LOW 5-STARS AT 5-VERTICES IN 3-POLYTOPES WITH MINIMUM DEGREE 5 AND NO VERTICES OF DEGREE FROM 7 TO $9{ }^{1}$

Oleg V. Borodin, Mikhail A. Bykov
AND
Anna O. Ivanova
Sobolev Institute of Mathematics
Novosibirsk, 630090, Russia
e-mail: brdnoleg@math.nsc.ru
131093@mail.ru
shmgnanna@mail.ru

Abstract

In 1940, Lebesgue gave an approximate description of the neighborhoods of 5 -vertices in the class $\mathbf{P}_{\mathbf{5}}$ of 3-polytopes with minimum degree 5 .

Given a 3-polytope P, by $h_{5}(P)$ we denote the minimum of the maximum degrees (height) of the neighborhoods of 5 -vertices (minor 5 -stars) in P.

Recently, Borodin, Ivanova and Jensen showed that if a polytope P in $\mathbf{P}_{\mathbf{5}}$ is allowed to have a 5 -vertex adjacent to two 5 -vertices and two more vertices of degree at most 6 , called a $(5,5,6,6, \infty)$-vertex, then $h_{5}(P)$ can be arbitrarily large. Therefore, we consider the subclass \mathbf{P}_{5}^{*} of 3 -polytopes in \mathbf{P}_{5} that avoid ($5,5,6,6, \infty$)-vertices.

For each P^{*} in \mathbf{P}_{5}^{*} without vertices of degree from 7 to 9 , it follows from Lebesgue's Theorem that $h_{5}\left(P^{*}\right) \leq 17$. Recently, this bound was lowered by Borodin, Ivanova, and Kazak to the sharp bound $h_{5}\left(P^{*}\right) \leq 15$ assuming the absence of vertices of degree from 7 to 11 in P^{*}.

In this note, we extend the bound $h_{5}\left(P^{*}\right) \leq 15$ to all P^{*} s without vertices of degree from 7 to 9 . Keywords: planar map, planar graph, 3-polytope, structural properties, 5-star, weight, height. 2010 Mathematics Subject Classification: 05C75.

[^0]
1. Introduction

The degree of a vertex or face x in a convex finite 3-dimensional polytope (called a 3 -polytope) is denoted by $d(x)$. As proved by Steinitz [14], the 3-polytopes are in 1-1 correspondence with the 3-connected planar graphs. A k-vertex is a vertex v with $d(v)=k$. A k^{+}-vertex (k^{-}-vertex) is one of degree at least k (at most k). Similar notation is used for the faces. The set of 3 -polytopes with minimum degree 5 is denoted by $\mathbf{P}_{\mathbf{5}}$, and its elements are P_{5} s. We will drop the argument whenever it is clear from context.

The height of a subgraph S of a 3 -polytope is the maximum degree of the vertices of S in the 3 -polytope. A k-star, a star with k rays, is minor if its center v has degree at most 5 . In particular, the neighborhoods of 5 -vertices are minor 5 -stars and vice versa. All stars considered in this note are minor. By $h_{k}\left(P_{5}\right)$ we denote the minimum height of minor k-stars in a given 3-polytope P_{5}.

In 1904, Wernicke [15] proved that every P_{5} has a 5 -vertex adjacent to a 6^{-}-vertex. This result was strengthened by Franklin [11] in 1922 to the existence of a 5 -vertex with two 6^{-}-neighbors. So $h_{1} \leq h_{2} \leq 6$ in $\mathbf{P}_{\mathbf{5}}$, where both bounds are sharp.

In 1940, in attempts to solve the Four Color Problem, Lebesgue [13, p. 36] gave an approximate description of the neighborhoods of 5 -vertices in P_{5} s.

In particular, this description implies the results in $[11,15]$ and shows that there is a 5 -vertex with three 7^{-}-neighbors. Thus $h_{3} \leq 7$, which is sharp due to Borodin [1]. Jendrol' and Madaras [12] gave a precise description of minor 3-stars in P_{5} s.

Lebesgue [13] also proved $h_{4}\left(P_{5}\right) \leq 11$, which was strengthened by Borodin and Woodall [10] to the tight bound $h_{4}\left(P_{5}\right) \leq 10$. Recently, Borodin and Ivanova [2] obtained a precise description of 4-stars in $P_{5} \mathrm{~s}$.

The more general problem of describing 5 -stars at 5 -vertices in $\mathbf{P}_{\mathbf{5}}$ remains widely open.

Recently, precise upper bounds have been obtained for the minimum height $h_{5}\left(P_{5}\right)$ of minor 5 -stars in several natural subclasses of $\mathbf{P}_{\mathbf{5}}$.

Note that Borodin, Ivanova and Jensen [5] showed that if a polytope P_{5} is allowed to have a 5 -vertex adjacent to two 5 -vertices and two more vertices of degree at most 6 , called a $(5,5,6,6, \infty)$-vertex, then $h_{5}\left(P_{5}\right)$ can be arbitrarily large. (In fact, every 5 -vertex in the construction in [5] has two 5 -neighbors and two 6-neighbors.) Therefore, from now on we restrict ourselves to the subclass $\mathbf{P}_{\mathbf{5}}^{*}$ of the 3-polytopes in $\mathbf{P}_{\mathbf{5}}$ avoiding (5,5,6,6, ∞)-vertices.

For each P_{5}^{*} in $\mathbf{P}_{\mathbf{5}}^{*}$, it follows from Lebesgue's Theorem that $h_{5}\left(P_{5}^{*}\right) \leq 41$. This bound was lowered to $h_{5}\left(P_{5}^{*}\right) \leq 28$ by Borodin, Ivanova, and Jensen [5] and then to $h_{5}\left(P_{5}^{*}\right) \leq 23$ in Borodin-Ivanova [4]. On the other hand, it was shown in [5] that the upper bound for $h_{5}\left(P_{5}^{*}\right)$ cannot go down below 20. We conjecture
that $h_{5}\left(P_{5}^{*}\right) \leq 20$ whenever $P_{5}^{*} \in \mathbf{P}_{5}^{*}$.
Back in 1996, Jendrol' and Madaras [12] showed that if a polytope $P_{5}^{* *}$ has a 5 -vertex adjacent to four 5 -vertices, then $h_{5}\left(P_{5}^{* *}\right)$ can be arbitrarily large. Therefore, considering subclasses of $\mathbf{P}_{\mathbf{5}}^{*}$ without vertices of degree from 6 to a certain k_{6} with $k_{6}>6$, we should deal only with 3 -polytopes $P_{5}^{* *}$ s having no 5 -vertices with four 5-neighbors.

For every $P_{5}^{* *}$ in $\mathbf{P}_{\mathbf{5}}^{*}$ with $k_{6}=9$, Lebesgues' bound $h_{5}\left(P_{5}^{* *}\right) \leq 14$ was improved by Borodin and Ivanova [3] to the sharp bound $h_{5}\left(P_{5}^{* *}\right) \leq 12$. Later on, Borodin, Ivanova and Nikiforov [9] proved the same bound assuming the absence only of vertices of degree from 6 to 8 , improving Lebesgues' bound $h_{5}\left(P_{5}^{* *}\right) \leq 17$.

For each $P_{5}^{* *}$ with no vertices of degree 6 or 7 , it follows from Lebesgue's Theorem that $h_{5}\left(P_{5}\right) \leq 23$, and Borodin, Ivanova, Kazak and Vasil'eva [7] have obtained the best possible bound $h_{5}\left(P_{5}^{* *}\right) \leq 14$.

For each $P_{5}^{* *}$ with no 6 -vertices, Lebegues' bound $h_{5}\left(P_{5}^{* *}\right) \leq 41$ was improved by Borodin, Ivanova and Nikiforov [8] to the sharp bound $h_{5}\left(P_{5}^{* *}\right) \leq 17$. We note that the sharpness was confirmed in [8] by a construction on almost 3000 vertices.

Another natural direction of research towards a tight version of Lebesgue's Theorem is considering subclasses of $\mathbf{P}_{\mathbf{5}}^{*}$ with no vertices of degree from 7 to a certain integer k_{7} with $k_{7}>7$.

For $k_{7}=11$, Lebesgue's bound $h_{5}\left(P^{*}\right) \leq 17$ was lowered by Borodin, Ivanova, and Kazak [6] to the sharp bound $h_{5}\left(P^{*}\right) \leq 15$. The purpose of this note is to extend this bound to all P^{*} s such that $k_{7}=9$.

Theorem 1. Every 3-polytope P^{*} with minimum degree 5 and neither $(5,5,6$, $6, \infty)$-vertices nor vertices of degree from 7 to 9 satisfies $h_{5}\left(P^{*}\right) \leq 15$, which bound is best possible.

Problem 2. Is it true that every 3 -polytope P^{*} with minimum degree 5 and no $(5,5,6,6, \infty)$-vertices satisfies $h_{5}\left(P^{*}\right) \leq 15$ provided that
(a) P^{*} has no vertices of degree 7 and 8 ?
(b) only 7 -vertices are forbidden in P^{*} ?

2. Proof of Theorem 1

The sharpness of the bound 15 in Theorem 1 follows from a construction in [6].
Now suppose a 3 -polytope P_{5}^{\prime} is a counterexample to the main statement of Theorem 1. In particular, each minor 5 -star in P_{5}^{\prime} contains a 16^{+}-vertex along with either another 10^{+}-vertex or at least three 6 -vertices.

Let P_{5} be a counterexample on the same vertices as P_{5}^{\prime} with the maximum possible number of edges. For brevity, a vertex v with $d(v) \neq 6$ is a non-6-vertex.

Remark 3. P_{5} has no two non-6-vertices being nonconsecutive along the boundary of a 4^{+}-face. Indeed, otherwise adding a diagonal between these vertices would result in a counterexample with greater edges than P_{5}.

Corollary 4. In P_{5}, each 4^{+}-face has at most two non-6-vertices, and if it has two such vertices, then they are adjacent to each other.

Discharging.

Let V, E, and F be the sets of vertices, edges, and faces of P_{5}. Euler's formula $|V|-|E|+|F|=2$ for P_{5} implies

$$
\begin{equation*}
\sum_{v \in V}(d(v)-6)+\sum_{f \in F}(2 d(f)-6)=-12 \tag{1}
\end{equation*}
$$

We assign an initial charge $\mu(v)=d(v)-6$ to each $v \in V$ and $\mu(f)=$ $2 d(f)-6$ to each $f \in F$, so that only 5 -vertices have negative initial charge. Using the properties of P_{5} as a counterexample to Theorem 1, we define a local redistribution of charges, preserving their sum such that the final charge $\mu(x)$ is non-negative for all $x \in V \cup F$. This will contradict the fact that the sum of the final charges is, by (1), equal to -12 .

The final charge $\mu^{\prime}(x)$ whenever $x \in V \cup F$ is defined by applying the rules R1-R9 below (see Figure 1).

For a vertex v, let $v_{1}, \ldots, v_{d(v)}$ be the vertices adjacent to v in a fixed cyclic order. If f is a face, then $v_{1}, \ldots, v_{d(f)}$ are the vertices incident with f in the same cyclic order.

A vertex is simplicial if it is completely surrounded by 3 -faces.
R1. Every 4^{+}-face gives 1 to every incident non-6-vertex.
$\mathbf{R 2}$. Suppose $f=u v w$ is a 3 -face with $d(u)=5$ and $d(v) \geq 10$.
(a) If $d(w) \geq 6$, then u receives from v either $\frac{2}{5}$ if $d(v) \leq 15$ or $\frac{2}{3}$ otherwise.
(b) If $d(w)=5$, then u (as well as w) receives from v either $\frac{1}{5}$ if $d(v) \leq 15$ or $\frac{1}{3}$ otherwise.

R3. A non-simplicial 5 -vertex v such that there are 3 -faces $v_{1} v v_{2}$ and $v_{2} v v_{3}$ with $d\left(v_{2}\right) \geq 16$ gives $\frac{2}{3}$ to v_{2}.
R4. A simplicial 5 -vertex v with $d\left(v_{2}\right) \geq 16$ and $d\left(v_{1}\right) \geq 10$ gives $\frac{1}{3}$ to v_{2}.
R5. A simplicial 5 -vertex v with $d\left(v_{2}\right) \geq 16$ and $d\left(v_{1}\right)=d\left(v_{3}\right)=6$ gives $\frac{1}{3}$ to v_{2}.
R6. A simplicial 5-vertex v with $d\left(v_{2}\right) \geq 16, d\left(v_{1}\right)=6, d\left(v_{3}\right)=5$, and $d\left(v_{4}\right) \geq 10$ gives $\frac{2}{5}$ to v_{2}.
R7. A simplicial 5-vertex v with $d\left(v_{2}\right) \geq 16, d\left(v_{1}\right)=6, d\left(v_{3}\right)=d\left(v_{4}\right)=5$ (hence $d\left(v_{5}\right) \geq 10$) gives $\frac{1}{2}$ to v_{2}.

Remark 5. Note that a simplicial 5-vertex v with $d\left(v_{2}\right) \geq 16, d\left(v_{1}\right)=d\left(v_{4}\right)=6$, and $d\left(v_{3}\right)=5$ gives nothing to v_{2}.

R8. A simplicial 5-vertex v with $d\left(v_{2}\right) \geq 16, d\left(v_{1}\right)=d\left(v_{3}\right)=d\left(v_{4}\right)=5$, and $d\left(v_{5}\right) \geq 10$ gives $\frac{1}{15}$ to v_{2}.
R9. A simplicial 5 -vertex v with $d\left(v_{2}\right) \geq 16, d\left(v_{1}\right)=d\left(v_{3}\right)=5, d\left(v_{4}\right) \geq 6$, and $d\left(v_{5}\right) \geq 10$ gives $\frac{4}{15}$ to v_{2}.

Figure 1. Rules of discharging.

Checking $\boldsymbol{\mu}^{\prime}(x) \geq 0$ whenever $\boldsymbol{x} \in \boldsymbol{V} \cup \boldsymbol{F}$.
First consider a face f in P_{5}. If $d(f)=3$, then f does not participate in discharging, and so $\mu^{\prime}(v)=\mu(f)=2 \times 3-6=0$. Note that every 4^{+}-face is incident with at most two non-6-vertices due to Corollary 4, which implies that $\mu^{\prime}(v)=2 d(f)-6-2 \times 1 \geq 0$ by R1.

Now suppose $v \in V$.

Case 1. $d(v) \geq 18$. Since v sends at most $\frac{2}{3}$ to its 5 -neighbors through each 3 -face by R2, we have $\mu^{\prime}(v) \geq d(v)-6-d(v) \times \frac{2}{3}=\frac{d(v)-18}{3} \geq 0$.

Case 2 . $16 \leq d(v) \leq 17$. If v is not simplicial, then it sends at most $\frac{2}{3}$ through each of at most $d(v)-1$ faces, so $\mu^{\prime}(v) \geq d(v)-6-(d(v)-1) \times \frac{2}{3}=\frac{d(v)-16}{3} \geq 0$, as desired. From now on, suppose v is simplicial.

If v has two consecutive 6^{+}-neighbors, then again $\mu^{\prime}(v) \geq d(v)-6-(d(v)-$ 1) $\times \frac{2}{3} \geq 0$. So we can assume from now on that each 3 -face incident with v is incident with a 5 -vertex.

If v has at least one non-simplicial 5 -neighbor v_{2}, then v receives $\frac{2}{3}$ from v_{2} by R3, which implies $\mu^{\prime}(v) \geq d(v)-6+\frac{2}{3}-d(v) \times \frac{2}{3}=\frac{d(v)-16}{3} \geq 0$. Thus suppose all 5 -vertices adjacent to v are simplicial.

If v has a 10^{+}-neighbor v_{2}, then v receives $\frac{1}{3}+\frac{1}{3}$ from the 5 -vertices v_{1} and v_{3} by R4, which again implies $\mu^{\prime}(v) \geq 0$.

Summarizing, from now on our v is simplicial, has no 10^{+}-neighbors, no two consecutive 6 -neighbors, and no non-simplicial 5 -neighbors.

Suppose $S_{k}=v_{0}, \ldots, v_{k}$ is a sequence of neighbors of v with $d\left(v_{0}\right)=6$, $d\left(v_{k}\right)=6$, while $d\left(v_{i}\right)=5$ whenever $1 \leq i \leq k-1$ and $k \geq 2$. (It is not excluded that $S_{k}=S_{d(v)}$, which happens when v has precisely one 6 -neighbor.) Let w_{i}, $1 \leq i \leq k-1, k \geq 2$, be the common neighbor of v_{i-1} and v_{i} different from v.

Since $\mu^{\prime}(v) \geq d(v)-6-d(v) \times \frac{2}{3}=\frac{d(v)-18}{3}$, we can say that v has the deficiency equal to $\frac{1}{3}$ if $d(v)=17$ or $\frac{2}{3}$ if $d(v)=16$.

Our next goal is to estimate the total return to v from its 5 -neighbors by R4-R9 and show that it is not less than the deficiency of v.
Remark 6. As we remember, our v has no S_{1} s. Note that v_{1} in S_{2} returns $\frac{1}{3}$ to v by R5. As for S_{3}, it can happen that neither v_{1} nor v_{2} returns anything to v, which is the case only when v_{1} and v_{2} have a common 6 -neighbor (see Remark 5).
Lemma 7. The total return from (the three 5 -vertices of) an S_{4} is at least $\frac{2}{3}$.
Proof. If $d\left(w_{2}\right) \geq 10$ or $d\left(w_{2}\right)=5$, then v receives at least $\frac{2}{5}$ from its 5 -neighbor v_{1} by R6 or R7, respectively. The same is true for v_{3}. So, if $d\left(w_{2}\right) \neq 6$ and $d\left(w_{3}\right) \neq 6$, our v returns at least $\frac{4}{5}$, which is more than enough. Thus we can assume by symmetry that $d\left(w_{2}\right)=6$. Note that in this case $d\left(w_{3}\right) \geq 10$, for v_{2} is not a $(5,5,6,6, \infty)$-vertex. Since v_{2} gives $\frac{4}{15}$ to v by R 9 , while v_{3} gives $\frac{2}{5}$ by R 6 , we have the desired return of $\frac{2}{3}$.

Lemma 8. The total return from the three extreme 5 -vertices v_{1}, v_{2}, and v_{3} of an S_{k} with $k \geq 5$ is at least $\frac{1}{3}$.
Proof. We have nothing to prove unless $d\left(w_{2}\right)=6$, which implies that $d\left(w_{3}\right) \geq$ 10. Now v_{2} still gives $\frac{4}{15}$ to v by R9, while v_{3} gives al least $\frac{1}{15}$ by R8 or R9, which returns sum up to the desired $\frac{1}{3}$.

By symmetry, we deduce the following fact from Lemma 8 .
Corollary 9. The total return from an S_{k} is at least $\frac{1}{3}$ if $5 \leq k \leq 6$ and at least $\frac{2}{3}$ if $k \geq 7$.

If v is completely surrounded by 5 -vertices (which means that no S_{k} is defined), then the total return to v is at least $16 \times \frac{1}{15}>\frac{2}{3}$, and hence we can assume from now on that the neighborhood of v is partitioned into $S_{k} \mathrm{~s}$.

If $d(v)=17$, then to pay off the deficiency of $\frac{1}{3}$ it suffices to note that every S_{k} with $k \neq 3$ returns at least $\frac{1}{3}$ to v, while 3 does not divide 17 (which implies that v cannot be surrounded only by $S_{3} \mathrm{~s}$).

Finally, suppose that $d(v)=16$. As follows from Lemma 7 combined with Corollary 9, we are able to cover the deficiency of $\frac{2}{3}$ unless the neighborhood of v consists of several S_{3} and at most one S_{k} such that $k \in\{2,5,6\}$. However, the residue of 16 modulo 3 is neither 0 nor 2 , a contradiction.

Case 3. $10 \leq d(v) \leq 15$. Now R2 implies that $\mu^{\prime}(v) \geq d(v)-6-d(v) \times \frac{2}{5}=$ $\frac{3(d(v)-10)}{5} \geq 0$ since v sends either nothing or $\frac{2}{5}$ through each incident face.

Case 4. $\quad d(v)=6$. Since v does not participate in discharging, we have $\mu^{\prime}(v)=\mu(v)=6-6=0$.

Case 5. $d(v)=5$. If v is incident with a 4^{+}-face, then $\mu^{\prime}(v) \geq 5-6+1=0$ due to R1 combined with the fact that each 16^{+}-neighbor v_{2} gives more to v by R 2 than v returns to v_{2} by R 3 . Therefore, in what follows we can assume that v is simplicial.

Remark 10. Each 16^{+}-neighbor v_{2} gives v through the faces $v_{1} v v_{2}, v_{2} v v_{3}$ by R2 and returns from v along edge $v v_{2}$ by $\mathrm{R} 4-\mathrm{R} 9$:
(a) $\frac{4}{3}$ versus $\frac{1}{3}$ if $d\left(v_{1}\right) \geq 6$ and $d\left(v_{3}\right) \geq 6$,
(b) 1 versus at most $\frac{1}{2}$ if $d\left(v_{1}\right)=5$ and $d\left(v_{3}\right) \geq 6$, or
(c) $\frac{2}{3}$ versus at most $\frac{4}{15}$ if $d\left(v_{1}\right)=5$ and $d\left(v_{3}\right)=5$.

Remark 10 combined with examining R4-R9 more carefully implies the following observation.

Remark 11. The donation of a 16^{+}-neighbor v_{2} to v exceeds the return from v to v_{2} by less than $\frac{1}{2}$ only when v obeys R 9 , in which case we have $\frac{2}{3}-\frac{4}{15}=\frac{2}{5}$.

Subcase 5.1. v participates in R9. Thus suppose $d\left(v_{1}\right)=d\left(v_{3}\right)=5, d\left(v_{2}\right) \geq$ $16, d\left(v_{4}\right) \geq 6$, and $d\left(v_{5}\right) \geq 10$. Note that v acquires $\frac{2}{3}-\frac{4}{15}=\frac{2}{5}$ from v_{2} by R2 combined with R9.

If $d\left(v_{5}\right) \geq 16$, then v_{5} gives 1 to v by R 2 , and v returns to v_{5} either $\frac{1}{3}$ by R 4 if $d\left(v_{4}\right) \geq 10$ or $\frac{2}{5}$ by R6 if $d\left(v_{4}\right)=6$. Thus the total acquisition of v from v_{5} is at least $\frac{3}{5}$, and we are done.

If $d\left(v_{5}\right) \leq 15$, then v_{5} gives $\frac{3}{5}$ to v by R2, and we are done again.
Subcase 5.2. v does not participates in R9. In view of Remark 11, we already have nothing to prove if v has at least two 16^{+}-neighbors. So suppose v_{2} is the only 16^{+}-neighbor of v.

If $d\left(v_{1}\right) \geq 10$, then v_{1} gives v at least $\frac{3}{5}$ by R2, while v_{2} 's resulting donation to v is $1-\frac{1}{3}$ by R2 and R4. This implies $\mu^{\prime}(v)>0$.

By symmetry, suppose $d\left(v_{1}\right) \leq d\left(v_{3}\right) \leq 6$. If $d\left(v_{1}\right)=d\left(v_{3}\right)=6$, then v_{1} gives $\frac{4}{3}$ to v by R2 and takes back $\frac{1}{3}$ from v by R5, which implies $\mu^{\prime}(v) \geq 0$.

Subcase 5.2.1. $d\left(v_{1}\right)=5$ and $d\left(v_{3}\right)=6$. Now v_{2} gives 1 to v by R2. If $d\left(v_{5}\right)>6$, which means that in fact $10 \leq d\left(v_{4}\right) \leq 15$, then we have $\mu^{\prime}(v) \geq$ $-1+1-\frac{2}{5}+\frac{2}{5}=0$ by R2 and R6.

If $d\left(v_{5}\right)=6$, then we have $d\left(v_{4}\right)=6$ or $d\left(v_{4}\right) \geq 10$ due to the absence of a $(5,5,6,6, \infty)$-vertex. In both cases, $\mu^{\prime}(v) \geq-1+1=0$ by R2 since v returns nothing to v_{2}.

Finally, $d\left(v_{5}\right)=5$. Now $d\left(v_{4}\right) \geq 10$ due to the absence of $(5,5,6,6, \infty)$-vertex, and we have $\mu^{\prime}(v) \geq-1+1-\frac{1}{2}+\frac{3}{5}>0$ by R 2 and R7.

Subcase 5.2.2. $d\left(v_{1}\right)=d\left(v_{3}\right)=5$. Here v_{2} gives $\frac{2}{3}$ to v by R2. Since v is not a $(5,5,6,6, \infty)$-vertex, we can assume that $10 \leq d\left(v_{4}\right) \leq 15$. Furthermore, R9 is not applicable to v by an above assumption, so $d\left(v_{5}\right)=5$. This means that v obeys R8, and we have $\mu^{\prime}(v)=-1+\frac{2}{3}-\frac{1}{15}+\frac{2}{5}=0$, as desired.

Thus we have proved $\mu^{\prime}(x) \geq 0$ whenever $x \in V \cup F$, which contradicts (1) and completes the proof of Theorem 1.

References

[1] O.V. Borodin, Structural properties of planar maps with the minimal degree 5, Math. Nachr. 158 (1992) 109-117. doi:10.1002/mana. 19921580108
[2] O.V. Borodin and A.O. Ivanova, Describing 4-stars at 5-vertices in normal plane maps with minimum degree 5, Discrete Math. 313 (2013) 1710-1714. doi:10.1016/j.disc.2013.04.025
[3] O.V. Borodin and A.O. Ivanova, Light neighborhoods of 5 -vertices in 3-polytopes with minimum degree 5, Sib. Èlektron. Mat. Izv. 13 (2016) 584-591. doi:10.17377/semi.2016.13.045
[4] O.V. Borodin and A.O. Ivanova, Light and low 5 -stars in normal plane maps with minimum degree 5, Sib. Math. J. 57 (2016) 470-475. doi:10.1134/S0037446616030071
[5] O.V. Borodin, A.O. Ivanova and T.R. Jensen, 5 -stars of low weight in normal plane maps with minimum degree 5, Discuss. Math. Graph Theory 34 (2014) 539-546. doi:10.7151/dmgt. 1748
[6] O.V. Borodin, A.O. Ivanova and O.N. Kazak, Describing neighborhoods of 5-vertices in 3-polytopes with minimum degree 5 and without vertices of degrees from 7 to 11, Discuss. Math. Graph Theory 38 (2018) 615-625. doi:10.7151/dmgt. 2024
[7] O.V. Borodin, A.O. Ivanova, O.N. Kazak and E.I. Vasil'eva, Heights of minor 5-stars in 3-polytopes with minimum degree 5 and no vertices of degree 6 and 7, Discrete Math. 341 (2018) 825-829. doi:10.1016/j.disc.2017.11.021
[8] O.V. Borodin, A.O. Ivanova and D.V. Nikiforov, Low minor 5-stars in 3-polytopes with minimum degree 5 and no 6-vertices, Discrete Math. 340 (2017) 1612-1616. doi:10.1016/j.disc.2017.03.002
[9] O.V. Borodin, A.O. Ivanova and D.V. Nikiforov, Low and light 5-stars in 3-polytopes with minimum degree 5 and restrictions on the degrees of major vertices, Sib. Math. J. 58 (2017) 600-605. doi:10.1134/S003744661704005X
[10] O.V. Borodin and D.R. Woodall, Short cycles of low weight in normal plane maps with minimum degree 5, Discuss. Math. Graph Theory 18 (1998) 159-164. doi:10.7151/dmgt. 1071
[11] P. Franklin, The four color problem, Amer. J. Math. 44 (1922) 225-236. doi:10.2307/2370527
[12] S. Jendrol' and T. Madaras, On light subgraphs in plane graphs of minimum degree five, Discuss. Math. Graph Theory 16 (1996) 207-217. doi:10.7151/dmgt. 1035
[13] H. Lebesgue, Quelques conséquences simples de la formule d'Euler, J. Math. Pures Appl. 19 (9) (1940) 27-43.
[14] E. Steinitz, Polyeder und Raumeinteilungen, in: Enzykl. Math. Wiss. (Geometrie), 3 (1922) 1-139.
[15] P. Wernicke, Über den kartographischen Vierfarbensatz, Math. Ann. 58 (1904) 413-426.
doi:10.1007/BF01444968

[^0]: ${ }^{1}$ The work was funded by the Russian Science Foundation, grant 16-11-10054.

