DECOMPOSING THE COMPLETE GRAPH INTO HAMILTONIAN PATHS (CYCLES) AND 3-STARS

Hung-Chif Lee
Department of Information Technology
Ling Tung University
Taichung 40852, Taiwan
e-mail: birdy@teamail.ltu.edu.tw
AND
Zhen-Chun Chen
Department of Applied Mathematics
National Chiao Tung University
Hsinchu 300, Taiwan
e-mail: amco0624@yahoo.com.tw

Abstract

Let H be a graph. A decomposition of H is a set of edge-disjoint subgraphs of H whose union is H. A Hamiltonian path (respectively, cycle) of H is a path (respectively, cycle) that contains every vertex of H exactly once. A k-star, denoted by S_{k}, is a star with k edges. In this paper, we give necessary and sufficient conditions for decomposing the complete graph into α copies of Hamiltonian path (cycle) and β copies of S_{3}.

Keywords: decomposition, complete graph, Hamiltonian path, Hamiltonian cycle, star.
2010 Mathematics Subject Classification: 05C70, 05C38.

1. Introduction

For positive integers m and n, K_{n} denotes the complete graph with n vertices, and $K_{m, n}$ denotes the complete bipartite graph with parts of sizes m and n. Let k be a positive integer. A k-path, denoted by P_{k}, is a path on k vertices. A k-cycle, denoted by C_{k}, is a cycle of length k. A k-star, denoted by S_{k}, is a star
with k edges, i.e., $S_{k}=K_{1, k}$. Let H be a graph. A spanning subgraph of H is a subgraph of H containing every vertex of H. A spanning path (respectively, cycle) of H is called a Hamiltonian path (respectively, cycle) of H. A 1-factor of G is a spanning subgraph of G in which each vertex is incident with exactly one edge.

Let F, G, and H be graphs. A decomposition of H is a set of edge-disjoint subgraphs of H whose union is H. If H can be decomposed into α copies of F and β copies of G for nonnegative integers α and β, then we say that H has an $\{\alpha F, \beta G\}$-decomposition. Furthermore, if $\alpha \geq 1$ and $\beta \geq 1$, then we say that H has an (F, G)-decomposition or H is (F, G)-decomposable.

Study on the existence of an (F, G)-decomposition of a graph has attracted a fair share of interest. Abueida and Daven [3] investigated the problem of (K_{k}, S_{k})-decomposition of the complete graph K_{n}. Abueida and Daven [4] investigated the problem of the (C_{4}, E_{2})-decomposition of several graph products where E_{2} denotes two vertex disjoint edges. Abueida and O'Neil [8] studied the existence problem for (C_{k}, S_{k-1})-decomposition of the complete multigraph λK_{n} for $k \in\{3,4,5\}$. Priyadharsini and Muthusamy [25,26] investigated the existence of (G, H)-decompositions of λK_{n} and $\lambda K_{n, n}$ where $G, H \in\left\{C_{n}, P_{n}, S_{n-1}\right\}$. A graph-pair (G, H) of order m is a pair of non-isomorphic graphs G and H with $V(G)=V(H)$ such that both G and H contain no isolated vertices and $G \cup H$ is isomorphic to K_{m}. Abueida and Daven [2] and Abueida, Daven and Roblee [5] completely determined the values of n for which λK_{n} admits a (G, H)decomposition where (G, H) is a graph-pair of order 4 or 5 . Abueida, Clark and Leach [1] and Abueida and Hampson [6] considered the existence of decompositions of $K_{n}-F$ into the graph-pairs of order 4 and 5, respectively, where F is a Hamiltonian cycle, a 1 -factor, or an almost 1 -factor. Lee [18,19], Lee and Lin [22], and Lin [23] established necessary and sufficient conditions for the existence of $\left(C_{k}, S_{k}\right)$-decompositions of the complete bipartite graph, the complete bipartite multigraph, the complete bipartite graph with a 1 -factor removed, and the multicrown, respectively. Abueida and Lian [7] and Beggas et al. [10] investigated the problems of (C_{k}, S_{k})-decompositions of the complete graph K_{n} and λK_{n}, giving some necessary or sufficient conditions for such decompositions to exist. Lee and Chen [20] completely settled the existence problem of $\left(P_{k+1}, S_{k}\right)$ decompositions of the complete multigraph λK_{n} and the balanced complete bipartite multigraph $\lambda K_{n, n}$.

Recently, the existence problem of an $\{\alpha F, \beta G\}$-decomposition of a graph where α and β are essential is also studied. Shyu gave necessary and sufficient conditions for the decomposition of K_{n} into paths and stars (both with 3 edges) [27], paths and cycles (both with k edges where $k=3,4$) [28, 29], and cycles and stars (both with 4 edges) [30]. He [31] also gave necessary and sufficient conditions for the decomposition of $K_{m, n}$ into paths and stars both with 3 edges.

Jeevadoss and Muthusamy $[14,15]$ considered the $\left\{\alpha P_{k+1}, \beta C_{k}\right\}$-decomposability of $K_{m, n}, K_{n}$ and $\lambda K_{m, n}$, giving some necessary or sufficient conditions for such decompositions to exist. Jeevadoss and Muthusamy [16] gave necessary and sufficient conditions for the existence of $\left\{\alpha P_{5}, \beta C_{4}\right\}$-decomposition of tensor product and cartesian product of complete graphs. In [33], Tarsi gave necessary and sufficient conditions for the existence of $\left\{\alpha F, \beta S_{k}\right\}$-decomposition of λK_{n}, where F is any subgraph of K_{n} and $\alpha=0$. In this paper, we consider the existence of an $\{\alpha F, \beta G\}$-decomposition of the complete graph K_{n} with $F \in\left\{P_{n}, C_{n}\right\}$ and $G=S_{3}$, giving necessary and sufficient conditions.

2. Preliminaries

We first collect some needed terminology and notation. Let G be a graph. The degree of a vertex x of G, denoted by $\operatorname{deg}_{G} x$, is the number of edges incident with x. For $k \geq 2$, the vertex of degree k in S_{k} is the center of S_{k} and any vertex of degree 1 is a pendent vertex of S_{k}. Let $v_{1} v_{2} \cdots v_{k}$ denote the k-path through vertices $v_{1}, v_{2}, \ldots, v_{k}$ in order. The vertices v_{1} and v_{k} are referred to as its origin and terminus, respectively. In addition, $P_{k}\left(v_{1}, v_{k}\right)$ denotes a k-path with origin v_{1} and terminus v_{k}. We use $\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ to denote the k-cycle through vertices $v_{1}, v_{2}, \ldots, v_{k}, v_{1}$ in order, and $S\left(u ; v_{1}, v_{2}, \ldots, v_{k}\right)$ to denote a star with center u and pendent vertices $v_{1}, v_{2}, \ldots, v_{k}$. For $U, W \subseteq V(G)$ with $U \cap W=\phi$, we use $G[U]$ and $G[U, W]$ to denote the subgraph of G induced by U, and the maximal bipartite subgraph of G with bipartition (U, W), respectively. When $G_{1}, G_{2}, \ldots, G_{t}$ are edge disjoint subgraphs of a graph, use $G_{1} \cup G_{2} \cup \cdots \cup G_{t}$ to denote the graph with vertex set $\bigcup_{i=1}^{t} V\left(G_{i}\right)$ and edge set $\bigcup_{i=1}^{t} E\left(G_{i}\right)$.

Before going into more details, we present some results which are useful for our discussions.

Proposition 1 [11,13]. For an even integer n and $V\left(K_{n}\right)=\left\{x_{0}, x_{1}, \ldots, x_{n-1}\right\}$, the complete graph K_{n} can be decomposed into $n / 2$ copies of $P_{n}, P(1), P(2), \ldots$, $P(n / 2)$ with $P(i+1)=x_{i} x_{i-1} x_{i+1} x_{i-2} \cdots x_{i+\frac{n}{2}-2} x_{i+\frac{n}{2}+1} x_{i+\frac{n}{2}-1} x_{i+\frac{n}{2}}$ for $0 \leq i \leq$ $\frac{n}{2}-1$, where the subscripts of x 's are taken modulo n in the set of numbers $\{0,1,2, \ldots, n-1\}$.

The following results are attributed to Walecki, see [9].
Lemma 2. For an odd integer n and $V\left(K_{n}\right)=\left\{x_{0}, x_{1}, \ldots, x_{n-1}\right\}$, the complete graph K_{n} can be decomposed into $(n-1) / 2$ copies of $C_{n}, C(1), C(2), \ldots, C((n-$ 1)/2) with $C(i)=\left(x_{0}, x_{i}, x_{i-1}, x_{i+1}, x_{i-2}, \ldots, x_{i+(n-5) / 2}, x_{i+(n+1) / 2}, x_{i+(n-3) / 2}\right.$, $\left.x_{i+(n-1) / 2}\right)$ for $i=1,2, \ldots,(n-1) / 2$, where the subscripts of x 's are taken modulo $n-1$ in the set of numbers $\{1,2, \ldots, n-1\}$.

Lemma 3. For an even integer n and $V\left(K_{n}\right)=\left\{x_{0}, x_{1}, \ldots, x_{n-1}\right\}$, the complete graph K_{n} can be decomposed into $n / 2-1$ copies of $C_{n}, C(1), C(2), \ldots, C(n / 2-1)$, and a 1-factor F, where $E(F)=\left\{x_{0} x_{n-1}, x_{1} x_{n-2}, x_{2} x_{n-3}, \ldots, x_{n / 2-2} x_{n / 2+1}\right.$, $\left.x_{n / 2-1} x_{n / 2}\right\}$ and $C(i)=\left(x_{0}, x_{i}, x_{i-1}, x_{i+1}, x_{i-2}, \ldots, x_{i+n / 2+1}, x_{i+n / 2-2}, x_{i+n / 2}\right.$, $x_{i+n / 2-1}$) for $i=1,2, \ldots, n / 2-1$, where the subscripts of x 's are taken modulo $n-1$ in the set of numbers $\{1,2, \ldots, n-1\}$.

3. Decomposition of K_{n} Into n-Paths and 3 -Stars

In this section, we obtain necessary and sufficient conditions for decomposing K_{n} into α copies of P_{n} and β copies of S_{3}.

Lemma 4. Let n be an odd integer and let α be a nonnegative integer. If $\binom{n}{2}-$ $(n-1) \alpha$ is a nonnegative integer and $\binom{n}{2}-(n-1) \alpha \equiv 0(\bmod 3)$, then

$$
\alpha \in \begin{cases}\{0,1, \ldots,(n-1) / 2\} & \text { if } n \equiv 1(\bmod 6) \\ \{(n-3) / 2-3 t \mid t=0,1, \ldots,(n-3) / 6\} & \text { if } n \equiv 3(\bmod 6) \\ \{(n-3) / 2-3 t \mid t=0,1, \ldots,(n-5) / 6\} & \text { if } n \equiv 5(\bmod 6)\end{cases}
$$

Proof. Since $\binom{n}{2}-(n-1) \alpha$ is a nonnegative integer and n is odd, $\alpha \leq\left\lfloor\binom{ n}{2} /(n-\right.$ $1)\rfloor=(n-1) / 2$. Let $\alpha=(n-1) / 2-(3 t+j)$ where t is a nonnegative integer and $j \in\{0,1,2\}$. Since $\binom{n}{2}-(n-1) \alpha=n(n-1) / 2-(n-1) \alpha=(n-2 \alpha)(n-$ 1) $/ 2=(6 t+2 j+1)(n-1) / 2,\binom{n}{2}-(n-1) \alpha \equiv(2 j+1)(n-1) / 2(\bmod 3)$. If $n \equiv 1(\bmod 6)$, then $(2 j+1)(n-1) / 2 \equiv 0(\bmod 3)$ for any integer j. Hence $\alpha \in\{0,1, \ldots,(n-1) / 2\}$ for $n \equiv 1(\bmod 6)$. When $n \equiv 3(\bmod 6)$ or $n \equiv 5$ $(\bmod 6)$, the condition $(2 j+1)(n-1) / 2 \equiv 0(\bmod 3)$ holds if and only if $j=1$. Thus $\alpha=(n-3) / 2-3 t$ for some integer t when $n \equiv 3(\bmod 6)$ or $n \equiv 5(\bmod 6)$. Since α is a nonnegative integer, we have $t \leq(n-3) / 6$ for $n \equiv 3(\bmod 6)$, and $t \leq(n-5) / 6$ for $n \equiv 5(\bmod 6)$. This completes the proof.

Lemma 5. Let n be an even integer, and let α be a nonnegative integer. If $\binom{n}{2}-(n-1) \alpha \equiv 0(\bmod 3)$, then

$$
\alpha \in \begin{cases}\{n / 2-3 t \mid t=0,1, \ldots, n / 6\} & \text { if } n \equiv 0(\bmod 6), \\ \{n / 2-3 t \mid t=0,1, \ldots,(n-2) / 6\} & \text { if } n \equiv 2(\bmod 6) \\ \{0,1, \ldots, n / 2\} & \text { if } n \equiv 4(\bmod 6)\end{cases}
$$

Proof. Since $\binom{n}{2}-(n-1) \alpha$ is a nonnegative integer and n is even, $\alpha \leq\left\lfloor\binom{ n}{2} /(n-\right.$ $1)\rfloor=n / 2$. Let $\alpha=n / 2-(3 t+j)$ where t is a nonnegative integer and $j \in\{0,1,2\}$. Since $\binom{n}{2}-(n-1) \alpha=n(n-1) / 2-(n-1) \alpha=(n-2 \alpha)(n-1) / 2=(3 t+j)(n-1)$, $\binom{n}{2}-(n-1) \alpha \equiv j(n-1)(\bmod 3)$. If $n \equiv 4(\bmod 6)$, then $j(n-1) \equiv 0(\bmod 3)$ for any integer j. Hence $\alpha \in\{0,1, \ldots, n / 2\}$ for $n \equiv 4(\bmod 6)$. When $n \equiv 0$
$(\bmod 6)$ or $n \equiv 2(\bmod 6)$, the condition $j(n-1) \equiv 0(\bmod 3)$ holds if and only if $j=0$. Thus $\alpha=n / 2-3 t$ for some integer t when $n \equiv 0(\bmod 6)$ or $n \equiv 2$ $(\bmod 6)$. Since α is a nonnegative integer, we have $t \leq n / 6$ for $n \equiv 0(\bmod 6)$, and $t \leq(n-2) / 6$ for $n \equiv 2(\bmod 6)$. This completes the proof.

The following indecomposable case is trivial.
Lemma 6. The complete graph K_{4} cannot be decomposed into
(1) one copy of P_{4} and one copy of S_{3}, nor
(2) two copies of S_{3}.

In addition, we exclude the possibility $n=5$.
Lemma 7. The complete graph K_{5} cannot be decomposed into one copy of P_{5} and two copies of S_{3}.

Proof. Suppose, on the contrary, that K_{5} can be decomposed into one copy of P_{5}, say $P_{5}(x, y)$, and two copies of S_{3}, say S and T. Note that the edge $x y$ must be in either S or T. Without loss of generality, assume that $x y$ is in S. Since the degree of every vertex of $K_{n}-E\left(P_{5}(x, y) \cup S\right)$ is less than 3 , we have a contradiction.

In the remainder of the paper, we assume that $V\left(K_{n}\right)=\left\{x_{0}, x_{1}, \ldots, x_{n-1}\right\}$.
Lemma 8. If n is an odd integer with $n \geq 7$, then the following hold:
(1) The complete graph K_{n} can be decomposed into $(n-1) / 2$ copies of P_{n} and $(n-1) / 6$ copies of S_{3} when $n \equiv 1(\bmod 6)$.
(2) The complete graph K_{n} can be decomposed into $(n-3) / 2$ copies of P_{n} and $(n-1) / 2$ copies of S_{3}.
(3) The complete graph K_{n} can be decomposed into $(n-5) / 2$ copies of P_{n} and $5(n-1) / 6$ copies of S_{3} when $n \equiv 1(\bmod 6)$.

Proof. By Lemma $2, K_{n}$ can be decomposed into $(n-1) / 2$ copies of $C_{n}, C(1)$, $C(2), \ldots, C((n-1) / 2)$ with $C(i)=\left(x_{0}, x_{i}, x_{i-1}, x_{i+1}, x_{i-2}, \ldots, x_{i+(n-5) / 2}\right.$, $\left.x_{i+(n+1) / 2}, x_{i+(n-3) / 2}, x_{i+(n-1) / 2}\right)$ for $i=1,2, \ldots,(n-1) / 2$, where the subscripts of x 's are taken modulo $n-1$ in the set of numbers $\{1,2, \ldots, n-1\}$.
(1) For $i=1,2, \ldots,(n-1) / 2$, let $P(i)=C(i)-\left\{x_{0} x_{i}\right\}$. Clearly, $P(i)$ is an n-path. Let G be the subgraph of K_{n} which is induced by the set of edges $x_{0} x_{1}, x_{0} x_{2}, \ldots, x_{0} x_{(n-1) / 2}$. Obviously, $G=S_{(n-1) / 2}$. Since n is odd and $n-1 \equiv 0$ $(\bmod 3)$, the graph G can be decomposed into $(n-1) / 6$ copies of S_{3}. This settles (1).
(2) For $n=7$, the complete graph K_{7} can be decomposed into 2 copies of P_{7} and 3 copies of S_{3} as follows: $x_{6} x_{2} x_{5} x_{3} x_{4} x_{0} x_{1}, x_{6} x_{4} x_{5} x_{0} x_{3} x_{1} x_{2},\left(x_{1} ; x_{4}, x_{5}, x_{6}\right)$, $\left(x_{2} ; x_{0}, x_{3}, x_{4}\right),\left(x_{6} ; x_{0}, x_{3}, x_{5}\right)$.

Now we consider the case $n \geq 9$. For $i \in\{1,2, \ldots,(n-1) / 2\}-\{(n-7) / 2$, $(n-3) / 2\}$, let $P(i)=C(i)-\left\{x_{0} x_{i}\right\}$. Note that $x_{n-1} x_{n-7} \in E(C((n-7) / 2))$ and $P((n-3) / 2)=C((n-3) / 2)=\left(x_{0}, x_{(n-3) / 2}, x_{(n-5) / 2}, x_{(n-1) / 2}, x_{(n-7) / 2}, \ldots, x_{n-4}\right.$, $\left.x_{n-1}, x_{n-3}, x_{n-2}\right)$. Let $P((n-7) / 2)=C((n-7) / 2)-\left\{x_{n-1} x_{n-7}\right\}$ and $C((n-$ $3) / 2)-\left\{x_{0} x_{(n-3) / 2}, x_{(n-1) / 2} x_{(n-7) / 2}\right\} \cup\left\{x_{0} x_{(n-1) / 2}\right\}$. Hence $P(i)$ is an n-path for $i=1,2, \ldots,(n-1) / 2$. Moreover, $P((n-1) / 2)=x_{(n-1) / 2} x_{(n-3) / 2} x_{(n+1) / 2} x_{(n-5) / 2}$ $\cdots x_{n-3} x_{1} x_{n-2} x_{n-1} x_{0}$. For $i=1,2, \ldots,(n-3) / 2$, let $S(i)=\left(x_{(n-1) / 2-i}\right.$; $\left.x_{(n-1) / 2+i-1}, x_{(n-1) / 2+i}\right)$ and $S=\left(x_{n-1} ; x_{n-2}, x_{0}\right)$. Obviously, $S(i)$ and S are 2stars, and $P((n-1) / 2)$ can be decomposed into $S(1), S(2), \ldots, S((n-3) / 2)$ and S. Furthermore, let $W(i)=S(i) \cup\left\{x_{0} x_{i}\right\}$ for $i=1,2, \ldots,(n-3) / 2-\{(n-7) / 2\}$, let $W((n-7) / 2)=S((n-7) / 2) \cup\left\{x_{(n-1) / 2} x_{(n-7) / 2}\right\}$, and let $W((n-1) / 2)=$ $S \cup\left\{x_{n-1} x_{n-7}\right\}$. Clearly, $W(i)$ is a 3 -star. This settles (2).
(3) We will remove one edge from $C(i)$ to obtain an n-path for $i \in\{1,2, \ldots$, $(n-5) / 2\}$, and use $C((n-3) / 2)$ and $C((n-1) / 2)$ together with the edges removed from $C(i)$'s to constitute $5(n-1) / 3$ copies of S_{3}.

Let $S(i)=\left(x_{(n-1) / 2+3 i-3} ; x_{(n-1) / 2-3 i+1}, x_{(n-1) / 2-3 i}\right)$ for $i=1,2, \ldots,(n-$ 1) $/ 6, S^{\prime}(i)=\left(x_{(n-1) / 2-3 i-1} ; x_{(n-1) / 2+3 i-2}, x_{(n-1) / 2+3 i-1}\right)$ for $i=1,2, \ldots,(n-$ 7)/6, and $S^{\prime}((n-1) / 6)=\left(x_{n-2} ; x_{n-3}, x_{0}\right)$. Obviously, $S(i)$ and $S^{\prime}(i)$ are 2 -stars. Let $J=\{j \mid 2 \leq j \leq(n-1) / 2$ and $j \equiv 0,2(\bmod 3)\}$. For $j \in J$, let

$$
e_{j}^{\prime \prime}= \begin{cases}x_{(n-1) / 2-j} x_{(n-1) / 2+j-2} & \text { if } j \equiv 0(\bmod 3), \\ x_{(n-1) / 2-j} x_{(n-1) / 2+j-3} & \text { if } j \equiv 2(\bmod 3),\end{cases}
$$

where the subscripts of x 's are taken modulo $n-1$ in the set of numbers $\{1,2, \ldots$, $n-1\}$. It is easy to see that $\left\{S(i), S^{\prime}(i) \mid i=1,2, \ldots,(n-1) / 6\right\} \cup\left\{e_{j}^{\prime \prime} \mid j \in J\right\}$ is a decomposition of $C((n-3) / 2)-\left\{x_{(n-3) / 2} x_{0}\right\}$.

Note that $C((n-1) / 2)=\left(x_{0}, x_{(n-1) / 2}, x_{(n-3) / 2}, x_{(n+1) / 2}, x_{(n-5) / 2}, \ldots, x_{n-3}\right.$, $\left.x_{1}, x_{n-2}, x_{n-1}\right)$. Let $S^{\prime \prime}(j)=\left(x_{(n-1) / 2-j} ; x_{(n-1) / 2+j-1}, x_{(n-1) / 2+j}\right)$ for $j=1,2, \ldots$, $(n-3) / 2$ and $S^{\prime \prime}((n-1) / 2)=\left(x_{n-1} ; x_{n-2}, x_{0}\right)$ where the subscripts of x 's are taken modulo $n-1$ in the set of numbers $\{1,2, \ldots, n-1\}$. Obviously, $S^{\prime \prime}(j)$ is a 2 -star, and $C((n-1) / 2)-\left\{x_{(n-1) / 2} x_{0}\right\}$ can be decomposed into $S^{\prime \prime}(1), S^{\prime \prime}(2), \ldots, S^{\prime \prime}((n-$ 1)/2).

For $i=2,3, \ldots,(n-1) / 6$, let e_{i} be an edge in $C(i-1)$ incident with the center of $S(i)$. Then $C(i-1)-\left\{e_{i}\right\}$ is an n-path and $S(i) \cup\left\{e_{i}\right\}$ is a 3 -star. For $i=1,2, \ldots,(n-1) / 6$, let e_{i}^{\prime} be an edge in $C((n-1) / 6+i-1)$ incident with the center of $S^{\prime}(i)$. Then $C((n-1) / 6+i-1)-\left\{e_{i}^{\prime}\right\}$ is an n-path and $S^{\prime}(i) \cup\left\{e_{i}^{\prime}\right\}$ is a 3 -star. Let $K=\{k \mid 4 \leq k \leq(n-5) / 2$ and $k \equiv 1(\bmod 3)\}$. For $k \in K$, let $e_{k}^{\prime \prime}$ be an edge in $C((k-1) / 3+(n-1) / 3-1)$ incident with the center of $S^{\prime \prime}(k)$.

Then $C((k-1) / 3+(n-1) / 3-1)-\left\{e_{k}^{\prime \prime}\right\}$ is an n-path and $S^{\prime \prime}(i) \cup\left\{e_{k}^{\prime \prime}\right\}$ is a 3 -star. For $j \in J, S^{\prime \prime}(j) \cup\left\{e_{j}^{\prime \prime}\right\}$ is a 3 -star. Moreover, $S(1) \cup\left\{x_{(n-1) / 2} x_{0}\right\}$ and $S^{\prime \prime}(1) \cup\left\{x_{(n-3) / 2} x_{0}\right\}$ are also 3-stars. This completes the proof.

Lemma 9. If n is an even integer with $n \geq 4$, then the following hold:
(1) The complete graph K_{n} can be decomposed into $n / 2$ copies of n-paths.
(2) The complete graph K_{n} can be decomposed into $n / 2-1$ copies of P_{n} and $(n-1) / 3$ copies of S_{3} when $n \equiv 4(\bmod 6)$ and $n \geq 10$.
(3) The complete graph K_{n} can be decomposed into $n / 2-2$ copies of P_{n} and $2(n-1) / 3$ copies of S_{3} when $n \equiv 4(\bmod 6)$ and $n \geq 10$.

Proof. By Proposition 1, we have (1).
(2) For $n=10$, the complete graph K_{10} can be decomposed into 4 copies of P_{10} and 3 copies of S_{3} as follows: $x_{8} x_{2} x_{7} x_{3} x_{6} x_{4} x_{5} x_{0} x_{1} x_{9}, x_{1} x_{3} x_{8} x_{4} x_{7} x_{5} x_{6} x_{0} x_{2} x_{9}$, $x_{0} x_{3} x_{2} x_{4} x_{1} x_{5} x_{8} x_{6} x_{7} x_{9}, x_{0} x_{7} x_{8} x_{9} x_{4} x_{3} x_{5} x_{2} x_{6} x_{1},\left(x_{0} ; x_{4}, x_{8}, x_{9}\right),\left(x_{1} ; x_{2}, x_{7}, x_{8}\right)$, $\left(x_{9} ; x_{3}, x_{5}, x_{6}\right)$.

Now we consider the case $n \geq 16$. Let $G=K_{n}\left[\left\{x_{0}, x_{1}, \ldots, x_{n-2}\right\}\right]$. Clearly G is isomorphic to K_{n-1}. By Lemma 2, the graph G can be decomposed into $n / 2-1$ copies of $C_{n-1}, C(1), C(2), \ldots, C(n / 2-1)$ with $C(i)=\left(x_{0}, x_{i}, x_{i-1}, x_{i+1}\right.$, $\left.x_{i-2}, \ldots, x_{i+n / 2-3}, x_{i+n / 2}, x_{i+n / 2-2}, x_{i+n / 2-1}\right)$ for $i=1,2, \ldots, n / 2-1$, where the subscripts of x 's are taken modulo $n-2$ in the set of numbers $\{1,2, \ldots, n-2\}$. Note that $C(1)$ contains edges $x_{1} x_{n-2}$ and $x_{n / 2} x_{0}, C(2)$ contains edges $x_{2} x_{1}$ and $x_{n / 2+1} x_{0}$, and $C(3)$ contains the edge $x_{4} x_{1}$. Let $P(1)=C(1) \cup\left\{x_{1} x_{n-1} x_{n / 2}\right\}-$ $\left\{x_{1} x_{n-2}, x_{n / 2} x_{0}\right\}, P(2)=C(2) \cup\left\{x_{2} x_{n-1} x_{n / 2+1}\right\}-\left\{x_{2} x_{1}, x_{n / 2+1} x_{0}\right\}$, and $P(3)=$ $C(3) \cup\left\{x_{4} x_{n-1}\right\}-\left\{x_{1} x_{4}\right\}$. In addition, let $P(i)=C(i) \cup\left\{x_{i+n / 2-1} x_{n-1}\right\}-$ $\left\{x_{i+n / 2-1} x_{0}\right\}$ for $i=4,5, \ldots, n / 2-1$. Obviously, $P(i)$ ia an n-path for $i=$ $1,2, \ldots, n / 2-1$. Let $S(1)=\left(x_{0} ; x_{n / 2}, x_{n / 2+1}, x_{n / 2+3}, x_{n / 2+4}, \ldots, x_{n-2}\right)$ and $S(2)$ $=\left(x_{n-1} ; x_{0}, x_{3}, x_{5}, x_{6}, \ldots, x_{n / 2-2}, x_{n / 2-1}, x_{n / 2+2}\right)$. It is easy to see that $K_{n}-$ $E\left(\bigcup_{i=1}^{n / 2-1} P(i)\right)=S(1) \cup S(2) \cup\left(x_{1} ; x_{2}, x_{4}, x_{n-2}\right)$. Note that $S(1)$ and $S(2)$ are $(n / 2-2)$-stars. Since $n \equiv 4(\bmod 6)$, each of $S(1)$ and $S(2)$ can be decomposed into $(n-4) / 6$ copies of S_{3}. This settles (2).
(3) By Lemma $3, K_{n}$ can be decomposed into $n / 2-1$ copies of $C_{n}, C(1), C(2)$, $\ldots, C(n / 2-1)$, and a 1-factor F, where $E(F)=\left\{x_{0} x_{n-1}, x_{1} x_{n-2}, x_{2} x_{n-3}, \ldots\right.$, $\left.x_{n / 2-2} x_{n / 2+1}, x_{n / 2-1} x_{n / 2}\right\}$ and $C(i)=\left(x_{0}, x_{i}, x_{i-1}, x_{i+1}, x_{i-2}, \ldots, x_{i+n / 2+1}\right.$, $x_{i+n / 2-2}, x_{i+n / 2}, x_{i+n / 2-1}$) for $i=1,2, \ldots, n / 2-1$, where the subscripts of x 's are taken modulo $n-1$ in the set of numbers $\{1,2, \ldots, n-1\}$.

We obtain $n / 2-2$ copies of P_{n} by removing one edge from each of n-cycles $C(1), C(2), \ldots, C(n / 2-2)$. For $i=1,2, \ldots, n / 2-3$, let $P(i)=C(i)-\left\{x_{0} x_{i}\right\}$. In addition, let $P(n / 2-2)=C(n / 2-2)-\left\{x_{n / 2-3} x_{n / 2-1}\right\}$. Trivially, $P(i)$ is an n-path for $i=1,2, \ldots, n / 2-2$.

In the following, $2(n-1) / 3$ copies of S_{3} are constructed. We first obtain $n / 2$ copies of S_{3} by using all of the edges of $C(n / 2-1)$ and $n / 2-1$ edges of F and the edge $x_{n / 2-3} x_{n / 2-1}$ removed from $C(n / 2-2)$. Note that $C(n / 2-1)=$ $\left(x_{0}, x_{n / 2-1}, x_{n / 2-2}, x_{n / 2}, x_{n / 2-3}, \ldots, x_{1}, x_{n-3}, x_{n-1}, x_{n-2}\right)$. For $i=1,2, \ldots, n / 2-$ 1, let $S(i)=\left(x_{n / 2-1+i} ; x_{n / 2-1-i}, x_{n / 2-2-i}\right)$ and $S=\left(x_{n / 2-1} ; x_{n / 2-2}, x_{0}\right)$. Obviously, $S(i)$ and S are 2-stars, and $C(n / 2-1)$ is decomposable into $S(1), S(2), \ldots$, $S(n / 2-1)$ and S. Let $W(i)=S(i) \cup\left\{x_{n / 2-1+i} x_{n / 2-i}\right\}$ for $i=1,2, \ldots, n / 2-1$, and let $W(n / 2)=S \cup\left\{x_{n / 2-3} x_{n / 2-1}\right\}$. Clearly, $W(i)$ is a 3 -star.

Now we obtain $(n-4) / 6$ copies of S_{3} by using one edge of F and the edges removed from $C(i)$'s in constructing n-paths for $i=1,2, \ldots, n / 2-3$. Let G be the subgraph of K_{n} induced by the set of edges $x_{0} x_{1}, x_{0} x_{2}, \ldots, x_{0} x_{n / 2-3}, x_{0} x_{n-1}$. Obviously, $G=S_{n / 2-2}$. Since $n \equiv 4(\bmod 6)$, the graph G can be decomposed into $(n-4) / 6$ copies of S_{3}. This settles (3) and completes the proof.

Lemma 10. Let n and t be positive integers. If $Q_{1}, Q_{2}, \ldots, Q_{t}$ are edge-disjoint Hamiltonian paths of K_{n}, then $\bigcup_{i=1}^{t} Q_{i}$ is S_{t}-decomposable.

Proof. Since each Q_{i} is a Hamiltonian path of K_{n}, we have $V\left(Q_{i}\right)=V\left(K_{n}\right)$. For each Q_{i}, we orient the edges of Q_{i} from x_{0} along Q_{i} to the end (or ends) of the path, and use $\overrightarrow{Q_{i}}$ to denote the digraph obtained from Q_{i} for such an orientation. Note that there is exactly one arc directed into x_{j} for each $j \in\{1,2, \ldots, n-1\}$. Let $\vec{G}=\bigcup_{i=1}^{t} \overrightarrow{Q_{i}}$. It is easy to check that $\operatorname{deg}_{\vec{G}}^{-} x_{j}=t$ for $j \neq 0$. Thus there exists an S_{t}-decomposition of $\bigcup_{i=1}^{t} Q_{i}$ such that x_{j} is a center of a t-star for $j \neq 0$. This completes the proof.

By Lemma 10, the union of $3 t$ edge-disjoint n-paths can be decomposed into $n-1$ copies of $S_{3 t}$, in turn, each $S_{3 t}$ can be decomposed in to t copies of S_{3}. Hence we have the following result.

Theorem 11. Let n, p and t be positive integers with $p \geq 3 t$, and let q be a nonnegative integer. If K_{n} can be decomposed into p copies of P_{n} and q copies of S_{3}, then K_{n} can be decomposed into $p-3 t$ copies of P_{n} and $q+(n-1) t$ copies of S_{3}.

Obviously, if K_{n} can be decomposed into α copies of n-paths and β copies of S_{3}, then $\binom{n}{2}=(n-1) \alpha+3 \beta$. Using Theorem 11 together with Lemmas 4 to 9 , we have the main result of this section.

Theorem 12. Let n be a positive integer with $n \geq 4$, and let α and β be nonnegative integers. The complete graph K_{n} can be decomposed into α copies of P_{n} and β copies of S_{3} if and only if $\binom{n}{2}=(n-1) \alpha+3 \beta$ and $(n, \alpha, \beta) \notin$ $\{(4,1,1),(4,0,2),(5,1,2)\}$.

4. Decomposition of K_{n} Into n-Cycles and 3-Stars

In this section, we obtain necessary and sufficient conditions for decomposing K_{n} into α copies of C_{n} and β copies of S_{3}. The first two lemmas in the following are from [17] and [32], respectively.

Lemma 13. For an odd integer n and $V\left(K_{n, n}\right)=\left\{x_{0}, \ldots, x_{n-1}\right\} \cup\left\{y_{0}, \ldots, y_{n-1}\right\}$, the complete bipartite graph $K_{n, n}$ can be decomposed into $(n-1) / 2$ copies of $C_{2 n}, C(0), C(1), \ldots, C((n-3) / 2)$, and a 1 -factor F, where $E(F)=\left\{x_{0} y_{n-1}\right.$, $\left.x_{1} y_{0}, \ldots, x_{n-1} y_{n-2}\right\}$ and $C(i)=\left(y_{2 i}, x_{0}, y_{2 i+1}, x_{1}, \ldots, y_{2 i+(n-2)}, x_{n-2}, y_{2 i+(n-1)}\right.$, $\left.x_{n-1}\right)$ for $i=0,1, \ldots,(n-3) / 2$.

Lemma 14. For an even integer n and $V\left(K_{n, n}\right)=\left\{x_{0}, \ldots, x_{n-1}\right\} \cup\left\{y_{0}, \ldots\right.$, $\left.y_{n-1}\right\}$, the complete bipartite graph $K_{n, n}$ can be decomposed into $n / 2$ copies of $C_{2 n}, C(0), C(1), \ldots, C(n / 2-1)$, where $C(i)=\left(y_{2 i}, x_{0}, y_{2 i+1}, x_{1}, \ldots, y_{2 i+(n-2)}\right.$, $\left.x_{n-2}, y_{2 i+(n-1)}, x_{n-1}\right)$ for $i=0,1, \ldots, n / 2-1$.

Lemma 15. Let n be an odd integer and let α be a nonnegative integer. If $\binom{n}{2}-n \alpha$ is a nonnegative integer and $\binom{n}{2}-n \alpha \equiv 0(\bmod 3)$, then

$$
\alpha \in \begin{cases}\{0,1, \ldots,(n-1) / 2\} & \text { if } n \equiv 0(\bmod 3), \\ \{(n-1) / 2-3 t \mid t=0,1, \ldots,\lfloor(n-1) / 6\rfloor\} & \text { otherwise. }\end{cases}
$$

Proof. Since $\binom{n}{2}-n \alpha$ is a nonnegative integer and n is odd, $\alpha \leq\left\lfloor\binom{ n}{2} / n\right\rfloor=(n-$ $1) / 2$. Let $\alpha=(n-1) / 2-(3 t+i)$, where t is a nonnegative integer and $i \in\{0,1,2\}$. Since $\binom{n}{2}-n \alpha=n(n-1) / 2-n \alpha=n(n-1-2 \alpha) / 2=n(3 t+i),\binom{n}{2}-n \alpha \equiv n i$ $(\bmod 3)$. If n is a multiple of 3 , then $n i \equiv 0(\bmod 3)$ holds for any $i \in\{0,1,2\}$. Hence $\alpha \in\{0,1, \ldots,(n-1) / 2\}$ for $n \equiv 0(\bmod 3)$. Otherwise, the condition $n i \equiv 0(\bmod 3)$ holds if and only if $i=0$. This implies $\alpha=(n-1) / 2-3 t$. Moreover, $t \leq\lfloor(n-1) / 6\rfloor$ since α is a nonnegative integer. This completes the proof.

Lemma 16. Let n be an even integer and let α be a nonnegative integer. If $\binom{n}{2}-n \alpha$ is a nonnegative integer and $\binom{n}{2}-n \alpha \equiv 0(\bmod 3)$, then

$$
\alpha \in \begin{cases}\{0,1, \ldots, n / 2-1\} & \text { if } n \equiv 0(\bmod 3), \\ \{n / 2-3 t-2 \mid t=0,1, \ldots,\lfloor(n-4) / 6\rfloor\} & \text { otherwise. }\end{cases}
$$

Proof. Since $\binom{n}{2}-n \alpha$ is a nonnegative integer and n is even, $\alpha \leq\left\lfloor\binom{ n}{2} / n\right\rfloor=$ $n / 2-1$. Let $\alpha=n / 2-1-(3 t+i)$, where t is a nonnegative integer and $i \in\{0,1,2\}$. Since $\binom{n}{2}-n \alpha=n(n-1-2 \alpha) / 2=n(6 t+2 i+1) / 2,\binom{n}{2}-n \alpha \equiv n(2 i+1) / 2(\bmod 3)$. If $n \equiv 0(\bmod 3)$, then $n / 2 \equiv 0(\bmod 3)$, this implies that $n(2 i+1) / 2 \equiv 0$ $(\bmod 3)$ holds for any $i \in\{0,1,2\}$. Hence $\alpha \in\{0,1, \ldots, n / 2-1\}$ for $n \equiv 0$
$(\bmod 3)$. Otherwise, the condition $n(2 i+1) / 2 \equiv 0(\bmod 3)$ holds if and only if $i=1$. This implies $\alpha=n / 2-3 t-2$. Moreover, $t \leq\lfloor(n-4) / 6\rfloor$ since α is a nonnegative integer. This completes the proof.

Let $m=(n-3) / 2$ for odd n and $m=(n-2) / 2$ for even n. Let $C(1), C(2), \ldots$, $C(m)$ be edge-disjoint n-cycles in K_{n}, and let $G=K_{n}-\bigcup_{i=1}^{m} E(C(i))$. Since $\operatorname{deg}_{G} x=n-1-2 m \leq 2$ for each vertex x, G has no S_{3}-decomposition. Thus we have the following result.
Lemma 17. Let $n \equiv 0(\bmod 3)$. The complete graph K_{n} cannot be decomposed into $(n-3) / 2$ copy of C_{n} and $n / 3$ copies of S_{3} for odd n, and cannot be decomposed into $(n-2) / 2$ copy of C_{n} and $n / 6$ copies of S_{3} for even n.
Lemma 18. If n is an odd integer with $n \geq 5$, then the following hold:
(1) The complete graph K_{n} can be decomposed into $(n-1) / 2$ copies of C_{n}.
(2) The complete graph K_{n} can be decomposed into $(n-5) / 2$ copies of C_{n} and $2 n / 3$ copies of S_{3} when $n \equiv 3(\bmod 6)$ and $n \geq 9$.
(3) The complete graph K_{n} can be decomposed into $(n-9) / 2$ copies of C_{n} and $4 n / 3$ copies of S_{3} when $n \equiv 3(\bmod 6)$ and $n \geq 9$.
Proof. By Lemma 2, the complete graph K_{n} can be decomposed into $(n-1) / 2$ copies of $C_{n}, C(1), C(2), \ldots, C((n-1) / 2)$ with $C(i)=\left(x_{0}, x_{i}, x_{i-1}, x_{i+1}, \ldots\right.$, $\left.x_{i+(n-5) / 2}, x_{i+(n+1) / 2}, x_{i+(n-3) / 2}, x_{i+(n-1) / 2}\right)$ for $i=1,2, \ldots,(n-1) / 2$, where the subscripts of x 's are taken modulo $n-1$ in the set of numbers $\{1,2, \ldots, n-1\}$. Hence we have (1).
(2) If there exist s and $t(1 \leq s<t \leq(n-1) / 2)$ such that $C(s) \cup C(t)$ can be decomposed into $2 n / 3$ copies of S_{3}, then we have the result. Consider the case $s=(n+3) / 6$ and $t=n / 3$. Note that $C((n+3) / 6)=\left(x_{0}, x_{(n+3) / 6}, x_{(n-3) / 6}\right.$, $\left.x_{(n+9) / 6}, x_{(n-9) / 6}, \ldots, x_{n / 3-1}, x_{1}, x_{n / 3}, x_{n-1}, \ldots, x_{2 n / 3-2}, x_{2 n / 3+1}, x_{2 n / 3-1}, x_{2 n / 3}\right)$. For $i=1,2, \ldots, n / 3-1$, let $S_{2}(i)=\left(x_{n-i} ; x_{n / 3-1+i}, x_{n / 3+i}\right)$ and $S_{2}(n / 3)=$ $\left(x_{2 n / 3} ; x_{2 n / 3-1}, x_{0}\right)$. For $j=1,2, \ldots,(n-3) / 6$, let $P_{2}(j)=x_{j} x_{n / 3+1-j}$. For $j=(n+3) / 6,(n+9) / 6, \ldots, n / 3-1$, let $P_{2}(j)=x_{j} x_{n / 3-j}$. In addition, let $P_{2}(0)=x_{0} x_{(n+3) / 6}$. Obviously, $S_{2}(i)$ is a 2 -star for $i=1,2, \ldots, n / 3$, and $P_{2}(j)$ is a 2 -path for $j=0,1, \ldots, n / 3-1$. One can see that $C((n+3) / 6)$ can be decomposed into $S_{2}(1), S_{2}(2), \ldots, S_{2}(n / 3)$ and $P_{2}(0), P_{2}(1), \ldots, P_{2}(n / 3-1)$.

On the other hand, $C(n / 3)=\left(x_{0}, x_{n / 3}, x_{n / 3-1}, x_{n / 3+1}, x_{n / 3-2}, x_{n / 3+2}, \ldots\right.$, $\left.x_{2 n / 3-2}, x_{1}, x_{2 n / 3-1}, x_{n-1}, \ldots, x_{(5 n-15) / 6}, x_{(5 n+3) / 6}, x_{(5 n-9) / 6}, x_{(5 n-3) / 6}\right)$. For $j=$ $1,2, \ldots, n / 3-1$, let $S_{2}^{\prime}(j)=\left(x_{j} ; x_{2 n / 3-1-j}, x_{2 n / 3-j}\right)$. For $i=1,2, \ldots,(n+3) / 6$, let $P_{2}^{\prime}(i)=x_{n-i} x_{2 n / 3-2+i}$. For $i=(n+9) / 6,(n+12) / 6, \ldots, n / 3$, let $P_{2}^{\prime}(i)=$ $x_{n-i} x_{2 n / 3-1+i}$. In addition, let $P_{2}^{\prime}(0)=x_{0} x_{n / 3}$ and $P_{2}^{\prime \prime}(0)=x_{0} x_{(5 n-3) / 6}$. Obviously, $S_{2}^{\prime}(j)$ is a 2 -star for $i=1,2, \ldots, n / 3-1$, and $P_{2}^{\prime \prime}(0)$ and $P_{2}^{\prime}(i)$ are 2 paths for $i=0,1, \ldots, n / 3$. One can see that $C(n / 3)$ can be decomposed into $S_{2}^{\prime}(1), S_{2}^{\prime}(2), \ldots, S_{2}^{\prime}(n / 3-1)$ and $P_{2}^{\prime}(0), P_{2}^{\prime}(1), \ldots, P_{2}^{\prime}(n / 3)$ as well as $P_{2}^{\prime \prime}(0)$.

For $i=1,2, \ldots, n / 3$, let $S_{3}(i)=S_{2}(i) \cup P_{2}^{\prime}(i)$. For $j=1,2, \ldots, n / 3-1$, let $S_{3}^{\prime}(j)=S_{2}^{\prime}(j) \cup P_{2}(j)$. Clearly, $S_{3}(i)$ and $S_{3}^{\prime}(j)$ are 3 -stars. In addition, $P_{2}(0) \cup P_{2}^{\prime}(0) \cup P_{2}^{\prime \prime}(0)$ is also a 3 -star. Hence $C((n+3) / 6) \cup C(n / 3)$ can be decomposed into $2 n / 3$ copies of S_{3}. This settles (2).
(3) According to the proof of (2), the result holds if there exist s^{\prime} and $t^{\prime}\left(s^{\prime}, t^{\prime} \notin\right.$ $\{(n+3) / 6, n / 3\})$ such that $C\left(s^{\prime}\right) \cup C\left(t^{\prime}\right)$ can be decomposed into $2 n / 3$ copies of S_{3}. Consider the case $s^{\prime}=(n+9) / 6$ and $t^{\prime}=n / 3+1$. Note that $C((n+9) / 6)=$ $\left(x_{0}, x_{(n+9) / 6}, x_{(n+3) / 6}, x_{(n+15) / 6}, x_{(n-3) / 6}, \ldots, x_{n / 3+1}, x_{1}, x_{n / 3+2}, x_{n-1}, \ldots, x_{2 n / 3-1}\right.$, $\left.x_{2 n / 3+2}, x_{2 n / 3}, x_{2 n / 3+1}\right)$. For $i=1,2, \ldots, n / 3-1$, let $S_{2}(i)=\left(x_{n+1-i} ; x_{n / 3+i}\right.$, $\left.x_{n / 3+1+i}\right)$ with $x_{n}=x_{1}$ and $S_{2}(n / 3)=\left(x_{2 n / 3+1} ; x_{2 n / 3}, x_{0}\right)$. For $j=2,3, \ldots,(n+$ $3) / 6$, let $P_{2}(j)=x_{j} x_{n / 3+3-j}$. For $j=(n+9) / 6,(n+15) / 6, \ldots, n / 3$, let $P_{2}(j)=$ $x_{j} x_{n / 3+2-j}$. In addition, let $P_{2}(0)=x_{0} x_{(n+9) / 6}$. Obviously, $S_{2}(i)$ is a 2 -star for $i=1,2, \ldots, n / 3$, and $P_{2}(j)$ is a 2 -path for $j=0,2,3, \ldots, n / 3$. One can see that $C((n+3) / 6)$ can be decomposed into $S_{2}(1), S_{2}(2), \ldots, S_{2}(n / 3)$ and $P_{2}(0), P_{2}(2), P_{2}(3), \ldots, P_{2}(n / 3)$.

On the other hand, $C(n / 3+1)=\left(x_{0}, x_{n / 3+1}, x_{n / 3}, x_{n / 3+2}, x_{n / 3-1}, \ldots, x_{2 n / 3}\right.$, $\left.x_{1}, x_{2 n / 3+1}, x_{n-1}, x_{2 n / 3+2}, x_{n-2}, \ldots, x_{(5 n-9) / 6}, x_{(5 n+9) / 6}, x_{(5 n-3) / 6}, x_{(5 n+3) / 6}\right)$. For $j=2,3, \ldots, n / 3$, let $S_{2}^{\prime}(j)=\left(x_{j} ; x_{2 n / 3+1-j}, x_{2 n / 3+2-j}\right)$. For $i=1,2, \ldots,(n+$ 3) $/ 6$, let $P_{2}^{\prime}(i)=x_{n+1-i} x_{2 n / 3-1+i}$, and for $i=(n+9) / 6,(n+12) / 6, \ldots, n / 3$, let $P_{2}^{\prime}(i)=x_{n+1-i} x_{2 n / 3+i}$ with $x_{n}=x_{1}$. In addition, let $P_{2}^{\prime}(0)=x_{0} x_{n / 3+1}$ and $P_{2}^{\prime \prime}(0)=x_{0} x_{(5 n+3) / 6}$. Obviously, $S_{2}^{\prime}(j)$ is a 2 -star for $i=2,3, \ldots, n / 3$, and $P_{2}^{\prime \prime}(0)$ and $P_{2}^{\prime}(i)$ are 2-paths for $i=0,1, \ldots, n / 3$. One can see that $C(n / 3+1)$ can be decomposed into $S_{2}^{\prime}(2), S_{2}^{\prime}(3), \ldots, S_{2}^{\prime}(n / 3)$ and $P_{2}^{\prime}(0), P_{2}^{\prime}(1), \ldots, P_{2}^{\prime}(n / 3)$ as well as $P_{2}^{\prime \prime}(0)$.

For $i=1,2, \ldots, n / 3$, let $S_{3}(i)=S_{2}(i) \cup P_{2}^{\prime}(i)$. For $j=2,3, \ldots, n / 3$, let $S_{3}^{\prime}(j)=S_{2}^{\prime}(j) \cup P_{2}(j)$. Clearly, $S_{3}(i)$ and $S_{3}^{\prime}(j)$ are 3 -stars. In addition, $P_{2}(0) \cup$ $P_{2}^{\prime}(0) \cup P_{2}^{\prime \prime}(0)$ is also a 3 -star. Hence $C((n+9) / 6) \cup C(n / 3+1)$ can be decomposed into $2 n / 3$ copies of S_{3}. This settles (3).

For positive integers l and n with $1 \leq l \leq n$, the (n, l)-crown $C_{n, l}$ is the bipartite graph with bipartition (X, Y), where $X=\left\{x_{0}, x_{1}, \ldots, x_{n-1}\right\}$ and $B=$ $\left\{y_{0}, y_{1}, \ldots, y_{n-1}\right\}$, and edge set $\left\{x_{i} y_{j}: i=0,1, \ldots, n-1, j \equiv i+1, i+2, \ldots, i+l\right.$ $(\bmod l)\}$.

Proposition 19 [24]. $\lambda C_{n, l}$ is S_{k}-decomposable if and only if $k \leq l$ and $\lambda n l \equiv 0$ $(\bmod k)$.

Lemma 20. If n is an even integer $n \geq 6$, then the following hold:
(1) The complete graph K_{n} can be decomposed into $n / 2-2$ copies of C_{n} and $n / 2$ copies of S_{3}.
(2) The complete graph K_{n} can be decomposed into $n / 2-3$ copies of C_{n} and $5 n / 6$ copies of S_{3} when $n \equiv 0(\bmod 6)$.
(3) The complete graph K_{n} can be decomposed into $n / 2-4$ copies of C_{n} and $7 n / 6$ copies of S_{3} when $n \equiv 0(\bmod 6)$ and $n \geq 12$.

Proof. Let $V\left(K_{n}\right)=X \cup Y$, where $X=\left\{x_{0}, \ldots, x_{n / 2-1}\right\}$ and $Y=\left\{y_{0}, \ldots\right.$, $\left.y_{n / 2-1}\right\}$. Note that $K_{n}=K_{n}[X] \cup K_{n}[Y] \cup K_{n}[X, Y]$ where $K_{n}[X]$ and $K_{n}[Y]$ are isomorphic to $K_{n / 2}$ and $K_{n}[X, Y]$ is isomorphic to $K_{n / 2, n / 2}$. We distinguish two cases : Case 1. $n \equiv 0(\bmod 4)$ and Case $2 . n \equiv 2(\bmod 4)$.

Case 1. $n \equiv 0(\bmod 4)$. By Lemma 14, $K_{n}[X, Y]$ can be decomposed into $n / 4$ copies of $C_{n}, C(0), C(1), \ldots, C(n / 4-1)$, where $C(i)=\left(y_{2 i}, x_{0}, y_{2 i+1}, x_{1}, \ldots\right.$, $\left.y_{2 i+(n / 2-2)}, x_{n / 2-2}, y_{2 i+(n / 2-1)}, x_{n / 2-1}\right)$ for $i=0,1,2, \ldots, n / 4-1$. By Proposition 1 , we have the following results. $K_{n}[X]$ can be decomposed into the following $n / 4$ copies of $P_{n / 2}: P_{n / 2}\left(x_{0}, x_{n / 4}\right), P_{n / 2}\left(x_{1}, x_{1+n / 4}\right), \ldots, P_{n / 2}\left(x_{n / 4-1}, x_{n / 2}-1\right)$, and $K_{n}[Y]$ can be decomposed into the following $n / 4$ copies of $P_{n / 2}: P_{n / 2}\left(y_{0}, y_{n / 4}\right)$, $P_{n / 2}\left(y_{1}, y_{1+n / 4}\right), \ldots, P_{n / 2}\left(y_{n / 4-1}, y_{n / 2-1}\right)$.

For $i=0,1, \ldots, n / 4-1$, let $Q(i)=P_{n / 2}\left(x_{i}, x_{i+n / 4}\right) \cup P_{n / 2}\left(y_{i}, y_{i+n / 4}\right) \cup$ $\left\{y_{i} x_{i}, y_{i+n / 4} x_{i+n / 4}\right\}$. Clearly, $Q(i)$ is an n-cycle, and $y_{i} x_{i}, y_{i+n / 4} x_{i+n / 4} \in E(C(0))$ for $i=0,1, \ldots, n / 4-1$. For $1 \leq t \leq n / 4-1$, let

$$
R(t)=\left(\bigcup_{i=0}^{t} C(i)\right)-\left\{y_{i} x_{i}, y_{i+n / 4} x_{i+n / 4} \mid 0 \leq i \leq n / 4-1\right\} .
$$

It is easy to see that $R(t)$ is isomorphic to the crown $C_{n / 2,2 t+1}$. Therefore, K_{n} can be decomposed into $n / 2-(t+1)$ copies of $C_{n}, Q(0), Q(1), \ldots, Q(n / 4-1)$ and $C(t+1), C(t+2), \ldots, C(n / 4-1)$, and one copy of $(n / 2,2 t+1)$-crown $R(t)$. Note that $2 t+1 \geq 3$ and $|E(R(t))|=\left|E\left(C_{n / 2,2 t+1}\right)\right|=(2 t+1) n / 2$. If $(2 t+$ 1) $n / 2 \equiv 0(\bmod 3)$, then $R(t)$ can be decomposed into $(2 t+1) n / 6$ copies of S_{3} by Proposition 19. Hence for $n \equiv 0(\bmod 4)$, we have the following.

If $t=1$, then $(2 t+1) n / 2=3 n / 2 \equiv 0(\bmod 3)$ for each n. Thus K_{n} can be decomposed into $n / 2-2$ copies of C_{n} and $n / 2$ copies of S_{3}.

If $t=2$, then $(2 t+1) n / 2=5 n / 2 \equiv 0(\bmod 3)$ for $n \equiv 0(\bmod 6)$. Thus K_{n} can be decomposed into $n / 2-3$ copies of C_{n} and $5 n / 6$ copies of S_{3}.

If $t=3$, then $(2 t+1) n / 2=7 n / 2 \equiv 0(\bmod 3)$ for $n \equiv 0(\bmod 6)$. Thus K_{n} can be decomposed into $n / 2-4$ copies of C_{n} and $7 n / 6$ copies of S_{3}. This settles Case 1.

Case 2. $n \equiv 2(\bmod 4)$. Since $n \equiv 2(\bmod 4), n / 2$ is odd. By Lemma 13 , $K_{n}[X, Y]$ can decomposed into $(n-2) / 4$ copies of $C_{n}, C(0), C(1), \ldots, C((n-$ $6) / 4)$, and a 1 -factor F, where $E(F)=\left\{x_{0} y_{n / 2-1}, x_{1} y_{0}, \ldots, x_{n / 2-1} y_{n / 2-2}\right\}$ and $C(i)=\left(y_{2 i}, x_{0}, y_{2 i+1}, x_{1}, \ldots, y_{2 i+(n / 2-1)}, x_{n / 2-1}\right)$ for $i=0,1, \ldots,(n-6) / 4$.

Now we consider $K_{n}[X]$ and $K_{n}[Y]$. By Lemma 2 , we have the following results. $K_{n}[X]$ can be decomposed into $(n-2) / 4$ copies of $C_{n / 2}, W(1), W(2), \ldots$, $W((n-2) / 4)$ with $W(i)=\left(x_{0}, x_{i}, x_{i-1}, x_{i+1}, x_{i-2}, \ldots, x_{i+(n-10) / 4}, x_{i+(n+2) / 4}\right.$,
$\left.x_{i+(n-6) / 4}, x_{i+(n-2) / 4}\right)$, and $K_{n}[Y]$ can be decomposed into $(n-2) / 4$ copies of $C_{n / 2}, W^{\prime}(1), W^{\prime}(2), \ldots, W^{\prime}((n-2) / 4)$ with $W^{\prime}(i)=\left(y_{0}, y_{i}, y_{i-1}, y_{i+1}, y_{i-2}, \ldots\right.$, $\left.y_{i+(n-10) / 4}, y_{i+(n+2) / 4}, y_{i+(n-6) / 4}, y_{i+(n-2) / 4}\right)$ for $i=1,2, \ldots,(n-2) / 4$, where the subscripts of x 's and y 's are taken modulo $(n-2) / 2$ in the set of numbers $\{1,2, \ldots,(n-2) / 2\}$. For $i=1,2, \ldots,(n-2) / 4$, let

$$
e(i)= \begin{cases}x_{0} x_{1} & \text { if } i=1 \\ x_{i} x_{i-1} & \text { if } i \text { is odd and } i \geq 3 \\ x_{i+(n-6) / 4} x_{i+(n-2) / 4} & \text { if } i \text { is even }\end{cases}
$$

and let

$$
e^{\prime}(i)= \begin{cases}y_{0} y_{1} & \text { if } i=1 \\ y_{i} y_{i-1} & \text { if } i \text { is odd and } i \geq 3 \\ y_{i+(n-6) / 4} y_{i+(n-2) / 4} & \text { if } i \text { is even }\end{cases}
$$

Let $P(i)=W(i)-\{e(i)\}$ and $P^{\prime}(i)=W^{\prime}(i)-\left\{e^{\prime}(i)\right\}$. Trivially, $P(i)$ and $P^{\prime}(i)$ are $(n / 2)$-paths. Let $M=\{e(i) \mid 1 \leq i \leq(n-2) / 4\}$ and $M^{\prime}=\left\{e^{\prime}(i) \mid 1 \leq\right.$ $i \leq(n-2) / 4\}$. If $n \equiv 2(\bmod 8)$, then $(n-2) / 4$ is even. Hence $M=$ $\left\{x_{0} x_{1}, x_{2} x_{3}, \ldots, x_{(n-10) / 4} x_{(n-6) / 4}, x_{(n+2) / 4} x_{(n+6) / 4}, \ldots, x_{n / 2-2} x_{n / 2-1}\right\}$ and $M^{\prime}=$ $\left\{y_{0} y_{1}, y_{2} y_{3}, \ldots, y_{(n-10) / 4} y_{(n-6) / 4}, y_{(n+2) / 4} y_{(n+6) / 4}, \ldots, y_{n / 2-2} y_{n / 2-1}\right\}$. If $n \equiv 6$ $(\bmod 8)$, then $(n-2) / 4$ is odd. Hence $M=\left\{x_{0} x_{1}, x_{2} x_{3}, \ldots, x_{n / 2-3} x_{n / 2-2}\right\}$ and $M^{\prime}=\left\{y_{0} y_{1}, y_{2} y_{3}, \ldots, y_{n / 2-3} y_{n / 2-2}\right\}$. Let H be the subgraph of $K_{n}[X]$ induced by M, and let H^{\prime} be the subgraph of $K_{n}[Y]$ induced by M^{\prime}. Clearly, $K_{n}[X]$ can be decomposed into H and $(n-2) / 4$ copies of $P_{n / 2}, P(1), P(2), \ldots, P((n-$ 2)/4), and $K_{n}[Y]$ can be decomposed into H^{\prime} and $(n-2) / 4$ copies of $P_{n / 2}$, $P^{\prime}(1), P^{\prime}(2), \ldots, P^{\prime}((n-2) / 4)$.

Let $Z=\left\{y_{0} x_{0}, y_{1} x_{1}\right\} \cup\left\{y_{i-1} x_{i-1}, y_{i} x_{i} \mid i\right.$ is odd and $\left.i \geq 3\right\} \cup\left\{y_{i+(n-6) / 4}\right.$ $x_{i+(n-6) / 4}, y_{i+(n-2) / 4} x_{i+(n-2) / 4} \mid i$ is even $\}$. Obviously, $Z \subseteq E(C(0))$. For $i=$ $1,2, \ldots,(n-2) / 4$, let $K=\left\{y_{i+(n-6) / 4} x_{i+(n-6) / 4}, y_{i+(n-2) / 4} x_{i+(n-2) / 4}\right\}$ and

$$
Q(i)= \begin{cases}P(1) \cup P^{\prime}(1) \cup\left\{y_{0} x_{0}, y_{1} x_{1}\right\} & \text { if } i=1 \\ P(i) \cup P^{\prime}(i) \cup\left\{y_{i-1} x_{i-1}, y_{i} x_{i}\right\} & \text { if } i \text { is odd and } i \geq 3 \\ P(i) \cup P^{\prime}(i) \cup K & \text { if } i \text { is even }\end{cases}
$$

and let $Q((n+2) / 4)=H \cup H^{\prime} \cup C(0)-Z$. One can see that each $Q(i)$ is an n-cycle. Thus $K_{n}[X] \cup K_{n}[Y] \cup C(0)$ can be decomposed into $(n+2) / 4$ copies of C_{n}. For $1 \leq t \leq(n-6) / 4$, let

$$
R(t)=\left(\bigcup_{i=1}^{t} C((n-6) / 4-i+1)\right) \cup F
$$

It is easy to see that $R(t)$ is isomorphic to the crown $C_{n / 2,2 t+1}$. Hence $K_{n}[X, Y]$ can be decomposed into $n / 2-(t+1)$ copies of $C_{n}, Q(1), Q(2), \ldots, Q((n+2) / 4)$
and $C(1), C(2), \ldots, C((n-6) / 4-t)$, and one copy of $(n / 2,2 t+1)$-crown $R(t)$. Note that $2 t+1 \geq 3$ and $|E(R(t))|=\left|E\left(C_{n / 2,2 t+1}\right)\right|=(2 t+1) n / 2$. If $(2 t+$ 1) $n / 2 \equiv 0(\bmod 3)$, then $R(t)$ can be decomposed into $(2 t+1) n / 6$ copies of S_{3} by Proposition 19.

If $t=1$, then $(2 t+1) n / 2=3 n / 2 \equiv 0(\bmod 3)$ for each n. Thus K_{n} can be decomposed into $n / 2-2$ copies of C_{n} and $n / 2$ copies of S_{3}.

If $t=2$, then $(2 t+1) n / 2=5 n / 2 \equiv 0(\bmod 3)$ for $n \equiv 0(\bmod 6)$. Thus K_{n} can be decomposed into $n / 2-3$ copies of C_{n} and $5 n / 6$ copies of S_{3}.

If $t=3$, then $(2 t+1) n / 2=7 n / 2 \equiv 0(\bmod 3)$ for $n \equiv 0(\bmod 6)$. Thus K_{n} can be decomposed into $n / 2-4$ copies of C_{n} and $7 n / 6$ copies of S_{3}. This settles Case 2.

Let x and y be distinct vertices of a multigraph G. We use $e_{G}(x, y)$ to denote the number of edges joining x and y. A star decomposition of G is center balanced if every vertex of G is the center of the same number of members in the decomposition.

Proposition 21 [21]. Let G be an r-regular multigraph with $r \geq 1$. Then G has a center balanced S_{t}-decomposition if and only if $r \equiv 0(\bmod 2 t)$ and $e_{G}(x, y) \leq r / t$ for all $x, y \in V(G)$ with $x \neq y$.

Lemma 22. Let n and t be positive integers. If $Q_{1}, Q_{2}, \ldots, Q_{t}$ are edge-disjoint Hamiltonian cycles of K_{n}, then $\bigcup_{i=1}^{t} Q_{i}$ is S_{t}-decomposable.

Proof. Since each $Q(i)$ is 2-regular and $V(Q(i))=V(Q(j))$ for $i, j \in\{1,2, \ldots, t\}$, $\bigcup_{i=1}^{t} Q_{i}$ is $2 t$-regular. Since $2 t \equiv 0(\bmod 2 t)$ and $e_{\bigcup_{i=1}^{t} Q_{i}}(x, y) \leq 1<(2 t) / t$ for all $x, y \in V\left(\bigcup_{i=1}^{t} Q_{i}\right)$ with $x \neq y$, the result follows from Proposition 21.

By Lemma 22, the union of $3 t$ copies of edge-disjoint n-cycles can be decomposed into n copies of $S_{3 t}$, in turn, each $S_{3 t}$ can be decomposed in to t copies of S_{3}. Hence we have the following result.

Theorem 23. Let n, p and t be positive integers with $p \geq 3 t$, and let q be a nonnegative integer. If K_{n} can be decomposed into p copies of C_{n} and q copies of S_{3}, then K_{n} can be decomposed into $p-3 t$ copies of C_{n} and $q+n t$ copies of S_{3}.

Obviously, if K_{n} can be decomposed into α copies of C_{n} and β copies of S_{3}, then $\binom{n}{2}=n \alpha+3 \beta$. Using Theorem 23 together with Lemmas 15 to 20, we have the main result of this section.

Theorem 24. Let n, α and β be positive integers. The complete graph K_{n} can be decomposed into α copies of C_{n} and β copies of S_{3} if and only if $\binom{n}{2}=n \alpha+3 \beta$ and $\alpha \neq(n-3) / 2$ for $n \equiv 3(\bmod 6)$ and $\alpha \neq(n-2) / 2$ for $n \equiv 0(\bmod 6)$.

Acknowledgment

We would like to thank the referees for their valuable comments and helpful suggestions.

References

[1] A. Abueida, S. Clark and D. Leach, Multidecomposition of the complete graph into graph pairs of order 4 with various leaves, Ars Combin. 93 (2009) 403-407.
[2] A. Abueida and M. Daven, Multidesigns for graph-pairs of order 4 and 5, Graphs Combin. 19 (2003) 433-447. doi:10.1007/s00373-003-0530-3
[3] A. Abueida and M. Daven, Multidecompositons of the complete graph, Ars Combin. 72 (2004) 17-22.
[4] A. Abueida and M. Daven, Multidecompositions of several graph products, Graphs Combin. 29 (2013) 315-326. doi:10.1007/s00373-011-1127-x
[5] A. Abueida, M. Daven and K.J. Roblee, Multidesigns of the λ-fold complete graph for graph-pairs of order 4 and 5, Australas. J. Combin. 32 (2005) 125-136.
[6] A. Abueida and C. Hampson, Multidecomposition of $K_{n}-F$ into graph-pairs of order 5 where F is a Hamilton cycle or an (almost) 1-factor, Ars Combin. 97 (2010) 399-416.
[7] A. Abueida and C. Lian, On the decompositions of complete graphs into cycles and stars on the same number of edges, Discuss. Math. Graph Theory 34 (2014) 113-125. doi:10.7151/dmgt. 1719
[8] A. Abueida and T. O'Neil, Multidecomposition of λK_{m} into small cycles and claws, Bull. Inst. Combin. Appl. 49 (2007) 32-40.
[9] B. Alspach, The wonderful Walecki construction, Bull. Inst. Combin. Appl. 52 (2008) 7-20.
[10] F. Beggas, M. Haddad and H. Kheddouci, Decomposition of complete multigraphs into stars and cycles, Discuss. Math. Graph Theory 35 (2015) 629-639. doi:10.7151/dmgt. 1820
[11] J. Bosák, Decompositions of Graphs (Kluwer, Dordrecht, Netherlands, 1990).
[12] D. Bryant, Packing paths in complete graphs, J. Combin. Theory Ser. B 100 (2010) 206-215. doi:10.1016/j.jctb.2009.08.004
[13] P. Hell and A. Rosa, Graph decompositions, handcuffed prisoners and balanced Pdesigns, Discrete Math. 2 (1972) 229-252. doi:10.1016/0012-365X(72)90005-2
[14] S. Jeevadoss and A. Muthusamy, Decomposition of complete bipartite graphs into paths and cycles, Discrete Math. 331 (2014) 98-108. doi:10.1016/j.disc.2014.05.009
[15] S. Jeevadoss and A. Muthusamy, Decomposition of product graphs into paths and cycles of length four, Graphs Combin. 32 (2016) 199-223.
doi:10.1007/s00373-015-1564-z
[16] S. Jeevadoss and A. Muthusamy, Decomposition of complete bipartite multigraphs into paths and cycles having k edges, Discuss. Math. Graph Theory 35 (2015) 715-731. doi:10.7151/dmgt. 1830
[17] R. Laskar and B. Auerbach, On decomposition of r-partite graphs into edge-disjoint Hamilton circuits, Discrete Math. 14 (1976) 265-268. doi:10.1016/0012-365X(76)90039-X
[18] H.-C. Lee, Multidecompositions of complete bipartite graphs into cycles and stars, Ars Combin. 108 (2013) 355-364.
[19] H.-C. Lee, Decomposition of the complete bipartite multigraph into cycles and stars, Discrete Math. 338 (2015) 1362-1369. doi:10.1016/j.disc.2015.02.019
[20] H.-C. Lee and Z.-C. Chen, Maximum packings and minimum coverings of multigraphs with paths and stars, Taiwanese J. Math. 19 (2015) 1341-1357. doi:10.11650/tjm.19.2015.4456
[21] H.-C. Lee and C. Lin, Balanced star decompositions of regular multigraphs and λ fold complete bipartite graphs, Discrete Math. 301 (2005) 195-206. doi:10.1016/j.disc.2005.04.023
[22] H.-C. Lee and J.-J. Lin, Decomposition of the complete bipartite graph with a 1factor removed into cycles and stars, Discrete Math. 313 (2013) 2354-2358. doi:10.1016/j.disc.2013.06.014
[23] J.-J. Lin, Decompositions of multicrowns into cycles and stars, Taiwanese J. Math. 19 (2015) 1261-1270. doi:10.11650/tjm.19.2015.3460
[24] C. Lin, J.-J. Lin and T.-W. Shyu, Isomorphic star decomposition of multicrowns and the power of cycles, Ars Combin. 53 (1999) 249-256.
[25] H.M. Priyadharsini and A. Muthusamy, $\left(G_{m}, H_{m}\right)$-multifactorization of λK_{m}, J. Combin. Math. Combin. Comput. 69 (2009) 145-150.
[26] H.M. Priyadharsini and A. Muthusamy, $\left(G_{m}, H_{m}\right)$-multidecomposition of $K_{m, m}(\lambda)$, Bull. Inst. Combin. Appl. 66 (2012) 42-48.
[27] T.-W. Shyu, Decomposition of complete graphs into paths and stars, Discrete Math. 310 (2010) 2164-2169. doi:10.1016/j.disc.2010.04.009
[28] T.-W. Shyu, Decompositions of complete graphs into paths and cycles, Ars Combin. 97 (2010) 257-270.
[29] T.-W. Shyu, Decomposition of complete graphs into paths of length three and triangles, Ars Combin. 107 (2012) 209-224.
[30] T.-W. Shyu, Decomposition of complete graphs into cycles and stars, Graphs Combin. 29 (2013) 301-313.
doi:10.1007/s00373-011-1105-3
[31] T.-W. Shyu, Decomposition of complete bipartite graphs into paths and stars with same number of edges, Discrete Math. 313 (2013) 865-871.
doi:10.1016/j.disc.2012.12.020
[32] D. Sotteau, Decomposition of $K_{m, n}\left(K_{m, n}^{*}\right)$ into cycles (circuits) of length $2 k$, J. Combin. Theory Ser. B 30 (1981) 75-81.
doi:10.1016/0095-8956(81)90093-9
[33] M. Tarsi, Decomposition of complete multigraphs into stars, Discrete Math. 26 (1979) 273-278.
doi:10.1016/0012-365X(79)90034-7

Revised 14 May 2018
Accepted 14 May 2018

