LIGHT MINOR 5-STARS IN 3-POLYTOPES WITH MINIMUM DEGREE 5 AND NO 6-VERTICES ${ }^{1}$

Oleg V. Borodin, Anna O. Ivanova
AND
Ekaterina I. Vasil'eva
Institute of Mathematics Siberian Branch
Russian Academy of Sciences
Novosibirsk, 630090, Russia
e-mail: brdnoleg@math.nsc.ru
shmgnanna@mail.ru
ekaterinavasilyeva93@gmail.com

Abstract

In 1940, Lebesgue gave an approximate description of the neighborhoods of 5 -vertices in the class $\mathbf{P}_{\mathbf{5}}$ of 3-polytopes with minimum degree 5 .

Given a 3-polytope P, by $w(P)$ denote the minimum of the degree-sum (weight) of the neighborhoods of 5 -vertices (minor 5 -stars) in P.

In 1996, Jendrol' and Madaras showed that if a polytope P in $\mathbf{P}_{\mathbf{5}}$ is allowed to have a 5 -vertex adjacent to four 5 -vertices, then $w(P)$ can be arbitrarily large.

For each P in $\mathbf{P}_{\mathbf{5}}$ without vertices of degree 6 and 5 -vertices adjacent to four 5 -vertices, it follows from Lebesgue's Theorem that $w(P) \leq 68$. Recently, this bound was lowered to $w(P) \leq 55$ by Borodin, Ivanova, and Jensen and then to $w(P) \leq 51$ by Borodin and Ivanova.

In this note, we prove that every such polytope P satisfies $w(P) \leq 44$, which bound is sharp.

Keywords: planar map, planar graph, 3-polytope, structural properties, 5 -star, weight, height.

2010 Mathematics Subject Classification: 05C15.

[^0]
1. Introduction

The degree of a vertex or face x in a convex finite 3 -dimensional polytope (called a 3 -polytope) is denoted by $d(x)$. A k-vertex is a vertex v with $d(v)=k$. A k^{+}-vertex (k^{-}-vertex) is one of degree at least k (at most k). Similar notation is used for the faces. A 3-polytope with minimum degree 5 is denoted by P_{5}, and the set of such 3-polytopes is $\mathbf{P}_{\mathbf{5}}$.

The weight of a subgraph S of P_{5} is the degree sum of the vertices of S in P_{5}, and the height of S is the maximum degree of the vertices of S in P_{5}. A k-star, a star with k rays, is minor if its center v has degree at most 5 . In particular, the neighborhoods of 5 -vertices are minor 5 -stars and vice versa. All stars considered in this note are minor.

By $w\left(S_{k}\right)$ and $h\left(S_{k}\right)$ we denote the minimum weight and height, respectively, of minor k-stars in a given 3 -polytope P_{5}.

In 1904, Wernicke [13] proved that every P_{5} has a 5 -vertex adjacent to a 6^{-}-vertex. This result was strengthened by Franklin [9] in 1922 to the existence of a 5 -vertex with two 6^{-}-neighbors. In 1940, in attempts to solve the Four Color Problem, Lebesgue [12, p. 36] gave an approximate description of the neighborhoods of 5 -vertices in P_{5} s. In particular, this description implies the results in $[9,13]$ and shows that there is a 5 -vertex with three 7^{-}-neighbors.

The bounds $w\left(S_{1}\right) \leq 11$ (Wernicke [13]) and $w\left(S_{2}\right) \leq 17$ (Franklin [9]) are tight. It was proved by Lebesgue [12] that $w\left(S_{3}\right) \leq 24$, which was improved in 1996 by Jendrol' and Madaras [10] to the sharp bound $w\left(S_{3}\right) \leq 23$. Furthermore, Jendrol' and Madaras [10] gave a precise description of minor 3-stars in P_{5} s.

Lebesgue [12] proved $w\left(S_{4}\right) \leq 31$, which was strengthened by Borodin and Woodall [8] to the tight bound $w\left(S_{4}\right) \leq 30$. Note that $w\left(S_{3}\right) \leq 23$ easily implies $w\left(S_{2}\right) \leq 17$ and immediately follows from $w\left(S_{4}\right) \leq 30$ (in both cases, it suffices to delete a vertex of maximum degree from a minor star of minimum weight). Recently, Borodin and Ivanova [1] obtained a precise description of 4-stars in P_{5} s.

The more general problem of precisely describing 5 -stars at 5 -vertices in $P_{5} \mathrm{~s}$ inspired by Lebesgue's Theorem is still widely open.

Jendrol' and Madaras [10] showed that if a polytope P_{5} has a 5 -vertex adjacent to four 5 -vertices, called a minor $(5,5,5,5, \infty)$-star, then $h\left(S_{5}\right)$ and hence $w\left(S_{5}\right)$ can be arbitrarily large. Therefore, in what follows we consider P_{5} s without minor ($5,5,5,5, \infty$)-stars.

Recently, precise upper bounds for the height and weight of minor 5 -stars have been obtained for some restricted subclasses in $\mathbf{P}_{\mathbf{5}}$. A lot of earlier results on the structure of stars in 3 -polytopes can be found in [11].

For every P_{5} having no vertices of degree from 6 to 9 , Lebegue's bounds $h\left(S_{5}\right) \leq 14$ and $w\left(S_{5}\right) \leq 44$ were improved by Borodin and Ivanova [3] to the sharp bounds $h\left(S_{5}\right) \leq 12$ and $w\left(S_{5}\right) \leq 42$.

For each P_{5} with no 6- to 8-vertices, it follows from Lebesgue's Theorem that $h\left(S_{5}\right) \leq 17$ and $w\left(S_{5}\right) \leq 46$, which bounds were improved in Borodin, Ivanova and Nikiforov [7] to the best possible bounds $h\left(S_{5}\right) \leq 12$ and $w\left(S_{5}\right) \leq 42$.

Under the absence of 6 - and 7 -vertices, Lebegue's bound $h\left(S_{5}\right) \leq 23$ was improved by Borodin et al. [5] to the sharp bound $h\left(S_{5}\right) \leq 14$.

For each P_{5} with no 6-vertices, it follows from Lebesgue's Theorem that $h\left(S_{5}\right) \leq 41$. This bound was lowered to $h\left(S_{5}\right) \leq 28$ by Borodin, Ivanova, and Jensen [4], then to $h\left(S_{5}\right) \leq 23$ in Borodin-Ivanova [2], and finally to the tight bound $h\left(S_{5}\right) \leq 17$ by Borodin, Ivanova, and Nikiforov [6].

As for the minimum weight of minor 5 -stars in P_{5} s under the absence of 6 -vertices, Lebesgue's bound $w\left(S_{5}\right) \leq 68$ was lowered to $w\left(S_{5}\right) \leq 55$ by Borodin, Ivanova, and Jensen [4] and then to $w\left(S_{5}\right) \leq 51$ in Borodin-Ivanova [2]. The purpose of this paper is to prove the following fact.

Theorem 1. Every 3-polytope with minimum degree 5 and neither 6-vertices nor minor $(5,5,5,5, \infty)$-stars has a minor 5 -star with weight at most 44 , which bound is best possible.

We note that a light minor 5 -star ensured by Theorem 1 has height at most $44-4 \times 5-7=17$. The tightness of the bounds 44 and 17 is confirmed by a construction in [6].

2. Proof of Theorem 1

Discharging.

Suppose that a 3-polytope P_{5}^{\prime} is a counterexample to the main statement of Theorem 1. Thus each minor 5 -star in P_{5}^{\prime} has weight at least 45 and at most three 5 -vertices.

Let P_{5} be a counterexample with the maximum number of edges on the same set of vertices as P_{5}^{\prime}.
Remark 2. P_{5} has no 4^{+}-face with two nonconsecutive 7^{+}-vertices along the boundary, for otherwise adding a diagonal between these vertices would result in a counterexample with greater number of edges.

Let V, E, and F be the sets of vertices, edges, and faces of P_{5}. Euler's formula $|V|-|E|+|F|=2$ implies

$$
\begin{equation*}
\sum_{v \in V}(d(v)-6)+\sum_{f \in F}(2 d(f)-6)=-12 . \tag{1}
\end{equation*}
$$

We assign an initial charge $\mu(v)=d(v)-6$ to each $v \in V$ and $\mu(f)=$ $2 d(f)-6$ to each $f \in F$, so that only 5 -vertices have a negative initial charge.

Using the properties of P_{5} as a counterexample to Theorem 1, we define a local redistribution of charges, preserving their sum such that the final charge $\mu(x)$ is non-negative for all $x \in V \cup F$. This will contradict the fact that the sum of the final charges is, by (1), equal to -12 .

The final charge $\mu^{\prime}(x)$ whenever $x \in V \cup F$ is defined by applying the rules R1-R11 below (see Figure 1).

For a vertex v, let $v_{1}, \ldots, v_{d(v)}$ be the vertices adjacent to v in a fixed cyclic order. If f is a face, then $v_{1}, \ldots, v_{d(f)}$ are the vertices incident with f in the same cyclic order.

If d is an integer with $8 \leq d \leq 15$, then we put $\xi_{d}=\frac{d-6}{d}$.
A vertex is simplicial if it is completely surrounded by 3 -faces. A simplicial 5 -vertex v is helpful if $d\left(v_{1}\right) \geq 12, d\left(v_{2}\right)=d\left(v_{4}\right)=5, d\left(v_{3}\right)=7$, and $d\left(v_{5}\right) \geq 12$ (see Figure 1, R10). A simplicial 5-vertex v is strong if $d\left(v_{1}\right)=d\left(v_{2}\right)=5$, $7 \leq d\left(v_{3}\right) \leq 11$, and $7 \leq d\left(v_{5}\right) \leq 11$ (so $\left.d\left(v_{4}\right) \geq 45-2 \times 11-3 \times 5 \geq 8\right)$ (see Figure 1, R11).
R1. Each 4^{+}-face gives $\frac{1}{2}$ to each incident 5 -vertex.
$\mathbf{R 2}$. If a 5 -vertex v is incident with precisely one 4^{+}-face, then v receives $\frac{1}{2}$ from each adjacent 16^{+}-vertex.
R3. A simplicial 5-vertex v with at least two 12^{+}-neighbors receives $\frac{1}{2}$ from each adjacent 16^{+}-vertex.
R4. A simplicial 5 -vertex v with $d\left(v_{4}\right) \neq 5, d\left(v_{5}\right) \geq 16$, and no other 12^{+}_ neighbors receives the following charge from v_{5} :
(a) if $d\left(v_{1}\right) \neq 5$, then 1 , and
(b) if $d\left(v_{1}\right)=5$, then $\frac{3}{4}$ provided that $d\left(v_{5}\right) \leq 17$ or $\frac{5}{6}$ otherwise.

R5. A simplicial 5-vertex v with $d\left(v_{5}\right) \geq 18, d\left(v_{1}\right)=d\left(v_{4}\right)=5$, and $7 \leq d\left(v_{2}\right) \leq$ $d\left(v_{3}\right) \leq 11$ receives $\frac{2}{3}$ from v_{5}.
R6. A simplicial 5 -vertex v with $16 \leq d\left(v_{5}\right) \leq 17, d\left(v_{1}\right)=d\left(v_{4}\right)=5$, and $7 \leq d\left(v_{2}\right) \leq d\left(v_{3}\right) \leq 11$ receives from v_{5} :
(n) $\frac{5}{8}$ if neither v_{2} nor v_{3} is a 7 -vertex having six simplicial 5 -neighbors ("normally"), and
(e) $\frac{2}{3}$ otherwise ("as an exception").

R7. A simplicial 5-vertex v with $d\left(v_{5}\right) \geq 16, d\left(v_{1}\right)=d\left(v_{2}\right)=d\left(v_{4}\right)=5$, and $7 \leq d\left(v_{3}\right) \leq 11$ receives the following charge from v_{5}.
(n) If v_{1} is not simplicial or v_{2} is not strong (that is "normal"), then $\frac{3}{4}$ if $d\left(v_{5}\right) \leq$ 17 or $\frac{5}{6}$ otherwise.
(e) If v_{1} is simplicial and v_{2} is strong (which is "an exception"), then $\frac{5}{8}$ if $d\left(v_{5}\right) \leq$ 17 or $\frac{2}{3}$ otherwise.

R8. A d-vertex v with $8 \leq d(v) \leq 15$ gives its 5 -neighbor v_{2} :
(a) ξ_{d} if $d\left(v_{1}\right)=d\left(v_{3}\right)=5$,
(b) $\frac{3 \xi_{d}}{2}$ if $d\left(v_{1}\right)=5$ and $d\left(v_{3}\right) \neq 5$, and
(c) $2 \xi_{d}$ if $d\left(v_{1}\right) \neq 5$ and $d\left(v_{3}\right) \neq 5$.

R9. A 7 -vertex v gives each adjacent simplicial 5 -vertex:
(n) $\frac{1}{5}$ "as a norm", that is if v has at most five simplicial 5 -neighbors, or
(e) $\frac{1}{6}$ "as an exception".

R10. A 7 -vertex v receives $\frac{1}{6}$ from each helpful 5 -neighbor.
R11. A strong 5-vertex gives $\frac{1}{6}$ to each 5-neighbor.

Figure 1. Rules of discharging.

Checking $\mu^{\prime}(x) \geq 0$ whenever $x \in V \cup F$.
If f is a 4^{+}-face, then $\mu^{\prime}(f) \geq 2 d(f)-6-d(f) \times \frac{1}{2}=\frac{3(d(f)-4)}{2} \geq 0$ by R1.

Now suppose $v \in V$.
Case 1. $d(v) \geq 18$. We know that v gives one of the charges in $\left\{\frac{1}{2}, \frac{2}{3}, \frac{5}{6}, 1\right\}$ to each adjacent 5 -vertex incident with at least four 3 -faces by R2-R7. Since $d(v)-6 \geq \frac{2 d(v)}{3}$, it suffices to average these donations so that each 5^{+}-neighbor will receive at most $\frac{2}{3}$ from v.

To this end, we first switch $\frac{1}{6}$ from 1 given to a 5 -neighbor v_{k} by R 4 (a) to each of the 7^{+}-neighbors v_{k-1} and v_{k+1} (hereafter, addition modulo $d(v)$). As a result, the averaged donation from v to v_{k} becomes $1-2 \times \frac{1}{6}=\frac{2}{3}$.

Next, if $\frac{5}{6}$ is given to a 5 -neighbor v_{k} by R4(b), then we switch $\frac{1}{6}$ to its common 7^{+}-neighbor with v.

Finally, the donation of $\frac{5}{6}$ by $\mathrm{R} 7(\mathrm{n})$ happens to a simplicial 5 -neighbor v_{k} of v having cyclic neighbors $v_{k-1}, x_{k}, y_{k}, v_{k+1}$ with $7 \leq d\left(x_{k}\right) \leq 11$ and 5 -neighbors v_{k-1}, y_{k}, v_{k+1}, where either v_{k+1} is not simplicial or y_{k} is not strong.

If v_{k+1} is not simplicial, then we switch $\frac{1}{6}$ from v_{k} to v_{k+1} and note that the latter receives at most $\frac{1}{2}$ from v by R2.

From now on suppose that v_{k+1} is simplicial, and let z_{k} be the vertex conjugated with v_{k} with respect to the edge $y_{k} v_{k+1}$. Since v_{k} receives $\frac{5}{6}$ by $\mathrm{R} 7(\mathrm{n})$ by our assumption, it follows that $d\left(z_{k}\right) \notin\{7, \ldots, 11\}$, for otherwise y_{k} is strong since it has the fifth neighbor of degree at least $w\left(S_{5}\right)-3 \times 5-2 \times 11=8$ and is simplicial in view of Remark 2 .

If $d\left(z_{k}\right) \geq 12$, then we switch $\frac{1}{6}$ from v_{k} to v_{k+1}, where v_{k+1} this time receives $\frac{1}{2}$ by R3. Note that v_{k+2} receives $\frac{1}{2}$ by R2 or R3, which implies that $\frac{1}{6}$ is switched to v_{k+1} only once.

It remains to assume that $d\left(z_{k}\right)=5$. This implies that $d\left(v_{k+2}\right) \geq 7$ since v_{k+1} cannot have four 5 -neighbors. Here, we switch $\frac{1}{6}$ from v_{k} to v_{k+2}. (Of course, v_{k+1} also switches $\frac{1}{6}$ from its $\frac{5}{6}$ obtained by R4(b) to v_{k+2}, as said above.)

It is not hard to see that no 5 -vertex v_{k+1} can receive $\frac{1}{6}$ in the course of our averaging both from v_{k} and v_{k+2} since then v_{k+1} would have four 5 -neighbors, which is impossible.

As a result, the averaged donation of v to each 5-neighbor becomes at most $1-2 \times \frac{1}{6}=\frac{5}{6}-\frac{1}{6}=\frac{1}{2}+\frac{1}{6}=\frac{2}{3}$ and that to each 7^{+}-neighbor is at most $0+4 \times \frac{1}{6}=\frac{2}{3}$, as desired.

Case 2. $16 \leq d(v) \leq 17$. We now show that the neighbors of v receive from v by R2-R7 at most $\frac{5}{8}$ on the average, which implies that $\mu^{\prime}(v) \geq d(v)-6-\frac{5 d(v)}{8}=$ $\frac{3(d(v)-16)}{8} \geq 0$. We proceed similarly to Case 1 with a 5 -vertex v_{k} getting more than $\frac{5}{8}$ from v by R4, R6(e) or $\mathrm{R} 7(\mathrm{n})$.

If v_{k} is as in $\mathrm{R} 4(\mathrm{a})$, then we shift $\frac{1}{4}$ from 1 obtained by v_{k} to each of the 7^{+}-vertices v_{k-1} and v_{k+1}. In R4(b), we shift $\frac{1}{8}$ from $\frac{3}{4}$ to a unique 7^{+}-vertex in $\left\{v_{k-1}, v_{k+1}\right\}$.

Light Minor 5-Stars in 3-Polytopes with Minimum Degree 5 and ... 991

Now consider R6(e), which has no analogues in Case 1. By symmetry, we can assume that v_{k+1} lies in a common 3 -face with v_{k} and a 7 -vertex having six simplicial 5 -neighbors. Now $d\left(v_{k+2}\right) \geq 7$ as v_{k+1} cannot have three 5 -neighbors in addition to a 7 -neighbor and a 17^{-}-neighbor since $w\left(S_{5}\right) \geq 45$ by assumption. Recall that v_{k+1} receives at most $\frac{3}{4}$ by $\mathrm{R} 4(\mathrm{~b}), \mathrm{R} 3$, or $\mathrm{R} 7(\mathrm{n})$ and that $\frac{1}{8}$ was already switched from v_{k+1} to v_{k+2} in the previous paragraph. Here, we also switch $\frac{1}{8}$ from $\frac{2}{3}$ received by v_{k} to v_{k+2}.

In the situation of $\mathrm{R} 7(\mathrm{n})$, let v_{k+1} lie in a 3 -face incident with three 5 -vertices. Arguing as in Case 1, we see that either v_{k+1} receives $\frac{1}{2}$ from v, in which case we switch $\frac{1}{8}$ from v_{k} to v_{k+1}, or we have $d\left(v_{k+2}\right) \geq 7$, in which case we switch $\frac{1}{8}$ from v_{k} to v_{k+2}.

As a result of this averaging, each 5 -neighbor of v receives at most $1-2 \times \frac{1}{4}<$ $\frac{3}{4}-\frac{1}{8}=\frac{1}{2}+\frac{1}{8}=\frac{5}{8}$, while each 7^{+}-neighbor receives at most $4 \times \frac{1}{8}=\frac{1}{4}+2 \times \frac{1}{8}=$ $2 \times \frac{1}{4}<\frac{5}{8}$ from v, as desired.

Case 3 . $8 \leq d(v) \leq 15$. To satisfy R8, we first send $\xi_{d(v)}$ to each neighbor v_{k}, and then each 7^{+}-neighbor v_{k} transfers $\frac{\xi_{d(v)}}{2}$ to each 5 -vertex in $\left\{v_{k-1}, v_{k+1}\right\}$. This shows that $\mu^{\prime}(v) \geq d(v)-6-d(v) \times \xi_{d(v)}=0$.

Case 4. $d(v)=7$. If v has at most five simplicial 5 -neighbors, then $\mu^{\prime}(v) \geq$ $7-6-5 \times \frac{1}{5}=0$ by $\operatorname{R} 9(\mathrm{n})$. If v has precisely six simplicial 5 -neighbors, then $\mu^{\prime}(v) \geq 1-6 \times \frac{1}{6}=0$ by R9(e).

Finally, suppose v is completely surrounded by simplicial 5 -vertices. This implies that there is a 7 -cycle $C_{7}=w_{1} \cdots w_{7}$ avoiding v, where each v_{k} lies in a 3 -face $w_{k} v_{k} w_{k+1}$ (addition modulo 7). Note that $d\left(w_{k}\right)+d\left(w_{k+1}\right) \geq 45-3 \times 5-7=$ 23 whenever $1 \leq k \leq 7$. By the oddness of $7, v$ has a helpful neighbor, which gives $\frac{1}{6}$ to v by R10. As a result, we have $\mu^{\prime}(v) \geq 1+\frac{1}{6}-7 \times \frac{1}{6}=0$ in view of $\mathrm{R} 9(\mathrm{e})$, as required.

Case 5. $d(v)=5$. If v is incident with at least two 4^{+}-faces, then $\mu^{\prime}(v) \geq$ $5-6+2 \times \frac{1}{2}=0$ by R1.

If v is incident with precisely one 4^{+}-face, then we are done when v has a 12^{+}-neighbor since v receives $\frac{1}{2}$ by R1 and at least $\frac{1}{2}$ by R2 or R8.

So suppose otherwise. Note that v then has two 8^{+}-neighbors, for otherwise v would have an 11^{-}-neighbor and four 7^{-}-neighbors, which implies $w\left(S_{5}\right) \leq$ $5+4 \times 7+11<45$, a contradiction. Thus $\mu^{\prime}(v) \geq-1+\frac{1}{2}+2 \times \frac{1}{4}=0$ by R1 and R8.

From now on we can assume that v is simplicial.
Subcase 5.1. v is helpful, with $d\left(v_{1}\right) \geq 12, d\left(v_{2}\right)=d\left(v_{4}\right)=5, d\left(v_{3}\right)=7$, and $d\left(v_{5}\right) \geq 12$. Now v receives $\frac{1}{2}$ from each of v_{1}, v_{5} by R3 and/or R8. Also v receives at least $\frac{1}{6}$ from v_{3} by R9 and returns $\frac{1}{6}$ to v_{3} by R10. This implies $\mu^{\prime}(v) \geq-1+2 \times \frac{1}{2}+\frac{1}{6}-\frac{1}{6}=0$, as desired.

Subcase 5.2. v is strong, with $d\left(v_{1}\right)=d\left(v_{2}\right)=5,7 \leq d\left(v_{3}\right) \leq d\left(v_{5}\right) \leq 11$, and $d\left(v_{4}\right) \geq 45-3 \times 5-2 \times 11=8$. Now v must collect the total of at least $\frac{4}{3}$ from v_{3}, v_{4}, v_{5} in order to be able to give $2 \times \frac{1}{6}$ to v_{1}, v_{2} according to R11 (and leave 1 for itself).

We are easily done if $d\left(v_{4}\right) \geq 12$, for then v_{4} gives v at least 1 by R4(a) or R8(c) while each of v_{3}, v_{5} gives at least $\frac{1}{6}$ by R8 and R9.

So suppose $d\left(v_{4}\right) \leq 11$. Since $d\left(v_{3}\right)+d\left(v_{4}\right)+d\left(v_{5}\right) \geq w\left(S_{5}\right)-3 \times 5=30$, this implies that v has no neighbors of degree less than $30-2 \times 11=8$. If $d\left(v_{4}\right)=8$, then $d\left(v_{3}\right)=d\left(v_{5}\right)=11$, which implies that v receives $\frac{1}{2}$ from v_{4} by R8(c) and $2 \times \frac{15}{22}$ from v_{3}, v_{5} by R8(b), as desired. If $d\left(v_{4}\right) \geq 9$, then v receives at least $\frac{2}{3}$ from v_{4} by R8(c) and at least $2 \times \frac{3}{8}$ from v_{3}, v_{5} by $\mathrm{R} 8(\mathrm{~b})$, and we are done.

Subcase 5.3. v does not give charge away by R10 and R11. So we must check that v collects the total of at least 1 from its neighbors by R3-R9. If v has at least two 12^{+}-neighbors, then $\mu^{\prime}(v) \geq-1+2 \times \frac{1}{2}=0$ by R3 or R8(a),(b). So in what follows we assume that v has at most one 12^{+}-neighbor, which means that R3 is not applied to v.

Subcase 5.3.1. v has at most one 5 -neighbor. Here, v receives at least $\frac{3}{8}$ from an 8 -neighbor and at least $\frac{1}{2}$ from a 9^{+}-neighbor by R4-R8. This implies, in view of R9, that $\mu^{\prime}(v) \geq-1+3 \times \frac{1}{6}+\frac{1}{2}=0$ in the presence of a 9^{+}-neighbor or $\mu^{\prime}(v) \geq$ $-1+2 \times \frac{1}{6}+2 \times \frac{3}{8}>0$ when v has at least two 8 -neighbors. However, one of this situations is inevitable, since otherwise we would have $w\left(S_{5}\right) \leq 5+4 \times 7+8<45$, which is impossible.

Subcase 5.3.2. v has precisely two 5 -neighbors. Note that the total degree of the three 7^{+}-neighbors of v is at least $45-3 \times 5=30$.

Suppose v has no 7 -neighbor. Each 8^{+}-neighbor v_{2} gives v by R4-R8 at least $\frac{1}{4}$ if $d\left(v_{1}\right)=d\left(v_{3}\right)=5$ and at least $\frac{3}{8}$ if $d\left(v_{1}\right) \neq 5$, so $\mu^{\prime}(v) \geq-1+\frac{1}{4}+2 \times \frac{3}{8}=0$, and we are done.

Next suppose v has at least one 7 -neighbor. Now the other two 7^{+}-neighbors have the total degree at least $30-7=23$, so there is a 12^{+}-neighbor, say v_{2}, among them.

If v_{2} gives v at least $\frac{3}{4}$ to v by R4 or R8, then $\mu^{\prime}(v)>0$, since the other two 7^{+}-neighbors give at least $2 \times \frac{1}{6}$ by R4-R 9 .

So suppose $d\left(v_{1}\right)=d\left(v_{3}\right)=5$ and $7=d\left(v_{4}\right) \leq d\left(v_{5}\right)$. Now if $d\left(v_{2}\right) \geq 18$, then we have $\mu^{\prime}(v) \geq-1+\frac{2}{3}+2 \times \frac{1}{6}=0$ by R $4-$ R 9 .

For $16 \leq d\left(v_{2}\right) \leq 17$ we are similarly done if v_{2} gives $\frac{2}{3}$ by R6(e), so suppose $\mathrm{R} 6(\mathrm{n})$ is applied to v_{2} rather than $\mathrm{R} 6(\mathrm{e})$. If $d\left(v_{5}\right) \geq 8$, then $\mu^{\prime}(v) \geq-1+\frac{5}{8}+$ $\frac{1}{6}+\frac{3}{8}>0$. It remains to assume that $d\left(v_{4}\right)=d\left(v_{5}\right)=7$ and neither of v_{4}, v_{5} has six simplicial 5 -neighbors (as if we apply R9(e) to v_{4} or v_{5} it would mean we should apply R6(e) to v, and then $\mu^{\prime}(v) \geq-1+\frac{2}{3}+2 \times \frac{1}{6}=0$). This means that $\mu^{\prime}(v) \geq-1+\frac{5}{8}+2 \times \frac{1}{5}=\frac{1}{40}$ by $\operatorname{R} 6(\mathrm{n})$ and $\operatorname{R} 9(\mathrm{n})$.

Finally, suppose $12 \leq d\left(v_{2}\right) \leq 15$. Now $d\left(v_{5}\right) \geq w\left(S_{5}\right)-3 \times 5-7-15=8$, and it suffices to observe that v receives at least $\frac{1}{2}, \frac{1}{6}, \frac{3}{8}$ from v_{2}, v_{4}, v_{5}, respectively, which makes $\mu^{\prime}(v)>0$, as desired.

Subcase 5.3.3. v has precisely three 5 -neighbors. Note that the total degree of the two 7^{+}-neighbors of v is at least $45-4 \times 5=25$.

First suppose $7 \leq d\left(v_{1}\right) \leq d\left(v_{2}\right)$. By the above assumption that R3 is not applied, we have $d\left(v_{1}\right) \leq 11$, which implies that v has a 14^{+}-neighbor. Note that v_{2} gives v at least $\frac{3}{4}$ by $\mathrm{R} 4(\mathrm{~b})$ or R8, while v_{1} gives v at least $\frac{3}{8}$ by R 8 if $d\left(v_{1}\right) \geq 8$, and then we have $\mu^{\prime}(v) \geq 0$. But if $d\left(v_{1}\right)=7$, then $d\left(v_{2}\right) \geq 25-7=18$, and $\mu^{\prime}(v) \geq-1+\frac{5}{6}+\frac{1}{6}=0$ by R4(b) combined with R 9 .

Thus from now on we can assume that $7 \leq d\left(v_{1}\right) \leq 11$ and $d\left(v_{3}\right) \geq 14$. If $d\left(v_{3}\right) \leq 15$, then v receives from v_{1} and v_{3} at least $1=\frac{2}{5}+\frac{3}{5}=\xi_{10}+\xi_{15}<\xi_{11}+\xi_{14}$ by R8(a), as desired.

Next suppose $16 \leq d\left(v_{3}\right) \leq 17$, which implies that $d\left(v_{1}\right) \geq 8$. Since v_{1} gives v at least $\frac{1}{4}$ by $\mathrm{R} 8(\mathrm{a})$ while v_{3} gives either $\frac{3}{4}$ or $\frac{5}{8}$ by R7, we are done unless v_{3} gives $\frac{5}{8}$ by R7(e). The latter happens when v_{5} is strong, in which case v receives $\frac{1}{6}$ from v_{5} by R11, which yields $\mu^{\prime}(v) \geq-1+\frac{1}{4}+\frac{1}{6}+\frac{5}{8}>0$.

Finally, suppose $d\left(v_{3}\right) \geq 18$. Now v_{1} gives v at least $\frac{1}{6}$ by R 9 while v_{3} gives either $\frac{5}{6}$ or $\frac{2}{3}$ by R7. Since the donation of $\frac{2}{3}$ by R7(e) to v is accompanied by receiving $\frac{1}{6}$ by R11 from a strong vertex v_{5}, we have $\mu^{\prime}(v) \geq-1+2 \times \frac{1}{6}+\frac{2}{3}=$ $-1+\frac{1}{6}+\frac{5}{6}=0$.

Thus we have proved $\mu^{\prime}(x) \geq 0$ whenever $x \in V \cup F$, which contradicts (1) and completes the proof of Theorem 1.

References

[1] O.V. Borodin and A.O. Ivanova, Describing 4-stars at 5-vertices in normal plane maps with minimum degree 5, Discrete Math. 313 (2013) 1710-1714. doi:10.1016/j.disc.2013.04.025
[2] O.V. Borodin and A.O. Ivanova, Light and low 5 -stars in normal plane maps with minimum degree 5, Sib. Math. J. 57 (2016) 470-475. doi:10.1134/S0037446616030071
[3] O.V. Borodin and A.O. Ivanova, Light neighborhoods of 5-vertices in 3-polytopes with minimum degree 5, Sib. Èlektron. Mat. Izv. 13 (2016) 584-591. doi:10.17377/semi.2016.13.045
[4] O.V. Borodin, A.O. Ivanova and T.R. Jensen, 5-stars of low weight in normal plane maps with minimum degree 5, Discuss. Math. Graph Theory 34 (2014) 539-546. doi:10.7151/dmgt. 1748
[5] O.V. Borodin, A.O. Ivanova, O.N. Kazak and E.I. Vasil'eva, Heights of minor 5-stars in 3-polytopes with minimum degree 5 and no vertices of degree 6 and 7, Discrete Math. 341 (2018) 825-829.
doi:10.1016/j.disc.2017.11.021
[6] O.V. Borodin, A.O. Ivanova and D.V. Nikiforov, Low minor 5-stars in 3-polytopes with minimum degree 5 and no 6-vertices, Discrete Math. 340 (2017) 1612-1616. doi:10.1016/j.disc.2017.03.002
[7] O.V. Borodin, A.O. Ivanova and D.V. Nikiforov, Low and light minor 5-stars in 3polytopes with minimum degree 5 and restrictions on the degrees of major vertices, Sib. Math. J. 58 (2017) 600-605. doi:10.1134/S003744661704005X
[8] O.V. Borodin and D.R. Woodall, Short cycles of low weight in normal plane maps with minimum degree 5, Discuss. Math. Graph Theory 18 (1998) 159-164. doi:10.7151/dmgt. 1071
[9] P. Franklin, The four colour problem, Amer. J. Math. 44 (1922) 225-236. doi:10.2307/2370527
[10] S. Jendrol' and T. Madaras, On light subgraphs in plane graphs of minimum degree five, Discuss. Math. Graph Theory 16 (1996) 207-217. doi:10.7151/dmgt. 1035
[11] S. Jendrol' and H.-J. Voss, Light subgraphs of graphs embedded in the plane-A survey, Discrete Math. 313 (2013) 406-421. doi:10.1016/j.disc.2012.11.007
[12] H. Lebesgue, Quelques conséquences simples de la formule d'Euler, J. Math. Pures Appl. 19 (1940) 27-43.
[13] P. Wernicke, Über den kartographischen Vierfarbensatz, Math. Ann. 58 (1904) 413-426.
doi:10.1007/BF01444968
Received 30 November 2017
Revised 11 June 2018
Accepted 12 June 2018

[^0]: ${ }^{1}$ The work was funded by the Russian Science Foundation, grant 16-11-10054.

