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Abstract

Let H be a graph. A decomposition of H is a set of edge-disjoint sub-
graphs of H whose union is H. A Hamiltonian path (respectively, cycle)
of H is a path (respectively, cycle) that contains every vertex of H exactly
once. A k-star, denoted by Sk, is a star with k edges. In this paper, we give
necessary and sufficient conditions for decomposing the complete graph into
α copies of Hamiltonian path (cycle) and β copies of S3.
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1. Introduction

For positive integers m and n, Kn denotes the complete graph with n vertices,
and Km,n denotes the complete bipartite graph with parts of sizes m and n. Let
k be a positive integer. A k-path, denoted by Pk, is a path on k vertices. A
k-cycle, denoted by Ck, is a cycle of length k. A k-star, denoted by Sk, is a star
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with k edges, i.e., Sk = K1,k. Let H be a graph. A spanning subgraph of H is
a subgraph of H containing every vertex of H. A spanning path (respectively,
cycle) of H is called a Hamiltonian path (respectively, cycle) of H. A 1-factor
of G is a spanning subgraph of G in which each vertex is incident with exactly
one edge.

Let F , G, and H be graphs. A decomposition of H is a set of edge-disjoint
subgraphs of H whose union is H. If H can be decomposed into α copies of F
and β copies of G for nonnegative integers α and β, then we say that H has an
{αF, βG}-decomposition. Furthermore, if α ≥ 1 and β ≥ 1, then we say that H
has an (F,G)-decomposition or H is (F,G)-decomposable.

Study on the existence of an (F,G)-decomposition of a graph has attracted
a fair share of interest. Abueida and Daven [3] investigated the problem of
(Kk, Sk)-decomposition of the complete graph Kn. Abueida and Daven [4] in-
vestigated the problem of the (C4, E2)-decomposition of several graph products
where E2 denotes two vertex disjoint edges. Abueida and O’Neil [8] studied the
existence problem for (Ck, Sk−1)-decomposition of the complete multigraph λKn

for k ∈ {3, 4, 5}. Priyadharsini and Muthusamy [25, 26] investigated the exis-
tence of (G,H)-decompositions of λKn and λKn,n where G,H ∈ {Cn, Pn, Sn−1}.
A graph-pair (G,H) of order m is a pair of non-isomorphic graphs G and H
with V (G) = V (H) such that both G and H contain no isolated vertices and
G ∪ H is isomorphic to Km. Abueida and Daven [2] and Abueida, Daven and
Roblee [5] completely determined the values of n for which λKn admits a (G,H)-
decomposition where (G,H) is a graph-pair of order 4 or 5. Abueida, Clark and
Leach [1] and Abueida and Hampson [6] considered the existence of decompo-
sitions of Kn − F into the graph-pairs of order 4 and 5, respectively, where F
is a Hamiltonian cycle, a 1-factor, or an almost 1-factor. Lee [18, 19], Lee and
Lin [22], and Lin [23] established necessary and sufficient conditions for the ex-
istence of (Ck, Sk)-decompositions of the complete bipartite graph, the complete
bipartite multigraph, the complete bipartite graph with a 1-factor removed, and
the multicrown, respectively. Abueida and Lian [7] and Beggas et al. [10] inves-
tigated the problems of (Ck, Sk)-decompositions of the complete graph Kn and
λKn, giving some necessary or sufficient conditions for such decompositions to
exist. Lee and Chen [20] completely settled the existence problem of (Pk+1, Sk)-
decompositions of the complete multigraph λKn and the balanced complete bi-
partite multigraph λKn,n.

Recently, the existence problem of an {αF, βG}-decomposition of a graph
where α and β are essential is also studied. Shyu gave necessary and suffi-
cient conditions for the decomposition of Kn into paths and stars (both with
3 edges) [27], paths and cycles (both with k edges where k = 3, 4) [28, 29], and
cycles and stars (both with 4 edges) [30]. He [31] also gave necessary and sufficient
conditions for the decomposition of Km,n into paths and stars both with 3 edges.
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Jeevadoss and Muthusamy [14,15] considered the {αPk+1, βCk}-decomposability
of Km,n, Kn and λKm,n, giving some necessary or sufficient conditions for such
decompositions to exist. Jeevadoss and Muthusamy [16] gave necessary and suffi-
cient conditions for the existence of {αP5, βC4}-decomposition of tensor product
and cartesian product of complete graphs. In [33], Tarsi gave necessary and suf-
ficient conditions for the existence of {αF, βSk}-decomposition of λKn, where F
is any subgraph of Kn and α = 0. In this paper, we consider the existence of
an {αF, βG}-decomposition of the complete graph Kn with F ∈ {Pn, Cn} and
G = S3, giving necessary and sufficient conditions.

2. Preliminaries

We first collect some needed terminology and notation. Let G be a graph. The
degree of a vertex x of G, denoted by degG x, is the number of edges incident
with x. For k ≥ 2, the vertex of degree k in Sk is the center of Sk and any
vertex of degree 1 is a pendent vertex of Sk. Let v1v2 · · · vk denote the k-path
through vertices v1, v2, . . . , vk in order. The vertices v1 and vk are referred to as its
origin and terminus, respectively. In addition, Pk(v1, vk) denotes a k-path with
origin v1 and terminus vk. We use (v1, v2, . . . , vk) to denote the k-cycle through
vertices v1, v2, . . . , vk, v1 in order, and S(u; v1, v2, . . . , vk) to denote a star with
center u and pendent vertices v1, v2, . . . , vk. For U,W ⊆ V (G) with U ∩W = φ,
we use G[U ] and G[U,W ] to denote the subgraph of G induced by U , and the
maximal bipartite subgraph of G with bipartition (U,W ), respectively. When
G1, G2, . . . , Gt are edge disjoint subgraphs of a graph, use G1 ∪G2 ∪ · · · ∪Gt to
denote the graph with vertex set

⋃t
i=1 V (Gi) and edge set

⋃t
i=1E(Gi).

Before going into more details, we present some results which are useful for
our discussions.

Proposition 1 [11, 13]. For an even integer n and V (Kn) = {x0, x1, . . . , xn−1},
the complete graph Kn can be decomposed into n/2 copies of Pn, P (1), P (2), . . . ,
P (n/2) with P (i+1) = xixi−1xi+1xi−2 · · ·xi+n

2
−2xi+n

2
+1xi+n

2
−1xi+n

2

for 0 ≤ i ≤
n
2 − 1, where the subscripts of x’s are taken modulo n in the set of numbers

{0, 1, 2, . . . , n− 1}.

The following results are attributed to Walecki, see [9].

Lemma 2. For an odd integer n and V (Kn) = {x0, x1, . . . , xn−1}, the complete

graph Kn can be decomposed into (n− 1)/2 copies of Cn, C(1), C(2), . . . , C((n−
1)/2) with C(i) = (x0, xi, xi−1, xi+1, xi−2, . . . , xi+(n−5)/2, xi+(n+1)/2, xi+(n−3)/2,
xi+(n−1)/2) for i = 1, 2, . . . , (n−1)/2, where the subscripts of x’s are taken modulo

n− 1 in the set of numbers {1, 2, . . . , n− 1}.



826 H.-C. Lee and Z.-C. Chen

Lemma 3. For an even integer n and V (Kn) = {x0, x1, . . . , xn−1}, the complete

graph Kn can be decomposed into n/2−1 copies of Cn, C(1), C(2), . . . , C(n/2−1),
and a 1-factor F , where E(F ) = {x0xn−1, x1xn−2, x2xn−3, . . . , xn/2−2xn/2+1,
xn/2−1xn/2} and C(i) = (x0, xi, xi−1, xi+1, xi−2, . . . , xi+n/2+1, xi+n/2−2, xi+n/2,
xi+n/2−1) for i = 1, 2, . . . , n/2 − 1, where the subscripts of x’s are taken mod-

ulo n− 1 in the set of numbers {1, 2, . . . , n− 1}.

3. Decomposition of Kn Into n-Paths and 3-Stars

In this section, we obtain necessary and sufficient conditions for decomposing Kn

into α copies of Pn and β copies of S3.

Lemma 4. Let n be an odd integer and let α be a nonnegative integer. If
(

n
2

)

−
(n− 1)α is a nonnegative integer and

(

n
2

)

− (n− 1)α ≡ 0 (mod 3), then

α ∈







{0, 1, . . . , (n− 1)/2} if n ≡ 1 (mod 6),
{(n− 3)/2− 3t|t = 0, 1, . . . , (n− 3)/6} if n ≡ 3 (mod 6),
{(n− 3)/2− 3t|t = 0, 1, . . . , (n− 5)/6} if n ≡ 5 (mod 6).

Proof. Since
(

n
2

)

− (n−1)α is a nonnegative integer and n is odd, α ≤
⌊(

n
2

)

/(n−
1)
⌋

= (n − 1)/2. Let α = (n − 1)/2 − (3t + j) where t is a nonnegative integer
and j ∈ {0, 1, 2}. Since

(

n
2

)

− (n− 1)α = n(n− 1)/2− (n− 1)α = (n− 2α)(n−
1)/2 = (6t + 2j + 1)(n − 1)/2,

(

n
2

)

− (n − 1)α ≡ (2j + 1)(n − 1)/2 (mod 3). If
n ≡ 1 (mod 6), then (2j + 1)(n − 1)/2 ≡ 0 (mod 3) for any integer j. Hence
α ∈ {0, 1, . . . , (n − 1)/2} for n ≡ 1 (mod 6). When n ≡ 3 (mod 6) or n ≡ 5
(mod 6), the condition (2j + 1)(n− 1)/2 ≡ 0 (mod 3) holds if and only if j = 1.
Thus α = (n−3)/2−3t for some integer t when n ≡ 3 (mod 6) or n ≡ 5 (mod 6).
Since α is a nonnegative integer, we have t ≤ (n − 3)/6 for n ≡ 3 (mod 6), and
t ≤ (n− 5)/6 for n ≡ 5 (mod 6). This completes the proof.

Lemma 5. Let n be an even integer, and let α be a nonnegative integer. If
(

n
2

)

− (n− 1)α ≡ 0 (mod 3), then

α ∈







{n/2− 3t|t = 0, 1, . . . , n/6} if n ≡ 0 (mod 6),
{n/2− 3t|t = 0, 1, . . . , (n− 2)/6} if n ≡ 2 (mod 6),
{0, 1, . . . , n/2} if n ≡ 4 (mod 6).

Proof. Since
(

n
2

)

−(n−1)α is a nonnegative integer and n is even, α ≤
⌊(

n
2

)

/(n−
1)
⌋

= n/2. Let α = n/2−(3t+j) where t is a nonnegative integer and j ∈ {0, 1, 2}.
Since

(

n
2

)

−(n−1)α = n(n−1)/2−(n−1)α = (n−2α)(n−1)/2 = (3t+j)(n−1),
(

n
2

)

− (n− 1)α ≡ j(n− 1) (mod 3). If n ≡ 4 (mod 6), then j(n− 1) ≡ 0 (mod 3)
for any integer j. Hence α ∈ {0, 1, . . . , n/2} for n ≡ 4 (mod 6). When n ≡ 0
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(mod 6) or n ≡ 2 (mod 6), the condition j(n− 1) ≡ 0 (mod 3) holds if and only
if j = 0. Thus α = n/2 − 3t for some integer t when n ≡ 0 (mod 6) or n ≡ 2
(mod 6). Since α is a nonnegative integer, we have t ≤ n/6 for n ≡ 0 (mod 6),
and t ≤ (n− 2)/6 for n ≡ 2 (mod 6). This completes the proof.

The following indecomposable case is trivial.

Lemma 6. The complete graph K4 cannot be decomposed into

(1) one copy of P4 and one copy of S3, nor

(2) two copies of S3.

In addition, we exclude the possibility n = 5.

Lemma 7. The complete graph K5 cannot be decomposed into one copy of P5

and two copies of S3.

Proof. Suppose, on the contrary, that K5 can be decomposed into one copy of
P5, say P5(x, y), and two copies of S3, say S and T . Note that the edge xy
must be in either S or T . Without loss of generality, assume that xy is in S.
Since the degree of every vertex of Kn − E(P5(x, y) ∪ S) is less than 3, we have
a contradiction.

In the remainder of the paper, we assume that V (Kn) = {x0, x1, . . . , xn−1}.

Lemma 8. If n is an odd integer with n ≥ 7, then the following hold:

(1) The complete graph Kn can be decomposed into (n − 1)/2 copies of Pn and

(n− 1)/6 copies of S3 when n ≡ 1 (mod 6).

(2) The complete graph Kn can be decomposed into (n − 3)/2 copies of Pn and

(n− 1)/2 copies of S3.

(3) The complete graph Kn can be decomposed into (n − 5)/2 copies of Pn and

5(n− 1)/6 copies of S3 when n ≡ 1 (mod 6).

Proof. By Lemma 2, Kn can be decomposed into (n− 1)/2 copies of Cn, C(1),
C(2), . . . , C((n − 1)/2) with C(i) = (x0, xi, xi−1, xi+1, xi−2, . . . , xi+(n−5)/2,
xi+(n+1)/2, xi+(n−3)/2, xi+(n−1)/2) for i = 1, 2, . . . , (n− 1)/2, where the subscripts
of x’s are taken modulo n− 1 in the set of numbers {1, 2, . . . , n− 1}.

(1) For i = 1, 2, . . . , (n − 1)/2, let P (i) = C(i) − {x0xi}. Clearly, P (i) is
an n-path. Let G be the subgraph of Kn which is induced by the set of edges
x0x1, x0x2, . . . , x0x(n−1)/2. Obviously, G = S(n−1)/2. Since n is odd and n−1 ≡ 0
(mod 3), the graph G can be decomposed into (n − 1)/6 copies of S3. This
settles (1).
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(2) For n = 7, the complete graph K7 can be decomposed into 2 copies of P7

and 3 copies of S3 as follows: x6x2x5x3x4x0x1, x6x4x5x0x3x1x2, (x1;x4, x5, x6),
(x2;x0, x3, x4), (x6;x0, x3, x5).

Now we consider the case n ≥ 9. For i ∈ {1, 2, . . . , (n − 1)/2} − {(n − 7)/2,
(n−3)/2}, let P (i) = C(i)−{x0xi}. Note that xn−1xn−7 ∈ E(C((n−7)/2)) and
P ((n−3)/2) = C((n−3)/2) = (x0, x(n−3)/2, x(n−5)/2, x(n−1)/2, x(n−7)/2, . . . , xn−4,
xn−1, xn−3, xn−2). Let P ((n − 7)/2) = C((n − 7)/2) − {xn−1xn−7} and C((n −
3)/2)−{x0x(n−3)/2, x(n−1)/2x(n−7)/2}∪{x0x(n−1)/2}. Hence P (i) is an n-path for
i = 1, 2, . . . , (n−1)/2. Moreover, P ((n−1)/2) = x(n−1)/2x(n−3)/2x(n+1)/2x(n−5)/2

· · ·xn−3x1xn−2xn−1x0. For i = 1, 2, . . . , (n − 3)/2, let S(i) = (x(n−1)/2−i;
x(n−1)/2+i−1, x(n−1)/2+i) and S = (xn−1;xn−2, x0). Obviously, S(i) and S are 2-
stars, and P ((n− 1)/2) can be decomposed into S(1), S(2), . . . , S((n− 3)/2) and
S. Furthermore, let W (i) = S(i)∪{x0xi} for i = 1, 2, . . . , (n−3)/2−{(n−7)/2},
let W ((n − 7)/2) = S((n − 7)/2) ∪ {x(n−1)/2x(n−7)/2}, and let W ((n − 1)/2) =
S ∪ {xn−1xn−7}. Clearly, W (i) is a 3-star. This settles (2).

(3) We will remove one edge from C(i) to obtain an n-path for i ∈ {1, 2, . . . ,
(n−5)/2}, and use C((n−3)/2) and C((n−1)/2) together with the edges removed
from C(i)’s to constitute 5(n− 1)/3 copies of S3.

Let S(i) = (x(n−1)/2+3i−3;x(n−1)/2−3i+1, x(n−1)/2−3i) for i = 1, 2, . . . , (n −
1)/6, S′(i) = (x(n−1)/2−3i−1; x(n−1)/2+3i−2, x(n−1)/2+3i−1) for i = 1, 2, . . . , (n −
7)/6, and S′((n− 1)/6) = (xn−2;xn−3, x0). Obviously, S(i) and S′(i) are 2-stars.
Let J = {j|2 ≤ j ≤ (n− 1)/2 and j ≡ 0, 2 (mod 3)}. For j ∈ J , let

e′′j =

{

x(n−1)/2−jx(n−1)/2+j−2 if j ≡ 0 (mod 3),

x(n−1)/2−jx(n−1)/2+j−3 if j ≡ 2 (mod 3),

where the subscripts of x’s are taken modulo n−1 in the set of numbers {1, 2, . . . ,
n− 1}. It is easy to see that {S(i), S′(i)|i = 1, 2, . . . , (n− 1)/6} ∪ {e′′j |j ∈ J} is a
decomposition of C((n− 3)/2)− {x(n−3)/2x0}.

Note that C((n− 1)/2) = (x0, x(n−1)/2, x(n−3)/2, x(n+1)/2, x(n−5)/2, . . . , xn−3,
x1, xn−2, xn−1). Let S

′′(j) = (x(n−1)/2−j ;x(n−1)/2+j−1, x(n−1)/2+j) for j=1, 2, . . . ,
(n−3)/2 and S′′((n−1)/2) = (xn−1;xn−2, x0) where the subscripts of x’s are taken
modulo n−1 in the set of numbers {1, 2, . . . , n−1}. Obviously, S′′(j) is a 2-star,
and C((n−1)/2)−{x(n−1)/2x0} can be decomposed into S′′(1), S′′(2), . . . , S′′((n−
1)/2).

For i = 2, 3, . . . , (n − 1)/6, let ei be an edge in C(i − 1) incident with the
center of S(i). Then C(i− 1)− {ei} is an n-path and S(i) ∪ {ei} is a 3-star. For
i = 1, 2, . . . , (n− 1)/6, let e′i be an edge in C((n− 1)/6+ i− 1) incident with the
center of S′(i). Then C((n − 1)/6 + i − 1) − {e′i} is an n-path and S′(i) ∪ {e′i}
is a 3-star. Let K = {k|4 ≤ k ≤ (n − 5)/2 and k ≡ 1 (mod 3)}. For k ∈ K, let
e′′k be an edge in C((k − 1)/3 + (n− 1)/3− 1) incident with the center of S′′(k).
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Then C((k − 1)/3 + (n − 1)/3 − 1) − {e′′k} is an n-path and S′′(i) ∪ {e′′k} is a
3-star. For j ∈ J , S′′(j) ∪ {e′′j } is a 3-star. Moreover, S(1) ∪ {x(n−1)/2x0} and
S′′(1) ∪ {x(n−3)/2x0} are also 3-stars. This completes the proof.

Lemma 9. If n is an even integer with n ≥ 4, then the following hold:

(1) The complete graph Kn can be decomposed into n/2 copies of n-paths.

(2) The complete graph Kn can be decomposed into n/2 − 1 copies of Pn and

(n− 1)/3 copies of S3 when n ≡ 4 (mod 6) and n ≥ 10.

(3) The complete graph Kn can be decomposed into n/2 − 2 copies of Pn and

2(n− 1)/3 copies of S3 when n ≡ 4 (mod 6) and n ≥ 10.

Proof. By Proposition 1, we have (1).

(2) For n = 10, the complete graph K10 can be decomposed into 4 copies of
P10 and 3 copies of S3 as follows: x8x2x7x3x6x4x5x0x1x9, x1x3x8x4x7x5x6x0x2x9,
x0x3x2x4x1x5x8x6x7x9, x0x7x8x9x4x3x5x2x6x1, (x0;x4, x8, x9), (x1;x2, x7, x8),
(x9;x3, x5, x6).

Now we consider the case n ≥ 16. Let G = Kn[{x0, x1, . . . , xn−2}]. Clearly
G is isomorphic to Kn−1. By Lemma 2, the graph G can be decomposed into
n/2−1 copies of Cn−1, C(1), C(2), . . . , C(n/2−1) with C(i) = (x0, xi, xi−1, xi+1,
xi−2, . . . , xi+n/2−3, xi+n/2, xi+n/2−2, xi+n/2−1) for i = 1, 2, . . . , n/2− 1, where the
subscripts of x’s are taken modulo n− 2 in the set of numbers {1, 2, . . . , n− 2}.
Note that C(1) contains edges x1xn−2 and xn/2x0, C(2) contains edges x2x1 and
xn/2+1x0, and C(3) contains the edge x4x1. Let P (1) = C(1) ∪ {x1xn−1xn/2} −
{x1xn−2, xn/2x0}, P (2) = C(2)∪{x2xn−1xn/2+1}−{x2x1, xn/2+1x0}, and P (3) =
C(3) ∪ {x4xn−1} − {x1x4}. In addition, let P (i) = C(i) ∪ {xi+n/2−1xn−1} −
{xi+n/2−1x0} for i = 4, 5, . . . , n/2 − 1. Obviously, P (i) ia an n-path for i =
1, 2, . . . , n/2− 1. Let S(1) = (x0;xn/2, xn/2+1, xn/2+3, xn/2+4, . . . , xn−2) and S(2)
= (xn−1;x0, x3, x5, x6, . . . , xn/2−2, xn/2−1, xn/2+2). It is easy to see that Kn −

E
(

⋃n/2−1
i=1 P (i)

)

= S(1)∪ S(2)∪ (x1;x2, x4, xn−2). Note that S(1) and S(2) are

(n/2− 2)-stars. Since n ≡ 4 (mod 6), each of S(1) and S(2) can be decomposed
into (n− 4)/6 copies of S3. This settles (2).

(3) By Lemma 3,Kn can be decomposed into n/2−1 copies of Cn, C(1), C(2),
. . . , C(n/2 − 1), and a 1-factor F , where E(F ) = {x0xn−1, x1xn−2, x2xn−3, . . . ,
xn/2−2xn/2+1, xn/2−1xn/2} and C(i) = (x0, xi, xi−1, xi+1, xi−2, . . . , xi+n/2+1,
xi+n/2−2, xi+n/2, xi+n/2−1) for i = 1, 2, . . . , n/2 − 1, where the subscripts of x’s
are taken modulo n− 1 in the set of numbers {1, 2, . . . , n− 1}.

We obtain n/2− 2 copies of Pn by removing one edge from each of n-cycles
C(1), C(2), . . . , C(n/2 − 2). For i = 1, 2, . . . , n/2 − 3, let P (i) = C(i) − {x0xi}.
In addition, let P (n/2− 2) = C(n/2− 2)− {xn/2−3xn/2−1}. Trivially, P (i) is an
n-path for i = 1, 2, . . . , n/2− 2.
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In the following, 2(n − 1)/3 copies of S3 are constructed. We first obtain
n/2 copies of S3 by using all of the edges of C(n/2− 1) and n/2− 1 edges of F
and the edge xn/2−3xn/2−1 removed from C(n/2 − 2). Note that C(n/2 − 1) =
(x0, xn/2−1, xn/2−2, xn/2, xn/2−3, . . . , x1, xn−3, xn−1, xn−2). For i = 1, 2, . . . , n/2−
1, let S(i) = (xn/2−1+i;xn/2−1−i, xn/2−2−i) and S = (xn/2−1;xn/2−2, x0). Obvi-
ously, S(i) and S are 2-stars, and C(n/2−1) is decomposable into S(1), S(2), . . . ,
S(n/2− 1) and S. Let W (i) = S(i) ∪ {xn/2−1+ixn/2−i} for i = 1, 2, . . . , n/2− 1,
and let W (n/2) = S ∪ {xn/2−3xn/2−1}. Clearly, W (i) is a 3-star.

Now we obtain (n− 4)/6 copies of S3 by using one edge of F and the edges
removed from C(i)’s in constructing n-paths for i = 1, 2, . . . , n/2 − 3. Let G be
the subgraph of Kn induced by the set of edges x0x1, x0x2, . . . , x0xn/2−3, x0xn−1.
Obviously, G = Sn/2−2. Since n ≡ 4 (mod 6), the graph G can be decomposed
into (n− 4)/6 copies of S3. This settles (3) and completes the proof.

Lemma 10. Let n and t be positive integers. If Q1, Q2, . . . , Qt are edge-disjoint

Hamiltonian paths of Kn, then
⋃t

i=1Qi is St-decomposable.

Proof. Since each Qi is a Hamiltonian path of Kn, we have V (Qi) = V (Kn). For
each Qi, we orient the edges of Qi from x0 along Qi to the end (or ends) of the

path, and use
−→
Qi to denote the digraph obtained from Qi for such an orientation.

Note that there is exactly one arc directed into xj for each j ∈ {1, 2, . . . , n− 1}.

Let
−→
G =

⋃t
i=1

−→
Qi. It is easy to check that deg−−→

G
xj = t for j 6= 0. Thus there

exists an St-decomposition of
⋃t

i=1Qi such that xj is a center of a t-star for j 6= 0.
This completes the proof.

By Lemma 10, the union of 3t edge-disjoint n-paths can be decomposed into
n − 1 copies of S3t, in turn, each S3t can be decomposed in to t copies of S3.
Hence we have the following result.

Theorem 11. Let n, p and t be positive integers with p ≥ 3t, and let q be a

nonnegative integer. If Kn can be decomposed into p copies of Pn and q copies of

S3, then Kn can be decomposed into p − 3t copies of Pn and q + (n − 1)t copies
of S3.

Obviously, if Kn can be decomposed into α copies of n-paths and β copies of
S3, then

(

n
2

)

= (n− 1)α + 3β. Using Theorem 11 together with Lemmas 4 to 9,
we have the main result of this section.

Theorem 12. Let n be a positive integer with n ≥ 4, and let α and β be non-

negative integers. The complete graph Kn can be decomposed into α copies of

Pn and β copies of S3 if and only if
(

n
2

)

= (n − 1)α + 3β and (n, α, β) /∈
{(4, 1, 1), (4, 0, 2), (5, 1, 2)}.
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4. Decomposition of Kn Into n-Cycles and 3-Stars

In this section, we obtain necessary and sufficient conditions for decomposing Kn

into α copies of Cn and β copies of S3. The first two lemmas in the following are
from [17] and [32], respectively.

Lemma 13. For an odd integer n and V (Kn,n) = {x0, . . . , xn−1}∪{y0, . . . , yn−1},
the complete bipartite graph Kn,n can be decomposed into (n − 1)/2 copies of

C2n, C(0), C(1), . . . , C((n − 3)/2), and a 1-factor F , where E(F ) = {x0yn−1,
x1y0, . . . , xn−1yn−2} and C(i) = (y2i, x0, y2i+1, x1, . . . , y2i+(n−2), xn−2, y2i+(n−1),
xn−1) for i = 0, 1, . . . , (n− 3)/2.

Lemma 14. For an even integer n and V (Kn,n) = {x0, . . . , xn−1} ∪ {y0, . . . ,
yn−1}, the complete bipartite graph Kn,n can be decomposed into n/2 copies of

C2n, C(0), C(1), . . . , C(n/2 − 1), where C(i) = (y2i, x0, y2i+1, x1, . . . , y2i+(n−2),
xn−2, y2i+(n−1), xn−1) for i = 0, 1, . . . , n/2− 1.

Lemma 15. Let n be an odd integer and let α be a nonnegative integer. If
(

n
2

)

− nα is a nonnegative integer and
(

n
2

)

− nα ≡ 0 (mod 3), then

α ∈

{

{0, 1, . . . , (n− 1)/2} if n ≡ 0 (mod 3),

{(n− 1)/2− 3t|t = 0, 1, . . . , ⌊(n− 1)/6⌋} otherwise.

Proof. Since
(

n
2

)

−nα is a nonnegative integer and n is odd, α ≤
⌊(

n
2

)

/n
⌋

= (n−
1)/2. Let α = (n−1)/2−(3t+i), where t is a nonnegative integer and i ∈ {0, 1, 2}.
Since

(

n
2

)

− nα = n(n− 1)/2− nα = n(n− 1− 2α)/2 = n(3t+ i),
(

n
2

)

− nα ≡ ni
(mod 3). If n is a multiple of 3, then ni ≡ 0 (mod 3) holds for any i ∈ {0, 1, 2}.
Hence α ∈ {0, 1, . . . , (n − 1)/2} for n ≡ 0 (mod 3). Otherwise, the condition
ni ≡ 0 (mod 3) holds if and only if i = 0. This implies α = (n − 1)/2 − 3t.
Moreover, t ≤ ⌊(n − 1)/6⌋ since α is a nonnegative integer. This completes the
proof.

Lemma 16. Let n be an even integer and let α be a nonnegative integer. If
(

n
2

)

− nα is a nonnegative integer and
(

n
2

)

− nα ≡ 0 (mod 3), then

α ∈

{

{0, 1, . . . , n/2− 1} if n ≡ 0 (mod 3),

{n/2− 3t− 2|t = 0, 1, . . . , ⌊(n− 4)/6⌋} otherwise.

Proof. Since
(

n
2

)

− nα is a nonnegative integer and n is even, α ≤ ⌊
(

n
2

)

/n⌋ =
n/2−1. Let α = n/2−1−(3t+i), where t is a nonnegative integer and i ∈ {0, 1, 2}.
Since

(

n
2

)

−nα = n(n−1−2α)/2 = n(6t+2i+1)/2,
(

n
2

)

−nα ≡ n(2i+1)/2 (mod 3).
If n ≡ 0 (mod 3), then n/2 ≡ 0 (mod 3), this implies that n(2i + 1)/2 ≡ 0
(mod 3) holds for any i ∈ {0, 1, 2}. Hence α ∈ {0, 1, . . . , n/2 − 1} for n ≡ 0
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(mod 3). Otherwise, the condition n(2i + 1)/2 ≡ 0 (mod 3) holds if and only if
i = 1. This implies α = n/2 − 3t − 2. Moreover, t ≤ ⌊(n − 4)/6⌋ since α is a
nonnegative integer. This completes the proof.

Letm = (n−3)/2 for odd n andm = (n−2)/2 for even n. Let C(1), C(2), . . . ,
C(m) be edge-disjoint n-cycles in Kn, and let G = Kn −

⋃m
i=1E(C(i)). Since

degG x = n − 1 − 2m ≤ 2 for each vertex x, G has no S3-decomposition. Thus
we have the following result.

Lemma 17. Let n ≡ 0 (mod 3). The complete graph Kn cannot be decomposed

into (n−3)/2 copy of Cn and n/3 copies of S3 for odd n, and cannot be decomposed

into (n− 2)/2 copy of Cn and n/6 copies of S3 for even n.

Lemma 18. If n is an odd integer with n ≥ 5, then the following hold:

(1) The complete graph Kn can be decomposed into (n− 1)/2 copies of Cn.

(2) The complete graph Kn can be decomposed into (n− 5)/2 copies of Cn and

2n/3 copies of S3 when n ≡ 3 (mod 6) and n ≥ 9.

(3) The complete graph Kn can be decomposed into (n− 9)/2 copies of Cn and

4n/3 copies of S3 when n ≡ 3 (mod 6) and n ≥ 9.

Proof. By Lemma 2, the complete graph Kn can be decomposed into (n− 1)/2
copies of Cn, C(1), C(2), . . . , C((n − 1)/2) with C(i) = (x0, xi, xi−1, xi+1, . . . ,
xi+(n−5)/2, xi+(n+1)/2, xi+(n−3)/2, xi+(n−1)/2) for i = 1, 2, . . . , (n− 1)/2, where the
subscripts of x’s are taken modulo n− 1 in the set of numbers {1, 2, . . . , n− 1}.
Hence we have (1).

(2) If there exist s and t (1 ≤ s < t ≤ (n − 1)/2) such that C(s) ∪ C(t) can
be decomposed into 2n/3 copies of S3, then we have the result. Consider the
case s = (n+3)/6 and t = n/3. Note that C((n+3)/6) = (x0, x(n+3)/6, x(n−3)/6,
x(n+9)/6, x(n−9)/6, . . . , xn/3−1, x1, xn/3, xn−1, . . . , x2n/3−2, x2n/3+1, x2n/3−1, x2n/3).
For i = 1, 2, . . . , n/3 − 1, let S2(i) = (xn−i;xn/3−1+i, xn/3+i) and S2(n/3) =
(x2n/3;x2n/3−1, x0). For j = 1, 2, . . . , (n − 3)/6, let P2(j) = xjxn/3+1−j . For
j = (n + 3)/6, (n + 9)/6, . . . , n/3 − 1, let P2(j) = xjxn/3−j . In addition, let
P2(0) = x0x(n+3)/6. Obviously, S2(i) is a 2-star for i = 1, 2, . . . , n/3, and P2(j)
is a 2-path for j = 0, 1, . . . , n/3 − 1. One can see that C((n + 3)/6) can be
decomposed into S2(1), S2(2), . . . , S2(n/3) and P2(0), P2(1), . . . , P2(n/3− 1).

On the other hand, C(n/3) = (x0, xn/3, xn/3−1, xn/3+1, xn/3−2, xn/3+2, . . . ,
x2n/3−2, x1, x2n/3−1, xn−1, . . . , x(5n−15)/6, x(5n+3)/6, x(5n−9)/6, x(5n−3)/6). For j =
1, 2, . . . , n/3− 1, let S′

2(j) = (xj ;x2n/3−1−j , x2n/3−j). For i = 1, 2, . . . , (n+ 3)/6,
let P ′

2(i) = xn−ix2n/3−2+i. For i = (n + 9)/6, (n + 12)/6, . . . , n/3, let P ′

2(i) =
xn−ix2n/3−1+i. In addition, let P ′

2(0) = x0xn/3 and P ′′

2 (0) = x0x(5n−3)/6. Ob-
viously, S′

2(j) is a 2-star for i = 1, 2, . . . , n/3 − 1, and P ′′

2 (0) and P ′

2(i) are 2-
paths for i = 0, 1, . . . , n/3. One can see that C(n/3) can be decomposed into
S′

2(1), S
′

2(2), . . . , S
′

2(n/3− 1) and P ′

2(0), P
′

2(1), . . . , P
′

2(n/3) as well as P
′′

2 (0).
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For i = 1, 2, . . . , n/3, let S3(i) = S2(i) ∪ P ′

2(i). For j = 1, 2, . . . , n/3 − 1,
let S′

3(j) = S′

2(j) ∪ P2(j). Clearly, S3(i) and S′

3(j) are 3-stars. In addition,
P2(0) ∪ P ′

2(0) ∪ P ′′

2 (0) is also a 3-star. Hence C((n + 3)/6) ∪ C(n/3) can be
decomposed into 2n/3 copies of S3. This settles (2).

(3) According to the proof of (2), the result holds if there exist s′ and t′ (s′, t′ /∈
{(n+ 3)/6, n/3}) such that C(s′) ∪C(t′) can be decomposed into 2n/3 copies of
S3. Consider the case s′ = (n+9)/6 and t′ = n/3+ 1. Note that C((n+9)/6) =
(x0, x(n+9)/6, x(n+3)/6, x(n+15)/6, x(n−3)/6, . . . , xn/3+1, x1,xn/3+2,xn−1, . . . , x2n/3−1,
x2n/3+2, x2n/3, x2n/3+1). For i = 1, 2, . . . , n/3 − 1, let S2(i) = (xn+1−i;xn/3+i,
xn/3+1+i) with xn = x1 and S2(n/3) = (x2n/3+1;x2n/3, x0). For j = 2, 3, . . . , (n+
3)/6, let P2(j) = xjxn/3+3−j . For j = (n+ 9)/6, (n+ 15)/6, . . . , n/3, let P2(j) =
xjxn/3+2−j . In addition, let P2(0) = x0x(n+9)/6. Obviously, S2(i) is a 2-star
for i = 1, 2, . . . , n/3, and P2(j) is a 2-path for j = 0, 2, 3, . . . , n/3. One can
see that C((n + 3)/6) can be decomposed into S2(1), S2(2), . . . , S2(n/3) and
P2(0), P2(2), P2(3), . . . , P2(n/3).

On the other hand, C(n/3 + 1) = (x0, xn/3+1, xn/3, xn/3+2, xn/3−1, . . . , x2n/3,
x1, x2n/3+1, xn−1, x2n/3+2, xn−2, . . . , x(5n−9)/6, x(5n+9)/6, x(5n−3)/6, x(5n+3)/6). For
j = 2, 3, . . . , n/3, let S′

2(j) = (xj ;x2n/3+1−j , x2n/3+2−j). For i = 1, 2, . . . , (n +
3)/6, let P ′

2(i) = xn+1−ix2n/3−1+i, and for i = (n + 9)/6, (n + 12)/6, . . . , n/3,
let P ′

2(i) = xn+1−ix2n/3+i with xn = x1. In addition, let P ′

2(0) = x0xn/3+1 and
P ′′

2 (0) = x0x(5n+3)/6. Obviously, S′

2(j) is a 2-star for i = 2, 3, . . . , n/3, and P ′′

2 (0)
and P ′

2(i) are 2-paths for i = 0, 1, . . . , n/3. One can see that C(n/3 + 1) can be
decomposed into S′

2(2), S
′

2(3), . . . , S
′

2(n/3) and P ′

2(0), P
′

2(1), . . . , P
′

2(n/3) as well
as P ′′

2 (0).
For i = 1, 2, . . . , n/3, let S3(i) = S2(i) ∪ P ′

2(i). For j = 2, 3, . . . , n/3, let
S′

3(j) = S′

2(j) ∪ P2(j). Clearly, S3(i) and S′

3(j) are 3-stars. In addition, P2(0) ∪
P ′

2(0)∪P
′′

2 (0) is also a 3-star. Hence C((n+9)/6)∪C(n/3+1) can be decomposed
into 2n/3 copies of S3. This settles (3).

For positive integers l and n with 1 ≤ l ≤ n, the (n, l)-crown Cn,l is the
bipartite graph with bipartition (X,Y ), where X = {x0, x1, . . . , xn−1} and B =
{y0, y1, . . . , yn−1}, and edge set {xiyj : i = 0, 1, . . . , n−1, j ≡ i+1, i+2, . . . , i+ l
(mod l)}.

Proposition 19 [24]. λCn,l is Sk-decomposable if and only if k ≤ l and λnl ≡ 0
(mod k).

Lemma 20. If n is an even integer n ≥ 6, then the following hold:

(1) The complete graph Kn can be decomposed into n/2 − 2 copies of Cn and

n/2 copies of S3.

(2) The complete graph Kn can be decomposed into n/2 − 3 copies of Cn and

5n/6 copies of S3 when n ≡ 0 (mod 6).
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(3) The complete graph Kn can be decomposed into n/2 − 4 copies of Cn and

7n/6 copies of S3 when n ≡ 0 (mod 6) and n ≥ 12.

Proof. Let V (Kn) = X ∪ Y , where X = {x0, . . . , xn/2−1} and Y = {y0, . . . ,
yn/2−1}. Note that Kn = Kn[X] ∪ Kn[Y ] ∪ Kn[X,Y ] where Kn[X] and Kn[Y ]
are isomorphic to Kn/2 and Kn[X,Y ] is isomorphic to Kn/2,n/2. We distinguish
two cases : Case 1. n ≡ 0 (mod 4) and Case 2. n ≡ 2 (mod 4).

Case 1. n ≡ 0 (mod 4). By Lemma 14, Kn[X,Y ] can be decomposed into
n/4 copies of Cn, C(0), C(1), . . . , C(n/4−1), where C(i) = (y2i, x0, y2i+1, x1, . . . ,
y2i+(n/2−2), xn/2−2, y2i+(n/2−1), xn/2−1) for i = 0, 1, 2, . . . , n/4 − 1. By Proposi-
tion 1, we have the following results. Kn[X] can be decomposed into the following
n/4 copies of Pn/2 : Pn/2(x0, xn/4), Pn/2(x1, x1+n/4), . . . , Pn/2(xn/4−1, xn/2 − 1),
andKn[Y ] can be decomposed into the following n/4 copies of Pn/2 :Pn/2(y0, yn/4),
Pn/2(y1, y1+n/4), . . . , Pn/2(yn/4−1, yn/2−1).

For i = 0, 1, . . . , n/4 − 1, let Q(i) = Pn/2(xi, xi+n/4) ∪ Pn/2(yi, yi+n/4) ∪
{yixi, yi+n/4xi+n/4}. Clearly, Q(i) is an n-cycle, and yixi, yi+n/4xi+n/4 ∈ E(C(0))
for i = 0, 1, . . . , n/4− 1. For 1 ≤ t ≤ n/4− 1, let

R(t) =

(

t
⋃

i=0

C(i)

)

−
{

yixi, yi+n/4xi+n/4 | 0 ≤ i ≤ n/4− 1
}

.

It is easy to see that R(t) is isomorphic to the crown Cn/2,2t+1. Therefore, Kn

can be decomposed into n/2 − (t + 1) copies of Cn, Q(0), Q(1), . . . , Q(n/4 − 1)
and C(t+1), C(t+2), . . . , C(n/4− 1), and one copy of (n/2, 2t+1)-crown R(t).
Note that 2t + 1 ≥ 3 and |E(R(t))| = |E(Cn/2,2t+1)| = (2t + 1)n/2. If (2t +
1)n/2 ≡ 0 (mod 3), then R(t) can be decomposed into (2t + 1)n/6 copies of S3

by Proposition 19. Hence for n ≡ 0 (mod 4), we have the following.
If t = 1, then (2t + 1)n/2 = 3n/2 ≡ 0 (mod 3) for each n. Thus Kn can be

decomposed into n/2− 2 copies of Cn and n/2 copies of S3.
If t = 2, then (2t+ 1)n/2 = 5n/2 ≡ 0 (mod 3) for n ≡ 0 (mod 6). Thus Kn

can be decomposed into n/2− 3 copies of Cn and 5n/6 copies of S3.
If t = 3, then (2t+ 1)n/2 = 7n/2 ≡ 0 (mod 3) for n ≡ 0 (mod 6). Thus Kn

can be decomposed into n/2− 4 copies of Cn and 7n/6 copies of S3. This settles
Case 1.

Case 2. n ≡ 2 (mod 4). Since n ≡ 2 (mod 4), n/2 is odd. By Lemma 13,
Kn[X,Y ] can decomposed into (n − 2)/4 copies of Cn, C(0), C(1), . . . , C((n −
6)/4), and a 1-factor F , where E(F ) = {x0yn/2−1, x1y0, . . . , xn/2−1yn/2−2} and
C(i) = (y2i, x0, y2i+1, x1, . . . , y2i+(n/2−1), xn/2−1) for i = 0, 1, . . . , (n− 6)/4.

Now we consider Kn[X] and Kn[Y ]. By Lemma 2, we have the following re-
sults. Kn[X] can be decomposed into (n− 2)/4 copies of Cn/2, W (1),W (2), . . . ,
W ((n − 2)/4) with W (i) = (x0, xi, xi−1, xi+1, xi−2, . . . , xi+(n−10)/4, xi+(n+2)/4,
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xi+(n−6)/4, xi+(n−2)/4), and Kn[Y ] can be decomposed into (n − 2)/4 copies of
Cn/2, W

′(1),W ′(2), . . . ,W ′((n − 2)/4) with W ′(i) = (y0, yi, yi−1, yi+1, yi−2, . . . ,
yi+(n−10)/4, yi+(n+2)/4, yi+(n−6)/4, yi+(n−2)/4) for i = 1, 2, . . . , (n− 2)/4, where the
subscripts of x’s and y’s are taken modulo (n − 2)/2 in the set of numbers
{1, 2, . . . , (n− 2)/2}. For i = 1, 2, . . . , (n− 2)/4, let

e(i) =







x0x1 if i = 1,
xixi−1 if i is odd and i ≥ 3,
xi+(n−6)/4xi+(n−2)/4 if i is even,

and let

e′(i) =







y0y1 if i = 1,
yiyi−1 if i is odd and i ≥ 3,
yi+(n−6)/4yi+(n−2)/4 if i is even.

Let P (i) = W (i) − {e(i)} and P ′(i) = W ′(i) − {e′(i)}. Trivially, P (i) and P ′(i)
are (n/2)-paths. Let M = {e(i)|1 ≤ i ≤ (n − 2)/4} and M ′ = {e′(i)|1 ≤
i ≤ (n − 2)/4}. If n ≡ 2 (mod 8), then (n − 2)/4 is even. Hence M =
{x0x1, x2x3, . . . , x(n−10)/4x(n−6)/4, x(n+2)/4x(n+6)/4 , . . . , xn/2−2xn/2−1} and M ′ =
{y0y1, y2y3, . . . , y(n−10)/4y(n−6)/4, y(n+2)/4y(n+6)/4, . . . , yn/2−2yn/2−1}. If n ≡ 6
(mod 8), then (n− 2)/4 is odd. Hence M = {x0x1, x2x3, . . . , xn/2−3xn/2−2} and
M ′ = {y0y1, y2y3, . . . , yn/2−3yn/2−2}. Let H be the subgraph of Kn[X] induced
by M , and let H ′ be the subgraph of Kn[Y ] induced by M ′. Clearly, Kn[X]
can be decomposed into H and (n− 2)/4 copies of Pn/2, P (1), P (2), . . . , P ((n−
2)/4), and Kn[Y ] can be decomposed into H ′ and (n − 2)/4 copies of Pn/2,
P ′(1), P ′(2), . . . , P ′((n− 2)/4).

Let Z = {y0x0, y1x1} ∪ {yi−1xi−1, yixi| i is odd and i ≥ 3} ∪ {yi+(n−6)/4

xi+(n−6)/4, yi+(n−2)/4xi+(n−2)/4| i is even}. Obviously, Z ⊆ E(C(0)). For i =
1, 2, . . . , (n− 2)/4, let K = {yi+(n−6)/4xi+(n−6)/4, yi+(n−2)/4xi+(n−2)/4} and

Q(i) =







P (1) ∪ P ′(1) ∪ {y0x0, y1x1} if i = 1,

P (i) ∪ P ′(i) ∪ {yi−1xi−1, yixi} if i is odd and i ≥ 3,

P (i) ∪ P ′(i) ∪K if i is even,

and let Q((n + 2)/4) = H ∪ H ′ ∪ C(0) − Z. One can see that each Q(i) is an
n-cycle. Thus Kn[X]∪Kn[Y ]∪C(0) can be decomposed into (n+2)/4 copies of
Cn. For 1 ≤ t ≤ (n− 6)/4, let

R(t) =

(

t
⋃

i=1

C((n− 6)/4− i+ 1)

)

∪ F.

It is easy to see that R(t) is isomorphic to the crown Cn/2,2t+1. Hence Kn[X,Y ]
can be decomposed into n/2− (t+ 1) copies of Cn, Q(1), Q(2), . . . , Q((n+ 2)/4)
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and C(1), C(2), . . . , C((n − 6)/4 − t), and one copy of (n/2, 2t + 1)-crown R(t).
Note that 2t + 1 ≥ 3 and |E(R(t))| = |E(Cn/2,2t+1)| = (2t + 1)n/2. If (2t +
1)n/2 ≡ 0 (mod 3), then R(t) can be decomposed into (2t + 1)n/6 copies of S3

by Proposition 19.

If t = 1, then (2t + 1)n/2 = 3n/2 ≡ 0 (mod 3) for each n. Thus Kn can be
decomposed into n/2− 2 copies of Cn and n/2 copies of S3.

If t = 2, then (2t+ 1)n/2 = 5n/2 ≡ 0 (mod 3) for n ≡ 0 (mod 6). Thus Kn

can be decomposed into n/2− 3 copies of Cn and 5n/6 copies of S3.

If t = 3, then (2t+ 1)n/2 = 7n/2 ≡ 0 (mod 3) for n ≡ 0 (mod 6). Thus Kn

can be decomposed into n/2− 4 copies of Cn and 7n/6 copies of S3. This settles
Case 2.

Let x and y be distinct vertices of a multigraph G. We use eG(x, y) to
denote the number of edges joining x and y. A star decomposition of G is center
balanced if every vertex of G is the center of the same number of members in the
decomposition.

Proposition 21 [21]. Let G be an r-regular multigraph with r ≥ 1. Then G has a

center balanced St-decomposition if and only if r ≡ 0 (mod 2t) and eG(x, y) ≤ r/t
for all x, y ∈ V (G) with x 6= y.

Lemma 22. Let n and t be positive integers. If Q1, Q2, . . . , Qt are edge-disjoint

Hamiltonian cycles of Kn, then
⋃t

i=1Qi is St-decomposable.

Proof. Since eachQ(i) is 2-regular and V (Q(i)) = V (Q(j)) for i, j ∈ {1, 2, . . . , t},
⋃t

i=1Qi is 2t-regular. Since 2t ≡ 0 (mod 2t) and e⋃t

i=1
Qi
(x, y) ≤ 1 < (2t)/t for

all x, y ∈ V (
⋃t

i=1Qi) with x 6= y, the result follows from Proposition 21.

By Lemma 22, the union of 3t copies of edge-disjoint n-cycles can be decom-
posed into n copies of S3t, in turn, each S3t can be decomposed in to t copies of
S3. Hence we have the following result.

Theorem 23. Let n, p and t be positive integers with p ≥ 3t, and let q be a

nonnegative integer. If Kn can be decomposed into p copies of Cn and q copies of

S3, then Kn can be decomposed into p− 3t copies of Cn and q + nt copies of S3.

Obviously, if Kn can be decomposed into α copies of Cn and β copies of S3,
then

(

n
2

)

= nα+3β. Using Theorem 23 together with Lemmas 15 to 20, we have
the main result of this section.

Theorem 24. Let n, α and β be positive integers. The complete graph Kn can

be decomposed into α copies of Cn and β copies of S3 if and only if
(

n
2

)

= nα+3β
and α 6= (n− 3)/2 for n ≡ 3 (mod 6) and α 6= (n− 2)/2 for n ≡ 0 (mod 6).
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