Discussiones Mathematicae Graph Theory 40 (2020) 823–839 doi:10.7151/dmgt.2153

DECOMPOSING THE COMPLETE GRAPH INTO HAMILTONIAN PATHS (CYCLES) AND 3-STARS

HUNG-CHIH LEE

Department of Information Technology Ling Tung University Taichung 40852, Taiwan e-mail: birdy@teamail.ltu.edu.tw

AND

ZHEN-CHUN CHEN

Department of Applied Mathematics National Chiao Tung University Hsinchu 300, Taiwan

e-mail: amco0624@yahoo.com.tw

Abstract

Let H be a graph. A decomposition of H is a set of edge-disjoint subgraphs of H whose union is H. A Hamiltonian path (respectively, cycle) of H is a path (respectively, cycle) that contains every vertex of H exactly once. A k-star, denoted by S_k , is a star with k edges. In this paper, we give necessary and sufficient conditions for decomposing the complete graph into α copies of Hamiltonian path (cycle) and β copies of S_3 .

Keywords: decomposition, complete graph, Hamiltonian path, Hamiltonian cycle, star.

2010 Mathematics Subject Classification: 05C70, 05C38.

1. INTRODUCTION

For positive integers m and n, K_n denotes the complete graph with n vertices, and $K_{m,n}$ denotes the complete bipartite graph with parts of sizes m and n. Let k be a positive integer. A *k*-path, denoted by P_k , is a path on k vertices. A *k*-cycle, denoted by C_k , is a cycle of length k. A *k*-star, denoted by S_k , is a star with k edges, i.e., $S_k = K_{1,k}$. Let H be a graph. A spanning subgraph of H is a subgraph of H containing every vertex of H. A spanning path (respectively, cycle) of H is called a Hamiltonian path (respectively, cycle) of H. A 1-factor of G is a spanning subgraph of G in which each vertex is incident with exactly one edge.

Let F, G, and H be graphs. A *decomposition* of H is a set of edge-disjoint subgraphs of H whose union is H. If H can be decomposed into α copies of Fand β copies of G for nonnegative integers α and β , then we say that H has an $\{\alpha F, \beta G\}$ -decomposition. Furthermore, if $\alpha \geq 1$ and $\beta \geq 1$, then we say that Hhas an (F, G)-decomposition or H is (F, G)-decomposable.

Study on the existence of an (F, G)-decomposition of a graph has attracted a fair share of interest. Abueida and Daven [3] investigated the problem of (K_k, S_k) -decomposition of the complete graph K_n . Abueida and Daven [4] investigated the problem of the (C_4, E_2) -decomposition of several graph products where E_2 denotes two vertex disjoint edges. Abueida and O'Neil [8] studied the existence problem for (C_k, S_{k-1}) -decomposition of the complete multigraph λK_n for $k \in \{3, 4, 5\}$. Priyadharsini and Muthusamy [25, 26] investigated the existence of (G, H)-decompositions of λK_n and $\lambda K_{n,n}$ where $G, H \in \{C_n, P_n, S_{n-1}\}$. A graph-pair (G, H) of order m is a pair of non-isomorphic graphs G and H with V(G) = V(H) such that both G and H contain no isolated vertices and $G \cup H$ is isomorphic to K_m . Abueida and Daven [2] and Abueida, Daven and Roblee [5] completely determined the values of n for which λK_n admits a (G, H)decomposition where (G, H) is a graph-pair of order 4 or 5. Abueida, Clark and Leach [1] and Abueida and Hampson [6] considered the existence of decompositions of $K_n - F$ into the graph-pairs of order 4 and 5, respectively, where F is a Hamiltonian cycle, a 1-factor, or an almost 1-factor. Lee [18, 19], Lee and Lin [22], and Lin [23] established necessary and sufficient conditions for the existence of (C_k, S_k) -decompositions of the complete bipartite graph, the complete bipartite multigraph, the complete bipartite graph with a 1-factor removed, and the multicrown, respectively. Abueida and Lian [7] and Beggas et al. [10] investigated the problems of (C_k, S_k) -decompositions of the complete graph K_n and λK_n , giving some necessary or sufficient conditions for such decompositions to exist. Lee and Chen [20] completely settled the existence problem of (P_{k+1}, S_k) decompositions of the complete multigraph λK_n and the balanced complete bipartite multigraph $\lambda K_{n.n}$.

Recently, the existence problem of an $\{\alpha F, \beta G\}$ -decomposition of a graph where α and β are essential is also studied. Shyu gave necessary and sufficient conditions for the decomposition of K_n into paths and stars (both with 3 edges) [27], paths and cycles (both with k edges where k = 3, 4) [28, 29], and cycles and stars (both with 4 edges) [30]. He [31] also gave necessary and sufficient conditions for the decomposition of $K_{m,n}$ into paths and stars both with 3 edges. Jeevadoss and Muthusamy [14,15] considered the $\{\alpha P_{k+1}, \beta C_k\}$ -decomposability of $K_{m,n}$, K_n and $\lambda K_{m,n}$, giving some necessary or sufficient conditions for such decompositions to exist. Jeevadoss and Muthusamy [16] gave necessary and sufficient conditions for the existence of $\{\alpha P_5, \beta C_4\}$ -decomposition of tensor product and cartesian product of complete graphs. In [33], Tarsi gave necessary and sufficient conditions for the existence of $\{\alpha F, \beta S_k\}$ -decomposition of λK_n , where Fis any subgraph of K_n and $\alpha = 0$. In this paper, we consider the existence of an $\{\alpha F, \beta G\}$ -decomposition of the complete graph K_n with $F \in \{P_n, C_n\}$ and $G = S_3$, giving necessary and sufficient conditions.

2. Preliminaries

We first collect some needed terminology and notation. Let G be a graph. The degree of a vertex x of G, denoted by $\deg_G x$, is the number of edges incident with x. For $k \geq 2$, the vertex of degree k in S_k is the center of S_k and any vertex of degree 1 is a pendent vertex of S_k . Let $v_1v_2\cdots v_k$ denote the k-path through vertices v_1, v_2, \ldots, v_k in order. The vertices v_1 and v_k are referred to as its origin and terminus, respectively. In addition, $P_k(v_1, v_k)$ denotes a k-path with origin v_1 and terminus v_k . We use (v_1, v_2, \ldots, v_k) to denote the k-cycle through vertices $v_1, v_2, \ldots, v_k, v_1$ in order, and $S(u; v_1, v_2, \ldots, v_k)$ to denote a star with center u and pendent vertices v_1, v_2, \ldots, v_k . For $U, W \subseteq V(G)$ with $U \cap W = \phi$, we use G[U] and G[U, W] to denote the subgraph of G induced by U, and the maximal bipartite subgraph of G with bipartition (U, W), respectively. When G_1, G_2, \ldots, G_t are edge disjoint subgraphs of a graph, use $G_1 \cup G_2 \cup \cdots \cup G_t$ to denote the graph with vertex set $\bigcup_{i=1}^t V(G_i)$ and edge set $\bigcup_{i=1}^t E(G_i)$.

Before going into more details, we present some results which are useful for our discussions.

Proposition 1 [11,13]. For an even integer n and $V(K_n) = \{x_0, x_1, \ldots, x_{n-1}\}$, the complete graph K_n can be decomposed into n/2 copies of P_n , $P(1), P(2), \ldots$, P(n/2) with $P(i+1) = x_i x_{i-1} x_{i+1} x_{i-2} \cdots x_{i+\frac{n}{2}-2} x_{i+\frac{n}{2}+1} x_{i+\frac{n}{2}-1} x_{i+\frac{n}{2}}$ for $0 \le i \le \frac{n}{2} - 1$, where the subscripts of x's are taken modulo n in the set of numbers $\{0, 1, 2, \ldots, n-1\}$.

The following results are attributed to Walecki, see [9].

Lemma 2. For an odd integer n and $V(K_n) = \{x_0, x_1, \ldots, x_{n-1}\}$, the complete graph K_n can be decomposed into (n-1)/2 copies of C_n , $C(1), C(2), \ldots, C((n-1)/2)$ with $C(i) = (x_0, x_i, x_{i-1}, x_{i+1}, x_{i-2}, \ldots, x_{i+(n-5)/2}, x_{i+(n+1)/2}, x_{i+(n-3)/2}, x_{i+(n-1)/2})$ for $i = 1, 2, \ldots, (n-1)/2$, where the subscripts of x's are taken modulo n-1 in the set of numbers $\{1, 2, \ldots, n-1\}$.

Lemma 3. For an even integer n and $V(K_n) = \{x_0, x_1, \ldots, x_{n-1}\}$, the complete graph K_n can be decomposed into n/2-1 copies of C_n , $C(1), C(2), \ldots, C(n/2-1)$, and a 1-factor F, where $E(F) = \{x_0x_{n-1}, x_1x_{n-2}, x_2x_{n-3}, \ldots, x_{n/2-2}x_{n/2+1}, x_{n/2-1}x_{n/2}\}$ and $C(i) = (x_0, x_i, x_{i-1}, x_{i+1}, x_{i-2}, \ldots, x_{i+n/2+1}, x_{i+n/2-2}, x_{i+n/2}, x_{i+n/2-1})$ for $i = 1, 2, \ldots, n/2 - 1$, where the subscripts of x's are taken modulo n - 1 in the set of numbers $\{1, 2, \ldots, n-1\}$.

3. Decomposition of K_n Into *n*-Paths and 3-Stars

In this section, we obtain necessary and sufficient conditions for decomposing K_n into α copies of P_n and β copies of S_3 .

Lemma 4. Let n be an odd integer and let α be a nonnegative integer. If $\binom{n}{2} - (n-1)\alpha$ is a nonnegative integer and $\binom{n}{2} - (n-1)\alpha \equiv 0 \pmod{3}$, then

$$\alpha \in \begin{cases} \{0, 1, \dots, (n-1)/2\} & \text{if } n \equiv 1 \pmod{6}, \\ \{(n-3)/2 - 3t | t = 0, 1, \dots, (n-3)/6\} & \text{if } n \equiv 3 \pmod{6}, \\ \{(n-3)/2 - 3t | t = 0, 1, \dots, (n-5)/6\} & \text{if } n \equiv 5 \pmod{6}. \end{cases}$$

Proof. Since $\binom{n}{2} - (n-1)\alpha$ is a nonnegative integer and n is odd, $\alpha \leq \lfloor \binom{n}{2} / (n-1) \rfloor = (n-1)/2$. Let $\alpha = (n-1)/2 - (3t+j)$ where t is a nonnegative integer and $j \in \{0, 1, 2\}$. Since $\binom{n}{2} - (n-1)\alpha = n(n-1)/2 - (n-1)\alpha = (n-2\alpha)(n-1)/2 = (6t+2j+1)(n-1)/2$, $\binom{n}{2} - (n-1)\alpha \equiv (2j+1)(n-1)/2$ (mod 3). If $n \equiv 1 \pmod{6}$, then $(2j+1)(n-1)/2 \equiv 0 \pmod{3}$ for any integer j. Hence $\alpha \in \{0, 1, \dots, (n-1)/2\}$ for $n \equiv 1 \pmod{6}$. When $n \equiv 3 \pmod{6}$ or $n \equiv 5 \pmod{6}$, the condition $(2j+1)(n-1)/2 \equiv 0 \pmod{3}$ holds if and only if j = 1. Thus $\alpha = (n-3)/2 - 3t$ for some integer t when $n \equiv 3 \pmod{6}$ or $n \equiv 5 \pmod{6}$. Since α is a nonnegative integer, we have $t \leq (n-3)/6$ for $n \equiv 3 \pmod{6}$, and $t \leq (n-5)/6$ for $n \equiv 5 \pmod{6}$. This completes the proof.

Lemma 5. Let n be an even integer, and let α be a nonnegative integer. If $\binom{n}{2} - (n-1)\alpha \equiv 0 \pmod{3}$, then

$$\alpha \in \begin{cases} \{n/2 - 3t | t = 0, 1, \dots, n/6\} & \text{if } n \equiv 0 \pmod{6}, \\ \{n/2 - 3t | t = 0, 1, \dots, (n-2)/6\} & \text{if } n \equiv 2 \pmod{6}, \\ \{0, 1, \dots, n/2\} & \text{if } n \equiv 4 \pmod{6}. \end{cases}$$

Proof. Since $\binom{n}{2} - (n-1)\alpha$ is a nonnegative integer and n is even, $\alpha \leq \lfloor \binom{n}{2} / (n-1) \rfloor = n/2$. Let $\alpha = n/2 - (3t+j)$ where t is a nonnegative integer and $j \in \{0, 1, 2\}$. Since $\binom{n}{2} - (n-1)\alpha = n(n-1)/2 - (n-1)\alpha = (n-2\alpha)(n-1)/2 = (3t+j)(n-1)$, $\binom{n}{2} - (n-1)\alpha \equiv j(n-1) \pmod{3}$. If $n \equiv 4 \pmod{6}$, then $j(n-1) \equiv 0 \pmod{3}$ for any integer j. Hence $\alpha \in \{0, 1, \dots, n/2\}$ for $n \equiv 4 \pmod{6}$. When $n \equiv 0$ (mod 6) or $n \equiv 2 \pmod{6}$, the condition $j(n-1) \equiv 0 \pmod{3}$ holds if and only if j = 0. Thus $\alpha = n/2 - 3t$ for some integer t when $n \equiv 0 \pmod{6}$ or $n \equiv 2$ (mod 6). Since α is a nonnegative integer, we have $t \leq n/6$ for $n \equiv 0 \pmod{6}$, and $t \leq (n-2)/6$ for $n \equiv 2 \pmod{6}$. This completes the proof.

The following indecomposable case is trivial.

Lemma 6. The complete graph K_4 cannot be decomposed into

- (1) one copy of P_4 and one copy of S_3 , nor
- (2) two copies of S_3 .

In addition, we exclude the possibility n = 5.

Lemma 7. The complete graph K_5 cannot be decomposed into one copy of P_5 and two copies of S_3 .

Proof. Suppose, on the contrary, that K_5 can be decomposed into one copy of P_5 , say $P_5(x,y)$, and two copies of S_3 , say S and T. Note that the edge xymust be in either S or T. Without loss of generality, assume that xy is in S. Since the degree of every vertex of $K_n - E(P_5(x, y) \cup S)$ is less than 3, we have a contradiction.

In the remainder of the paper, we assume that $V(K_n) = \{x_0, x_1, \dots, x_{n-1}\}$.

Lemma 8. If n is an odd integer with $n \ge 7$, then the following hold:

- (1) The complete graph K_n can be decomposed into (n-1)/2 copies of P_n and (n-1)/6 copies of S_3 when $n \equiv 1 \pmod{6}$.
- (2) The complete graph K_n can be decomposed into (n-3)/2 copies of P_n and (n-1)/2 copies of S_3 .
- (3) The complete graph K_n can be decomposed into (n-5)/2 copies of P_n and 5(n-1)/6 copies of S_3 when $n \equiv 1 \pmod{6}$.

Proof. By Lemma 2, K_n can be decomposed into (n-1)/2 copies of C_n , C(1), $C(2), \ldots, C((n-1)/2)$ with $C(i) = (x_0, x_i, x_{i-1}, x_{i+1}, x_{i-2}, \ldots, x_{i+(n-5)/2}, x_{i+(n-5)/2}, \ldots, x_{i+(n-5)$ $x_{i+(n+1)/2}, x_{i+(n-3)/2}, x_{i+(n-1)/2}$ for $i = 1, 2, \dots, (n-1)/2$, where the subscripts of x's are taken modulo n-1 in the set of numbers $\{1, 2, \ldots, n-1\}$.

(1) For i = 1, 2, ..., (n-1)/2, let $P(i) = C(i) - \{x_0 x_i\}$. Clearly, P(i) is an *n*-path. Let G be the subgraph of K_n which is induced by the set of edges $x_0x_1, x_0x_2, \ldots, x_0x_{(n-1)/2}$. Obviously, $G = S_{(n-1)/2}$. Since n is odd and $n-1 \equiv 0$ (mod 3), the graph G can be decomposed into (n-1)/6 copies of S_3 . This settles (1).

(2) For n = 7, the complete graph K_7 can be decomposed into 2 copies of P_7 and 3 copies of S_3 as follows: $x_6x_2x_5x_3x_4x_0x_1$, $x_6x_4x_5x_0x_3x_1x_2$, $(x_1; x_4, x_5, x_6)$, $(x_2; x_0, x_3, x_4)$, $(x_6; x_0, x_3, x_5)$.

Now we consider the case $n \geq 9$. For $i \in \{1, 2, ..., (n-1)/2\} - \{(n-7)/2, (n-3)/2\}$, let $P(i) = C(i) - \{x_0x_i\}$. Note that $x_{n-1}x_{n-7} \in E(C((n-7)/2))$ and $P((n-3)/2) = C((n-3)/2) = (x_0, x_{(n-3)/2}, x_{(n-5)/2}, x_{(n-1)/2}, x_{(n-7)/2}, ..., x_{n-4}, x_{n-1}, x_{n-3}, x_{n-2})$. Let $P((n-7)/2) = C((n-7)/2) - \{x_{n-1}x_{n-7}\}$ and $C((n-3)/2) - \{x_0x_{(n-3)/2}, x_{(n-1)/2}x_{(n-7)/2}\} \cup \{x_0x_{(n-1)/2}\}$. Hence P(i) is an *n*-path for i = 1, 2, ..., (n-1)/2. Moreover, $P((n-1)/2) = x_{(n-1)/2}x_{(n-3)/2}x_{(n+1)/2}x_{(n-5)/2} \cdots x_{n-3}x_1x_{n-2}x_{n-1}x_0$. For i = 1, 2, ..., (n-3)/2, let $S(i) = (x_{(n-1)/2-i}; x_{(n-1)/2+i-1}, x_{(n-1)/2+i})$ and $S = (x_{n-1}; x_{n-2}, x_0)$. Obviously, S(i) and S are 2-stars, and P((n-1)/2) can be decomposed into $S(1), S(2), \ldots, S((n-3)/2)$ and S. Furthermore, let $W(i) = S(i) \cup \{x_0x_i\}$ for $i = 1, 2, ..., (n-3)/2 - \{(n-7)/2\}$, let $W((n-7)/2) = S((n-7)/2) \cup \{x_{(n-1)/2}x_{(n-7)/2}\}$, and let $W((n-1)/2) = S \cup \{x_{n-1}x_{n-7}\}$. Clearly, W(i) is a 3-star. This settles (2).

(3) We will remove one edge from C(i) to obtain an *n*-path for $i \in \{1, 2, ..., (n-5)/2\}$, and use C((n-3)/2) and C((n-1)/2) together with the edges removed from C(i)'s to constitute 5(n-1)/3 copies of S_3 .

Let $S(i) = (x_{(n-1)/2+3i-3}; x_{(n-1)/2-3i+1}, x_{(n-1)/2-3i})$ for i = 1, 2, ..., (n-1)/6, $S'(i) = (x_{(n-1)/2-3i-1}; x_{(n-1)/2+3i-2}, x_{(n-1)/2+3i-1})$ for i = 1, 2, ..., (n-7)/6, and $S'((n-1)/6) = (x_{n-2}; x_{n-3}, x_0)$. Obviously, S(i) and S'(i) are 2-stars. Let $J = \{j | 2 \le j \le (n-1)/2$ and $j \equiv 0, 2 \pmod{3}\}$. For $j \in J$, let

$$e_j'' = \begin{cases} x_{(n-1)/2-j} x_{(n-1)/2+j-2} & \text{if } j \equiv 0 \pmod{3}, \\ x_{(n-1)/2-j} x_{(n-1)/2+j-3} & \text{if } j \equiv 2 \pmod{3}, \end{cases}$$

where the subscripts of x's are taken modulo n-1 in the set of numbers $\{1, 2, \ldots, n-1\}$. It is easy to see that $\{S(i), S'(i) | i = 1, 2, \ldots, (n-1)/6\} \cup \{e''_j | j \in J\}$ is a decomposition of $C((n-3)/2) - \{x_{(n-3)/2}x_0\}$.

Note that $C((n-1)/2) = (x_0, x_{(n-1)/2}, x_{(n-3)/2}, x_{(n+1)/2}, x_{(n-5)/2}, \dots, x_{n-3}, x_1, x_{n-2}, x_{n-1})$. Let $S''(j) = (x_{(n-1)/2-j}; x_{(n-1)/2+j-1}, x_{(n-1)/2+j})$ for $j = 1, 2, \dots, (n-3)/2$ and $S''((n-1)/2) = (x_{n-1}; x_{n-2}, x_0)$ where the subscripts of x's are taken modulo n-1 in the set of numbers $\{1, 2, \dots, n-1\}$. Obviously, S''(j) is a 2-star, and $C((n-1)/2) - \{x_{(n-1)/2}x_0\}$ can be decomposed into $S''(1), S''(2), \dots, S''((n-1)/2)$.

For i = 2, 3, ..., (n-1)/6, let e_i be an edge in C(i-1) incident with the center of S(i). Then $C(i-1) - \{e_i\}$ is an *n*-path and $S(i) \cup \{e_i\}$ is a 3-star. For i = 1, 2, ..., (n-1)/6, let e'_i be an edge in C((n-1)/6 + i - 1) incident with the center of S'(i). Then $C((n-1)/6 + i - 1) - \{e'_i\}$ is an *n*-path and $S'(i) \cup \{e'_i\}$ is a 3-star. Let $K = \{k | 4 \le k \le (n-5)/2$ and $k \equiv 1 \pmod{3}$. For $k \in K$, let e''_k be an edge in C((k-1)/3 + (n-1)/3 - 1) incident with the center of S''(k).

Then $C((k-1)/3 + (n-1)/3 - 1) - \{e_k''\}$ is an *n*-path and $S''(i) \cup \{e_k''\}$ is a 3-star. For $j \in J$, $S''(j) \cup \{e_j''\}$ is a 3-star. Moreover, $S(1) \cup \{x_{(n-1)/2}x_0\}$ and $S''(1) \cup \{x_{(n-3)/2}x_0\}$ are also 3-stars. This completes the proof.

Lemma 9. If n is an even integer with $n \ge 4$, then the following hold:

- (1) The complete graph K_n can be decomposed into n/2 copies of n-paths.
- (2) The complete graph K_n can be decomposed into n/2 1 copies of P_n and (n-1)/3 copies of S_3 when $n \equiv 4 \pmod{6}$ and $n \ge 10$.
- (3) The complete graph K_n can be decomposed into n/2 2 copies of P_n and 2(n-1)/3 copies of S_3 when $n \equiv 4 \pmod{6}$ and $n \geq 10$.

Proof. By Proposition 1, we have (1).

(2) For n = 10, the complete graph K_{10} can be decomposed into 4 copies of P_{10} and 3 copies of S_3 as follows: $x_8x_2x_7x_3x_6x_4x_5x_0x_1x_9$, $x_1x_3x_8x_4x_7x_5x_6x_0x_2x_9$, $x_0x_3x_2x_4x_1x_5x_8x_6x_7x_9$, $x_0x_7x_8x_9x_4x_3x_5x_2x_6x_1$, $(x_0; x_4, x_8, x_9)$, $(x_1; x_2, x_7, x_8)$, $(x_9; x_3, x_5, x_6)$.

Now we consider the case $n \ge 16$. Let $G = K_n[\{x_0, x_1, \dots, x_{n-2}\}]$. Clearly G is isomorphic to K_{n-1} . By Lemma 2, the graph G can be decomposed into n/2 - 1 copies of C_{n-1} , C(1), C(2), ..., C(n/2-1) with $C(i) = (x_0, x_i, x_{i-1}, x_{i+1}, x_{i-2}, \dots, x_{i+n/2-3}, x_{i+n/2}, x_{i+n/2-2}, x_{i+n/2-1})$ for $i = 1, 2, \dots, n/2 - 1$, where the subscripts of x's are taken modulo n - 2 in the set of numbers $\{1, 2, \dots, n-2\}$. Note that C(1) contains edges x_1x_{n-2} and $x_{n/2}x_0$, C(2) contains edges x_2x_1 and $x_{n/2+1}x_0$, and C(3) contains the edge x_4x_1 . Let $P(1) = C(1) \cup \{x_1x_{n-1}x_{n/2}\} - \{x_1x_{n-2}, x_{n/2}x_0\}$, $P(2) = C(2) \cup \{x_2x_{n-1}x_{n/2+1}\} - \{x_2x_1, x_{n/2+1}x_0\}$, and $P(3) = C(3) \cup \{x_4x_{n-1}\} - \{x_1x_4\}$. In addition, let $P(i) = C(i) \cup \{x_{i+n/2-1}x_{n-1}\} - \{x_{i+n/2-1}x_0\}$ for $i = 4, 5, \dots, n/2 - 1$. Obviously, P(i) ia an n-path for $i = 1, 2, \dots, n/2 - 1$. Let $S(1) = (x_0; x_{n/2}, x_{n/2+1}, x_{n/2+3}, x_{n/2+4}, \dots, x_{n-2})$ and $S(2) = (x_{n-1}; x_0, x_3, x_5, x_6, \dots, x_{n/2-2}, x_{n/2-1}, x_{n/2+2})$. It is easy to see that $K_n - E\left(\bigcup_{i=1}^{n/2-1} P(i)\right) = S(1) \cup S(2) \cup (x_1; x_2, x_4, x_{n-2})$. Note that S(1) and S(2) are (n/2 - 2)-stars. Since $n \equiv 4 \pmod{6}$, each of S(1) and S(2) can be decomposed into (n - 4)/6 copies of S_3 . This settles (2).

(3) By Lemma 3, K_n can be decomposed into n/2-1 copies of C_n , C(1), C(2), ..., C(n/2-1), and a 1-factor F, where $E(F) = \{x_0x_{n-1}, x_1x_{n-2}, x_2x_{n-3}, ..., x_{n/2-2}x_{n/2+1}, x_{n/2-1}x_{n/2}\}$ and $C(i) = (x_0, x_i, x_{i-1}, x_{i+1}, x_{i-2}, ..., x_{i+n/2+1}, x_{i+n/2-2}, x_{i+n/2}, x_{i+n/2-1})$ for i = 1, 2, ..., n/2 - 1, where the subscripts of x's are taken modulo n - 1 in the set of numbers $\{1, 2, ..., n-1\}$.

We obtain n/2 - 2 copies of P_n by removing one edge from each of *n*-cycles $C(1), C(2), \ldots, C(n/2 - 2)$. For $i = 1, 2, \ldots, n/2 - 3$, let $P(i) = C(i) - \{x_0x_i\}$. In addition, let $P(n/2 - 2) = C(n/2 - 2) - \{x_{n/2-3}x_{n/2-1}\}$. Trivially, P(i) is an *n*-path for $i = 1, 2, \ldots, n/2 - 2$. In the following, 2(n-1)/3 copies of S_3 are constructed. We first obtain n/2 copies of S_3 by using all of the edges of C(n/2-1) and n/2-1 edges of F and the edge $x_{n/2-3}x_{n/2-1}$ removed from C(n/2-2). Note that $C(n/2-1) = (x_0, x_{n/2-1}, x_{n/2-2}, x_{n/2}, x_{n/2-3}, \ldots, x_1, x_{n-3}, x_{n-1}, x_{n-2})$. For $i = 1, 2, \ldots, n/2 - 1$, let $S(i) = (x_{n/2-1+i}; x_{n/2-1-i}, x_{n/2-2-i})$ and $S = (x_{n/2-1}; x_{n/2-2}, x_0)$. Obviously, S(i) and S are 2-stars, and C(n/2-1) is decomposable into $S(1), S(2), \ldots, S(n/2-1)$ and S. Let $W(i) = S(i) \cup \{x_{n/2-1+i}x_{n/2-i}\}$ for $i = 1, 2, \ldots, n/2 - 1$, and let $W(n/2) = S \cup \{x_{n/2-3}x_{n/2-1}\}$. Clearly, W(i) is a 3-star.

Now we obtain (n-4)/6 copies of S_3 by using one edge of F and the edges removed from C(i)'s in constructing *n*-paths for i = 1, 2, ..., n/2 - 3. Let G be the subgraph of K_n induced by the set of edges $x_0x_1, x_0x_2, ..., x_0x_{n/2-3}, x_0x_{n-1}$. Obviously, $G = S_{n/2-2}$. Since $n \equiv 4 \pmod{6}$, the graph G can be decomposed into (n-4)/6 copies of S_3 . This settles (3) and completes the proof.

Lemma 10. Let n and t be positive integers. If Q_1, Q_2, \ldots, Q_t are edge-disjoint Hamiltonian paths of K_n , then $\bigcup_{i=1}^t Q_i$ is S_t -decomposable.

Proof. Since each Q_i is a Hamiltonian path of K_n , we have $V(Q_i) = V(K_n)$. For each Q_i , we orient the edges of Q_i from x_0 along Q_i to the end (or ends) of the path, and use $\overrightarrow{Q_i}$ to denote the digraph obtained from Q_i for such an orientation. Note that there is exactly one arc directed into x_j for each $j \in \{1, 2, \ldots, n-1\}$. Let $\overrightarrow{G} = \bigcup_{i=1}^t \overrightarrow{Q_i}$. It is easy to check that $\deg_{\overrightarrow{G}} x_j = t$ for $j \neq 0$. Thus there exists an S_t -decomposition of $\bigcup_{i=1}^t Q_i$ such that x_j is a center of a t-star for $j \neq 0$. This completes the proof.

By Lemma 10, the union of 3t edge-disjoint *n*-paths can be decomposed into n-1 copies of S_{3t} , in turn, each S_{3t} can be decomposed in to t copies of S_3 . Hence we have the following result.

Theorem 11. Let n, p and t be positive integers with $p \ge 3t$, and let q be a nonnegative integer. If K_n can be decomposed into p copies of P_n and q copies of S_3 , then K_n can be decomposed into p - 3t copies of P_n and q + (n - 1)t copies of S_3 .

Obviously, if K_n can be decomposed into α copies of *n*-paths and β copies of S_3 , then $\binom{n}{2} = (n-1)\alpha + 3\beta$. Using Theorem 11 together with Lemmas 4 to 9, we have the main result of this section.

Theorem 12. Let n be a positive integer with $n \ge 4$, and let α and β be nonnegative integers. The complete graph K_n can be decomposed into α copies of P_n and β copies of S_3 if and only if $\binom{n}{2} = (n-1)\alpha + 3\beta$ and $(n, \alpha, \beta) \notin \{(4, 1, 1), (4, 0, 2), (5, 1, 2)\}.$

830

4. Decomposition of K_n Into *n*-Cycles and 3-Stars

In this section, we obtain necessary and sufficient conditions for decomposing K_n into α copies of C_n and β copies of S_3 . The first two lemmas in the following are from [17] and [32], respectively.

Lemma 13. For an odd integer n and $V(K_{n,n}) = \{x_0, \ldots, x_{n-1}\} \cup \{y_0, \ldots, y_{n-1}\},$ the complete bipartite graph $K_{n,n}$ can be decomposed into (n-1)/2 copies of C_{2n} , C(0), $C(1), \ldots, C((n-3)/2)$, and a 1-factor F, where $E(F) = \{x_0y_{n-1}, x_1y_0, \ldots, x_{n-1}y_{n-2}\}$ and $C(i) = (y_{2i}, x_0, y_{2i+1}, x_1, \ldots, y_{2i+(n-2)}, x_{n-2}, y_{2i+(n-1)}, x_{n-1})$ for $i = 0, 1, \ldots, (n-3)/2$.

Lemma 14. For an even integer n and $V(K_{n,n}) = \{x_0, \ldots, x_{n-1}\} \cup \{y_0, \ldots, y_{n-1}\}$, the complete bipartite graph $K_{n,n}$ can be decomposed into n/2 copies of C_{2n} , C(0), $C(1), \ldots, C(n/2 - 1)$, where $C(i) = (y_{2i}, x_0, y_{2i+1}, x_1, \ldots, y_{2i+(n-2)}, x_{n-2}, y_{2i+(n-1)}, x_{n-1})$ for $i = 0, 1, \ldots, n/2 - 1$.

Lemma 15. Let n be an odd integer and let α be a nonnegative integer. If $\binom{n}{2} - n\alpha$ is a nonnegative integer and $\binom{n}{2} - n\alpha \equiv 0 \pmod{3}$, then

$$\alpha \in \begin{cases} \{0, 1, \dots, (n-1)/2\} & \text{if } n \equiv 0 \pmod{3} \\ \{(n-1)/2 - 3t | t = 0, 1, \dots, \lfloor (n-1)/6 \rfloor \} & \text{otherwise.} \end{cases}$$

Proof. Since $\binom{n}{2} - n\alpha$ is a nonnegative integer and n is odd, $\alpha \leq \lfloor \binom{n}{2} / n \rfloor = (n-1)/2$. Let $\alpha = (n-1)/2 - (3t+i)$, where t is a nonnegative integer and $i \in \{0, 1, 2\}$. Since $\binom{n}{2} - n\alpha = n(n-1)/2 - n\alpha = n(n-1-2\alpha)/2 = n(3t+i)$, $\binom{n}{2} - n\alpha \equiv ni$ (mod 3). If n is a multiple of 3, then $ni \equiv 0 \pmod{3}$ holds for any $i \in \{0, 1, 2\}$. Hence $\alpha \in \{0, 1, \ldots, (n-1)/2\}$ for $n \equiv 0 \pmod{3}$. Otherwise, the condition $ni \equiv 0 \pmod{3}$ holds if and only if i = 0. This implies $\alpha = (n-1)/2 - 3t$. Moreover, $t \leq \lfloor (n-1)/6 \rfloor$ since α is a nonnegative integer. This completes the proof.

Lemma 16. Let n be an even integer and let α be a nonnegative integer. If $\binom{n}{2} - n\alpha$ is a nonnegative integer and $\binom{n}{2} - n\alpha \equiv 0 \pmod{3}$, then

$$\alpha \in \begin{cases} \{0, 1, \dots, n/2 - 1\} & \text{if } n \equiv 0 \pmod{3}, \\ \{n/2 - 3t - 2 | t = 0, 1, \dots, \lfloor (n - 4)/6 \rfloor \} & \text{otherwise.} \end{cases}$$

Proof. Since $\binom{n}{2} - n\alpha$ is a nonnegative integer and n is even, $\alpha \leq \lfloor \binom{n}{2}/n \rfloor = n/2-1$. Let $\alpha = n/2-1-(3t+i)$, where t is a nonnegative integer and $i \in \{0, 1, 2\}$. Since $\binom{n}{2} - n\alpha = n(n-1-2\alpha)/2 = n(6t+2i+1)/2$, $\binom{n}{2} - n\alpha \equiv n(2i+1)/2 \pmod{3}$. If $n \equiv 0 \pmod{3}$, then $n/2 \equiv 0 \pmod{3}$, this implies that $n(2i+1)/2 \equiv 0 \pmod{3}$ holds for any $i \in \{0, 1, 2\}$. Hence $\alpha \in \{0, 1, \ldots, n/2 - 1\}$ for $n \equiv 0$ (mod 3). Otherwise, the condition $n(2i+1)/2 \equiv 0 \pmod{3}$ holds if and only if i = 1. This implies $\alpha = n/2 - 3t - 2$. Moreover, $t \leq \lfloor (n-4)/6 \rfloor$ since α is a nonnegative integer. This completes the proof.

Let m = (n-3)/2 for odd n and m = (n-2)/2 for even n. Let $C(1), C(2), \ldots, C(m)$ be edge-disjoint n-cycles in K_n , and let $G = K_n - \bigcup_{i=1}^m E(C(i))$. Since $\deg_G x = n - 1 - 2m \leq 2$ for each vertex x, G has no S_3 -decomposition. Thus we have the following result.

Lemma 17. Let $n \equiv 0 \pmod{3}$. The complete graph K_n cannot be decomposed into (n-3)/2 copy of C_n and n/3 copies of S_3 for odd n, and cannot be decomposed into (n-2)/2 copy of C_n and n/6 copies of S_3 for even n.

Lemma 18. If n is an odd integer with $n \ge 5$, then the following hold:

- (1) The complete graph K_n can be decomposed into (n-1)/2 copies of C_n .
- (2) The complete graph K_n can be decomposed into (n-5)/2 copies of C_n and 2n/3 copies of S_3 when $n \equiv 3 \pmod{6}$ and $n \ge 9$.
- (3) The complete graph K_n can be decomposed into (n-9)/2 copies of C_n and 4n/3 copies of S_3 when $n \equiv 3 \pmod{6}$ and $n \ge 9$.

Proof. By Lemma 2, the complete graph K_n can be decomposed into (n-1)/2 copies of C_n , $C(1), C(2), \ldots, C((n-1)/2)$ with $C(i) = (x_0, x_i, x_{i-1}, x_{i+1}, \ldots, x_{i+(n-5)/2}, x_{i+(n+1)/2}, x_{i+(n-3)/2}, x_{i+(n-1)/2})$ for $i = 1, 2, \ldots, (n-1)/2$, where the subscripts of x's are taken modulo n-1 in the set of numbers $\{1, 2, \ldots, n-1\}$. Hence we have (1).

(2) If there exist s and t $(1 \le s < t \le (n-1)/2)$ such that $C(s) \cup C(t)$ can be decomposed into 2n/3 copies of S_3 , then we have the result. Consider the case s = (n+3)/6 and t = n/3. Note that $C((n+3)/6) = (x_0, x_{(n+3)/6}, x_{(n-3)/6}, x_{(n+9)/6}, x_{(n-9)/6}, \dots, x_{n/3-1}, x_1, x_{n/3}, x_{n-1}, \dots, x_{2n/3-2}, x_{2n/3+1}, x_{2n/3-1}, x_{2n/3})$. For $i = 1, 2, \dots, n/3 - 1$, let $S_2(i) = (x_{n-i}; x_{n/3-1+i}, x_{n/3+i})$ and $S_2(n/3) = (x_{2n/3}; x_{2n/3-1}, x_0)$. For $j = 1, 2, \dots, (n-3)/6$, let $P_2(j) = x_j x_{n/3+1-j}$. For $j = (n+3)/6, (n+9)/6, \dots, n/3 - 1$, let $P_2(j) = x_j x_{n/3-j}$. In addition, let $P_2(0) = x_0 x_{(n+3)/6}$. Obviously, $S_2(i)$ is a 2-star for $i = 1, 2, \dots, n/3$, and $P_2(j)$ is a 2-path for $j = 0, 1, \dots, n/3 - 1$. One can see that C((n+3)/6) can be decomposed into $S_2(1), S_2(2), \dots, S_2(n/3)$ and $P_2(0), P_2(1), \dots, P_2(n/3-1)$.

On the other hand, $C(n/3) = (x_0, x_{n/3}, x_{n/3-1}, x_{n/3+1}, x_{n/3-2}, x_{n/3+2}, \dots, x_{2n/3-2}, x_1, x_{2n/3-1}, x_{n-1}, \dots, x_{(5n-15)/6}, x_{(5n+3)/6}, x_{(5n-9)/6}, x_{(5n-3)/6})$. For $j = 1, 2, \dots, n/3 - 1$, let $S'_2(j) = (x_j; x_{2n/3-1-j}, x_{2n/3-j})$. For $i = 1, 2, \dots, (n+3)/6$, let $P'_2(i) = x_{n-i}x_{2n/3-2+i}$. For i = (n+9)/6, $(n+12)/6, \dots, n/3$, let $P'_2(i) = x_{n-i}x_{2n/3-1+i}$. In addition, let $P'_2(0) = x_0x_{n/3}$ and $P''_2(0) = x_0x_{(5n-3)/6}$. Obviously, $S'_2(j)$ is a 2-star for $i = 1, 2, \dots, n/3 - 1$, and $P''_2(0)$ and $P'_2(i)$ are 2-paths for $i = 0, 1, \dots, n/3$. One can see that C(n/3) can be decomposed into $S'_2(1), S'_2(2), \dots, S'_2(n/3-1)$ and $P''_2(0), P'_2(1), \dots, P'_2(n/3)$ as well as $P''_2(0)$.

For i = 1, 2, ..., n/3, let $S_3(i) = S_2(i) \cup P'_2(i)$. For j = 1, 2, ..., n/3 - 1, let $S'_3(j) = S'_2(j) \cup P_2(j)$. Clearly, $S_3(i)$ and $S'_3(j)$ are 3-stars. In addition, $P_2(0) \cup P'_2(0) \cup P''_2(0)$ is also a 3-star. Hence $C((n+3)/6) \cup C(n/3)$ can be decomposed into 2n/3 copies of S_3 . This settles (2).

(3) According to the proof of (2), the result holds if there exist s' and t' (s', t' $\notin \{(n+3)/6, n/3\}$) such that $C(s') \cup C(t')$ can be decomposed into 2n/3 copies of S_3 . Consider the case s' = (n+9)/6 and t' = n/3 + 1. Note that $C((n+9)/6) = (x_0, x_{(n+9)/6}, x_{(n+3)/6}, x_{(n+15)/6}, x_{(n-3)/6}, \dots, x_{n/3+1}, x_1, x_{n/3+2}, x_{n-1}, \dots, x_{2n/3-1}, x_{2n/3+2}, x_{2n/3}, x_{2n/3+1})$. For $i = 1, 2, \dots, n/3 - 1$, let $S_2(i) = (x_{n+1-i}; x_{n/3+i}, x_{n/3+1+i})$ with $x_n = x_1$ and $S_2(n/3) = (x_{2n/3+1}; x_{2n/3}, x_0)$. For $j = 2, 3, \dots, (n+3)/6$, let $P_2(j) = x_j x_{n/3+3-j}$. For $j = (n+9)/6, (n+15)/6, \dots, n/3$, let $P_2(j) = x_j x_{n/3+2-j}$. In addition, let $P_2(0) = x_0 x_{(n+9)/6}$. Obviously, $S_2(i)$ is a 2-star for $i = 1, 2, \dots, n/3$, and $P_2(j)$ is a 2-path for $j = 0, 2, 3, \dots, n/3$. One can see that C((n+3)/6) can be decomposed into $S_2(1), S_2(2), \dots, S_2(n/3)$ and $P_2(0), P_2(2), P_2(3), \dots, P_2(n/3)$.

On the other hand, $C(n/3+1) = (x_0, x_{n/3+1}, x_{n/3}, x_{n/3+2}, x_{n/3-1}, \dots, x_{2n/3}, x_1, x_{2n/3+1}, x_{n-1}, x_{2n/3+2}, x_{n-2}, \dots, x_{(5n-9)/6}, x_{(5n+9)/6}, x_{(5n-3)/6}, x_{(5n+3)/6})$. For $j = 2, 3, \dots, n/3$, let $S'_2(j) = (x_j; x_{2n/3+1-j}, x_{2n/3+2-j})$. For $i = 1, 2, \dots, (n+3)/6$, let $P'_2(i) = x_{n+1-i}x_{2n/3-1+i}$, and for $i = (n+9)/6, (n+12)/6, \dots, n/3$, let $P'_2(i) = x_{n+1-i}x_{2n/3+i}$ with $x_n = x_1$. In addition, let $P'_2(0) = x_0x_{n/3+1}$ and $P''_2(0) = x_0x_{(5n+3)/6}$. Obviously, $S'_2(j)$ is a 2-star for $i = 2, 3, \dots, n/3$, and $P''_2(0)$ and $P'_2(i)$ are 2-paths for $i = 0, 1, \dots, n/3$. One can see that C(n/3+1) can be decomposed into $S'_2(2), S'_2(3), \dots, S'_2(n/3)$ and $P'_2(0), P'_2(1), \dots, P'_2(n/3)$ as well as $P''_2(0)$.

For i = 1, 2, ..., n/3, let $S_3(i) = S_2(i) \cup P'_2(i)$. For j = 2, 3, ..., n/3, let $S'_3(j) = S'_2(j) \cup P_2(j)$. Clearly, $S_3(i)$ and $S'_3(j)$ are 3-stars. In addition, $P_2(0) \cup P'_2(0) \cup P''_2(0)$ is also a 3-star. Hence $C((n+9)/6) \cup C(n/3+1)$ can be decomposed into 2n/3 copies of S_3 . This settles (3).

For positive integers l and n with $1 \leq l \leq n$, the (n, l)-crown $C_{n,l}$ is the bipartite graph with bipartition (X, Y), where $X = \{x_0, x_1, \ldots, x_{n-1}\}$ and $B = \{y_0, y_1, \ldots, y_{n-1}\}$, and edge set $\{x_iy_j : i = 0, 1, \ldots, n-1, j \equiv i+1, i+2, \ldots, i+l \pmod{l}\}$.

Proposition 19 [24]. $\lambda C_{n,l}$ is S_k -decomposable if and only if $k \leq l$ and $\lambda nl \equiv 0 \pmod{k}$.

Lemma 20. If n is an even integer $n \ge 6$, then the following hold:

- (1) The complete graph K_n can be decomposed into n/2 2 copies of C_n and n/2 copies of S_3 .
- (2) The complete graph K_n can be decomposed into n/2 3 copies of C_n and 5n/6 copies of S_3 when $n \equiv 0 \pmod{6}$.

(3) The complete graph K_n can be decomposed into n/2 - 4 copies of C_n and 7n/6 copies of S_3 when $n \equiv 0 \pmod{6}$ and $n \geq 12$.

Proof. Let $V(K_n) = X \cup Y$, where $X = \{x_0, \ldots, x_{n/2-1}\}$ and $Y = \{y_0, \ldots, y_{n/2-1}\}$. Note that $K_n = K_n[X] \cup K_n[Y] \cup K_n[X, Y]$ where $K_n[X]$ and $K_n[Y]$ are isomorphic to $K_{n/2}$ and $K_n[X, Y]$ is isomorphic to $K_{n/2,n/2}$. We distinguish two cases : Case 1. $n \equiv 0 \pmod{4}$ and Case 2. $n \equiv 2 \pmod{4}$.

Case 1. $n \equiv 0 \pmod{4}$. By Lemma 14, $K_n[X, Y]$ can be decomposed into n/4 copies of C_n , C(0), C(1),..., C(n/4-1), where $C(i) = (y_{2i}, x_0, y_{2i+1}, x_1, ..., y_{2i+(n/2-2)}, x_{n/2-2}, y_{2i+(n/2-1)}, x_{n/2-1})$ for i = 0, 1, 2, ..., n/4 - 1. By Proposition 1, we have the following results. $K_n[X]$ can be decomposed into the following n/4 copies of $P_{n/2} : P_{n/2}(x_0, x_{n/4}), P_{n/2}(x_1, x_{1+n/4}), ..., P_{n/2}(x_{n/4-1}, x_{n/2} - 1)$, and $K_n[Y]$ can be decomposed into the following n/4 copies of $P_{n/2} : P_{n/2}(y_0, y_{n/4}), P_{n/2}(y_{1}, y_{1+n/4}), ..., P_{n/2}(y_{n/4-1}, y_{n/2-1})$.

For i = 0, 1, ..., n/4 - 1, let $Q(i) = P_{n/2}(x_i, x_{i+n/4}) \cup P_{n/2}(y_i, y_{i+n/4}) \cup \{y_i x_i, y_{i+n/4} x_{i+n/4}\}$. Clearly, Q(i) is an *n*-cycle, and $y_i x_i, y_{i+n/4} x_{i+n/4} \in E(C(0))$ for i = 0, 1, ..., n/4 - 1. For $1 \le t \le n/4 - 1$, let

$$R(t) = \left(\bigcup_{i=0}^{t} C(i)\right) - \left\{y_i x_i, y_{i+n/4} x_{i+n/4} \mid 0 \le i \le n/4 - 1\right\}.$$

It is easy to see that R(t) is isomorphic to the crown $C_{n/2,2t+1}$. Therefore, K_n can be decomposed into n/2 - (t+1) copies of C_n , $Q(0), Q(1), \ldots, Q(n/4-1)$ and $C(t+1), C(t+2), \ldots, C(n/4-1)$, and one copy of (n/2, 2t+1)-crown R(t). Note that $2t + 1 \ge 3$ and $|E(R(t))| = |E(C_{n/2,2t+1})| = (2t+1)n/2$. If $(2t+1)n/2 \equiv 0 \pmod{3}$, then R(t) can be decomposed into (2t+1)n/6 copies of S_3 by Proposition 19. Hence for $n \equiv 0 \pmod{4}$, we have the following.

If t = 1, then $(2t+1)n/2 = 3n/2 \equiv 0 \pmod{3}$ for each n. Thus K_n can be decomposed into n/2 - 2 copies of C_n and n/2 copies of S_3 .

If t = 2, then $(2t+1)n/2 = 5n/2 \equiv 0 \pmod{3}$ for $n \equiv 0 \pmod{6}$. Thus K_n can be decomposed into n/2 - 3 copies of C_n and 5n/6 copies of S_3 .

If t = 3, then $(2t+1)n/2 = 7n/2 \equiv 0 \pmod{3}$ for $n \equiv 0 \pmod{6}$. Thus K_n can be decomposed into n/2 - 4 copies of C_n and 7n/6 copies of S_3 . This settles Case 1.

Case 2. $n \equiv 2 \pmod{4}$. Since $n \equiv 2 \pmod{4}$, n/2 is odd. By Lemma 13, $K_n[X, Y]$ can decomposed into (n-2)/4 copies of C_n , $C(0), C(1), \ldots, C((n-6)/4)$, and a 1-factor F, where $E(F) = \{x_0y_{n/2-1}, x_1y_0, \ldots, x_{n/2-1}y_{n/2-2}\}$ and $C(i) = (y_{2i}, x_0, y_{2i+1}, x_1, \ldots, y_{2i+(n/2-1)}, x_{n/2-1})$ for $i = 0, 1, \ldots, (n-6)/4$.

Now we consider $K_n[X]$ and $K_n[Y]$. By Lemma 2, we have the following results. $K_n[X]$ can be decomposed into (n-2)/4 copies of $C_{n/2}$, $W(1), W(2), \ldots, W((n-2)/4)$ with $W(i) = (x_0, x_i, x_{i-1}, x_{i+1}, x_{i-2}, \ldots, x_{i+(n-10)/4}, x_{i+(n+2)/4})$

 $x_{i+(n-6)/4}, x_{i+(n-2)/4}$, and $K_n[Y]$ can be decomposed into (n-2)/4 copies of $C_{n/2}, W'(1), W'(2), \ldots, W'((n-2)/4)$ with $W'(i) = (y_0, y_i, y_{i-1}, y_{i+1}, y_{i-2}, \ldots, y_{i+(n-10)/4}, y_{i+(n+2)/4}, y_{i+(n-6)/4}, y_{i+(n-2)/4})$ for $i = 1, 2, \ldots, (n-2)/4$, where the subscripts of x's and y's are taken modulo (n-2)/2 in the set of numbers $\{1, 2, \ldots, (n-2)/2\}$. For $i = 1, 2, \ldots, (n-2)/4$, let

$$e(i) = \begin{cases} x_0 x_1 & \text{if } i = 1, \\ x_i x_{i-1} & \text{if } i \text{ is odd and } i \ge 3, \\ x_{i+(n-6)/4} x_{i+(n-2)/4} & \text{if } i \text{ is even,} \end{cases}$$

and let

$$e'(i) = \begin{cases} y_0 y_1 & \text{if } i = 1, \\ y_i y_{i-1} & \text{if } i \text{ is odd and } i \ge 3, \\ y_{i+(n-6)/4} y_{i+(n-2)/4} & \text{if } i \text{ is even.} \end{cases}$$

Let $P(i) = W(i) - \{e(i)\}$ and $P'(i) = W'(i) - \{e'(i)\}$. Trivially, P(i) and P'(i)are (n/2)-paths. Let $M = \{e(i)|1 \le i \le (n-2)/4\}$ and $M' = \{e'(i)|1 \le i \le (n-2)/4\}$. If $n \equiv 2 \pmod{8}$, then (n-2)/4 is even. Hence $M = \{x_0x_1, x_2x_3, \dots, x_{(n-10)/4}x_{(n-6)/4}, x_{(n+2)/4}x_{(n+6)/4}, \dots, x_{n/2-2}x_{n/2-1}\}$ and $M' = \{y_0y_1, y_2y_3, \dots, y_{(n-10)/4}y_{(n-6)/4}, y_{(n+2)/4}y_{(n+6)/4}, \dots, y_{n/2-2}y_{n/2-1}\}$. If $n \equiv 6 \pmod{8}$, then (n-2)/4 is odd. Hence $M = \{x_0x_1, x_2x_3, \dots, x_{n/2-3}x_{n/2-2}\}$ and $M' = \{y_0y_1, y_2y_3, \dots, y_{n/2-3}y_{n/2-2}\}$. Let H be the subgraph of $K_n[X]$ induced by M, and let H' be the subgraph of $K_n[Y]$ induced by M'. Clearly, $K_n[X]$ can be decomposed into H and (n-2)/4 copies of $P_{n/2}$, $P(1), P(2), \dots, P((n-2)/4)$, and $K_n[Y]$ can be decomposed into H' and (n-2)/4 copies of $P_{n/2}$, $P(1), P(2), \dots, P((n-2)/4)$.

Let $Z = \{y_0 x_0, y_1 x_1\} \cup \{y_{i-1} x_{i-1}, y_i x_i | i \text{ is odd and } i \ge 3\} \cup \{y_{i+(n-6)/4} x_{i+(n-6)/4}, y_{i+(n-2)/4} | i \text{ is even}\}$. Obviously, $Z \subseteq E(C(0))$. For $i = 1, 2, \ldots, (n-2)/4$, let $K = \{y_{i+(n-6)/4} x_{i+(n-6)/4}, y_{i+(n-2)/4} x_{i+(n-2)/4}\}$ and

$$Q(i) = \begin{cases} P(1) \cup P'(1) \cup \{y_0 x_0, y_1 x_1\} & \text{if } i = 1, \\ P(i) \cup P'(i) \cup \{y_{i-1} x_{i-1}, y_i x_i\} & \text{if } i \text{ is odd and } i \ge 3, \\ P(i) \cup P'(i) \cup K & \text{if } i \text{ is even,} \end{cases}$$

and let $Q((n+2)/4) = H \cup H' \cup C(0) - Z$. One can see that each Q(i) is an *n*-cycle. Thus $K_n[X] \cup K_n[Y] \cup C(0)$ can be decomposed into (n+2)/4 copies of C_n . For $1 \le t \le (n-6)/4$, let

$$R(t) = \left(\bigcup_{i=1}^{t} C((n-6)/4 - i + 1)\right) \cup F.$$

It is easy to see that R(t) is isomorphic to the crown $C_{n/2,2t+1}$. Hence $K_n[X,Y]$ can be decomposed into n/2 - (t+1) copies of C_n , $Q(1), Q(2), \ldots, Q((n+2)/4)$

and $C(1), C(2), \ldots, C((n-6)/4-t)$, and one copy of (n/2, 2t+1)-crown R(t). Note that $2t+1 \ge 3$ and $|E(R(t))| = |E(C_{n/2,2t+1})| = (2t+1)n/2$. If $(2t+1)n/2 \equiv 0 \pmod{3}$, then R(t) can be decomposed into (2t+1)n/6 copies of S_3 by Proposition 19.

If t = 1, then $(2t+1)n/2 = 3n/2 \equiv 0 \pmod{3}$ for each n. Thus K_n can be decomposed into n/2 - 2 copies of C_n and n/2 copies of S_3 .

If t = 2, then $(2t+1)n/2 = 5n/2 \equiv 0 \pmod{3}$ for $n \equiv 0 \pmod{6}$. Thus K_n can be decomposed into n/2 - 3 copies of C_n and 5n/6 copies of S_3 .

If t = 3, then $(2t + 1)n/2 = 7n/2 \equiv 0 \pmod{3}$ for $n \equiv 0 \pmod{6}$. Thus K_n can be decomposed into n/2 - 4 copies of C_n and 7n/6 copies of S_3 . This settles Case 2.

Let x and y be distinct vertices of a multigraph G. We use $e_G(x, y)$ to denote the number of edges joining x and y. A star decomposition of G is *center balanced* if every vertex of G is the center of the same number of members in the decomposition.

Proposition 21 [21]. Let G be an r-regular multigraph with $r \ge 1$. Then G has a center balanced S_t -decomposition if and only if $r \equiv 0 \pmod{2t}$ and $e_G(x, y) \le r/t$ for all $x, y \in V(G)$ with $x \ne y$.

Lemma 22. Let n and t be positive integers. If Q_1, Q_2, \ldots, Q_t are edge-disjoint Hamiltonian cycles of K_n , then $\bigcup_{i=1}^t Q_i$ is S_t -decomposable.

Proof. Since each Q(i) is 2-regular and V(Q(i)) = V(Q(j)) for $i, j \in \{1, 2, ..., t\}$, $\bigcup_{i=1}^{t} Q_i$ is 2t-regular. Since $2t \equiv 0 \pmod{2t}$ and $e_{\bigcup_{i=1}^{t} Q_i}(x, y) \leq 1 < (2t)/t$ for all $x, y \in V(\bigcup_{i=1}^{t} Q_i)$ with $x \neq y$, the result follows from Proposition 21.

By Lemma 22, the union of 3t copies of edge-disjoint *n*-cycles can be decomposed into *n* copies of S_{3t} , in turn, each S_{3t} can be decomposed in to *t* copies of S_3 . Hence we have the following result.

Theorem 23. Let n, p and t be positive integers with $p \ge 3t$, and let q be a nonnegative integer. If K_n can be decomposed into p copies of C_n and q copies of S_3 , then K_n can be decomposed into p - 3t copies of C_n and q + nt copies of S_3 .

Obviously, if K_n can be decomposed into α copies of C_n and β copies of S_3 , then $\binom{n}{2} = n\alpha + 3\beta$. Using Theorem 23 together with Lemmas 15 to 20, we have the main result of this section.

Theorem 24. Let n, α and β be positive integers. The complete graph K_n can be decomposed into α copies of C_n and β copies of S_3 if and only if $\binom{n}{2} = n\alpha + 3\beta$ and $\alpha \neq (n-3)/2$ for $n \equiv 3 \pmod{6}$ and $\alpha \neq (n-2)/2$ for $n \equiv 0 \pmod{6}$.

836

Acknowledgment

We would like to thank the referees for their valuable comments and helpful suggestions.

References

- A. Abueida, S. Clark and D. Leach, Multidecomposition of the complete graph into graph pairs of order 4 with various leaves, Ars Combin. 93 (2009) 403–407.
- [2] A. Abueida and M. Daven, *Multidesigns for graph-pairs of order* 4 and 5, Graphs Combin. 19 (2003) 433–447. doi:10.1007/s00373-003-0530-3
- [3] A. Abueida and M. Daven, Multidecompositons of the complete graph, Ars Combin. 72 (2004) 17–22.
- [4] A. Abueida and M. Daven, Multidecompositions of several graph products, Graphs Combin. 29 (2013) 315–326. doi:10.1007/s00373-011-1127-x
- [5] A. Abueida, M. Daven and K.J. Roblee, Multidesigns of the λ-fold complete graph for graph-pairs of order 4 and 5, Australas. J. Combin. 32 (2005) 125–136.
- [6] A. Abueida and C. Hampson, Multidecomposition of $K_n F$ into graph-pairs of order 5 where F is a Hamilton cycle or an (almost) 1-factor, Ars Combin. 97 (2010) 399–416.
- [7] A. Abueida and C. Lian, On the decompositions of complete graphs into cycles and stars on the same number of edges, Discuss. Math. Graph Theory 34 (2014) 113-125. doi:10.7151/dmgt.1719
- [8] A. Abueida and T. O'Neil, Multidecomposition of λK_m into small cycles and claws, Bull. Inst. Combin. Appl. **49** (2007) 32–40.
- [9] B. Alspach, The wonderful Walecki construction, Bull. Inst. Combin. Appl. 52 (2008) 7–20.
- [10] F. Beggas, M. Haddad and H. Kheddouci, Decomposition of complete multigraphs into stars and cycles, Discuss. Math. Graph Theory 35 (2015) 629–639. doi:10.7151/dmgt.1820
- [11] J. Bosák, Decompositions of Graphs (Kluwer, Dordrecht, Netherlands, 1990).
- [12] D. Bryant, Packing paths in complete graphs, J. Combin. Theory Ser. B 100 (2010) 206–215.
 doi:10.1016/j.jctb.2009.08.004
- P. Hell and A. Rosa, Graph decompositions, handcuffed prisoners and balanced Pdesigns, Discrete Math. 2 (1972) 229–252. doi:10.1016/0012-365X(72)90005-2

- [14] S. Jeevadoss and A. Muthusamy, Decomposition of complete bipartite graphs into paths and cycles, Discrete Math. 331 (2014) 98–108. doi:10.1016/j.disc.2014.05.009
- [15] S. Jeevadoss and A. Muthusamy, Decomposition of product graphs into paths and cycles of length four, Graphs Combin. 32 (2016) 199–223. doi:10.1007/s00373-015-1564-z
- S. Jeevadoss and A. Muthusamy, Decomposition of complete bipartite multigraphs into paths and cycles having k edges, Discuss. Math. Graph Theory 35 (2015) 715-731. doi:10.7151/dmgt.1830
- [17] R. Laskar and B. Auerbach, On decomposition of r-partite graphs into edge-disjoint Hamilton circuits, Discrete Math. 14 (1976) 265-268. doi:10.1016/0012-365X(76)90039-X
- [18] H.-C. Lee, Multidecompositions of complete bipartite graphs into cycles and stars, Ars Combin. 108 (2013) 355–364.
- H.-C. Lee, Decomposition of the complete bipartite multigraph into cycles and stars, Discrete Math. 338 (2015) 1362–1369. doi:10.1016/j.disc.2015.02.019
- [20] H.-C. Lee and Z.-C. Chen, Maximum packings and minimum coverings of multigraphs with paths and stars, Taiwanese J. Math. 19 (2015) 1341–1357. doi:10.11650/tjm.19.2015.4456
- [21] H.-C. Lee and C. Lin, Balanced star decompositions of regular multigraphs and λfold complete bipartite graphs, Discrete Math. **301** (2005) 195–206. doi:10.1016/j.disc.2005.04.023
- [22] H.-C. Lee and J.-J. Lin, Decomposition of the complete bipartite graph with a 1factor removed into cycles and stars, Discrete Math. **313** (2013) 2354–2358. doi:10.1016/j.disc.2013.06.014
- [23] J.-J. Lin, Decompositions of multicrowns into cycles and stars, Taiwanese J. Math. 19 (2015) 1261–1270. doi:10.11650/tjm.19.2015.3460
- [24] C. Lin, J.-J. Lin and T.-W. Shyu, Isomorphic star decomposition of multicrowns and the power of cycles, Ars Combin. 53 (1999) 249–256.
- [25] H.M. Priyadharsini and A. Muthusamy, (G_m, H_m) -multifactorization of λK_m , J. Combin. Math. Combin. Comput. **69** (2009) 145–150.
- [26] H.M. Priyadharsini and A. Muthusamy, (G_m, H_m) -multidecomposition of $K_{m,m}(\lambda)$, Bull. Inst. Combin. Appl. **66** (2012) 42–48.
- [27] T.-W. Shyu, Decomposition of complete graphs into paths and stars, Discrete Math.
 310 (2010) 2164–2169.
 doi:10.1016/j.disc.2010.04.009

- [28] T.-W. Shyu, Decompositions of complete graphs into paths and cycles, Ars Combin. 97 (2010) 257–270.
- [29] T.-W. Shyu, Decomposition of complete graphs into paths of length three and triangles, Ars Combin. 107 (2012) 209–224.
- [30] T.-W. Shyu, Decomposition of complete graphs into cycles and stars, Graphs Combin. 29 (2013) 301–313. doi:10.1007/s00373-011-1105-3
- [31] T.-W. Shyu, Decomposition of complete bipartite graphs into paths and stars with same number of edges, Discrete Math. **313** (2013) 865–871. doi:10.1016/j.disc.2012.12.020
- [32] D. Sotteau, Decomposition of $K_{m,n}$ ($K_{m,n}^*$) into cycles (circuits) of length 2k, J. Combin. Theory Ser. B **30** (1981) 75–81. doi:10.1016/0095-8956(81)90093-9
- [33] M. Tarsi, Decomposition of complete multigraphs into stars, Discrete Math. 26 (1979) 273–278. doi:10.1016/0012-365X(79)90034-7

Received 12 January 2018 Revised 14 May 2018 Accepted 14 May 2018