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Abstract

In 1940, Lebesgue gave an approximate description of the neighborhoods
of 5-vertices in the class P5 of 3-polytopes with minimum degree 5.

Given a 3-polytope P , by w(P ) denote the minimum of the degree-sum
(weight) of the neighborhoods of 5-vertices (minor 5-stars) in P .

In 1996, Jendrol’ and Madaras showed that if a polytope P in P5 is
allowed to have a 5-vertex adjacent to four 5-vertices, then w(P ) can be
arbitrarily large.

For each P in P5 without vertices of degree 6 and 5-vertices adjacent
to four 5-vertices, it follows from Lebesgue’s Theorem that w(P ) ≤ 68.
Recently, this bound was lowered to w(P ) ≤ 55 by Borodin, Ivanova, and
Jensen and then to w(P ) ≤ 51 by Borodin and Ivanova.

In this note, we prove that every such polytope P satisfies w(P ) ≤ 44,
which bound is sharp.
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1. Introduction

The degree of a vertex or face x in a convex finite 3-dimensional polytope (called
a 3-polytope) is denoted by d(x). A k-vertex is a vertex v with d(v) = k. A
k+-vertex (k−-vertex) is one of degree at least k (at most k). Similar notation is
used for the faces. A 3-polytope with minimum degree 5 is denoted by P5, and
the set of such 3-polytopes is P5.

The weight of a subgraph S of P5 is the degree sum of the vertices of S in P5,
and the height of S is the maximum degree of the vertices of S in P5. A k-star, a
star with k rays, is minor if its center v has degree at most 5. In particular, the
neighborhoods of 5-vertices are minor 5-stars and vice versa. All stars considered
in this note are minor.

By w(Sk) and h(Sk) we denote the minimum weight and height, respectively,
of minor k-stars in a given 3-polytope P5.

In 1904, Wernicke [13] proved that every P5 has a 5-vertex adjacent to a
6−-vertex. This result was strengthened by Franklin [9] in 1922 to the existence
of a 5-vertex with two 6−-neighbors. In 1940, in attempts to solve the Four Color
Problem, Lebesgue [12, p. 36] gave an approximate description of the neigh-
borhoods of 5-vertices in P5s. In particular, this description implies the results
in [9, 13] and shows that there is a 5-vertex with three 7−-neighbors.

The bounds w(S1) ≤ 11 (Wernicke [13]) and w(S2) ≤ 17 (Franklin [9]) are
tight. It was proved by Lebesgue [12] that w(S3) ≤ 24, which was improved in
1996 by Jendrol’ and Madaras [10] to the sharp bound w(S3) ≤ 23. Furthermore,
Jendrol’ and Madaras [10] gave a precise description of minor 3-stars in P5s.

Lebesgue [12] proved w(S4) ≤ 31, which was strengthened by Borodin and
Woodall [8] to the tight bound w(S4) ≤ 30. Note that w(S3) ≤ 23 easily implies
w(S2) ≤ 17 and immediately follows from w(S4) ≤ 30 (in both cases, it suffices
to delete a vertex of maximum degree from a minor star of minimum weight).
Recently, Borodin and Ivanova [1] obtained a precise description of 4-stars in P5s.

The more general problem of precisely describing 5-stars at 5-vertices in P5s
inspired by Lebesgue’s Theorem is still widely open.

Jendrol’ and Madaras [10] showed that if a polytope P5 has a 5-vertex ad-
jacent to four 5-vertices, called a minor (5, 5, 5, 5,∞)-star, then h(S5) and hence
w(S5) can be arbitrarily large. Therefore, in what follows we consider P5s without
minor (5, 5, 5, 5,∞)-stars.

Recently, precise upper bounds for the height and weight of minor 5-stars
have been obtained for some restricted subclasses in P5. A lot of earlier results
on the structure of stars in 3-polytopes can be found in [11].

For every P5 having no vertices of degree from 6 to 9, Lebegue’s bounds
h(S5) ≤ 14 and w(S5) ≤ 44 were improved by Borodin and Ivanova [3] to the
sharp bounds h(S5) ≤ 12 and w(S5) ≤ 42.
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For each P5 with no 6- to 8-vertices, it follows from Lebesgue’s Theorem that
h(S5) ≤ 17 and w(S5) ≤ 46, which bounds were improved in Borodin, Ivanova
and Nikiforov [7] to the best possible bounds h(S5) ≤ 12 and w(S5) ≤ 42.

Under the absence of 6- and 7-vertices, Lebegue’s bound h(S5) ≤ 23 was
improved by Borodin et al. [5] to the sharp bound h(S5) ≤ 14.

For each P5 with no 6-vertices, it follows from Lebesgue’s Theorem that
h(S5) ≤ 41. This bound was lowered to h(S5) ≤ 28 by Borodin, Ivanova, and
Jensen [4], then to h(S5) ≤ 23 in Borodin-Ivanova [2], and finally to the tight
bound h(S5) ≤ 17 by Borodin, Ivanova, and Nikiforov [6].

As for the minimum weight of minor 5-stars in P5s under the absence of
6-vertices, Lebesgue’s bound w(S5) ≤ 68 was lowered to w(S5) ≤ 55 by Borodin,
Ivanova, and Jensen [4] and then to w(S5) ≤ 51 in Borodin-Ivanova [2]. The
purpose of this paper is to prove the following fact.

Theorem 1. Every 3-polytope with minimum degree 5 and neither 6-vertices nor
minor (5, 5, 5, 5,∞)-stars has a minor 5-star with weight at most 44, which bound

is best possible.

We note that a light minor 5-star ensured by Theorem 1 has height at most
44 − 4 × 5 − 7 = 17. The tightness of the bounds 44 and 17 is confirmed by a
construction in [6].

2. Proof of Theorem 1

Discharging.

Suppose that a 3-polytope P ′

5 is a counterexample to the main statement of
Theorem 1. Thus each minor 5-star in P ′

5 has weight at least 45 and at most
three 5-vertices.

Let P5 be a counterexample with the maximum number of edges on the same
set of vertices as P ′

5.

Remark 2. P5 has no 4+-face with two nonconsecutive 7+-vertices along the
boundary, for otherwise adding a diagonal between these vertices would result in
a counterexample with greater number of edges.

Let V , E, and F be the sets of vertices, edges, and faces of P5. Euler’s
formula |V | − |E|+ |F | = 2 implies

∑

v∈V

(d(v)− 6) +
∑

f∈F

(2d(f)− 6) = −12.(1)

We assign an initial charge µ(v) = d(v) − 6 to each v ∈ V and µ(f) =
2d(f) − 6 to each f ∈ F , so that only 5-vertices have a negative initial charge.
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Using the properties of P5 as a counterexample to Theorem 1, we define a local
redistribution of charges, preserving their sum such that the final charge µ(x) is
non-negative for all x ∈ V ∪ F . This will contradict the fact that the sum of the
final charges is, by (1), equal to −12.

The final charge µ′(x) whenever x ∈ V ∪ F is defined by applying the rules
R1–R11 below (see Figure 1).

For a vertex v, let v1, . . . , vd(v) be the vertices adjacent to v in a fixed cyclic
order. If f is a face, then v1, . . . , vd(f) are the vertices incident with f in the same
cyclic order.

If d is an integer with 8 ≤ d ≤ 15, then we put ξd = d−6
d

.
A vertex is simplicial if it is completely surrounded by 3-faces. A simplicial

5-vertex v is helpful if d(v1) ≥ 12, d(v2) = d(v4) = 5, d(v3) = 7, and d(v5) ≥ 12
(see Figure 1, R10). A simplicial 5-vertex v is strong if d(v1) = d(v2) = 5,
7 ≤ d(v3) ≤ 11, and 7 ≤ d(v5) ≤ 11 (so d(v4) ≥ 45 − 2 × 11 − 3 × 5 ≥ 8) (see
Figure 1, R11).

R1. Each 4+-face gives 1
2 to each incident 5-vertex.

R2. If a 5-vertex v is incident with precisely one 4+-face, then v receives 1
2 from

each adjacent 16+-vertex.

R3. A simplicial 5-vertex v with at least two 12+-neighbors receives 1
2 from each

adjacent 16+-vertex.

R4. A simplicial 5-vertex v with d(v4) 6= 5, d(v5) ≥ 16, and no other 12+-
neighbors receives the following charge from v5:

(a) if d(v1) 6= 5, then 1, and

(b) if d(v1) = 5, then 3
4 provided that d(v5) ≤ 17 or 5

6 otherwise.

R5. A simplicial 5-vertex v with d(v5) ≥ 18, d(v1) = d(v4) = 5, and 7 ≤ d(v2) ≤
d(v3) ≤ 11 receives 2

3 from v5.

R6. A simplicial 5-vertex v with 16 ≤ d(v5) ≤ 17, d(v1) = d(v4) = 5, and
7 ≤ d(v2) ≤ d(v3) ≤ 11 receives from v5:

(n) 5
8 if neither v2 nor v3 is a 7-vertex having six simplicial 5-neighbors (”nor-
mally”), and

(e) 2
3 otherwise (”as an exception”).

R7. A simplicial 5-vertex v with d(v5) ≥ 16, d(v1) = d(v2) = d(v4) = 5, and
7 ≤ d(v3) ≤ 11 receives the following charge from v5.

(n) If v1 is not simplicial or v2 is not strong (that is ”normal”), then 3
4 if d(v5) ≤

17 or 5
6 otherwise.

(e) If v1 is simplicial and v2 is strong (which is ”an exception”), then 5
8 if d(v5) ≤

17 or 2
3 otherwise.
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R8. A d-vertex v with 8 ≤ d(v) ≤ 15 gives its 5-neighbor v2:

(a) ξd if d(v1) = d(v3) = 5,

(b) 3ξd
2 if d(v1) = 5 and d(v3) 6= 5, and

(c) 2ξd if d(v1) 6= 5 and d(v3) 6= 5.

R9. A 7-vertex v gives each adjacent simplicial 5-vertex:

(n) 1
5 ”as a norm”, that is if v has at most five simplicial 5-neighbors, or

(e) 1
6 ”as an exception”.

R10. A 7-vertex v receives 1
6 from each helpful 5-neighbor.

R11. A strong 5-vertex gives 1
6 to each 5-neighbor.
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Figure 1. Rules of discharging.

Checking µ′(x) ≥ 0 whenever x ∈ V ∪ F .

If f is a 4+-face, then µ′(f) ≥ 2d(f)− 6− d(f)× 1
2 = 3(d(f)−4)

2 ≥ 0 by R1.
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Now suppose v ∈ V .

Case 1. d(v) ≥ 18. We know that v gives one of the charges in
{

1
2 ,

2
3 ,

5
6 , 1

}

to each adjacent 5-vertex incident with at least four 3-faces by R2–R7. Since
d(v) − 6 ≥ 2d(v)

3 , it suffices to average these donations so that each 5+-neighbor
will receive at most 2

3 from v.

To this end, we first switch 1
6 from 1 given to a 5-neighbor vk by R4(a) to

each of the 7+-neighbors vk−1 and vk+1 (hereafter, addition modulo d(v)). As a
result, the averaged donation from v to vk becomes 1− 2× 1

6 = 2
3 .

Next, if 5
6 is given to a 5-neighbor vk by R4(b), then we switch 1

6 to its
common 7+-neighbor with v.

Finally, the donation of 5
6 by R7(n) happens to a simplicial 5-neighbor vk of

v having cyclic neighbors vk−1, xk, yk, vk+1 with 7 ≤ d(xk) ≤ 11 and 5-neighbors
vk−1, yk, vk+1, where either vk+1 is not simplicial or yk is not strong.

If vk+1 is not simplicial, then we switch 1
6 from vk to vk+1 and note that the

latter receives at most 1
2 from v by R2.

From now on suppose that vk+1 is simplicial, and let zk be the vertex con-
jugated with vk with respect to the edge ykvk+1. Since vk receives 5

6 by R7(n)
by our assumption, it follows that d(zk) /∈ {7, . . . , 11}, for otherwise yk is strong
since it has the fifth neighbor of degree at least w(S5) − 3× 5 − 2 × 11 = 8 and
is simplicial in view of Remark 2.

If d(zk) ≥ 12, then we switch 1
6 from vk to vk+1, where vk+1 this time receives

1
2 by R3. Note that vk+2 receives

1
2 by R2 or R3, which implies that 1

6 is switched
to vk+1 only once.

It remains to assume that d(zk) = 5. This implies that d(vk+2) ≥ 7 since vk+1

cannot have four 5-neighbors. Here, we switch 1
6 from vk to vk+2. (Of course,

vk+1 also switches 1
6 from its 5

6 obtained by R4(b) to vk+2, as said above.)

It is not hard to see that no 5-vertex vk+1 can receive 1
6 in the course of our

averaging both from vk and vk+2 since then vk+1 would have four 5-neighbors,
which is impossible.

As a result, the averaged donation of v to each 5-neighbor becomes at most
1−2× 1

6 = 5
6−

1
6 = 1

2+
1
6 = 2

3 and that to each 7+-neighbor is at most 0+4× 1
6 = 2

3 ,
as desired.

Case 2. 16 ≤ d(v) ≤ 17. We now show that the neighbors of v receive from v

by R2–R7 at most 5
8 on the average, which implies that µ′(v) ≥ d(v)−6− 5d(v)

8 =
3(d(v)−16)

8 ≥ 0. We proceed similarly to Case 1 with a 5-vertex vk getting more
than 5

8 from v by R4, R6(e) or R7(n).

If vk is as in R4(a), then we shift 1
4 from 1 obtained by vk to each of the

7+-vertices vk−1 and vk+1. In R4(b), we shift 1
8 from 3

4 to a unique 7+-vertex in
{vk−1, vk+1}.
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Now consider R6(e), which has no analogues in Case 1. By symmetry, we
can assume that vk+1 lies in a common 3-face with vk and a 7-vertex having six
simplicial 5-neighbors. Now d(vk+2) ≥ 7 as vk+1 cannot have three 5-neighbors
in addition to a 7-neighbor and a 17−-neighbor since w(S5) ≥ 45 by assumption.
Recall that vk+1 receives at most 3

4 by R4(b), R3, or R7(n) and that 1
8 was already

switched from vk+1 to vk+2 in the previous paragraph. Here, we also switch 1
8

from 2
3 received by vk to vk+2.

In the situation of R7(n), let vk+1 lie in a 3-face incident with three 5-vertices.
Arguing as in Case 1, we see that either vk+1 receives 1

2 from v, in which case
we switch 1

8 from vk to vk+1, or we have d(vk+2) ≥ 7, in which case we switch 1
8

from vk to vk+2.

As a result of this averaging, each 5-neighbor of v receives at most 1−2× 1
4 <

3
4 −

1
8 = 1

2 +
1
8 = 5

8 , while each 7+-neighbor receives at most 4× 1
8 = 1

4 + 2× 1
8 =

2× 1
4 < 5

8 from v, as desired.

Case 3. 8 ≤ d(v) ≤ 15. To satisfy R8, we first send ξd(v) to each neighbor

vk, and then each 7+-neighbor vk transfers
ξd(v)
2 to each 5-vertex in {vk−1, vk+1}.

This shows that µ′(v) ≥ d(v)− 6− d(v)× ξd(v) = 0.

Case 4. d(v) = 7. If v has at most five simplicial 5-neighbors, then µ′(v) ≥
7 − 6 − 5 × 1

5 = 0 by R9(n). If v has precisely six simplicial 5-neighbors, then
µ′(v) ≥ 1− 6× 1

6 = 0 by R9(e).

Finally, suppose v is completely surrounded by simplicial 5-vertices. This
implies that there is a 7-cycle C7 = w1 · · ·w7 avoiding v, where each vk lies in a
3-face wkvkwk+1 (addition modulo 7). Note that d(wk)+d(wk+1) ≥ 45−3×5−7 =
23 whenever 1 ≤ k ≤ 7. By the oddness of 7, v has a helpful neighbor, which
gives 1

6 to v by R10. As a result, we have µ′(v) ≥ 1 + 1
6 − 7 × 1

6 = 0 in view of
R9(e), as required.

Case 5. d(v) = 5. If v is incident with at least two 4+-faces, then µ′(v) ≥
5− 6 + 2× 1

2 = 0 by R1.

If v is incident with precisely one 4+-face, then we are done when v has a
12+-neighbor since v receives 1

2 by R1 and at least 1
2 by R2 or R8.

So suppose otherwise. Note that v then has two 8+-neighbors, for otherwise
v would have an 11−-neighbor and four 7−-neighbors, which implies w(S5) ≤
5 + 4 × 7 + 11 < 45, a contradiction. Thus µ′(v) ≥ −1 + 1

2 + 2 × 1
4 = 0 by R1

and R8.

From now on we can assume that v is simplicial.

Subcase 5.1. v is helpful, with d(v1) ≥ 12, d(v2) = d(v4) = 5, d(v3) = 7,
and d(v5) ≥ 12. Now v receives 1

2 from each of v1, v5 by R3 and/or R8. Also
v receives at least 1

6 from v3 by R9 and returns 1
6 to v3 by R10. This implies

µ′(v) ≥ −1 + 2× 1
2 + 1

6 − 1
6 = 0, as desired.
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Subcase 5.2. v is strong, with d(v1) = d(v2) = 5, 7 ≤ d(v3) ≤ d(v5) ≤ 11, and
d(v4) ≥ 45− 3× 5− 2× 11 = 8. Now v must collect the total of at least 4

3 from
v3, v4, v5 in order to be able to give 2× 1

6 to v1, v2 according to R11 (and leave 1
for itself).

We are easily done if d(v4) ≥ 12, for then v4 gives v at least 1 by R4(a) or
R8(c) while each of v3, v5 gives at least 1

6 by R8 and R9.

So suppose d(v4) ≤ 11. Since d(v3)+d(v4)+d(v5) ≥ w(S5)−3×5 = 30, this
implies that v has no neighbors of degree less than 30− 2× 11 = 8. If d(v4) = 8,
then d(v3) = d(v5) = 11, which implies that v receives 1

2 from v4 by R8(c) and
2 × 15

22 from v3, v5 by R8(b), as desired. If d(v4) ≥ 9, then v receives at least 2
3

from v4 by R8(c) and at least 2× 3
8 from v3, v5 by R8(b), and we are done.

Subcase 5.3. v does not give charge away by R10 and R11. So we must check
that v collects the total of at least 1 from its neighbors by R3–R9. If v has at
least two 12+-neighbors, then µ′(v) ≥ −1 + 2× 1

2 = 0 by R3 or R8(a),(b). So in
what follows we assume that v has at most one 12+-neighbor, which means that
R3 is not applied to v.

Subcase 5.3.1. v has at most one 5-neighbor. Here, v receives at least 3
8 from

an 8-neighbor and at least 1
2 from a 9+-neighbor by R4–R8. This implies, in view

of R9, that µ′(v) ≥ −1+3× 1
6 +

1
2 = 0 in the presence of a 9+-neighbor or µ′(v) ≥

−1+2× 1
6 +2× 3

8 > 0 when v has at least two 8-neighbors. However, one of this
situations is inevitable, since otherwise we would have w(S5) ≤ 5+4×7+8 < 45,
which is impossible.

Subcase 5.3.2. v has precisely two 5-neighbors. Note that the total degree of
the three 7+-neighbors of v is at least 45− 3× 5 = 30.

Suppose v has no 7-neighbor. Each 8+-neighbor v2 gives v by R4–R8 at least
1
4 if d(v1) = d(v3) = 5 and at least 3

8 if d(v1) 6= 5, so µ′(v) ≥ −1 + 1
4 + 2× 3

8 = 0,
and we are done.

Next suppose v has at least one 7-neighbor. Now the other two 7+-neighbors
have the total degree at least 30 − 7 = 23, so there is a 12+-neighbor, say v2,
among them.

If v2 gives v at least 3
4 to v by R4 or R8, then µ′(v) > 0, since the other two

7+-neighbors give at least 2× 1
6 by R4–R9.

So suppose d(v1) = d(v3) = 5 and 7 = d(v4) ≤ d(v5). Now if d(v2) ≥ 18,
then we have µ′(v) ≥ −1 + 2

3 + 2× 1
6 = 0 by R4–R9.

For 16 ≤ d(v2) ≤ 17 we are similarly done if v2 gives 2
3 by R6(e), so suppose

R6(n) is applied to v2 rather than R6(e). If d(v5) ≥ 8, then µ′(v) ≥ −1 + 5
8 +

1
6 + 3

8 > 0. It remains to assume that d(v4) = d(v5) = 7 and neither of v4, v5
has six simplicial 5-neighbors (as if we apply R9(e) to v4 or v5 it would mean we
should apply R6(e) to v, and then µ′(v) ≥ −1+ 2

3 +2× 1
6 = 0). This means that

µ′(v) ≥ −1 + 5
8 + 2× 1

5 = 1
40 by R6(n) and R9(n).
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Finally, suppose 12 ≤ d(v2) ≤ 15. Now d(v5) ≥ w(S5)−3×5−7−15 = 8, and
it suffices to observe that v receives at least 1

2 ,
1
6 ,

3
8 from v2, v4, v5, respectively,

which makes µ′(v) > 0, as desired.

Subcase 5.3.3. v has precisely three 5-neighbors. Note that the total degree
of the two 7+-neighbors of v is at least 45− 4× 5 = 25.

First suppose 7 ≤ d(v1) ≤ d(v2). By the above assumption that R3 is not
applied, we have d(v1) ≤ 11, which implies that v has a 14+-neighbor. Note that
v2 gives v at least 3

4 by R4(b) or R8, while v1 gives v at least 3
8 by R8 if d(v1) ≥ 8,

and then we have µ′(v) ≥ 0. But if d(v1) = 7, then d(v2) ≥ 25 − 7 = 18, and
µ′(v) ≥ −1 + 5

6 + 1
6 = 0 by R4(b) combined with R9.

Thus from now on we can assume that 7 ≤ d(v1) ≤ 11 and d(v3) ≥ 14. If
d(v3) ≤ 15, then v receives from v1 and v3 at least 1 = 2

5+
3
5 = ξ10+ξ15 < ξ11+ξ14

by R8(a), as desired.
Next suppose 16 ≤ d(v3) ≤ 17, which implies that d(v1) ≥ 8. Since v1 gives

v at least 1
4 by R8(a) while v3 gives either 3

4 or 5
8 by R7, we are done unless v3

gives 5
8 by R7(e). The latter happens when v5 is strong, in which case v receives

1
6 from v5 by R11, which yields µ′(v) ≥ −1 + 1

4 + 1
6 + 5

8 > 0.
Finally, suppose d(v3) ≥ 18. Now v1 gives v at least 1

6 by R9 while v3 gives
either 5

6 or 2
3 by R7. Since the donation of 2

3 by R7(e) to v is accompanied by
receiving 1

6 by R11 from a strong vertex v5, we have µ′(v) ≥ −1 + 2 × 1
6 + 2

3 =
−1 + 1

6 + 5
6 = 0.

Thus we have proved µ′(x) ≥ 0 whenever x ∈ V ∪ F , which contradicts (1)
and completes the proof of Theorem 1.
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with minimum degree 5, Sib. Èlektron. Mat. Izv. 13 (2016) 584–591.
doi:10.17377/semi.2016.13.045

[4] O.V. Borodin, A.O. Ivanova and T.R. Jensen, 5-stars of low weight in normal plane

maps with minimum degree 5, Discuss. Math. Graph Theory 34 (2014) 539–546.
doi:10.7151/dmgt.1748

[5] O.V. Borodin, A.O. Ivanova, O.N. Kazak and E.I. Vasil’eva, Heights of minor 5-stars
in 3-polytopes with minimum degree 5 and no vertices of degree 6 and 7, Discrete
Math. 341 (2018) 825–829.
doi:10.1016/j.disc.2017.11.021

http://dx.doi.org/10.1016/j.disc.2013.04.025
http://dx.doi.org/10.1134/S0037446616030071
http://dx.doi.org/10.17377/semi.2016.13.045
http://dx.doi.org/10.7151/dmgt.1748
http://dx.doi.org/10.1016/j.disc.2017.11.021


994 O.V. Borodin, A.O. Ivanova and E.I. Vasil’eva

[6] O.V. Borodin, A.O. Ivanova and D.V. Nikiforov, Low minor 5-stars in 3-polytopes
with minimum degree 5 and no 6-vertices, Discrete Math. 340 (2017) 1612–1616.
doi:10.1016/j.disc.2017.03.002

[7] O.V. Borodin, A.O. Ivanova and D.V. Nikiforov, Low and light minor 5-stars in 3-
polytopes with minimum degree 5 and restrictions on the degrees of major vertices,
Sib. Math. J. 58 (2017) 600–605.
doi:10.1134/S003744661704005X

[8] O.V. Borodin and D.R. Woodall, Short cycles of low weight in normal plane maps

with minimum degree 5, Discuss. Math. Graph Theory 18 (1998) 159–164.
doi:10.7151/dmgt.1071

[9] P. Franklin, The four colour problem, Amer. J. Math. 44 (1922) 225–236.
doi:10.2307/2370527

[10] S. Jendrol’ and T. Madaras, On light subgraphs in plane graphs of minimum degree

five, Discuss. Math. Graph Theory 16 (1996) 207–217.
doi:10.7151/dmgt.1035

[11] S. Jendrol’ and H.-J. Voss, Light subgraphs of graphs embedded in the plane—A

survey, Discrete Math. 313 (2013) 406–421.
doi:10.1016/j.disc.2012.11.007

[12] H. Lebesgue, Quelques conséquences simples de la formule d’Euler, J. Math. Pures
Appl. 19 (1940) 27–43.
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