ 1 and n2B = n2D = 0 by O4. Hence, c′(v) ≥ 7−4− 7

6−
1
3−

1
6−3× 1

2+
1
6 = 0

for n2C = 1 by R1.3–R1.7, R2.1, R4.3, R4.6 and R4.8; c′(v) ≥ 7 − 4 − 7
6 − 1

3 −
1
8 − 3 × 1

2 + 1
6 = 1

24 for n2C = 0 by R1.3–R1.7, R2.1, R3.2, R4.3 and R4.6. If
f3(v) = 2, then c′(v) ≥ 7 − 4 − 7

6 − 1
3 − 2 × 1

8 − 2 × 1
2 = 1

4 by R2.1, R3.1, R3.2,
R4.3 and R4.6.

(4.2) Suppose that n2A = 0. Then by O4, 1 ≤ f3(v) ≤ 4.

(4.2.1) If f3(v) = 4, then n2B = n2D = 0, n2C ≤ 2 and n3TB ≤ 1 by
O4. If f3(v) = 4, n2C = 2, then n3TB = 0 by Lemma 3 and it follows that
c′(v) ≥ 7−4− 7

6 −2× 1
6 −4× 1

2 +3× 1
6 = 0 by R1.3–R1.7, R2.1, R4.3 and R4.8. If

f3(v) = 4, n2C = 1 and n3TB = 1, then v is incident with at least one 7+-face by
the division of 2-neighbors of v. Hence, c′(v) ≥ 7−4− 7

6−
1
6−

1
4−4× 1

2+2× 1
6+

1
4 = 0

by R1.3–R1.7, R2.1, R3.1, R4.3 and R4.8. If f3(v) = 4, n2C = 1 and n3TB = 0,
then similarly we can check that c′(v) ≥ 0. If f3(v) = 4, n2C = 0, then c′(v) ≥
7− 4− 7

6 −
1
4 −

1
8 − 4× 1

2 + 2× 1
6 +

1
4 = 1

24 by Lemma 3, R1.3–R1.7, R2.1, R3.1,
R3.2 and R4.3.

(4.2.2) If f3(v) = 3, then n2C ≤ 2 and n2B = 0 by O4. If n2C = 2, then
n2D = 0 by O4 and it follows that c′(v) ≥ 7 − 4 − 7

6 − 2 × 1
6 − 3 × 1

2 = 0
by R2.1, R4.3 and R4.8. If n2C = 1, then n2D ≤ 1 by O4 and it follows that
c′(v) ≥ 7− 4− 7

6 − 2× 1
6 − 1

8 − 3× 1
2 + 1

6 = 1
24 for n2D = 1 by R1.3–R1.7, R2.1,

R4.3, R4.8 and R4.9; c′(v) ≥ 7−4− 7
6 −

1
6 −2× 1

8 −3× 1
2 +

1
6 = 1

12 for n2D = 0 by
R1.3–R1.7, R2.1, R3.2, R4.3 and R4.8. If n2C = 0, then n2D ≤ 1 by O4 and it
follows that c′(v) ≥ 7−4− 7

6 −
1
6 −

1
4 −

1
8 −3× 1

2 +2× 1
6 = 0 for n2D = 1 by R1.3–

R1.7, R2.1, R3.1, R3.2, R4.3 and R4.9; c′(v) ≥ 7−4− 7
6−

1
4−2× 1

8−3× 1
2+

1
6 = 0

for n2D = 0 by R1.3–R1.7, R2.1, R3.1, R3.2 and R4.3.

(4.2.3) If f3(v) = 2, then n2C ≤ 1 by Lemma 4. If f3(v) = 2 and n2C = 1, then
n2B ≤ 1 by O4. If n2B = 1, then c′(v) ≥ 7−4− 7

6−
1
6−

1
3−2× 1

8−2× 1
2 = 1

12 by R2.1,
R3.2, R4.3 and R4.7–R4.8. If n2B = 0, then c′(v) ≥ 7−4− 7

6−
1
6−

1
4−2× 1

8−2× 1
2 =

1
6 by R2.1, R3.1, R3.2, R4.3 and R4.8. If f3(v) = 2 and n2C = 0, then n2B ≤ 1
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by O4. At the same time, by Lemma 5, R2.1, R3.1, R3.2, R4.3 and R4.7, we
have c′(v) ≥ 7− 4− 7

6 − 1
3 − 1

4 − 2× 1
8 − 2× 1

2 = 0.

(4.2.4) If f3(v) = 1, then n2A = n2C = 0 and n2B ≤ 2 by Lemma 5 and
Lemma 4. Hence, c′(v) ≥ 7− 4− 7

6 − 1
3 − 2× 1

4 − 2× 1
8 − 1

2 = 1
4 by R2.1, R3.1,

R3.2, R4.3 and R4.7.

(5) v has one B-2-dependent in G. Then n2A ≤ 1 by O4.

(5.1) If n2A = 1, then by O4, f3(v) = 1, n2B = 0 and n3QB ≤ 1. Hence,
c′(v) ≥ 7 − 4 − 5

3 − 1
3 − 1

4 − 2 × 1
8 − 1

2 = 0 by Lemma 5, R2.1, R3.1, R3.2, R4.2
and R4.6.

(5.2) If n2A = 0, then by O4, f3(v) ≤ 2.

(5.2.1) If f3(v) = 2, then n2D ≤ 1 and n2B = 0 by Lemma 4.

(5.2.1.1) If f3(v) = 2 and n2D = 1, then n3TB ≤ 1 and n3QB = 0 by Lemma
5. If n3TB = 1, then v is incident with two 6+-faces each of which is incident with
a (6+, 6+)-edge, and it follows that c′(v) ≥ 7−4− 5

3−
1
6−

1
4−

1
8−2× 1

2+2× 1
4 = 7

24
by R1.3–R1.7, R2.1, R3.1, R3.2, R4.2 and R4.9. If n3TB = 0, then n2C ≤ 1 by
O4 and it follows that c′(v) ≥ 7−4− 5

3 −2× 1
6 −

1
8 −2× 1

2 +
1
6 = 1

24 by R1.3–R1.7,
R2.1, R3.2, R4.2 and R4.8–R4.9.

(5.2.1.2) If f3(v) = 2 and n2D = 0, then n3TB ≤ 1 and n3QB ≤ 1 by
Lemma 5. If n3TB = 1, then n2C = n2B = 0 by Lemma 3, v is incident with
two 6+-face each of which is incident with a (6+, 6+)-edge, and it follows that
c′(v) ≥ 7− 4− 5

3 − 2× 1
4 − 2× 1

8 − 2× 1
2 + 2× 1

4 = 1
12 by R1.3, R2.1, R3.1, R3.2

and R4.2. If n3TB = 0, then n2C ≤ 2 and it follows that c′(v) ≥ 7 − 4 − 5
3 −

max
{

1
6 +

1
4 +2× 1

8 , 2×
1
6 +2× 1

8

}

− 2× 1
2 +2× 1

6 = 0 by R1.3–R1.7, R2.1, R3.1,
R3.2, R4.2 and R4.8.

(5.2.2) If f3(v) = 1, then n2C ≤ 1. If n2C = 1, then n2B ≤ 1 by Lemma 5
and O4. If n2B = 1, then c′(v) ≥ 7 − 4 − 5

3 − 1
6 − 1

3 − 2 × 1
8 − 1

2 = 1
12 by R2.1,

R3.2, R4.2 and R4.7–R4.8. If n2B = 0, then n3QB ≤ 2 and f6+(v) ≥ 1 by O4.
Hence, c′(v) ≥ 7 − 4 − 5

3 − 1
6 − 2 × 1

4 − 2 × 1
8 − 1

2 + 1
6 = 1

12 by R1.3–R1.7, R2.1,
R3.1, R3.2, R4.2 and R4.8.

If n2C = 0, then n3QB ≤ 2 and f6+(v) ≥ 1 by O4. If n3QB = 2, then by
Lemma 5 and Lemma 4, n2B = n2D = 0 and it follows that c′(v) ≥ 7 − 4 −
5
3 − 2 × 1

4 − 3 × 1
8 − 1

2 + 1
6 = 1

8 by R1.3–R1.7, R2.1, R3.1, R3.2 and R4.2. If
n3QB = 1, then by Lemma 5 and Lemma 4, n2B = 0 and n2D ≤ 1 and it follows
that c′(v) ≥ 7−4− 5

3−
1
6−

1
4−2× 1

8−
1
2 = 1

6 by R2.1, R3.1, R3.2, R4.2 and R4.9. If
n3QB = 0, then by Lemma 5 and Lemma 4, n2B ≤ 1. If n2B = 1, then by Lemma
5 and Lemma 4, n2D = 0 and it follows that c′(v) ≥ 7− 4− 5

3 −
1
3 − 3× 1

8 −
1
2 = 1

8
by R2.1, R3.2, R4.2 and R4.7. If n2B = 0, then by Lemma 4, n2D ≤ 1 and it
follows that c′(v) ≥ 7− 4− 5

3 −
1
6 − 4× 1

8 −
1
2 = 1

6 by R2.1, R3.1, R4.2 and R4.9.

(5.2.3) If f3(v) = 0, then n3QB ≤ 5 by Lemma 5. Hence, c′(v) ≥ 7− 4− 5
3 −

5× 1
4 = 1

12 by R3.1 and R4.2.

(6) v has one A-2-dependent in G, then n2A ≤ 1 by O4.
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(6.1) If n2A = 1, then f3(v) = 2 by O4. Hence, c′(v) ≥ 7−4− 5
3−

1
3−2× 1

2 = 0
by R2.1, R4.1 and R4.6.

(6.2) If n2A = 0, then 1 ≤ f3(v) ≤ 3 by O4.
(6.2.1) If f3(v) = 3, then f6+(v) = 3, n2B = n2D = 0 and n3TB ≤ 1 by O4.

If n3TB = 1, then c′(v) ≥ 7 − 4 − 5
3 − 1

4 − 3 × 1
2 + 3 × 1

6 = 1
12 by R1.3–R1.7,

R2.1, R3.1 and R4.1. If n3TB = 0, then n2C ≤ 2 by O4 and it follows that
c′(v) ≥ 7− 4− 5

3 − 2× 1
6 − 3× 1

2 +3× 1
6 = 0 by R1.3–R1.7, R2.1, R4.1 and R4.8.

(6.2.2) If f3(v) = 2, then f6+(v) ≥ 3, n2C ≤ 1 and n2B = 0 by O4. If
n2C = 1, then n2D ≤ 1 by O4. Hence, by R1.3–R1.7, R2.1, R3.2, R4.1 and
R4.8–R4.9, we have c′(v) ≥ 7− 4− 5

3 − 2× 1
6 − 1

8 − 2× 1
2 + 1

6 = 1
24 for n2D = 1;

c′(v) ≥ 7 − 4 − 5
3 − 1

6 − 2 × 1
8 − 2 × 1

2 + 1
6 = 1

12 for n2D = 0. If n2C = 0,
then n2D ≤ 1 by O4. Hence, by R1.3–R1.7, R2.1, R3.2, R4.1 and R4.9, we
have c′(v) ≥ 7 − 4 − 5

3 − 1
6 − 2 × 1

8 − 2 × 1
2 + 1

6 = 1
12 for n2D = 1; c′(v) ≥

7− 4− 5
3 − 3× 1

8 − 2× 1
2 + 1

6 = 1
8 for n2D = 0.

(6.2.3) If f3(v) = 1, then by Lemma 4 and O4, f6+(v) ≥ 2, n2C = 0 and
n2B ≤ 1. If n2B = 1, then c′(v) ≥ 7 − 4 − 5

3 − 1
3 − 1

4 − 2 × 1
8 − 1

2 = 0 by
R2.1, R3.1, R3.2, R4.1 and R4.7. If n2B = 0, then n2D ≤ 2. Hence, c′(v) ≥
7 − 4 − 5

3 − 2 × 1
6 − 1

4 − 1
2 = 1

4 for n2D = 2 by Lemma 5, R2.1, R3.1, R4.1 and
R4.9; c′(v) ≥ 7− 4− 5

3 −
1
6 − 2× 1

4 −
1
8 −

1
2 = 1

24 for n2D = 1 by R2.1, R3.1, R3.2,
R4.1 and R4.9; c′(v) ≥ 7− 4− 5

3 − 2× 1
4 − 2× 1

8 − 1
2 = 1

12 for n2D = 0 by R2.1,
R3.1, R3.2 and R4.1.

Now, the proof of Theorem 2 is completed.
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Appendix

%Input
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12
%Lemma 11 (1)
Q1=(x1-x2)*(x1-x3)*(x1-x4)*(x1-x6)*(x2-x3)*(x2-x4)*(x2-x5)*(x3-x5)*(x3-x6)*(x4-x5)

*(x4-x6)*(x5-x6);
c1=diff(diff(diff(diff(diff(diff(Q1,x1,3),x2,3),x3,1),x4,1),x5,2),x6,2) /factorial(3)/factorial(3)

/factorial(1)/factorial(1)/factorial(2)/factorial(2)
%Lemma 11 (2)
Q2=(x1-x2)*(x1-x5)*(x1-x6)*(x1-x7)*(x2-x5)*(x2-x7)*(x2-x8)*(x3-x5)*(x3-x4)*(x3-x9)

*(x3-x10)*(x4-x5)*(x4-x10)*(x4-x11)*(x5-x6)*(x5-x8)*(x5-x9)*(x5-x11)*(x6-x7)*(x6-x8)
*(x6-x9)*(x6-x11)*(x7-x8)*(x8-x9)*(x8-x11)*(x9-x10)*(x9-x11)*(x10-x11);

c2=diff(diff(diff(diff(diff(diff(diff(diff(diff(diff(diff(Q1,x1,3),x2,0),x3,0), x4,3),x5,5),x6,4),x7,2),
x8,2),x9,3),x10,2),x11,4)/factorial(3)/factorial(0)/factorial(0) /factorial(3)/factorial(5)
/factorial(4)/factorial(2)/factorial(2)/factorial(3)/factorial(2)/factorial(4)

%Lemma 11 (3)
Q3=(x1-x2)*(x1-x3)*(x1-x4)*(x1-x5)*(x1-x9)*(x1-x8)*(x2-x3)*(x2-x5)*(x2-x6)*(x3-x4)

*(x3-x6)*(x3-x9)*(x3-x7)*(x4-x7)*(x4-x8)*(x5-x9)*(x5-x6)*(x5-x8)*(x6-x7)*(x6-x9)
*(x7-x8)*(x7-x9)*(x8-x9);

c3=diff(diff(diff(diff(diff(diff(diff(diff(diff(Q1,x1,3),x2,3),x3,3),x4,3),x5,3), x6,3),x7,3),
x8,2),x9,0)/factorial(3)/factorial(3)/factorial(3)/factorial(3)/factorial(3)

/factorial(3)/factorial(3)/factorial(2)
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