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Abstract

For k ≥ 1, a k-fair dominating set (or just kFD-set), in a graph G is
a dominating set S such that |N(v) ∩ S| = k for every vertex v ∈ V − S.
The k-fair domination number of G, denoted by fdk(G), is the minimum
cardinality of a kFD-set. A fair dominating set, abbreviated FD-set, is a
kFD-set for some integer k ≥ 1. The fair domination number, denoted by
fd(G), of G that is not the empty graph, is the minimum cardinality of an
FD-set in G. In this paper, we present a new sharp upper bound for the fair
domination number of an outerplanar graph.
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1. Introduction

For notation and graph theory terminology not given here, we follow [13]. Specif-
ically, let G be a simple graph with vertex set V (G) = V of order |V | = n and let
v be a vertex in V . The open neighborhood of v is NG(v) = {u ∈ V |uv ∈ E(G)}
and the closed neighborhood of v is NG[v] = {v} ∪ NG(v). If the graph G is
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clear from the context, then we simply write N(v) rather than NG(v). The de-

gree of a vertex v, is deg(v) = |N(v)|. A vertex of degree one is called a leaf

and its neighbor a support vertex. A strong support vertex is a support vertex
adjacent to at least two leaves, and a weak support vertex is a support vertex
adjacent to precisely one leaf. For a set S ⊆ V , its open neighborhood is the
set N(S) = ∪v∈SN(v), and its closed neighborhood is the set N [S] = N(S) ∪ S.
The distance d(u, v) between two vertices u and v in a graph G is the minimum
number of edges of a path from u to v. A graph G of order at least three is
2-connected if the deletion of any vertex does not disconnect the graph. A cut-

vertex in a connected graph is a vertex whose removal disconnect the graph. A
maximal connected subgraph without a cut-vertex is called a block. A graph G
is outerplanar if it can be embedded in the plane such that all vertices lie on the
boundary of its exterior region. A graph G is Hamiltonian if there is a spanning
cycle in G. For a subset S of vertices of G, we denote by G[S] the subgraph of
G induced by S.

A subset S ⊆ V is a dominating set of G if every vertex not in S is adjacent
to a vertex in S. The domination number of G, denoted by γ(G), is the minimum
cardinality of a dominating set of G. A vertex v is said to be dominated by a set
S if N [v] ∩ S 6= ∅.

Caro et al. [1] studied the concept of fair domination in graphs. For k ≥ 1, a
k-fair dominating set, abbreviated kFD-set, in G is a dominating set S such that
|N(v)∩D| = k for every vertex v ∈ V −D. The k-fair domination number of G,
denoted by fdk(G), is the minimum cardinality of a kFD-set. A kFD-set of G
of cardinality fdk(G) is called a fdk(G)-set. A fair dominating set, abbreviated
FD-set, in G is a kFD-set for some integer k ≥ 1. The fair domination number,
denoted by fd(G), of a graph G that is not the empty graph is the minimum
cardinality of an FD-set in G. An FD-set of G of cardinality fd(G) is called
a fd(G)-set. The concept of fair domination in graphs was further studied in
[9, 10, 11]. There is a close relation between the fair domination number and
variant, namely perfect domination number of a graph. A perfect dominating set

in a graph G is a dominating set S such that every vertex in V (G)−S is adjacent
to exactly one vertex in S. Hence a 1FD-set is precisely a perfect dominating
set. The concept of perfect domination was introduced by Cockayne et al. in [4],
and Fellows et al. [8] with a different terminology which they called semiperfect
domination. This concept was further studied, see for example, [2, 3, 5, 6, 12].

Among other results, Caro et al. [1] proved that fd(G) < 17n/19 for any
maximal outerplanar graph G of order n, and among open problems posed by
Caro et al. [1], one asks to find fd(G) for other families of graphs.

In this paper, we study fair domination in outerplanar graphs. We present a
new sharp upper bound for the fair domination number of outerplanar graphs.

We call a block K in an outerplanar graph G a strong-block if K contains
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at least three vertices. We call a vertex w in a strong-block K of an outerplanar
graph G a special cut-vertex if w belongs to a shortest path from K to a strong-
block K ′ 6= K. We call a strong-block K in an outerplanar graph G a leaf-block

if K contains exactly one special cut-vertex. We denote by r(G) the number of
strong-blocks of a graph G. The following is straightforward.

Observation 1. Every outerplanar graph with at least two strong-blocks contains

at least two leaf-blocks.

We make use of the following.

Observation 2 (Caro et al. [1]). Every 1FD-set in a graph contains all its strong

support vertices.

Theorem 3 (Leydolda et al. [14]). An outerplanar graph G is Hamiltonian if

and only if it is 2-connected.

Theorem 4 (Hajian et al. [9]). If G is a unicyclic graph of order n, then fd1(G)
≤ (n+ 1)/2.

2. Main Result

Theorem 5. If G is an outerplanar graph of order n and size m with r ≥ 1
strong-blocks, then fd(G) ≤ (4m− 3n+ 3)/2− r. This bound is sharp.

Proof. Let G be an outerplanar graph of order n and size m with r ≥ 1 strong-
blocks. We prove that fd1(G) ≤ (4m − 3n + 3)/2 − r. The result follows from
Theorem 4 if G is a unicyclic graph. Thus assume that G is not a unicyclic graph.
Suppose to the contrary that fd1(G) > (4m− 3n+3)/2− r. Assume that G has
the minimum order, and among all such graphs, we may assume that the size of
G is as minimum as possible. Let K1,K2, . . . ,Kr be the r strong-blocks of G.
By Theorem 3, Kj is Hamiltonian, for 1 ≤ j ≤ r. Let Ci = ci0c

i
1 · · · c

i
li
ci0 be a

Hamiltonian cycle for Ki, for 1 ≤ i ≤ r. We proceed with the following Claims 1
and 2.

Claim 1. For any 1 ≤ i ≤ r, if cij is a vertex of Ci, for some j ∈ {0, 1, . . . , li},

such that degG
(

cij
)

= 2, then degG
(

cij+1

)

≥ 3 and degG
(

cij−1

)

≥ 3, where the

calculations in j + 1 and j − 1 are taken modulo li.

Proof. Assume that degG
(

cij
)

= 2 for some j ∈ {0, 1, . . . , li}. Suppose that

degG
(

cij+1

)

= 2. Let G′ = G− cijc
i
j+1. Clearly r − 1 ≤ r(G′) ≤ r. By the choice

of G, fd1(G
′) ≤ (4m(G′)−3n(G′)+3)/2−r(G′) ≤ (4(m−1)−3n+3)/2−(r−1) =

(4m − 3n + 3)/2 − r − 1. Let S′ be a fd1(G
′)-set. If

∣

∣S′ ∩
{

cij , c
i
j+1

}
∣

∣ ∈ {0, 2},
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then S′ is a 1FD-set for G of cardinality at most (4m− 3n+3)/2− r− 1, and so
fd1(G) ≤ (4m − 3n + 3)/2 − r − 1, a contradiction. Thus

∣

∣S′ ∩
{

cij , c
i
j+1

}
∣

∣ = 1.

Assume that cij ∈ S′. Then cij+1 6∈ S′, and cij+2 ∈ S′, since S′ is a dominating set.

Thus
{

cij+1

}

∪S′ is a 1FD-set in G of cardinality at most (4m−3n+3)/2−r and

so fd1(G) ≤ (4m− 3n+ 3)/2− r, a contradiction. Next assume that cij+1 ∈ S′.

Then cij 6∈ S′ and cij−1 ∈ S′. Thus
{

cij
}

∪ S′ is a 1FD-set in G of cardinality at
most (4m − 3n + 3)/2 − r. So fd1(G) ≤ (4m − 3n + 3)/2 − r, a contradiction.
Hence degG

(

cij+1

)

≥ 3. Similarly, degG
(

cij−1

)

≥ 3. 2

Claim 2. If cij is a vertex of Ci, for some j ∈ {0, 1, . . . , li}, such that degG
(

cij
)

=

2, then non of cij+1 and cij−1 is a support vertex of G.

Proof. Assume that degG
(

cij
)

= 2 for some j ∈ {0, 1, . . . , li}. Suppose that

cij+1 is a support vertex of G. Let G′ = G − cijc
i
j−1. Clearly r − 1 ≤ r(G′) ≤ r.

By the choice of G, fd1(G
′) ≤ (4m(G′) − 3n(G′) + 3)/2 − r(G′) ≤ (4(m − 1) −

3n + 3)/2 − (r − 1) = (4m − 3n + 3)/2 − r − 1. Let S′ be a fd1(G
′)-set. By

Observation 2, cij+1 ∈ S′, since cij+1 is a strong support vertex of G′. If cij−1 /∈ S′,
then S′ is a 1FD-set for G of cardinality at most (4m − 3n + 3)/2 − r − 1 and
so fd1(G) ≤ (4m − 3n + 3)/2 − r − 1, a contradiction. Thus cij−1 ∈ S′ and so
{

cij
}

∪ S′ is a 1FD-set in G of cardinality at most (4m − 3n + 3)/2 − r, and so

fd1(G) ≤ (4m − 3n + 3)/2 − r, a contradiction. Hence cij+1 is not a support

vertex of G. Similarly, cij−1 is not a support vertex of G. 2

We consider the following cases.

Case 1. r = 1. First assume that V (G) =
{

c10, c
1
1, . . . , c

1
l1

}

and so n = l1 + 1.
By Claim 1, at least ⌈n/2⌉ vertices of C1 are of degree at least 3. Now, we can
easily see thatm = 1

2

∑

v∈V (G) deg(v) ≥ n+⌈n/2⌉/2. (Since δ(G) ≥ 2 and at least
⌈n/2⌉ vertices ofG are of degree at least 3, we have

∑

v∈V (G) deg(v) ≥ 2n+⌈n/2⌉.)
Thus m ≥ n+ ⌈n/2⌉/2. If n is even, then n ≤ (4m− 3n)/2 and if n is odd, then
n ≤ (4m − 3n − 1)/2. We thus obtain that n ≤ (4m − 3n + 3)/2 − 1. Now
V (G) is a 1FD-set in G of cardinality n, and thus fd1(G) ≤ (4m− 3n+3)/2− 1,
a contradiction. We deduce that V (G) 6=

{

c10, c
1
1, . . . , c

1
l1

}

. Since r = 1, there
is a vertex of degree one in G. Let vd be a leaf of G such that d(vd, C

1) is
maximum. Let v0v1 · · · vd be the shortest path from vd to a vertex v0 ∈ C1.
Clearly, {v0, v1, . . . , vd} ∩ V (C1) = {v0}.

Assume that d ≥ 2. Suppose that degG(vd−1) = 2. Let G′ = G− {vd, vd−1}.
Clearly r(G′) = r. By the choice of G, fd1(G

′) ≤ (4m(G′) − 3n(G′) + 3)/2 −
r(G′) = (4(m − 2) − 3(n − 2) + 3)/2 − 1 = (4m − 3n + 3)/2 − 2. Let S′ be a
fd1(G

′)-set. If vd−2 /∈ S′, then S′ ∪ {vd} is a 1FD-set in G of cardinality at most
(4m − 3n + 3)/2 − 1 and so fd1(G) ≤ (4m − 3n + 3)/2 − 1, a contradiction.
Thus vd−2 ∈ S′. Then S′ ∪ {vd−1} is a 1FD-set in G of cardinality at most
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(4m − 3n + 3)/2 − 1 and so fd1(G) ≤ (4m − 3n + 3)/2 − 1, a contradiction.
Thus assume that degG(vd−1) ≥ 3. Clearly any vertex of NG(vd−1)− {vd−2} is a
leaf. Let G′ be obtained from G by removing all leaves adjacent to vd−1. Clearly
r(G′) = r. By the choice of G, fd1(G

′) ≤ (4m(G′) − 3n(G′) + 3)/2 − r(G′) ≤
(4(m−2)−3(n−2)+3)/2−1 = (4m−3n+3)/2−2. Let S′ be a fd1(G

′)-set. If
vd−1 ∈ S′, then S′ is a 1FD-set in G of cardinality at most (4m−3n+3)/2−2 and
so fd1(G) ≤ (4m− 3n+ 3)/2− 2, a contradiction. Thus assume that vd−1 6∈ S′.
Then vd−2 ∈ S′. Now S′ ∪ {vd−1} is a 1FD-set in G of cardinality at most
(4m− 3n+ 3)/2− 1 and so fd1(G) ≤ (4m− 3n+ 3)/2− 1, a contradiction.

We next assume that d = 1. LetD1 =
{

c1j | degG
(

c1j
)

= 2
}

andD2 =
{

c1j | c
1
j

is a support vertex of G
}

and D3 =
{

c1j | degG(c
1
j ) ≥ 3 and c1j is not a support

vertex ofG
}

. Clearly |D1|+|D2|+|D3| = l1+1. Since d = 1, we have |D2| ≥ 1. By
Claims 1 and 2, |D1| ≤ |D3|. Observe that m = 1

2

∑

v∈V (G) deg(v) ≥ n+ |D3|/2.
Clearly n ≥ l1 + 1 + |D2|. Thus

(4m− 3n+ 3)/2− 1 ≥ (4(n+ |D3|/2)− 3n+ 3)/2− 1

≥ (l1 + 1 + |D2|+ 2|D3|+ 3)/2− 1

≥ (l1 + 1 + |D1|+ |D2|+ |D3|+ 3)/2− 1

= l1 + 3/2 > l1 + 1.

Evidently,
{

c10, . . . , c
1
l1

}

is a fd1(G)-set of cardinality l1+1. Thus fd1(G) < (4m−
3n+ 3)/2− r, a contradiction.

Case 2. r ≥ 2. By Observation 1, G has at least two leaf-blocks. Let Ki

be a leaf-block of G, where i ∈ {1, 2, . . . , r}. By relabeling of the vertices of
Ci we may assume that ci0 is a special cut-vertex of G. Let G′ be the graph
obtained by removal of all edges ci0c

i
j , with cij ∈

{

ci1, . . . , c
i
li

}

. Clearly G′ has

two components. Let G′

1 be the component of G′ containing ci1, and G′

2 be the
component of G′ containing ci0. Clearly,

{

ci1, c
i
2, . . . , c

i
li

}

⊆ V (G′

1). We consider
the following subcases.

Subcase 2.1. V (G′

1) =
{

ci1, c
i
2, . . . , c

i
li

}

. Let G∗

1 = G
[

V (G′

1) ∪
{

ci0
}]

. Clearly

n(G∗

1) = li + 1. By Claim 1, at least ⌊li/2⌋ vertices of Ci − ci0 are of degree at
least 3.

Assume that li is even. Thus at least li/2 vertices of Ci − ci0 are of degree
at least 3. Now, we can easily see that m(G∗

1) = 1
2

∑

v∈V (G∗

1
) deg(v) ≥ li + 1 +

li/4. Let G∗

2 = G
[

V (G′

2) ∪
{

ci1, c
i
li

}]

−
{

cil1c
i
1

}

. Clearly n = n(G∗

2) + li − 2,
m = m(G∗

2) + m(G∗

1) − 2 and r(G∗

2) = r − 1. By the choice of G, fd1(G
∗

2) ≤
(4m(G∗

2) − 3n(G∗

2) + 3)/2− r(G∗

2). Let S′′ be a fd1(G
∗

2)-set. By Observation 2,
ci0 ∈ S′′, since ci0 is a strong support vertex of G∗

2 . Then S′′ ∪
{

ci1, c
i
2, . . . , c

i
li

}

is
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a 1FD-set for G of cardinality |S′′|+ li. On the other hand

(4m− 3n+ 3)/2− r

≥ (4(m(G∗

2) +m(G∗

1)− 2)− 3(n(G∗

2) + n(G∗

1)− 3) + 3)/2− r

= (4m(G∗

2)− 3n(G∗

2) + 3)/2− r(G∗

2) + (4m(G∗

1)− 3(li + 1) + 1)/2− 1

≥ |S′′|+ (4(li + 1 + li/4)− 3li − 2)/2− 1 = |S′′|+ li.

Thus fd1(G) ≤ (4m− 3n+ 3)/2− r, a contradiction.
Assume next that li is odd. Observe that at least (li−1)/2 vertices of Ci−ci0

are of degree at least 3. Now, we can easily see thatm(G∗

1) =
1
2

∑

v∈V (G∗

1
) deg(v) ≥

li + 1 + (li − 1)/4. We show that m(G∗

1) = li + 1 + (li − 1)/4. Suppose that
m(G∗

1) > li + 1 + (li − 1)/4. Then m(G∗

1) ≥ li + 1 + (li − 1)/4 + 1/4. Let G∗

2 =
G
[

G′

2∪
{

ci1, c
i
li

}]

−
{

cilic
i
1

}

. Clearly n = n(G∗

2)+li−2, m = m(G∗

2)+m(G∗

1)−2 and
r(G∗

2) = r− 1. By the choice of G, fd1(G
∗

2) ≤ (4m(G∗

2)− 3n(G∗

2)+ 3)/2− r(G∗

2).
Let S′′ be a fd1(G

∗

2)-set. By Observation 2, ci0 ∈ S′′, since ci0 is a strong support
vertex of G∗

2. Then S′′∪
{

ci1, c
i
2, . . . , c

i
li

}

is a 1FD-set for G of cardinality |S′′|+ li.
On the other hand

(4m− 3n+ 3)/2− r

≥ (4(m(G∗

2) +m(G∗

1)− 2)− 3(n(G∗

2) + n(G∗

1)− 3) + 3)/2− r

= (4m(G∗

2)− 3n(G∗

2) + 3)/2− r(G∗

2) + (4m(G∗

1)− 3(li + 1) + 1)/2− 1

≥ |S′′|+ (4(li + 1 + (li − 1)/4 + 1/4)− 3li − 2)/2− 1 = |S′′|+ li.

Thus fd1(G) ≤ (4m−3n+3)/2−r, a contradiction. We thus obtain thatm(G∗

1) =
li +1+ (li − 1)/4. Note that |E(G∗

1)∩E(Ci)| = li +1. Hence |E(G∗

1)−E(Ci)| =
(li−1)/4. Since (li−1)/2 vertices of Ci−ci0 are of degree at least 3, we thus obtain
that precisely (li−1)/2 vertices of Ci−ci0 are of degree 3, and so (li+1)/2 vertices
of Ci− ci0 are of degree two. Now Claim 1 implies that degG(c

i
1) = degG(c

i
li
) = 2.

Thus we obtain that degG∗

1
(ci0) = 2. Let A1 =

{

cj | degG(c
i
j) = 2 for 1 ≤ j ≤ li

}

and A2 =
{

ci1, c
i
2, . . . , c

i
li

}

− A1. Clearly |A1| = (li + 1)/2 and |A2| = (li − 1)/2.
Note that |A2| is even, since the number of odd vertices in every graph (here G∗

1)
is even. Thus |A1| is odd, since li is odd and |A1| + |A2| = li. Then |A1| ≥ 3,
since ci1, c

i
li
∈ A1. Now Claim 1 implies that A1 =

{

ci1, c
i
3, . . . , c

i
(li+1)/2, . . . , c

i
li

}

and A2 =
{

ci2, c
i
4, . . . , c

i
li−1

}

.

Fact 1. There are two adjacent vertices cis, c
i
t ∈ A2 such that |s− t| = 2.

Proof. Note that li ≡ 1 (mod 4), since li−1
2 is even. If li = 5, then ci2, c

i
4 ∈ A2 are

the desired vertices, since they are the only vertices of G∗

1 of degree three. Thus

assume that li ≥ 9. If
{

cili+1

2
+1

, cili+1

2
−3

}

∩N
(

cili+1

2
−1

)

6= ∅, then the desired pairs
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are cili+1

2
−1

and the vertex of
{

cili+1

2
+1

, cili+1

2
−3

}

∩N
(

cili+1

2
−1

)

. Thus assume that
{

cili+1

2
+1

, cili+1

2
−3

}

∩N
(

cili+1

2
−1

)

= ∅. Clearly there is a vertex cit ∈ A2 such that cit

is adjacent to cili+1

2
−1

. Without loss of generality, assume that t < li+1
2 −3. Since

G is an outerplanar graph,
∣

∣

∣
A2∩

{

cih : t+2 ≤ h ≤ li+1
2 −3

}
∣

∣

∣
is even. Furthermore,

since G is an outerplanar graph, any vertex of A2 ∩
{

cih : t+ 2 ≤ h ≤ li+1
2 − 3

}

is adjacent to a vertex of A2 ∩
{

cih : t+ 2 ≤ h ≤ li+1
2 − 3

}

. Consequently, there

are two pairs cih1
, cih2

∈ A2 ∩
{

cih : t+ 2 ≤ h ≤ li+1
2 − 3

}

such that cih1
∈ N

(

cih2

)

and |h1 − h2| = 2. 2

Let cit and cit+2 be two adjacent vertices of A2 according to Fact 1. Clearly,
deg

(

cit+1

)

= 2. Let G∗ = G− citc
i
t−1− citc

i
t+1. Clearly n(G∗) = n, m(G∗) = m−2

and r − 1 ≤ r(G∗) ≤ r. By the choice of G, fd1(G
∗) ≤ (4m(G∗) − 3n(G∗) +

3)/2− r(G∗) ≤ (4m− 3n+3)/2− r− 3. Let S∗ be a fd1(G
∗)-set. Since cit+2 is a

strong support vertex of G∗, by Observation 2, we have cit+2 ∈ S∗. If cit−1 /∈ S∗,
then S∗ is a 1FD-set in G of cardinality at most (4m − 3n + 3)/2 − r − 3 and
so fd1(G) ≤ (4m − 3n + 3)/2 − r − 3, a contradiction. Thus cit−1 ∈ S′. Then
S′ ∪

{

cit, c
i
t+1

}

is a 1FD-set in G of cardinality at most (4m− 3n+ 3)/2− r − 1
and so fd1(G) ≤ (4m− 3n+ 3)/2− r − 1, a contradiction.

Subcase 2.2. V (G′

1) 6=
{

ci1, c
i
2, . . . , c

i
li

}

. Since Ki is a leaf-block of G, G′

1 −Ci

has some vertex of degree at most one. Let vd be a leaf of G′

1 such that d(vd, C
i−

ci0) is as maximum as possible, and the shortest path from vd to Ci does not
contain ci0. Let v0v1 · · · vd be the shortest path from vd to a vertex v0 ∈ Ci.

Suppose that d ≥ 2. Assume that degG(vd−1) = 2. Let G′ = G− {vd, vd−1}.
Clearly r(G′) = r. By the choice of G, fd1(G

′) ≤ (4m(G′) − 3n(G′) + 3)/2 −
r(G′) = (4(m − 2) − 3(n − 2) + 3)/2 − r = (4m − 3n + 3)/2 − r − 1. Let S′ be
a fd1(G

′)-set. If vd−2 /∈ S′, then S′ ∪ {vd} is a 1FD-set in G of cardinality at
most (4m− 3n+3)/2− r and so fd1(G) ≤ (4m− 3n+3)/2− r, a contradiction.
Thus vd−2 ∈ S′. Then S′ ∪ {vd−1} is a 1FD-set in G of cardinality at most
(4m − 3n + 3)/2 − r and so fd1(G) ≤ (4m − 3n + 3)/2 − r, a contradiction.
We deduce that degG(vd−1) ≥ 3. Clearly any vertex of NG(vd−1) − {vd−2} is a
leaf. Let G′ be obtained from G by removing all leaves adjacent to vd−1. Clearly
r(G′) = r. By the choice of G, fd1(G

′) ≤ (4m(G′) − 3n(G′) + 3)/2 − r(G′) ≤
(4(m−2)−3(n−2)+3)/2−r = (4m−3n+3)/2−r−1. Let S′ be a fd1(G

′)-set. If
vd−1 ∈ S′, then S′ is a 1FD-set in G of cardinality at most (4m−3n+3)/2−r−1
and so fd1(G) ≤ (4m − 3n + 3)/2 − r − 1, a contradiction. Thus assume that
vd−1 6∈ S′. Then vd−2 ∈ S′. Now S′ ∪ {vd−1} is a 1FD-set in G of cardinality at
most (4m− 3n+3)/2− r and so fd1(G) ≤ (4m− 3n+3)/2− r, a contradiction.

We thus assume that d = 1. Let D1 =
{

cij | degG(c
i
j) = 2

}

, D2 =
{

cij | cij
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is a support vertex of G
}

and D3 =
{

cij | degG(c
i
j) ≥ 3 and cij is not a support

vertex of G
}

. Clearly |D1 | +|D2 | +|D3 |= li. Observe that |D2 |≥ 1, since
d = 1. Thus by Claims 1 and 2, |D1 |≤ |D3 |. Let G∗

1 = G
[

G′

1 ∪
{

ci0
}]

.
Observe that m(G∗

1) =
1
2

∑

v∈V (G∗

1
) deg(v) ≥ n(G∗

1)+ |D3 | /2. Then n(G∗

1) ≥ li+

1 + |D2 |. Let G∗

2 =
[

G′

2 ∪
{

ci1, c
i
li

}]

−
{

cilic
i
1

}

. Clearly n = n(G∗

2) + n(G∗

1) − 3,
m = m(G∗

2) + m(G∗

1) − 2 and r(G∗

2) = r − 1. By the choice of G, fd1(G
∗

2) ≤
(4m(G∗

2) − 3n(G∗

2) + 3)/2− r(G∗

2). Let S′′ be a fd1(G
∗

2)-set. By Observation 2,
ci0 ∈ S′′, since ci0 is a strong support vertex of G∗

2. Then S′′ ∪
{

ci1, c
i
2, . . . , c

i
li

}

is
a 1FD-set for G of cardinality |S′′|+ li. On the other hand

(4m− 3n+ 3)/2− r

≥ (4(m(G∗

2) +m(G∗

1)− 2)− 3(n(G∗

2) + n(G∗

1)− 3) + 3)/2− r

= (4m(G∗

2)− 3n(G∗

2) + 3)/2− r(G∗

2) + (4m(G∗

1)− 3n(G∗

1) + 1)/2− 1

≥ |S′′|+ (4(n(G∗

1) + |D3 | /2)− 3n(G∗

1) + 1)/2− 1

= |S′′|+ (n(G∗

1) + 2|D3 | +1)/2− 1

≥ |S′′|+ (li + 1 + |D2 | +2|D3 | +1)/2− 1

≥ (li + |D2 | +|D3 | +|D1 |)/2 ≥ |S′′|+ li.

Thus fd1(G) ≤ |S′′|+ li ≤ (4m− 3n+ 3)/2− r, a contradiction.
To the sharpness, consider a cycle C5.

3. Concluding Remarks

As it is noted, Caro et al. [1] proved that fd(G) < 17n/19 for any maximal
outerplanar graph G of order n. They also proved that fd(G) ≤ n − 2 for any
connected graph G of order n ≥ 3. It is worth-noting that the bound of Theorem
5 improves the bound n− 2 when 4m < 5n+ 2r− 7. It is also known that every
maximal outerplanar graph G of order at least 3 is 2-connected [7], and thus
r(G) = 1. Therefore, the bound of Theorem 5 improves the bound 17n/19 when
4m < 91n

19 − 1. We have the following conjecture.

Conjecture 6. If G is a graph of order n and size m with r ≥ 1 strong-blocks,

then fd(G) ≤ (4m− 3n+ 3)/2− r.
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