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Abstract

Let odd(G) denote the number of odd components of a graph G and
k ≥ 2 be an integer. We give sufficient conditions using odd(G − S) for
a graph G to have an even factor. Moreover, we show that if a graph G
satisfies odd(G − S) ≤ max{1, (1/k)|S|} for all S ⊂ V (G), then G has a
(k − 1)-regular factor for k ≥ 3 or an H-factor for k = 2, where we say
that G has an H-factor if for every labeling h : V (G) → {red, blue} with
#{v ∈ V (G) : f(v) = red} even, G has a spanning subgraph F such that
deg

F
(x) = 1 if h(x) = red and deg

F
(x) ∈ {0, 2} otherwise.
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1. Introduction

In this paper we consider finite graphs which have neither multiple edges nor
loops. For a graph G, let V (G) and E(G) denote the set of vertices and the set
of edges of G, respectively. We write |G| for the order of G (i.e., |G| = |V (G)|).
For a vertex v of G, we denote by degG(v) the degree of v in G. The minimum
degree of G is denoted by δ(G). An edge of G joining a vertex u to a vertex
v is denoted by uv or vu. For a subset S of V (G), we write G − S for the
subgraph of G induced by V (G) \ S. Let odd(G), iso(G) and ω(G) denote the
number of odd components of G (i.e., components of G of odd order) the number
of isolated vertices of G, and the number of components of G, respectively. The
complete graph, the path and the cycle of order n are denoted by Kn, Pn and Cn,
respectively. The complete bipartite graph with parts of sizes m and n is denoted
by Km,n. In particular, K2 = P2 and K1,2 = P3. For a set X, the cardinality of
X is denoted by |X| or #X. Other notation and definitions not defined in this
paper are standard and found in the book [14].

We give some definitions of factors of graphs. Let G be a graph and F be its
spanning subgraph. Then for a set S of connected graphs, F is called an S-factor
of G if every component of F is isomorphic to an element of S. For a set S of
positive integers, F is called an S-factor of G if degF (x) ∈ S for all x ∈ V (G). For
an integer k ≥ 1, F is called a k-regular factor or a k-factor of G if degF (x) = k
for all x ∈ V (G). For a function f : V (G) → {1, 3, 5, . . .}, F is called an (1, f)-odd
factor of G if degF (x) ∈ {1, 3, . . . , f(x)} for all x ∈ V (G). A {2, 4, 6, . . . }-factor
is called an even factor. So every vertex of an even factor F has a positive even
degree in F .

We now present some known results on factors of graphs related to our the-
orems.

Theorem 1. Let G be a graph. Then the following statements hold.

1. G has a 1-factor if and only if odd(G− S) ≤ |S| for all S ⊂ V (G),
(Tutte [12]).

2. Let n ≥ 3 be an odd integer. Then G has a {1, 3, . . . , n}-factor if and only

if odd(G− S) ≤ n|S| for all S ⊂ V (G), (Amahashi [1]).

3. Let f : V (G) → {1, 3, 5, . . . }. Then G has a (1, f)-odd factor if and only if

odd(G− S) ≤
∑

x∈S f(x) for all S ⊂ V (G), (Cui and Kano [4]).

4. Let m ≥ 2 be an even integer. Then G has a {1, 3, . . . ,m − 1,m}-factor if

odd(G− S) ≤ m|S| for all S ⊂ V (G), (Lu and Wang [10]).

On the other hand, the following theorem shows some results on factors of
graphs G which satisfy certain conditions on iso(G− S) instead of odd(G− S).



Strong Tutte Type Conditions and Factors of Graphs 1059

Theorem 2. Let G be a graph. Then the following statements hold.

1. G has a {K2, Cn : n ≥ 3}-factor if and only if iso(G − S) ≤ |S| for all

S ⊂ V (G), (Tutte [13]).

2. Let n ≥ 2 be an integer. Then G has a {K1,1,K1,2, . . . ,K1,n}-factor if and

only if iso(G − S) ≤ n|S| for all S ⊂ V (G), (Amahashi and Kano [2], Las
Vergnas [8]).

3. If iso(G − S) ≤ (1/2)|S| for all S ⊂ V (G), then G has a {K1,2,K1,3,K5}-
factor, (Kano, Lu and Yu [6]).

4. Let m ≥ 2 be an integer. If iso(G − S) ≤ (1/m)|S| for all S ⊂ V (G), then
G has a {K1,m,K1,m+1, . . . ,K1,2m}-factor, (Kano and Saito [7]).

5. Let m ≥ 2 be an integer. If iso(G−S) ≤ (1/m)|S| for all S ⊂ V (G), then G
has a {K1,m,K1,m+1, . . . ,K1,2m−1,K2m+1}-factor, (Zhang, Yan and Kano

[15]).

Proofs of the most results given in Theorems 1 and 2 and some other results
on factors can be found in the book [3] by Akiyama and Kano. In this paper, we
consider the following problem.

Problem 3. Suppose that a graph G satisfies odd(G − S) ≤ max{1, α|S|} or
odd(G−S) < max{2, α|S|} for all S ⊂ V (G) and for a rational number 0 < α ≤ 1.
What kind of a factor does G have?

Notice that if a graph G has even order and 0 < α < 1, then for a vertex v of
G, odd(G−v) ≥ 1 and α|{v}| < 1, and so odd(G−S) ≤ α|S| does not hold. Hence
we need the condition odd(G−S) ≤ max{1, α|S|} or odd(G−S) < max{2, α|S|}
instead of odd(G− S) ≤ α|S|.

As shown in Theorem 2, for some rational numbers 0 < α < 1, there are some
results on factors of graphs which satisfy iso(G−S) ≤ α|S| for all S ⊂ V (G). On
the other hand, there are no known results concerning Problem 3. We provide
some partial solutions of this problem in Theorems 4 and 5.

Theorem 4. Let G be a graph with |G| ≥ 3. If G satisfies one of the following

conditions (i) and (ii), then G has an even factor.

(i) G is of even order and satisfies

odd(G− S) < |S| for all S ⊂ V (G) with |S| ≥ 2.(1)

(ii) G is of odd order and satisfies

odd(G− S) <
2

3
|S| for all ∅ 6= S ⊂ V (G).(2)
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We remark that if G is of even order, then the condition (1) is equivalent to

odd(G− S) < max{2, |S|} for all S ⊂ V (G).(3)

It is obvious that (1) and (3) are equivalent for S ⊂ V (G) with |S| ≥ 2. So we
consider the case when S consists of one vertex v. It suffices to show that (1)
implies odd(G − v) ≤ 1. Assume that odd(G − v) > 1. Then odd(G − v) ≥ 3
since G is of even order. Take a vertex u from an odd component of G− v, then
odd(G−{v, u}) ≥ 2. This contradicts (1). Hence (1) implies odd(G−v) ≤ 1, and
thus (1) and (3) are equivalent.

Theorem 5. Let k ≥ 3 be an integer, and G be a connected graph with |G| ≥ k.
If (k − 1)|G| is even and G satisfies

odd(G− S) ≤ max

{

1,
1

k
|S|

}

for all S ⊂ V (G),(4)

then G has a (k − 1)-regular factor.

Theorem 6. Let G be a connected graph of order at least 2. If

odd(G− S) ≤ max

{

1,
1

2
|S|

}

for all S ⊂ V (G),(5)

then for every vertex-labeling h : V (G) → {red, blue} with #{v ∈ V (G) : h(v) =
red} even, G has a spanning subgraph F such that

degF (v) = 1 if h(v)=red, and degF (v) ∈ {0, 2} otherwise.(6)

Notice that if for every h : V (G) → {red, blue} with #{v ∈ V (G) : h(v) =
red} even, G has a spanning subgraph F satisfying (6), then we say that G has
an H-factor [9]. Moreover, the spanning subgraph F that satisfies (6) and has a
minimal edge set consists of vertex disjoint paths which connect two red vertices
and whose all inner vertices are blue. We conclude this section by showing that
the conditions of Theorem 4 are best possible in some sense.

Example 7. We show that the condition (1) of Theorem 4 cannot be replaced
by odd(G − S) ≤ |S| for all S ⊂ V (G) with |S| ≥ 2. Let k ≥ 2 be an integer,
and let C2k and C2k−1 be the cycles of order 2k and 2k − 1, respectively. We
construct the graph G1 from C2k and C2k−1 by adding a new vertex v together
with two edges vu1, vu2, where u1 ∈ V (C2k) and u2 ∈ V (C2k−1). Then G1 is of
even order and has no even factor. On the other hand, G1 has a 1-factor, and so
by the 1-factor theorem (1. of Theorem 1), G1 satisfies odd(G1 − S) ≤ |S| for all
S ⊂ V (G1). Hence the condition (1) is best possible.
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In order to show the sharpness of condition (2) of Theorem 4, we need the
following theorem. Here for a component C of G−S with S ⊂ V (G), the number
of edges of G joining C to S is denoted by eG(C, S).

Lemma 8 (Theorem 6.2 of [3]). A connected graph G has an even factor if and

only if
∑

x∈S

(degG(x)− 2)− q(G,S) ≥ 0 for all S ⊂ V (G),

where q(G,S) denotes the number of components C of G−S such that eG(C, S) ≡
1 (mod 2).

Example 9. We next show that the condition (2) of Theorem 4 cannot be re-
placed by the condition that odd(G − S) ≤ (2/3)|S| for all ∅ 6= S ⊂ V (G). Let
n ≥ 3 be an integer, D1 and D2 be the complete graphs of order 2n + 1, and
Z = {z1, z2, . . . , z5} be a set of 5 vertices. Let us take 10 vertices ui ∈ V (D1), vi ∈
V (D2) for 1 ≤ i ≤ 5, and define the graph G2 by

V (G2) = V (D1) ∪ V (D2) ∪ Z (disjoint union), and

E(G2) = E(D1) ∪ E(D2) ∪ {ziui, zivi : 1 ≤ i ≤ 5}.

Then G2 has odd order. Consider S1 = {ui, vi, z5 : 1 ≤ i ≤ 4}. Then we have
odd(G2 − S1) = 6 = (2/3)|S1| and for other ∅ 6= S ⊂ V (G2), we can easily show
that odd(G2 − S) < (2/3)|S|. Thus,

odd(G2 − S) ≤
2

3
|S| for all ∅ 6= S ⊂ V (G2).

Since
∑

x∈Z(degG(x)− 2)− q(G,Z) = −2, Lemma 8 implies that G2 has no even
factor. Hence the condition (2) is also best possible.

2. Proof of Theorem 4

In this section we prove Theorem 4. We need the following result.

Lemma 10 (Problem 42 in Section 7 of [11], Theorem 6.3 of [3]). Every 2-edge
connected graph G with δ(G) ≥ 3 has an even factor.

We now prove Theorem 4.

Proof of Theorem 4 under the condition (i). Assume that a graph G sat-
isfies the condition (i). Then |G| is even and |G| ≥ 4.

Claim 1. G is connected.
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Proof. Assume that G is not connected. Let G = H1 ∪ H2 ∪ · · · ∪ Hm be the
decomposition of G into its components, where m ≥ 2. We first assume that two
components, say H1 and H2, are of even order. Take two vertices v1 ∈ V (H1)
and v2 ∈ V (H2). Then 2 ≤ odd(G − {v1, v2}) < |{v1, v2}| = 2, a contradiction.
Hence at most one of components Hi has even order.

If a component Ha has even order, then at least two components have odd
order and so m ≥ 3. Take two vertices v3, v4 ∈ V (Ha). Then 2 ≤ odd(G −
{v3, v4}) < |{v3, v4}| = 2, a contradiction. Hence every component Hi has odd
order. If a component Hb has order at least 3, then take two vertices v5, v6 ∈
V (Hb). Then 2 ≤ m ≤ odd(G − {v5, v6}) < |{v5, v6}| = 2, a contradiction.
Hence every component Hi has order 1. It follows from m = |G| ≥ 4 that
2 ≤ m− 2 ≤ odd(G− V (H1) ∪ V (H2)) < |V (H1) ∪ V (H2)| = 2, a contradiction.
Therefore G is connected.

Claim 2. G is 2-edge connected.

Proof. Assume that G is not 2-edge connected. Then there exists an edge e ∈
E(G) such that G− e consists of two components D1 and D2. Let e = v1v2 and
v1 ∈ V (D1), v2 ∈ V (D2). Since |G| is even, we have |D1| ≡ |D2| (mod 2). If |D1|
is even, then 2 ≤ odd(G − {v1, v2}) < |{v1, v2}| = 2, a contradiction. If |D1| is
odd, then |D2| is odd, and so by symmetry and by |G| ≥ 4, we may assume that
|D1| ≥ 3. Take one vertex v3 ∈ V (D1) and v3 6= v1. Then 2 ≤ odd(G−{v1, v3}) <
|{v1, v3}| = 2, a contradiction. Hence G is 2-edge connected.

Claim 3. δ(G) ≥ 3.

Proof. By Claim 2, δ(G) ≥ 2. Assume that δ(G) = 2 and degG(v) = 2 for
some vertex v. Let x and y be the two vertices adjacent to v in G. Since |G| is
even, G − {x, y} has at least two odd components including {v}, which implies
2 ≤ odd(G− {x, y}) < |{x, y}| = 2, a contradiction. Hence δ(G) ≥ 3.

Consequently, by Lemma 10, G has an even factor.

Proof of Theorem 4 under the condition (ii). Assume that a graph G sat-
isfies the condition (ii). Then |G| is odd and |G| ≥ 3.

Claim 1. G is connected.

Proof. Assume that G is not connected. Let G = H1 ∪ H2 ∪ · · · ∪ Hm be the
decomposition of G into its components, where m ≥ 2. If a component Ha has
even order, then take a vertex v1 ∈ V (Ha). Then 1 ≤ odd(G−v1) < (2/3)|{v1}| <
1, a contradiction. Hence every component Hi has odd order. If a component
Hb has order at least 3, we consider two vertices v2, v3 ∈ V (Hb). Then 2 ≤ m ≤
odd(G− {v2, v3}) < (2/3)|{v2, v3}| < 2, a contradiction. Hence every component
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Hi has order 1, and m = |G| ≥ 3. Then we have 2 ≤ m− 1 = odd(G− V (H1)) <
(2/3)|V (H1)| < 1, a contradiction. Therefore G is connected.

Claim 2. G is 2-edge connected.

Proof. Assume that G is not 2-edge connected. Then there exists an edge e =
xy ∈ E(G) such that G−e consists of two componentsD1 andD2 with x ∈ V (D1)
and y ∈ V (D2). Since |G| is odd, we may assume that |D1| is odd and |D2| is
even. Then 2 ≤ odd(G − {y}) < (2/3)|{y}| < 1, a contradiction. Hence G is
2-edge connected.

By Claim 2, δ(G) ≥ 2. If |G| = 3, then G is a cycle of order 3, which is an
even factor. Thus we may assume that |G| ≥ 5.

Claim 3. G is 3-connected, and so δ(G) ≥ 3.

Proof. Assume that G− {x, y} is not connected for some two vertices x and y.
Then 1 ≤ odd(G− {x, y}) < (2/3)|{x, y}| = 4/3. Thus odd(G− {x, y}) = 1. Let
G−{x, y} = C1 ∪D1 ∪ · · · ∪Dt, t ≥ 1, where C1 is an odd component and all Di

are even components. Take a vertex z ∈ V (D1). Then 2 ≤ odd(G− {x, y, z}) <
(2/3) · 3 = 2, a contradiction. Hence G is 3-connected.

Consequently, by Lemma 10, G has an even factor.

3. Proofs of Theorems 5 and 6

Recall that ω(G) denotes the number of components of a graph G. A graph G is
said to be k-tough if ω(G− S) ≤ |S|/k for all S ⊂ V (G) with ω(G− S) ≥ 2. In
order to prove Theorems 5 and 6, we need the following two theorems.

Theorem 11 (Enomoto, Jackson, Katerinis, Saito [5]). Let k ≥ 2 be an integer

and G be a graph. If G is k-tough, |G| ≥ k + 1 and k|G| is even, then G has a

k-regular factor.

Theorem 12 (Lu and Kano [9]). Let G be a connected graph. If

ω(G− S) ≤ |S| for all ∅ 6= S ⊂ V (G),(7)

then for every vertex-labeling h : V (G) → {red, blue} with #{v ∈ V (G) : f(v) =
red} even, G has a spanning subgraph F such that

degF (x) = 1 if h(x)=red, and degF (x) ∈ {0, 2} otherwise.

We simultaneously prove Theorems 5 and 6 since they can be proved in the
same way.
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Proofs of Theorems 5 and 6. Assume that a graph G satisfies the conditions
of Theorems 5 or 6. We start with the following claim.

Claim 1. G is (k − 1)-tough for all k ≥ 2.

Proof. Assume that G is not (k−1)-tough. Then there exists a subsetX ⊂ V (G)
such that ω(G−X) > |X|/(k−1) and ω(G−X) ≥ 2. Let G−X = C1∪· · ·∪Cs∪
D1∪· · ·∪Dt, where C1, . . . , Cs are the odd components of G−X and D1, . . . , Dt

are the even components of G−X. Thus we have s+t = ω(G−X) > |X|/(k−1),
and so

|X| < (k − 1)(s+ t).(8)

Consider a vertex xi ∈ V (Di) for each 1 ≤ i ≤ t. Then odd(Di − xi) ≥ 1
since Di is of even order. Hence, by (4) or (5), we have

s+ t ≤ odd(G−X ∪ {x1, . . . , xt}) ≤
|X|+ t

k
.

Thus we obtain

ks+ (k − 1)t ≤ |X|.(9)

By (8) and (9), we have

ks+ (k − 1)t < (k − 1)(s+ t).

This implies that s < 0, which is a contradiction. Therefore, Claim 1 holds.

If k ≥ 3, then G has a (k − 1)-regular factor by Claim 1 and Theorem 11.
Hence Theorem 5 holds. If k = 2, then (7) holds by Claim 1. Therefore Theorem 6
follows from Theorem 12.
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