Discussiones Mathematicae Graph Theory 40 (2020) 985–994 doi:10.7151/dmgt.2155

# LIGHT MINOR 5-STARS IN 3-POLYTOPES WITH MINIMUM DEGREE 5 AND NO 6-VERTICES<sup>1</sup>

Oleg V. Borodin, Anna O. Ivanova

AND

Ekaterina I. Vasil'eva

Institute of Mathematics Siberian Branch Russian Academy of Sciences Novosibirsk, 630090, Russia

e-mail: brdnoleg@math.nsc.ru shmgnanna@mail.ru ekaterinavasilyeva93@gmail.com

#### Abstract

In 1940, Lebesgue gave an approximate description of the neighborhoods of 5-vertices in the class  $\mathbf{P_5}$  of 3-polytopes with minimum degree 5.

Given a 3-polytope P, by w(P) denote the minimum of the degree-sum (weight) of the neighborhoods of 5-vertices (minor 5-stars) in P.

In 1996, Jendrol' and Madaras showed that if a polytope P in  $\mathbf{P_5}$  is allowed to have a 5-vertex adjacent to four 5-vertices, then w(P) can be arbitrarily large.

For each P in  $\mathbf{P_5}$  without vertices of degree 6 and 5-vertices adjacent to four 5-vertices, it follows from Lebesgue's Theorem that  $w(P) \leq 68$ . Recently, this bound was lowered to  $w(P) \leq 55$  by Borodin, Ivanova, and Jensen and then to  $w(P) \leq 51$  by Borodin and Ivanova.

In this note, we prove that every such polytope P satisfies  $w(P) \leq 44$ , which bound is sharp.

**Keywords:** planar map, planar graph, 3-polytope, structural properties, 5-star, weight, height.

2010 Mathematics Subject Classification: 05C15.

<sup>&</sup>lt;sup>1</sup>The work was funded by the Russian Science Foundation, grant 16-11-10054.

### 1. INTRODUCTION

The degree of a vertex or face x in a convex finite 3-dimensional polytope (called a 3-polytope) is denoted by d(x). A k-vertex is a vertex v with d(v) = k. A  $k^+$ -vertex ( $k^-$ -vertex) is one of degree at least k (at most k). Similar notation is used for the faces. A 3-polytope with minimum degree 5 is denoted by  $P_5$ , and the set of such 3-polytopes is  $\mathbf{P}_5$ .

The weight of a subgraph S of  $P_5$  is the degree sum of the vertices of S in  $P_5$ , and the *height* of S is the maximum degree of the vertices of S in  $P_5$ . A k-star, a star with k rays, is *minor* if its center v has degree at most 5. In particular, the neighborhoods of 5-vertices are minor 5-stars and vice versa. All stars considered in this note are minor.

By  $w(S_k)$  and  $h(S_k)$  we denote the minimum weight and height, respectively, of minor k-stars in a given 3-polytope  $P_5$ .

In 1904, Wernicke [13] proved that every  $P_5$  has a 5-vertex adjacent to a 6<sup>-</sup>-vertex. This result was strengthened by Franklin [9] in 1922 to the existence of a 5-vertex with two 6<sup>-</sup>-neighbors. In 1940, in attempts to solve the Four Color Problem, Lebesgue [12, p. 36] gave an approximate description of the neighborhoods of 5-vertices in  $P_5$ s. In particular, this description implies the results in [9,13] and shows that there is a 5-vertex with three 7<sup>-</sup>-neighbors.

The bounds  $w(S_1) \leq 11$  (Wernicke [13]) and  $w(S_2) \leq 17$  (Franklin [9]) are tight. It was proved by Lebesgue [12] that  $w(S_3) \leq 24$ , which was improved in 1996 by Jendrol' and Madaras [10] to the sharp bound  $w(S_3) \leq 23$ . Furthermore, Jendrol' and Madaras [10] gave a precise description of minor 3-stars in  $P_5$ s.

Lebesgue [12] proved  $w(S_4) \leq 31$ , which was strengthened by Borodin and Woodall [8] to the tight bound  $w(S_4) \leq 30$ . Note that  $w(S_3) \leq 23$  easily implies  $w(S_2) \leq 17$  and immediately follows from  $w(S_4) \leq 30$  (in both cases, it suffices to delete a vertex of maximum degree from a minor star of minimum weight). Recently, Borodin and Ivanova [1] obtained a precise description of 4-stars in  $P_5$ s.

The more general problem of precisely describing 5-stars at 5-vertices in  $P_{5}$ s inspired by Lebesgue's Theorem is still widely open.

Jendrol' and Madaras [10] showed that if a polytope  $P_5$  has a 5-vertex adjacent to four 5-vertices, called a *minor*  $(5, 5, 5, 5, \infty)$ -*star*, then  $h(S_5)$  and hence  $w(S_5)$  can be arbitrarily large. Therefore, in what follows we consider  $P_5$ s without minor  $(5, 5, 5, 5, \infty)$ -stars.

Recently, precise upper bounds for the height and weight of minor 5-stars have been obtained for some restricted subclasses in  $\mathbf{P}_5$ . A lot of earlier results on the structure of stars in 3-polytopes can be found in [11].

For every  $P_5$  having no vertices of degree from 6 to 9, Lebegue's bounds  $h(S_5) \leq 14$  and  $w(S_5) \leq 44$  were improved by Borodin and Ivanova [3] to the sharp bounds  $h(S_5) \leq 12$  and  $w(S_5) \leq 42$ .

LIGHT MINOR 5-STARS IN 3-POLYTOPES WITH MINIMUM DEGREE 5 AND ...987

For each  $P_5$  with no 6- to 8-vertices, it follows from Lebesgue's Theorem that  $h(S_5) \leq 17$  and  $w(S_5) \leq 46$ , which bounds were improved in Borodin, Ivanova and Nikiforov [7] to the best possible bounds  $h(S_5) \leq 12$  and  $w(S_5) \leq 42$ .

Under the absence of 6- and 7-vertices, Lebegue's bound  $h(S_5) \leq 23$  was improved by Borodin *et al.* [5] to the sharp bound  $h(S_5) \leq 14$ .

For each  $P_5$  with no 6-vertices, it follows from Lebesgue's Theorem that  $h(S_5) \leq 41$ . This bound was lowered to  $h(S_5) \leq 28$  by Borodin, Ivanova, and Jensen [4], then to  $h(S_5) \leq 23$  in Borodin-Ivanova [2], and finally to the tight bound  $h(S_5) \leq 17$  by Borodin, Ivanova, and Nikiforov [6].

As for the minimum weight of minor 5-stars in  $P_5$ s under the absence of 6-vertices, Lebesgue's bound  $w(S_5) \leq 68$  was lowered to  $w(S_5) \leq 55$  by Borodin, Ivanova, and Jensen [4] and then to  $w(S_5) \leq 51$  in Borodin-Ivanova [2]. The purpose of this paper is to prove the following fact.

**Theorem 1.** Every 3-polytope with minimum degree 5 and neither 6-vertices nor minor  $(5, 5, 5, 5, \infty)$ -stars has a minor 5-star with weight at most 44, which bound is best possible.

We note that a light minor 5-star ensured by Theorem 1 has height at most  $44 - 4 \times 5 - 7 = 17$ . The tightness of the bounds 44 and 17 is confirmed by a construction in [6].

## 2. Proof of Theorem 1

# Discharging.

Suppose that a 3-polytope  $P'_5$  is a counterexample to the main statement of Theorem 1. Thus each minor 5-star in  $P'_5$  has weight at least 45 and at most three 5-vertices.

Let  $P_5$  be a counterexample with the maximum number of edges on the same set of vertices as  $P'_5$ .

**Remark 2.**  $P_5$  has no 4<sup>+</sup>-face with two nonconsecutive 7<sup>+</sup>-vertices along the boundary, for otherwise adding a diagonal between these vertices would result in a counterexample with greater number of edges.

Let V, E, and F be the sets of vertices, edges, and faces of  $P_5$ . Euler's formula |V| - |E| + |F| = 2 implies

(1) 
$$\sum_{v \in V} (d(v) - 6) + \sum_{f \in F} (2d(f) - 6) = -12.$$

We assign an *initial charge*  $\mu(v) = d(v) - 6$  to each  $v \in V$  and  $\mu(f) = 2d(f) - 6$  to each  $f \in F$ , so that only 5-vertices have a negative initial charge.

Using the properties of  $P_5$  as a counterexample to Theorem 1, we define a local redistribution of charges, preserving their sum such that the final charge  $\mu(x)$  is non-negative for all  $x \in V \cup F$ . This will contradict the fact that the sum of the final charges is, by (1), equal to -12.

The final charge  $\mu'(x)$  whenever  $x \in V \cup F$  is defined by applying the rules R1–R11 below (see Figure 1).

For a vertex v, let  $v_1, \ldots, v_{d(v)}$  be the vertices adjacent to v in a fixed cyclic order. If f is a face, then  $v_1, \ldots, v_{d(f)}$  are the vertices incident with f in the same cyclic order.

If d is an integer with  $8 \le d \le 15$ , then we put  $\xi_d = \frac{d-6}{d}$ .

A vertex is simplicial if it is completely surrounded by 3-faces. A simplicial 5-vertex v is helpful if  $d(v_1) \ge 12$ ,  $d(v_2) = d(v_4) = 5$ ,  $d(v_3) = 7$ , and  $d(v_5) \ge 12$  (see Figure 1, R10). A simplicial 5-vertex v is strong if  $d(v_1) = d(v_2) = 5$ ,  $7 \le d(v_3) \le 11$ , and  $7 \le d(v_5) \le 11$  (so  $d(v_4) \ge 45 - 2 \times 11 - 3 \times 5 \ge 8$ ) (see Figure 1, R11).

**R1.** Each  $4^+$ -face gives  $\frac{1}{2}$  to each incident 5-vertex.

**R2.** If a 5-vertex v is incident with precisely one  $4^+$ -face, then v receives  $\frac{1}{2}$  from each adjacent  $16^+$ -vertex.

**R3.** A simplicial 5-vertex v with at least two 12<sup>+</sup>-neighbors receives  $\frac{1}{2}$  from each adjacent 16<sup>+</sup>-vertex.

**R4.** A simplicial 5-vertex v with  $d(v_4) \neq 5$ ,  $d(v_5) \geq 16$ , and no other  $12^+$ -neighbors receives the following charge from  $v_5$ :

- (a) if  $d(v_1) \neq 5$ , then 1, and
- (b) if  $d(v_1) = 5$ , then  $\frac{3}{4}$  provided that  $d(v_5) \le 17$  or  $\frac{5}{6}$  otherwise.

**R5.** A simplicial 5-vertex v with  $d(v_5) \ge 18$ ,  $d(v_1) = d(v_4) = 5$ , and  $7 \le d(v_2) \le d(v_3) \le 11$  receives  $\frac{2}{3}$  from  $v_5$ .

**R6.** A simplicial 5-vertex v with  $16 \le d(v_5) \le 17$ ,  $d(v_1) = d(v_4) = 5$ , and  $7 \le d(v_2) \le d(v_3) \le 11$  receives from  $v_5$ :

- (n)  $\frac{5}{8}$  if neither  $v_2$  nor  $v_3$  is a 7-vertex having six simplicial 5-neighbors ("normally"), and
- (e)  $\frac{2}{3}$  otherwise ("as an exception").

**R7.** A simplicial 5-vertex v with  $d(v_5) \ge 16$ ,  $d(v_1) = d(v_2) = d(v_4) = 5$ , and  $7 \le d(v_3) \le 11$  receives the following charge from  $v_5$ .

- (n) If  $v_1$  is not simplicial or  $v_2$  is not strong (that is "normal"), then  $\frac{3}{4}$  if  $d(v_5) \le 17$  or  $\frac{5}{6}$  otherwise.
- (e) If  $v_1$  is simplicial and  $v_2$  is strong (which is "an exception"), then  $\frac{5}{8}$  if  $d(v_5) \le 17$  or  $\frac{2}{3}$  otherwise.

Light Minor 5-Stars in 3-Polytopes with Minimum Degree 5 and  $\dots 989$ 

**R8.** A *d*-vertex *v* with  $8 \le d(v) \le 15$  gives its 5-neighbor  $v_2$ :

- (a)  $\xi_d$  if  $d(v_1) = d(v_3) = 5$ ,
- (b)  $\frac{3\xi_d}{2}$  if  $d(v_1) = 5$  and  $d(v_3) \neq 5$ , and
- (c)  $2\xi_d$  if  $d(v_1) \neq 5$  and  $d(v_3) \neq 5$ .

**R9.** A 7-vertex v gives each adjacent simplicial 5-vertex:

- (n)  $\frac{1}{5}$  "as a norm", that is if v has at most five simplicial 5-neighbors, or
- (e)  $\frac{1}{6}$  "as an exception".

**R10.** A 7-vertex v receives  $\frac{1}{6}$  from each helpful 5-neighbor.

**R11.** A strong 5-vertex gives  $\frac{1}{6}$  to each 5-neighbor.



Figure 1. Rules of discharging.

Checking  $\mu'(x) \ge 0$  whenever  $x \in V \cup F$ . If f is a 4<sup>+</sup>-face, then  $\mu'(f) \ge 2d(f) - 6 - d(f) \times \frac{1}{2} = \frac{3(d(f)-4)}{2} \ge 0$  by R1. Now suppose  $v \in V$ .

Case 1.  $d(v) \ge 18$ . We know that v gives one of the charges in  $\left\{\frac{1}{2}, \frac{2}{3}, \frac{5}{6}, 1\right\}$  to each adjacent 5-vertex incident with at least four 3-faces by R2–R7. Since  $d(v) - 6 \ge \frac{2d(v)}{3}$ , it suffices to average these donations so that each 5<sup>+</sup>-neighbor will receive at most  $\frac{2}{3}$  from v.

To this end, we first switch  $\frac{1}{6}$  from 1 given to a 5-neighbor  $v_k$  by R4(a) to each of the 7<sup>+</sup>-neighbors  $v_{k-1}$  and  $v_{k+1}$  (hereafter, addition modulo d(v)). As a result, the averaged donation from v to  $v_k$  becomes  $1 - 2 \times \frac{1}{6} = \frac{2}{3}$ .

Next, if  $\frac{5}{6}$  is given to a 5-neighbor  $v_k$  by R4(b), then we switch  $\frac{1}{6}$  to its common 7<sup>+</sup>-neighbor with v.

Finally, the donation of  $\frac{5}{6}$  by R7(n) happens to a simplicial 5-neighbor  $v_k$  of v having cyclic neighbors  $v_{k-1}, x_k, y_k, v_{k+1}$  with  $7 \le d(x_k) \le 11$  and 5-neighbors  $v_{k-1}, y_k, v_{k+1}$ , where either  $v_{k+1}$  is not simplicial or  $y_k$  is not strong.

If  $v_{k+1}$  is not simplicial, then we switch  $\frac{1}{6}$  from  $v_k$  to  $v_{k+1}$  and note that the latter receives at most  $\frac{1}{2}$  from v by R2.

From now on suppose that  $v_{k+1}$  is simplicial, and let  $z_k$  be the vertex conjugated with  $v_k$  with respect to the edge  $y_k v_{k+1}$ . Since  $v_k$  receives  $\frac{5}{6}$  by R7(n) by our assumption, it follows that  $d(z_k) \notin \{7, \ldots, 11\}$ , for otherwise  $y_k$  is strong since it has the fifth neighbor of degree at least  $w(S_5) - 3 \times 5 - 2 \times 11 = 8$  and is simplicial in view of Remark 2.

If  $d(z_k) \ge 12$ , then we switch  $\frac{1}{6}$  from  $v_k$  to  $v_{k+1}$ , where  $v_{k+1}$  this time receives  $\frac{1}{2}$  by R3. Note that  $v_{k+2}$  receives  $\frac{1}{2}$  by R2 or R3, which implies that  $\frac{1}{6}$  is switched to  $v_{k+1}$  only once.

It remains to assume that  $d(z_k) = 5$ . This implies that  $d(v_{k+2}) \ge 7$  since  $v_{k+1}$  cannot have four 5-neighbors. Here, we switch  $\frac{1}{6}$  from  $v_k$  to  $v_{k+2}$ . (Of course,  $v_{k+1}$  also switches  $\frac{1}{6}$  from its  $\frac{5}{6}$  obtained by R4(b) to  $v_{k+2}$ , as said above.)

It is not hard to see that no 5-vertex  $v_{k+1}$  can receive  $\frac{1}{6}$  in the course of our averaging both from  $v_k$  and  $v_{k+2}$  since then  $v_{k+1}$  would have four 5-neighbors, which is impossible.

As a result, the averaged donation of v to each 5-neighbor becomes at most  $1-2\times\frac{1}{6}=\frac{5}{6}-\frac{1}{6}=\frac{1}{2}+\frac{1}{6}=\frac{2}{3}$  and that to each 7<sup>+</sup>-neighbor is at most  $0+4\times\frac{1}{6}=\frac{2}{3}$ , as desired.

Case 2.  $16 \le d(v) \le 17$ . We now show that the neighbors of v receive from v by R2–R7 at most  $\frac{5}{8}$  on the average, which implies that  $\mu'(v) \ge d(v) - 6 - \frac{5d(v)}{8} = \frac{3(d(v)-16)}{8} \ge 0$ . We proceed similarly to Case 1 with a 5-vertex  $v_k$  getting more than  $\frac{5}{8}$  from v by R4, R6(e) or R7(n).

If  $v_k$  is as in R4(a), then we shift  $\frac{1}{4}$  from 1 obtained by  $v_k$  to each of the 7<sup>+</sup>-vertices  $v_{k-1}$  and  $v_{k+1}$ . In R4(b), we shift  $\frac{1}{8}$  from  $\frac{3}{4}$  to a unique 7<sup>+</sup>-vertex in  $\{v_{k-1}, v_{k+1}\}$ .

990

LIGHT MINOR 5-STARS IN 3-POLYTOPES WITH MINIMUM DEGREE 5 AND ...991

Now consider R6(e), which has no analogues in Case 1. By symmetry, we can assume that  $v_{k+1}$  lies in a common 3-face with  $v_k$  and a 7-vertex having six simplicial 5-neighbors. Now  $d(v_{k+2}) \ge 7$  as  $v_{k+1}$  cannot have three 5-neighbors in addition to a 7-neighbor and a 17<sup>-</sup>-neighbor since  $w(S_5) \ge 45$  by assumption. Recall that  $v_{k+1}$  receives at most  $\frac{3}{4}$  by R4(b), R3, or R7(n) and that  $\frac{1}{8}$  was already switched from  $v_{k+1}$  to  $v_{k+2}$  in the previous paragraph. Here, we also switch  $\frac{1}{8}$  from  $\frac{2}{3}$  received by  $v_k$  to  $v_{k+2}$ .

In the situation of R7(n), let  $v_{k+1}$  lie in a 3-face incident with three 5-vertices. Arguing as in Case 1, we see that either  $v_{k+1}$  receives  $\frac{1}{2}$  from v, in which case we switch  $\frac{1}{8}$  from  $v_k$  to  $v_{k+1}$ , or we have  $d(v_{k+2}) \ge 7$ , in which case we switch  $\frac{1}{8}$  from  $v_k$  to  $v_{k+2}$ .

As a result of this averaging, each 5-neighbor of v receives at most  $1-2\times\frac{1}{4}<\frac{3}{4}-\frac{1}{8}=\frac{1}{2}+\frac{1}{8}=\frac{5}{8}$ , while each 7<sup>+</sup>-neighbor receives at most  $4\times\frac{1}{8}=\frac{1}{4}+2\times\frac{1}{8}=2\times\frac{1}{4}<\frac{5}{8}$  from v, as desired.

Case 3.  $8 \leq d(v) \leq 15$ . To satisfy R8, we first send  $\xi_{d(v)}$  to each neighbor  $v_k$ , and then each 7<sup>+</sup>-neighbor  $v_k$  transfers  $\frac{\xi_{d(v)}}{2}$  to each 5-vertex in  $\{v_{k-1}, v_{k+1}\}$ . This shows that  $\mu'(v) \geq d(v) - 6 - d(v) \times \xi_{d(v)} = 0$ .

Case 4. d(v) = 7. If v has at most five simplicial 5-neighbors, then  $\mu'(v) \ge 7 - 6 - 5 \times \frac{1}{5} = 0$  by R9(n). If v has precisely six simplicial 5-neighbors, then  $\mu'(v) \ge 1 - 6 \times \frac{1}{6} = 0$  by R9(e).

Finally, suppose v is completely surrounded by simplicial 5-vertices. This implies that there is a 7-cycle  $C_7 = w_1 \cdots w_7$  avoiding v, where each  $v_k$  lies in a 3-face  $w_k v_k w_{k+1}$  (addition modulo 7). Note that  $d(w_k)+d(w_{k+1}) \ge 45-3\times 5-7 = 23$  whenever  $1 \le k \le 7$ . By the oddness of 7, v has a helpful neighbor, which gives  $\frac{1}{6}$  to v by R10. As a result, we have  $\mu'(v) \ge 1 + \frac{1}{6} - 7 \times \frac{1}{6} = 0$  in view of R9(e), as required.

Case 5. d(v) = 5. If v is incident with at least two 4<sup>+</sup>-faces, then  $\mu'(v) \ge 5 - 6 + 2 \times \frac{1}{2} = 0$  by R1.

If v is incident with precisely one 4<sup>+</sup>-face, then we are done when v has a  $12^+$ -neighbor since v receives  $\frac{1}{2}$  by R1 and at least  $\frac{1}{2}$  by R2 or R8.

So suppose otherwise. Note that v then has two 8<sup>+</sup>-neighbors, for otherwise v would have an 11<sup>-</sup>-neighbor and four 7<sup>-</sup>-neighbors, which implies  $w(S_5) \leq 5 + 4 \times 7 + 11 < 45$ , a contradiction. Thus  $\mu'(v) \geq -1 + \frac{1}{2} + 2 \times \frac{1}{4} = 0$  by R1 and R8.

From now on we can assume that v is simplicial.

Subcase 5.1. v is helpful, with  $d(v_1) \ge 12$ ,  $d(v_2) = d(v_4) = 5$ ,  $d(v_3) = 7$ , and  $d(v_5) \ge 12$ . Now v receives  $\frac{1}{2}$  from each of  $v_1, v_5$  by R3 and/or R8. Also v receives at least  $\frac{1}{6}$  from  $v_3$  by R9 and returns  $\frac{1}{6}$  to  $v_3$  by R10. This implies  $\mu'(v) \ge -1 + 2 \times \frac{1}{2} + \frac{1}{6} - \frac{1}{6} = 0$ , as desired. Subcase 5.2. v is strong, with  $d(v_1) = d(v_2) = 5$ ,  $7 \le d(v_3) \le d(v_5) \le 11$ , and  $d(v_4) \ge 45 - 3 \times 5 - 2 \times 11 = 8$ . Now v must collect the total of at least  $\frac{4}{3}$  from  $v_3, v_4, v_5$  in order to be able to give  $2 \times \frac{1}{6}$  to  $v_1, v_2$  according to R11 (and leave 1 for itself).

We are easily done if  $d(v_4) \ge 12$ , for then  $v_4$  gives v at least 1 by R4(a) or R8(c) while each of  $v_3, v_5$  gives at least  $\frac{1}{6}$  by R8 and R9.

So suppose  $d(v_4) \leq 11$ . Since  $d(v_3) + d(v_4) + d(v_5) \geq w(S_5) - 3 \times 5 = 30$ , this implies that v has no neighbors of degree less than  $30 - 2 \times 11 = 8$ . If  $d(v_4) = 8$ , then  $d(v_3) = d(v_5) = 11$ , which implies that v receives  $\frac{1}{2}$  from  $v_4$  by R8(c) and  $2 \times \frac{15}{22}$  from  $v_3$ ,  $v_5$  by R8(b), as desired. If  $d(v_4) \geq 9$ , then v receives at least  $\frac{2}{3}$  from  $v_4$  by R8(c) and at least  $2 \times \frac{3}{8}$  from  $v_3$ ,  $v_5$  by R8(b), and we are done.

Subcase 5.3. v does not give charge away by R10 and R11. So we must check that v collects the total of at least 1 from its neighbors by R3–R9. If v has at least two 12<sup>+</sup>-neighbors, then  $\mu'(v) \ge -1 + 2 \times \frac{1}{2} = 0$  by R3 or R8(a),(b). So in what follows we assume that v has at most one 12<sup>+</sup>-neighbor, which means that R3 is not applied to v.

Subcase 5.3.1. v has at most one 5-neighbor. Here, v receives at least  $\frac{3}{8}$  from an 8-neighbor and at least  $\frac{1}{2}$  from a 9<sup>+</sup>-neighbor by R4–R8. This implies, in view of R9, that  $\mu'(v) \ge -1+3 \times \frac{1}{6} + \frac{1}{2} = 0$  in the presence of a 9<sup>+</sup>-neighbor or  $\mu'(v) \ge$  $-1+2 \times \frac{1}{6} + 2 \times \frac{3}{8} > 0$  when v has at least two 8-neighbors. However, one of this situations is inevitable, since otherwise we would have  $w(S_5) \le 5+4 \times 7+8 < 45$ , which is impossible.

Subcase 5.3.2. v has precisely two 5-neighbors. Note that the total degree of the three 7<sup>+</sup>-neighbors of v is at least  $45 - 3 \times 5 = 30$ .

Suppose v has no 7-neighbor. Each 8<sup>+</sup>-neighbor  $v_2$  gives v by R4–R8 at least  $\frac{1}{4}$  if  $d(v_1) = d(v_3) = 5$  and at least  $\frac{3}{8}$  if  $d(v_1) \neq 5$ , so  $\mu'(v) \geq -1 + \frac{1}{4} + 2 \times \frac{3}{8} = 0$ , and we are done.

Next suppose v has at least one 7-neighbor. Now the other two 7<sup>+</sup>-neighbors have the total degree at least 30 - 7 = 23, so there is a  $12^+$ -neighbor, say  $v_2$ , among them.

If  $v_2$  gives v at least  $\frac{3}{4}$  to v by R4 or R8, then  $\mu'(v) > 0$ , since the other two 7<sup>+</sup>-neighbors give at least  $2 \times \frac{1}{6}$  by R4–R9.

So suppose  $d(v_1) = d(v_3) = 5$  and  $7 = d(v_4) \le d(v_5)$ . Now if  $d(v_2) \ge 18$ , then we have  $\mu'(v) \ge -1 + \frac{2}{3} + 2 \times \frac{1}{6} = 0$  by R4–R9.

For  $16 \leq d(v_2) \leq 17$  we are similarly done if  $v_2$  gives  $\frac{2}{3}$  by R6(e), so suppose R6(n) is applied to  $v_2$  rather than R6(e). If  $d(v_5) \geq 8$ , then  $\mu'(v) \geq -1 + \frac{5}{8} + \frac{1}{6} + \frac{3}{8} > 0$ . It remains to assume that  $d(v_4) = d(v_5) = 7$  and neither of  $v_4, v_5$  has six simplicial 5-neighbors (as if we apply R9(e) to  $v_4$  or  $v_5$  it would mean we should apply R6(e) to v, and then  $\mu'(v) \geq -1 + \frac{2}{3} + 2 \times \frac{1}{6} = 0$ ). This means that  $\mu'(v) \geq -1 + \frac{5}{8} + 2 \times \frac{1}{5} = \frac{1}{40}$  by R6(n) and R9(n).

Finally, suppose  $12 \le d(v_2) \le 15$ . Now  $d(v_5) \ge w(S_5) - 3 \times 5 - 7 - 15 = 8$ , and it suffices to observe that v receives at least  $\frac{1}{2}, \frac{1}{6}, \frac{3}{8}$  from  $v_2, v_4, v_5$ , respectively, which makes  $\mu'(v) > 0$ , as desired.

Subcase 5.3.3. v has precisely three 5-neighbors. Note that the total degree of the two 7<sup>+</sup>-neighbors of v is at least  $45 - 4 \times 5 = 25$ .

First suppose  $7 \le d(v_1) \le d(v_2)$ . By the above assumption that R3 is not applied, we have  $d(v_1) \le 11$ , which implies that v has a 14<sup>+</sup>-neighbor. Note that  $v_2$  gives v at least  $\frac{3}{4}$  by R4(b) or R8, while  $v_1$  gives v at least  $\frac{3}{8}$  by R8 if  $d(v_1) \ge 8$ , and then we have  $\mu'(v) \ge 0$ . But if  $d(v_1) = 7$ , then  $d(v_2) \ge 25 - 7 = 18$ , and  $\mu'(v) \ge -1 + \frac{5}{6} + \frac{1}{6} = 0$  by R4(b) combined with R9.

Thus from now on we can assume that  $7 \le d(v_1) \le 11$  and  $d(v_3) \ge 14$ . If  $d(v_3) \le 15$ , then v receives from  $v_1$  and  $v_3$  at least  $1 = \frac{2}{5} + \frac{3}{5} = \xi_{10} + \xi_{15} < \xi_{11} + \xi_{14}$  by R8(a), as desired.

Next suppose  $16 \le d(v_3) \le 17$ , which implies that  $d(v_1) \ge 8$ . Since  $v_1$  gives v at least  $\frac{1}{4}$  by R8(a) while  $v_3$  gives either  $\frac{3}{4}$  or  $\frac{5}{8}$  by R7, we are done unless  $v_3$  gives  $\frac{5}{8}$  by R7(e). The latter happens when  $v_5$  is strong, in which case v receives  $\frac{1}{6}$  from  $v_5$  by R11, which yields  $\mu'(v) \ge -1 + \frac{1}{4} + \frac{1}{6} + \frac{5}{8} \ge 0$ .

Finally, suppose  $d(v_3) \ge 18$ . Now  $v_1$  gives v at least  $\frac{1}{6}$  by R9 while  $v_3$  gives either  $\frac{5}{6}$  or  $\frac{2}{3}$  by R7. Since the donation of  $\frac{2}{3}$  by R7(e) to v is accompanied by receiving  $\frac{1}{6}$  by R11 from a strong vertex  $v_5$ , we have  $\mu'(v) \ge -1 + 2 \times \frac{1}{6} + \frac{2}{3} = -1 + \frac{1}{6} + \frac{5}{6} = 0$ .

Thus we have proved  $\mu'(x) \ge 0$  whenever  $x \in V \cup F$ , which contradicts (1) and completes the proof of Theorem 1.

## References

- O.V. Borodin and A.O. Ivanova, Describing 4-stars at 5-vertices in normal plane maps with minimum degree 5, Discrete Math. **313** (2013) 1710–1714. doi:10.1016/j.disc.2013.04.025
- O.V. Borodin and A.O. Ivanova, Light and low 5-stars in normal plane maps with minimum degree 5, Sib. Math. J. 57 (2016) 470-475. doi:10.1134/S0037446616030071
- [3] O.V. Borodin and A.O. Ivanova, Light neighborhoods of 5-vertices in 3-polytopes with minimum degree 5, Sib. Elektron. Mat. Izv. 13 (2016) 584–591. doi:10.17377/semi.2016.13.045
- [4] O.V. Borodin, A.O. Ivanova and T.R. Jensen, 5-stars of low weight in normal plane maps with minimum degree 5, Discuss. Math. Graph Theory 34 (2014) 539–546. doi:10.7151/dmgt.1748
- [5] O.V. Borodin, A.O. Ivanova, O.N. Kazak and E.I. Vasil'eva, Heights of minor 5-stars in 3-polytopes with minimum degree 5 and no vertices of degree 6 and 7, Discrete Math. 341 (2018) 825–829. doi:10.1016/j.disc.2017.11.021

- [6] O.V. Borodin, A.O. Ivanova and D.V. Nikiforov, Low minor 5-stars in 3-polytopes with minimum degree 5 and no 6-vertices, Discrete Math. 340 (2017) 1612–1616. doi:10.1016/j.disc.2017.03.002
- [7] O.V. Borodin, A.O. Ivanova and D.V. Nikiforov, Low and light minor 5-stars in 3polytopes with minimum degree 5 and restrictions on the degrees of major vertices, Sib. Math. J. 58 (2017) 600–605. doi:10.1134/S003744661704005X
- [8] O.V. Borodin and D.R. Woodall, Short cycles of low weight in normal plane maps with minimum degree 5, Discuss. Math. Graph Theory 18 (1998) 159–164. doi:10.7151/dmgt.1071
- [9] P. Franklin, The four colour problem, Amer. J. Math. 44 (1922) 225–236. doi:10.2307/2370527
- [10] S. Jendrol' and T. Madaras, On light subgraphs in plane graphs of minimum degree five, Discuss. Math. Graph Theory 16 (1996) 207–217. doi:10.7151/dmgt.1035
- [11] S. Jendrol' and H.-J. Voss, Light subgraphs of graphs embedded in the plane—A survey, Discrete Math. **313** (2013) 406–421. doi:10.1016/j.disc.2012.11.007
- [12] H. Lebesgue, Quelques conséquences simples de la formule d'Euler, J. Math. Pures Appl. 19 (1940) 27–43.
- P. Wernicke, Über den kartographischen Vierfarbensatz, Math. Ann. 58 (1904) 413–426. doi:10.1007/BF01444968

Received 30 November 2017 Revised 11 June 2018 Accepted 12 June 2018