
Discussiones Mathematicae
Graph Theory 40 (2020) 1025–1033
doi:10.7151/dmgt.2159

LOW 5-STARS AT 5-VERTICES IN 3-POLYTOPES WITH

MINIMUM DEGREE 5 AND NO VERTICES OF DEGREE

FROM 7 TO 9
1

Oleg V. Borodin, Mikhail A. Bykov

and

Anna O. Ivanova

Sobolev Institute of Mathematics
Novosibirsk, 630090, Russia

e-mail: brdnoleg@math.nsc.ru
131093@mail.ru
shmgnanna@mail.ru

Abstract

In 1940, Lebesgue gave an approximate description of the neighborhoods
of 5-vertices in the class P5 of 3-polytopes with minimum degree 5.

Given a 3-polytope P , by h5(P ) we denote the minimum of the maximum
degrees (height) of the neighborhoods of 5-vertices (minor 5-stars) in P .

Recently, Borodin, Ivanova and Jensen showed that if a polytope P in
P5 is allowed to have a 5-vertex adjacent to two 5-vertices and two more
vertices of degree at most 6, called a (5, 5, 6, 6,∞)-vertex, then h5(P ) can
be arbitrarily large. Therefore, we consider the subclass P∗

5
of 3-polytopes

in P5 that avoid (5, 5, 6, 6,∞)-vertices.
For each P ∗ in P∗

5
without vertices of degree from 7 to 9, it follows from

Lebesgue’s Theorem that h5(P
∗) ≤ 17. Recently, this bound was lowered

by Borodin, Ivanova, and Kazak to the sharp bound h5(P
∗) ≤ 15 assuming

the absence of vertices of degree from 7 to 11 in P ∗.
In this note, we extend the bound h5(P

∗) ≤ 15 to all P ∗s without vertices
of degree from 7 to 9.
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1. Introduction

The degree of a vertex or face x in a convex finite 3-dimensional polytope (called
a 3-polytope) is denoted by d(x). As proved by Steinitz [14], the 3-polytopes are
in 1-1 correspondence with the 3-connected planar graphs. A k-vertex is a vertex
v with d(v) = k. A k+-vertex (k−-vertex) is one of degree at least k (at most
k). Similar notation is used for the faces. The set of 3-polytopes with minimum
degree 5 is denoted by P5, and its elements are P5s. We will drop the argument
whenever it is clear from context.

The height of a subgraph S of a 3-polytope is the maximum degree of the
vertices of S in the 3-polytope. A k-star, a star with k rays, is minor if its center
v has degree at most 5. In particular, the neighborhoods of 5-vertices are minor
5-stars and vice versa. All stars considered in this note are minor. By hk(P5) we
denote the minimum height of minor k-stars in a given 3-polytope P5.

In 1904, Wernicke [15] proved that every P5 has a 5-vertex adjacent to a
6−-vertex. This result was strengthened by Franklin [11] in 1922 to the existence
of a 5-vertex with two 6−-neighbors. So h1 ≤ h2 ≤ 6 in P5, where both bounds
are sharp.

In 1940, in attempts to solve the Four Color Problem, Lebesgue [13, p. 36]
gave an approximate description of the neighborhoods of 5-vertices in P5s.

In particular, this description implies the results in [11, 15] and shows that
there is a 5-vertex with three 7−-neighbors. Thus h3 ≤ 7, which is sharp due to
Borodin [1]. Jendrol’ and Madaras [12] gave a precise description of minor 3-stars
in P5s.

Lebesgue [13] also proved h4(P5) ≤ 11, which was strengthened by Borodin
and Woodall [10] to the tight bound h4(P5) ≤ 10. Recently, Borodin and Ivanova
[2] obtained a precise description of 4-stars in P5s.

The more general problem of describing 5-stars at 5-vertices in P5 remains
widely open.

Recently, precise upper bounds have been obtained for the minimum height
h5(P5) of minor 5-stars in several natural subclasses of P5.

Note that Borodin, Ivanova and Jensen [5] showed that if a polytope P5 is
allowed to have a 5-vertex adjacent to two 5-vertices and two more vertices of
degree at most 6, called a (5, 5, 6, 6,∞)-vertex, then h5(P5) can be arbitrarily
large. (In fact, every 5-vertex in the construction in [5] has two 5-neighbors and
two 6-neighbors.) Therefore, from now on we restrict ourselves to the subclass
P∗

5
of the 3-polytopes in P5 avoiding (5, 5, 6, 6,∞)-vertices.

For each P ∗

5 in P∗

5
, it follows from Lebesgue’s Theorem that h5(P

∗

5 ) ≤ 41.
This bound was lowered to h5(P

∗

5 ) ≤ 28 by Borodin, Ivanova, and Jensen [5] and
then to h5(P

∗

5 ) ≤ 23 in Borodin-Ivanova [4]. On the other hand, it was shown
in [5] that the upper bound for h5(P

∗

5 ) cannot go down below 20. We conjecture
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that h5(P
∗

5 ) ≤ 20 whenever P ∗

5 ∈ P∗

5
.

Back in 1996, Jendrol’ and Madaras [12] showed that if a polytope P ∗∗

5 has a
5-vertex adjacent to four 5-vertices, then h5(P

∗∗

5 ) can be arbitrarily large. There-
fore, considering subclasses of P∗

5
without vertices of degree from 6 to a certain

k6 with k6 > 6, we should deal only with 3-polytopes P ∗∗

5 s having no 5-vertices
with four 5-neighbors.

For every P ∗∗

5 in P∗

5
with k6 = 9, Lebesgues’ bound h5(P

∗∗

5 ) ≤ 14 was
improved by Borodin and Ivanova [3] to the sharp bound h5(P

∗∗

5 ) ≤ 12. Later on,
Borodin, Ivanova and Nikiforov [9] proved the same bound assuming the absence
only of vertices of degree from 6 to 8, improving Lebesgues’ bound h5(P

∗∗

5 ) ≤ 17.

For each P ∗∗

5 with no vertices of degree 6 or 7, it follows from Lebesgue’s
Theorem that h5(P5) ≤ 23, and Borodin, Ivanova, Kazak and Vasil’eva [7] have
obtained the best possible bound h5(P

∗∗

5 ) ≤ 14.

For each P ∗∗

5 with no 6-vertices, Lebegues’ bound h5(P
∗∗

5 ) ≤ 41 was improved
by Borodin, Ivanova and Nikiforov [8] to the sharp bound h5(P

∗∗

5 ) ≤ 17. We note
that the sharpness was confirmed in [8] by a construction on almost 3000 vertices.

Another natural direction of research towards a tight version of Lebesgue’s
Theorem is considering subclasses of P∗

5
with no vertices of degree from 7 to a

certain integer k7 with k7 > 7.

For k7 = 11, Lebesgue’s bound h5(P
∗) ≤ 17 was lowered by Borodin, Ivanova,

and Kazak [6] to the sharp bound h5(P
∗) ≤ 15. The purpose of this note is to

extend this bound to all P ∗s such that k7 = 9.

Theorem 1. Every 3-polytope P ∗ with minimum degree 5 and neither (5, 5, 6,
6,∞)-vertices nor vertices of degree from 7 to 9 satisfies h5(P

∗) ≤ 15, which
bound is best possible.

Problem 2. Is it true that every 3-polytope P ∗ with minimum degree 5 and no
(5, 5, 6, 6,∞)-vertices satisfies h5(P

∗) ≤ 15 provided that

(a) P ∗ has no vertices of degree 7 and 8?

(b) only 7-vertices are forbidden in P ∗?

2. Proof of Theorem 1

The sharpness of the bound 15 in Theorem 1 follows from a construction in [6].

Now suppose a 3-polytope P ′

5 is a counterexample to the main statement of
Theorem 1. In particular, each minor 5-star in P ′

5 contains a 16+-vertex along
with either another 10+-vertex or at least three 6-vertices.

Let P5 be a counterexample on the same vertices as P ′

5 with the maximum
possible number of edges. For brevity, a vertex v with d(v) 6= 6 is a non-6-vertex.
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Remark 3. P5 has no two non-6-vertices being nonconsecutive along the bound-
ary of a 4+-face. Indeed, otherwise adding a diagonal between these vertices
would result in a counterexample with greater edges than P5.

Corollary 4. In P5, each 4+-face has at most two non-6-vertices, and if it has
two such vertices, then they are adjacent to each other.

Discharging.

Let V , E, and F be the sets of vertices, edges, and faces of P5. Euler’s formula
|V | − |E|+ |F | = 2 for P5 implies

∑

v∈V

(d(v)− 6) +
∑

f∈F

(2d(f)− 6) = −12.(1)

We assign an initial charge µ(v) = d(v) − 6 to each v ∈ V and µ(f) =
2d(f) − 6 to each f ∈ F , so that only 5-vertices have negative initial charge.
Using the properties of P5 as a counterexample to Theorem 1, we define a local
redistribution of charges, preserving their sum such that the final charge µ(x) is
non-negative for all x ∈ V ∪ F . This will contradict the fact that the sum of the
final charges is, by (1), equal to −12.

The final charge µ′(x) whenever x ∈ V ∪ F is defined by applying the rules
R1–R9 below (see Figure 1).

For a vertex v, let v1, . . . , vd(v) be the vertices adjacent to v in a fixed cyclic
order. If f is a face, then v1, . . . , vd(f) are the vertices incident with f in the same
cyclic order.

A vertex is simplicial if it is completely surrounded by 3-faces.

R1. Every 4+-face gives 1 to every incident non-6-vertex.

R2. Suppose f = uvw is a 3-face with d(u) = 5 and d(v) ≥ 10.

(a) If d(w) ≥ 6, then u receives from v either 2
5 if d(v) ≤ 15 or 2

3 otherwise.

(b) If d(w) = 5, then u (as well as w) receives from v either 1
5 if d(v) ≤ 15 or 1

3
otherwise.

R3. A non-simplicial 5-vertex v such that there are 3-faces v1vv2 and v2vv3 with
d(v2) ≥ 16 gives 2

3 to v2.

R4. A simplicial 5-vertex v with d(v2) ≥ 16 and d(v1) ≥ 10 gives 1
3 to v2.

R5. A simplicial 5-vertex v with d(v2) ≥ 16 and d(v1) = d(v3) = 6 gives 1
3 to v2.

R6. A simplicial 5-vertex v with d(v2) ≥ 16, d(v1) = 6, d(v3) = 5, and d(v4) ≥ 10
gives 2

5 to v2.

R7. A simplicial 5-vertex v with d(v2) ≥ 16, d(v1) = 6, d(v3) = d(v4) = 5 (hence
d(v5) ≥ 10) gives 1

2 to v2.
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Remark 5. Note that a simplicial 5-vertex v with d(v2) ≥ 16, d(v1) = d(v4) = 6,
and d(v3) = 5 gives nothing to v2.

R8. A simplicial 5-vertex v with d(v2) ≥ 16, d(v1) = d(v3) = d(v4) = 5, and
d(v5) ≥ 10 gives 1

15 to v2.

R9. A simplicial 5-vertex v with d(v2) ≥ 16, d(v1) = d(v3) = 5, d(v4) ≥ 6, and
d(v5) ≥ 10 gives 4

15 to v2.
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Figure 1. Rules of discharging.

Checking µ′(x) ≥ 0 whenever x ∈ V ∪ F .

First consider a face f in P5. If d(f) = 3, then f does not participate in dis-
charging, and so µ′(v) = µ(f) = 2 × 3 − 6 = 0. Note that every 4+-face is
incident with at most two non-6-vertices due to Corollary 4, which implies that
µ′(v) = 2d(f)− 6− 2× 1 ≥ 0 by R1.

Now suppose v ∈ V .
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Case 1. d(v) ≥ 18. Since v sends at most 2
3 to its 5-neighbors through each

3-face by R2, we have µ′(v) ≥ d(v)− 6− d(v)× 2
3 = d(v)−18

3 ≥ 0.

Case 2. 16 ≤ d(v) ≤ 17. If v is not simplicial, then it sends at most 2
3 through

each of at most d(v)− 1 faces, so µ′(v) ≥ d(v)− 6− (d(v)− 1)× 2
3 = d(v)−16

3 ≥ 0,
as desired. From now on, suppose v is simplicial.

If v has two consecutive 6+-neighbors, then again µ′(v) ≥ d(v)− 6− (d(v)−
1) × 2

3 ≥ 0. So we can assume from now on that each 3-face incident with v is
incident with a 5-vertex.

If v has at least one non-simplicial 5-neighbor v2, then v receives 2
3 from v2

by R3, which implies µ′(v) ≥ d(v)−6+ 2
3 −d(v)× 2

3 = d(v)−16
3 ≥ 0. Thus suppose

all 5-vertices adjacent to v are simplicial.
If v has a 10+-neighbor v2, then v receives 1

3 + 1
3 from the 5-vertices v1 and

v3 by R4, which again implies µ′(v) ≥ 0.
Summarizing, from now on our v is simplicial, has no 10+-neighbors, no two

consecutive 6-neighbors, and no non-simplicial 5-neighbors.
Suppose Sk = v0, . . . , vk is a sequence of neighbors of v with d(v0) = 6,

d(vk) = 6, while d(vi) = 5 whenever 1 ≤ i ≤ k − 1 and k ≥ 2. (It is not excluded
that Sk = Sd(v), which happens when v has precisely one 6-neighbor.) Let wi,
1 ≤ i ≤ k − 1, k ≥ 2, be the common neighbor of vi−1 and vi different from v.

Since µ′(v) ≥ d(v) − 6 − d(v) × 2
3 = d(v)−18

3 , we can say that v has the
deficiency equal to 1

3 if d(v) = 17 or 2
3 if d(v) = 16.

Our next goal is to estimate the total return to v from its 5-neighbors by
R4–R9 and show that it is not less than the deficiency of v.

Remark 6. As we remember, our v has no S1s. Note that v1 in S2 returns 1
3 to

v by R5. As for S3, it can happen that neither v1 nor v2 returns anything to v,
which is the case only when v1 and v2 have a common 6-neighbor (see Remark 5).

Lemma 7. The total return from (the three 5-vertices of) an S4 is at least 2
3 .

Proof. If d(w2) ≥ 10 or d(w2) = 5, then v receives at least 2
5 from its 5-neighbor

v1 by R6 or R7, respectively. The same is true for v3. So, if d(w2) 6= 6 and
d(w3) 6= 6, our v returns at least 4

5 , which is more than enough. Thus we can
assume by symmetry that d(w2) = 6. Note that in this case d(w3) ≥ 10, for v2 is
not a (5, 5, 6, 6,∞)-vertex. Since v2 gives 4

15 to v by R9, while v3 gives 2
5 by R6,

we have the desired return of 2
3 .

Lemma 8. The total return from the three extreme 5-vertices v1, v2, and v3 of
an Sk with k ≥ 5 is at least 1

3 .

Proof. We have nothing to prove unless d(w2) = 6, which implies that d(w3) ≥
10. Now v2 still gives 4

15 to v by R9, while v3 gives al least 1
15 by R8 or R9, which

returns sum up to the desired 1
3 .
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By symmetry, we deduce the following fact from Lemma 8.

Corollary 9. The total return from an Sk is at least 1
3 if 5 ≤ k ≤ 6 and at least

2
3 if k ≥ 7.

If v is completely surrounded by 5-vertices (which means that no Sk is de-
fined), then the total return to v is at least 16× 1

15 > 2
3 , and hence we can assume

from now on that the neighborhood of v is partitioned into Sks.
If d(v) = 17, then to pay off the deficiency of 1

3 it suffices to note that every
Sk with k 6= 3 returns at least 1

3 to v, while 3 does not divide 17 (which implies
that v cannot be surrounded only by S3s).

Finally, suppose that d(v) = 16. As follows from Lemma 7 combined with
Corollary 9, we are able to cover the deficiency of 2

3 unless the neighborhood of
v consists of several S3 and at most one Sk such that k ∈ {2, 5, 6}. However, the
residue of 16 modulo 3 is neither 0 nor 2, a contradiction.

Case 3. 10 ≤ d(v) ≤ 15. Now R2 implies that µ′(v) ≥ d(v)− 6− d(v)× 2
5 =

3(d(v)−10)
5 ≥ 0 since v sends either nothing or 2

5 through each incident face.

Case 4. d(v) = 6. Since v does not participate in discharging, we have
µ′(v) = µ(v) = 6− 6 = 0.

Case 5. d(v) = 5. If v is incident with a 4+-face, then µ′(v) ≥ 5− 6 + 1 = 0
due to R1 combined with the fact that each 16+-neighbor v2 gives more to v by
R2 than v returns to v2 by R3. Therefore, in what follows we can assume that v
is simplicial.

Remark 10. Each 16+-neighbor v2 gives v through the faces v1vv2, v2vv3 by R2
and returns from v along edge vv2 by R4–R9:

(a) 4
3 versus 1

3 if d(v1) ≥ 6 and d(v3) ≥ 6,

(b) 1 versus at most 1
2 if d(v1) = 5 and d(v3) ≥ 6, or

(c) 2
3 versus at most 4

15 if d(v1) = 5 and d(v3) = 5.

Remark 10 combined with examining R4–R9 more carefully implies the fol-
lowing observation.

Remark 11. The donation of a 16+-neighbor v2 to v exceeds the return from v

to v2 by less than 1
2 only when v obeys R9, in which case we have 2

3 − 4
15 = 2

5 .

Subcase 5.1. v participates in R9. Thus suppose d(v1) = d(v3) = 5, d(v2) ≥
16, d(v4) ≥ 6, and d(v5) ≥ 10. Note that v acquires 2

3 − 4
15 = 2

5 from v2 by R2
combined with R9.

If d(v5) ≥ 16, then v5 gives 1 to v by R2, and v returns to v5 either 1
3 by R4

if d(v4) ≥ 10 or 2
5 by R6 if d(v4) = 6. Thus the total acquisition of v from v5 is

at least 3
5 , and we are done.
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If d(v5) ≤ 15, then v5 gives 3
5 to v by R2, and we are done again.

Subcase 5.2. v does not participates in R9. In view of Remark 11, we already
have nothing to prove if v has at least two 16+-neighbors. So suppose v2 is the
only 16+-neighbor of v.

If d(v1) ≥ 10, then v1 gives v at least 3
5 by R2, while v2’s resulting donation

to v is 1− 1
3 by R2 and R4. This implies µ′(v) > 0.

By symmetry, suppose d(v1) ≤ d(v3) ≤ 6. If d(v1) = d(v3) = 6, then v1 gives
4
3 to v by R2 and takes back 1

3 from v by R5, which implies µ′(v) ≥ 0.

Subcase 5.2.1. d(v1) = 5 and d(v3) = 6. Now v2 gives 1 to v by R2. If
d(v5) > 6, which means that in fact 10 ≤ d(v4) ≤ 15, then we have µ′(v) ≥
−1 + 1− 2

5 + 2
5 = 0 by R2 and R6.

If d(v5) = 6, then we have d(v4) = 6 or d(v4) ≥ 10 due to the absence of a
(5, 5, 6, 6,∞)-vertex. In both cases, µ′(v) ≥ −1 + 1 = 0 by R2 since v returns
nothing to v2.

Finally, d(v5) = 5. Now d(v4) ≥ 10 due to the absence of (5, 5, 6, 6,∞)-vertex,
and we have µ′(v) ≥ −1 + 1− 1

2 + 3
5 > 0 by R2 and R7.

Subcase 5.2.2. d(v1) = d(v3) = 5. Here v2 gives 2
3 to v by R2. Since v is not

a (5, 5, 6, 6,∞)-vertex, we can assume that 10 ≤ d(v4) ≤ 15. Furthermore, R9 is
not applicable to v by an above assumption, so d(v5) = 5. This means that v

obeys R8, and we have µ′(v) = −1 + 2
3 − 1

15 + 2
5 = 0, as desired.

Thus we have proved µ′(x) ≥ 0 whenever x ∈ V ∪ F , which contradicts (1)
and completes the proof of Theorem 1.
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