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Abstract

For an integer k at least 2, and a graph G, let fk(G) be the minimum
cardinality of a set X of vertices of G such that G − X has either k ver-
tices of maximum degree or order less than k. Caro and Yuster [Discrete
Mathematics 310 (2010) 742–747] conjectured that, for every k, there is a
constant ck such that fk(G) ≤ ck

√

n(G) for every graph G. Verifying a
conjecture of Caro, Lauri, and Zarb [arXiv:1704.08472v1], we show the best
possible result that, if t is a positive integer, and F is a forest of order at
most 1

6

(

t3 + 6t2 + 17t+ 12
)

, then f2(F ) ≤ t. We study f3(F ) for forests F
in more detail obtaining similar almost tight results, and we establish upper
bounds on fk(G) for graphs G of girth at least 5. For graphs G of girth more

than 2p, for p at least 3, our results imply fk(G) = O
(

n(G)
p+1

3p

)

. Finally,

we show that, for every fixed k, and every given forest F , the value of fk(F )
can be determined in polynomial time.
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1. Introduction

Every finite, simple, and undirected graph has at least two vertices of equal
degree, and this lower bound on the number of repeated degrees can be improved
for restricted graph classes [6]. Caro, Shapira, and Yuster [4] proved the surprising
result that, for every positive integer k, there is a constant ck such that, for every
graph G, there is a set X of at most ck vertices such that G − X has at least
min{k, n(G)− |X|} many vertices of equal degree, where n(G) denotes the order
of G.

In [5] Caro and Yuster considered an analogous problem for the maximum
degree. For an integer k at least 2, and a graph G, let fk(G) be the minimum
cardinality of a set X of vertices of G such that G − X has either k vertices of
maximum degree or order less than k.

Caro and Yuster pose the following intriguing conjecture.

Conjecture 1 (Caro and Yuster [5]). For every integer k at least 2, there is a
constant ck such that fk(G) ≤ ck

√

n(G) for every graph G.

They describe graphs G with f2(G) ≥ (1 − o(1))
√

n(G) showing that the
upper bound in Conjecture 1 has the best possible growth rate, that is, forcing
many vertices of maximum degree is considerably harder than forcing many ver-
tices of equal degree. Furthermore, they verify the conjecture for k ∈ {2, 3} by
showing that c2 =

√
8 and c3 = 43 have the desired properties. They also prove

the following result, which implies the conjecture for C4-free graphs.

Theorem 2 (Caro and Yuster [5]). Let k and t be positive integers at least 2. If

G is a K2,t-free graph of order at least t2
(

k
2

)2
, then fk(F ) ≤ (3k − 3)

√

n(G).

In [3] Caro, Lauri, and Zarb show that
√
2 is the best possible value for c2,

and, for forests F , they improve the growth rate of the upper bound on fk(F )
from the second to the third root of the order as follows.

Theorem 3 (Caro, Lauri, and Zarb [3]). If k is an integer at least 2, and F is

a forest of order at least (2k − 1)3, then fk(F ) ≤ (2k − 1)n(F )
1

3 .

For k = 2, they formulate a precise conjecture, and construct graphs showing
that their conjecture would be tight.

Conjecture 4 (Caro, Lauri, and Zarb [3]). If t is a positive integer, and F is a
forest of order at most 1

6

(

t3 + 6t2 + 17t+ 12
)

, then f2(F ) ≤ t.

In the present paper we show this conjecture. Furthermore, we study f3(F )
for forests F in more detail obtaining almost tight results, and we give improved
upper bounds on fk(G) for graphs G of girth at least 5. For graphs G of girth
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more than 2p, for p at least 3, our results imply fk(G) = O
(

n(G)
p+1

3p

)

, and we

obtain considerable improvements of Theorem 3. Finally, we show that, for every
fixed integer k at least 2, and every given forest F , the value of fk(F ) can be
determined in polynomial time.

The influence of degree multiplicities on graph parameters or large sets of
vertices of equal degree satisfying additional properties have been studied in sev-
eral papers such as [1, 2]; see [3] for further discussion. Before we proceed to our
results, we collect some notation. Let G be a graph. The size of G is denoted by
m(G). For a vertex u of G, the degree of u is denoted by dG(u). The maximum
degree of G is denoted by ∆(G).

For an integer n, let [n] be the set of all positive integers at most n. If G has
order n and degree sequence d1 ≥ d2 ≥ · · · ≥ dn, then let ∆i(G) be di for i ∈ [n];
in particular, ∆1(G) is the maximum degree of G, and G has at least k vertices
of maximum degree if and only if ∆1(G) = ∆k(G).

2. Upper Bounds

Our first goal is the proof of Conjecture 4. The following result from [3] was the
key insight needed to obtain the best possible value for c2.

Theorem 5 (Caro, Lauri, and Zarb [3]). If t is a positive integer, and G is a
graph with ∆(G) ≤

(

t+2
2

)

, then f2(G) ≤ t.

Since a forest has less edges than vertices, the following result immediately
implies Conjecture 4.

Theorem 6. If t is a positive integer, and F is a forest of size less than

1

6

(

t3 + 6t2 + 17t+ 12
)

,

then f2(F ) ≤ t.

Proof. For a positive integer t, let n(t) = 1
6

(

t3 + 6t2 + 17t+ 12
)

. The proof is
by induction on t. Let ∆i = ∆i(F ) and let ui be such that dF (ui) = ∆i for
i ∈ [2], where u1 and u2 are distinct.

For t = 1, we have m(F ) ≤ n(1) − 1 = 5. Clearly, we may assume that
f2(F ) > 0, that is, ∆1 > ∆2 ≥ 1. If ∆2 = 1, then F is the union of a star
K1,∆1

and copies of K1 and K2, and removing u1 yields two vertices of maximum
degree 0 or 1. Hence, we may assume that ∆2 ≥ 2, which, using m(F ) ≤ 5,
implies that 3 ≤ ∆1 ≤ 4. If ∆1 = 3, then removing a neighbor of u1 that does
not lie in NF [u2] yields two vertices of maximum degree 2. Note that such a
neighbor exists, because F is a forest. Hence, we may assume that ∆1 = 4, which
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implies that F arises by subdividing one edge of a star K1,4 once, and removing
u1 yields two vertices of maximum degree 1.

Now, let t ≥ 2. If ∆1 ≤
(

t+2
2

)

, then Theorem 5 implies f2(F ) ≤ t. Hence, we

may assume that ∆1 ≥
(

t+2
2

)

+ 1. If F ′ = F − u1, then

m(F ′) = m(F )−∆1 <
1

6

(

t3 + 6t2 + 17t+ 12
)

−
(

1

2
t2 +

3

2
t+ 2

)

=
1

6

(

(t− 1)3 + 6(t− 1)2 + 17(t− 1) + 12
)

= n(t− 1).

By induction, we obtain f2(F ) ≤ 1 + f2(F
′) ≤ 1 + (t − 1) = t, which completes

the proof.

In order to better understand fk(F ) for forests F , we first consider the case k = 3.
Our next result suitably generalizes Theorem 5.

Theorem 7. If t is an integer at least 2, and F is a forest with ∆1(F )+2∆2(F ) ≤
(

t+2
2

)

+ 2, then f3(F ) ≤ t.

Proof. The proof is by induction on t. Clearly, we may assume that F has at
least three vertices, and that ∆1(F ) > ∆3(F ). Let ∆i = ∆i(F ) and let ui be
such that dF (ui) = ∆i for i ∈ [3], where u1, u2, and u3 are distinct.

For t = 2, we have ∆1 + 2∆2 ≤
(

2+2
2

)

+ 2 = 8. If ∆1 = 1, then F is
the union of copies of K1 and K2, and removing one vertex of degree 1 yields
either three vertices of maximum degree 0, or a graph with less than 3 vertices.
Hence, we may assume that ∆1 ≥ 2. If ∆2 = 1, then F is the union of a star
K1,∆1

, copies of K1, and p copies of K2. If p = 0 or p ≥ 2, then let X = {u1},
and, if p = 1, then let X contain u1 and exactly one vertex from the unique K2

component. It is easy to check that F −X has three vertices of maximum degree.
Hence, we may assume that ∆2 ≥ 2, which, using the upper bound on ∆1+2∆2,
implies ∆1 ∈ {2, 3, 4} and ∆2 = 2. First, we assume that ∆1 = 2. Clearly, we
may assume that ∆3 = 1. If u1 and u2 are non-adjacent, then F contains two
copies of P3, and removing one endvertex from each copy yields four vertices of
maximum degree 1. If u1 and u2 are adjacent, let F contain p K2 components.
If p = 0, then let X = {u1, u2}, and, if p ≥ 1, then let X = {u1}. It is easy to
check that either n(F −X) < 3 or F −X has three vertices of maximum degree.
Hence, we may assume that ∆1 ≥ 3. If ∆3 = 2, then removing ∆1 − 2 neighbors
of u1 that do not belong to NF [u2] ∪ NF [u3] yields three vertices of maximum
degree 2. Hence, we may assume that ∆3 = 1. If F has no K2 component, then
removing u1 and u2 yields three vertices of maximum degree 0. Hence, we may
assume that F has a K2 component. If u1 is adjacent to u2, then let X = {u1},
and, if u1 is non-adjacent to u2, then let X contain u1 and exactly one neighbor
of u2. It is easy to check that F −X has three vertices of maximum degree.



Equating k Maximum Degrees in Graphs without Short Cycles 845

Now, let t ≥ 3. First, suppose that ∆1 + ∆2 − 2∆3 ≤ t. Clearly, we may
assume that ∆3 ≥ 1. If ∆3 = 1, then either removing u1 and u2 or removing
∆1 − 1 neighbors of u1 that do not belong to NF [u2] and ∆2 − 1 neighbors of
u2 that do not belong to NF [u1] yields three vertices of maximum degree 0 or
1. Hence, we may assume that ∆3 ≥ 2. Now, removing ∆1 − ∆3 neighbors of
u1 that do not belong to NF [u2] ∪ NF [u3] and ∆2 − ∆3 neighbors of u2 that
do not belong to NF [u1] ∪ NF [u3] yields three vertices of maximum degree ∆3.
Again, all these vertices exist, because F is a forest. Hence, we may assume that
∆1 +∆2 − 2∆3 ≥ t+ 1.

Let F ′ = F − u1. Clearly, ∆1(F
′) ≤ ∆2 and ∆2(F

′) ≤ ∆3. If ∆2 + 2∆3 ≤
(

t+1
2

)

+ 2, then ∆1(F
′) + 2∆2(F

′) ≤
(

t+1
2

)

+ 2, and, by induction, f3(F ) ≤
1 + f3(F

′) ≤ 1 + (t− 1) = t. Hence, we may assume that ∆2 + 2∆3 ≥
(

t+1
2

)

+ 3,
and we obtain

∆1 + 2∆2 =
(

∆1 +∆2 − 2∆3

)

+
(

∆2 + 2∆3

)

≥
(

t+ 1
)

+

((

t+ 1

2

)

+ 3

)

=

(

t+ 2

2

)

+ 3,

which is a contradiction.

Since f3(K1,5 ∪P3 ∪P3) = 3, the base case of the induction in the previous proof
is best possible. Note that f3(K1,3 ∪K2) = 2 shows that Theorem 7 is not true
for t = 1.

By a simple inductive argument, Theorem 7 implies a lower bound on the
sum of the largest degrees in terms of f3(F ).

Corollary 8. If t is an integer at least 2, and F is a forest with f3(F ) > t, then

(i) ∆t(F ) ≥ 2,

(ii) ∆t+1−i(F ) + 2∆t+2−i(F ) ≥
(

i+2
2

)

+ 3 for every i ∈ [t] \ {1}, and
(iii) ∆1(F ) + ∆2(F ) + · · ·+∆t(F ) ≥ 1

18 t
3 + 1

3 t
2 + 29

18 t.

Proof. Let ∆i = ∆i(F ) and let dF (ui) = ∆i for i ∈ [t], where u1, . . . , ut are
distinct vertices.

(i) Suppose that ∆t ≤ 1. If every vertex of degree 1 is in NF [u1] ∪ · · · ∪
NF [ut−1], then removing X = {u1, . . . , ut−1} yields three vertices of maximum
degree 0 or a forest of order less than 3. Hence, we may assume that ut is
not adjacent to any vertex in X. Now, either removing X yields three vertices
of maximum degree 1, or removing X ∪ {ut} yields three vertices of maximum
degree 0 or a forest of order less than 3. Hence, ∆t ≥ 2.

(ii) Suppose that ∆t+1−i +2∆t+2−i ≤
(

i+2
2

)

+2 for some i ∈ [t] \ {1}. If X =

{u1, . . . , ut−i}, then ∆1(F−X)+2∆2(F−X) ≤ ∆t+1−i+2∆t+2−i ≤
(

i+2
2

)

+2, and
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Theorem 7 implies the contradiction f3(F ) ≤ (t− i)+f3(F −X) ≤ (t− i)+ i = t,
which completes the proof of (ii).

(iii) By (i) and (ii), we obtain
(

∆1 + 2∆2

)

+
(

∆2 + 2∆3

)

+ · · ·+
(

∆t−1 + 2∆t

)

+∆t

≥
t
∑

i=2

((

i+ 2

2

)

+ 3

)

+ 2 =
1

6
t3 + t2 +

29

6
t− 4.

Since ∆1 ≥ 2, this implies 3
(

∆1 +∆2 + · · ·+∆t

)

≥ 1
6 t

3 + t2 + 29
6 t, which implies

(iii).

We obtain a result similar to Theorem 6.

Corollary 9. If t is an integer at least 2, and F is a forest of size less than
1
18 t

3 + 1
3 t

2 + 11
18 t+ 1, then f3(F ) ≤ t.

Proof. Clearly, we may assume that F has at least t vertices. Since ∆1(F ) +
∆2(F ) + · · ·+∆t(F ) ≤ m(F ) + (t− 1), Corollary 8(iii) implies f3(F ) ≤ t.

In order to understand how tight Corollary 9 actually is, we construct forests F
with few edges and a large value of f3(F ). Therefore, let a1 = 1, a2 = 3, and, for
every integer i at least 3, let

ai = max
{

ai−1, i− ai−1 + 2ai−2

}

.(1)

It is easy to verify by induction that a2i+1 = a2i = i2 + i + 1 for every positive
integer i.

For a positive integer t, let Ft = K1,a1 ∪K1,a2 ∪ · · · ∪K1,at .

Lemma 10. If t is a positive integer, then f3(Ft) = t and m(Ft) =
t3

12 + O(t2);
more precisely

m(Ft) =

{

2
3k

3 + 2k2 + 10
3 k + 1, if t = 2k + 1, and

2
3k

3 + k2 + 7
3k, if t = 2k.

Proof. Since the statement about the size of Ft follows from a straightforward
calculation using the closed formula for the ai, we only give details for the proof of
f3(Ft) = t. Clearly, removing the t centers of the stars results in an edgeless forest,
which implies f3(Ft) ≤ t. Now, let X be a minimum set of vertices of Ft such
that Ft−X has at least three vertices of maximum degree. Let ∆ = ∆1(Ft−X),
and, let dFt−X(vi) = ∆ for i ∈ [3], where v1, v2, and v3 are distinct.

If ∆ = 0, then clearly |X| ≥ t. Since removing the t − 2 vertices of largest
degree and 2 endvertices from K1,a2 yields three vertices of maximum degree 1
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in the most efficient way, if ∆ = 1, then |X| ≥ (t − 2) + 2 = t. Hence, we may
assume that ∆ ≥ 2, which implies that v1, v2, and v3 are distinct centers of some
star components K1,ai of Ft. Let v1 be the center of the component K1,ap , v2 be
the center of the component K1,aq , and v3 be the center of the component K1,ar ,
where p < q < r. Clearly, X contains ar − ap neighbors of v3, aq − ap neighbors
of v2, and at least one vertex from every star component K1,ai with q < i < r or
r < i ≤ t. Using the monotonicity of the ai and (1), this implies

|X| ≥ (ar − ap) + (aq − ap) + (r − q − 1) + (t− r)

= ar + aq − 2ap + (t− q − 1)
mon.

≥ aq+1 + aq − 2aq−1 + (t− q − 1)

(1)

≥ (q + 1) + (t− q − 1) = t,

which completes the proof.

Lemma 10 implies that in any version of Corollary 9, the upper bound on the
size is at most t3

12 + O(t2), that is, the bound in Corollary 9 might be improved
by an asymptotic factor of 3/2.

The following lemma will be used to extend Theorem 7 to graphs of girth at
least 5 and larger values of k.

Lemma 11. Let k and t be integers with k ≥ 2 and t ≥ (k− 1)2. If G is a graph
of girth at least 5, and

∆1(G) + · · ·+∆k−1(G)− (k − 1)∆k(G) ≤ t,

then fk(G) ≤ t.

Proof. Let ∆i = ∆i(G) and let dG(ui) = ∆i for i ∈ [k], where u1, . . . , uk are
distinct vertices.

First, suppose that ∆k < k − 1. We remove u1, . . . , uk−1, and, as long as
the current graph has order at least k but less than k vertices of maximum
degree, we iteratively remove all vertices of maximum degree from the current
graph. Therefore, removing u1, . . . , uk−1, at most (k − 1) further vertices of
degree k − 2, at most (k − 1) further vertices of degree k − 3, and so on, until at
most (k − 1) further vertices of degree 1, yields either a graph with k vertices of
maximum degree or a graph with less than k vertices. Since we removed at most
(k − 1) + (k − 1)(k − 2) = (k − 1)2 ≤ t vertices, we obtain fk(G) ≤ t. Hence, we
may assume that ∆k ≥ k − 1.

Let i ∈ [k − 1]. By the girth condition, ui has at most k − 1 neighbors in

Ni = NG[u1] ∪ · · · ∪NG[ui−1] ∪NG[ui+1] ∪ · · · ∪NG[uk].
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Therefore, there are ∆i −∆k ≤ ∆i − (k − 1) neighbors of ui outside of Ni whose
removal results in a graph in which ui has degree ∆k. Doing this for every i in
[k − 1] yields k vertices of maximum degree ∆k.

We proceed to the extension of Theorem 7.

Theorem 12. Let k and t be integers with k ≥ 2 and t ≥ (k − 1)2. There is
some integer ck such that, if G is a graph of girth at least 5, and

∆1(G) + 2∆2(G) + 3∆3(G) + · · ·+ (k − 1)∆k−1(G) ≤
(

t+ 2

2

)

+ ck,

then fk(G) ≤ t.

Proof. Clearly, we may assume that G has at least t+k vertices. Let ∆i = ∆i(G)
and let dG(ui) = ∆i for i ∈ [k], where u1, . . . , uk are distinct vertices. The proof
is by induction on t.

First, let t = (k−1)2. Let ck be such that
(

(k−1)2+2
2

)

+ ck = k−1. We obtain
that ∆1 ≤ k − 1, and removing at most (k − 1) vertices of degree k − 1, at most
(k − 1) further vertices of degree k − 2, and so on, until at most (k − 1) further
vertices of degree 1, yields either a graph with k vertices of maximum degree or a
graph with less than k vertices. Since we removed at most (k − 1)2 = t vertices,
we obtain fk(G) ≤ t.

Next, let t > (k − 1)2. By Lemma 11, we may assume that ∆1(G) + · · · +
∆k−1(G)− (k−1)∆k(G) ≥ t+1. Similarly as in the proof of Theorem 7, we may
assume, by induction, that

∆2(G) + 2∆3(G) + 3∆4(G) + · · ·+ (k − 1)∆k(G) ≥
(

t− 1 + 2

2

)

+ ck + 1.

Adding these two inequalities implies a contradiction, which completes the proof.

Theorem 12 has several interesting consequences.

Corollary 13. Let k be a fixed integer at least 2. There is a function g : N → Z

with |g(t)| = O(t2) such that, if t is some positive integer, and G is a graph of

size at most t3

6(k2)
+ g(t) and girth at least 5, then fk(G) ≤ t.

Proof. Choosing g(t) equal to − t3

6(k2)
for t < (k − 1)2, the statement becomes

trivial for t < (k − 1)2. Hence, we may assume that t ≥ (k − 1)2.
Let the graph G of girth at least 5 be such that fk(G) > t; in particular, G

has at least t+ k vertices. Let ∆i = ∆i(G) for i ∈ [t]. Arguing similarly as in the
proof of Corollary 8 (ii), we obtain that

∆t+1−i + 2∆t+2−i + · · ·+ (k − 1)∆t+k−1−i ≥
(

i+ 2

2

)

+ ck + 1
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for every i ∈ [t] \
[

(k − 1)2 − 1
]

. Adding all these inequalities, we obtain, using

1 + 2 + · · ·+ (k − 1) =
(

k
2

)

, that

(

k

2

)

(

∆1 + · · ·+∆t+k−1−(k−1)2

)

≥
t
∑

i=(k−1)2

((

i+ 2

2

)

+ ck + 1

)

=
t3

6
+O(t2),

where the implicit constants depend on the fixed value of k.
If H is the subgraph of G induced by the t+ k − 1− (k − 1)2 < t vertices of

the largest degrees, then

m(G) ≥
(

∆1 + · · ·+∆t+k−1−(k−1)2

)

−m(H) ≥ t3

6
(

k
2

) +O(t2),

which completes the proof.

It is a simple consequence of the Moore bound [7] that, for every positive integer

p, we have m(G) ≤ 2n(G)
p+1

p for every graph G of girth more than 2p.

Corollary 14. Let k and p be fixed integers with k ≥ 2 and p ≥ 2. If G has girth
more than 2p, then

fk(G) ≤
(

1 + o(1)
)

(

12

(

k

2

))
1

3

n(G)
p+1

3p .

Proof. Let G be a graph of girth more than 2p, and let t = fk(G) − 1. By the
above consequence of the Moore bound and Corollary 13, we obtain

n(G) ≥
(

1

2
m(G)

)
p

p+1

>

(

1

2

(

1

6
(

k
2

) + o(1)

)

t3

)
p

p+1

=

((

1

12
(

k
2

) + o(1)

)

t3

)
p

p+1

.

This implies t <
(

1 + o(1)
)

(

12
(

k
2

)

)
1

3

n(G)
p+1

3p , which completes the proof.

Arguing in a similar way for forests, we obtain the following considerable im-
provement of Theorem 3.

Corollary 15. Let k be a fixed integer with k ≥ 2. If F is a forest, then

fk(G) ≤
(

1 + o(1)
)

(

6

(

k

2

))
1

3

n(G)
1

3 .
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3. An Algorithm for Forests

In this section we describe an efficient algorithm calculating fk(F ) for a given
forest F .

Let k be an integer at least 2. Let T be a tree of order more than k, let S be
a set of k distinct vertices of T , and, let ∆ be some non-negative integer at most
∆(T ). The vertices in S are called special. We root T in some non-special vertex
r, and, for every vertex u of T , we denote by T (u) the subtree of T rooted in u
and containing u as well as all descendants of u.

For a vertex u of T , let (n1(u), n2(u), n3(u)) be a triple of integers, where

(i) n1(u) is the maximum order of an induced subforest T1(u) of T (u) such that

• u 6∈ V (T1(u)),

• S ∩ V (T (u)) ⊆ V (T1(u)),

• ∆(T1(u)) ≤ ∆, and

• dT1(u)(v) = ∆ for every vertex v ∈ S ∩ V (T (u)).

Note that, if u is special, then n1(u) = max ∅, which, by convention, is −∞.

(ii) n2(u) is the maximum order of an induced subforest T2(u) of T (u) such that

• {u} ∪
(

S ∩ V (T (u))
)

⊆ V (T2(u)),

• ∆(T2(u)) ≤ ∆, and

• dT2(u)(v) = ∆ for every vertex v ∈ {u} ∪
(

S ∩ V (T (u))
)

.

(iii) n3(u) is the maximum order of an induced subforest T3(u) of T (u) such that

• {u} ∪
(

S ∩ V (T (u))
)

⊆ V (T3(u)),

• ∆(T3(u)) ≤ ∆,

• dT3(u)(v) = ∆ for every vertex
(

S ∩ V (T (u))
)

\ {u}, and
• if u is special, then dT3(u)(u) = ∆ − 1, and, if u is non-special, then

dT3(u)(u) ≤ ∆− 1.

If u is a non-special leaf of T , then

(n1(u), n2(u), n3(u)) =

{

(0, 1,−∞), if ∆ = 0 and

(0,−∞, 1), if ∆ ≥ 1,

and, if u is a special leaf of T , then

(n1(u), n2(u), n3(u)) =











(−∞, 1,−∞), if ∆ = 0,

(−∞,−∞, 1), if ∆ = 1, and

(−∞,−∞,−∞), if ∆ ≥ 2.

The following lemma gives recursions for non-leaf vertices of T .
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Lemma 16. Let u be a non-leaf vertex of T , where we use the notation introduced
above. Let v1, . . . , vp be the special children of u, and, let w1, . . . , wq be the non-
special children of u. Let

n3(w1)− n1(w1) ≥ n3(w2)− n1(w2) ≥ · · · ≥ n3(wq)− n1(wq).

If n3(w1) − n1(w1) < 0, let q′ = 0, and, if n3(w1) − n1(w1) ≥ 0, let q′ ∈ [q] be
maximum such that n3(wq′)− n1(wq′) ≥ 0.

(i) If u is non-special, then

n1(u) =

p
∑

i=1

n2(vi) +

q
∑

j=1

max
{

n1(wj), n2(wj), n3(wj)
}

.

(ii) If p > ∆ or p+ q < ∆, then n2(u) = −∞, and, if p ≤ ∆ ≤ p+ q, then

n2(u) =

p
∑

i=1

n3(vi) +

∆−p
∑

j=1

n3(wj) +

q
∑

j=∆−p+1

n1(wj).

(iii) If u is special, and p > ∆ − 1 or p + q < ∆ − 1, then n3(u) = −∞, and, if
u is special, and p ≤ ∆− 1 ≤ p+ q, then

n3(u) =

p
∑

i=1

n3(vi) +

∆−1−p
∑

j=1

n3(wj) +

q
∑

j=∆−p

n1(wj).

(iv) If u is non-special and p > ∆−1, then n3(u) = −∞, and, if u is non-special
and p ≤ ∆− 1, then

n3(u) =

p
∑

i=1

n3(vi) +

min{q′,∆−1−p}
∑

j=1

n3(wj) +

q
∑

j=min{q′,∆−1−p}+1

n1(wj).

Proof. (i) Since u does not belong to T1(u), for every special child vi of u, the
forest T1(u) ∩ T (vi) has at most as many vertices as T2(vi), and, for every non-
special child wj of u, the forest T1(u)∩T (wj) has at most as many vertices as the
forest of largest order in {T1(wj), T2(wj), T3(wj)}, which implies that n1(u) is at
most the specified value. On the other hand, combining the mentioned forests in
the obvious way, it follows that n1(u) is also at least the specified value, which
completes the proof of (i).

(ii) If p > ∆ or p + q < ∆, then no forest with the properties required for
T2(u) exists, and, hence, n2(u) = −∞. If p ≤ ∆ ≤ p+ q, then, since u belongs to
T2(u) and has degree exactly ∆ in T2(u), for every special child vi of u, the forest
T2(u) ∩ T (vi) has at most as many vertices as T3(vi), there are exactly ∆ − p
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non-special children wj of u that belong to T2(u), and the forest T2(u) ∩ T (wj)
for such a wj has at most as many vertices as T3(wj), and, for the remaining
q − (∆ − p) non-special children wj of u that do not belong to T2(u), the forest
T2(u) ∩ T (wj) for such a wj has at most as many vertices as T1(wj). In view
of the ordering of the non-special children wj of u, this implies that n2(u) has
at most the specified value. Again, on the other hand, combining the mentioned
forests in the obvious way, it follows that n2(u) is also at least the specified value,
which completes the proof of (ii).

Since the proof of (iii) is almost identical to the proof of (ii), we proceed to the
proof of (iv). Since u belongs to T3(u) and has degree at most ∆ − 1, some
non-special child wj of u may only belong to T3(u) if n3(wj)−n1(wj) ≥ 0, which
easily implies (iv) arguing similarly as for the proof of (ii).

Theorem 17. For a fixed integer k at least 2, and a given forest F , the value
fk(F ) can be determined in polynomial time.

Proof. Clearly, we may assume that F has more than k vertices. Let S be a set
of k distinct vertices of F , and let ∆ be a non-negative integer at most ∆(F ).
If F is disconnected, then we add a vertex r with a neighbor in each component
of F , and denote the resulting tree by T . Otherwise, let T = F , and let r be
a vertex of F that does not belong to S. Using the recursions from Lemma 16,
we can determine, in polynomial time, (n1(r), n2(r), n3(r)) for T , denoted by
(

n
(S,∆)
1 (r), n

(S,∆)
2 (r), n

(S,∆)
3 (r)

)

for this specific choice of S and ∆.

If F is connected, then n(F )− fk(F ) equals

max

{

max
{

n
(S,∆)
1 (r), n

(S,∆)
2 (r), n

(S,∆)
3 (r)

}

:S∈
(

V (F )

k

)

and ∆∈{0} ∪ [∆(F )]

}

,

and, if F is not connected, then n(F )− fk(F ) equals

max

{

n
(S,∆)
1 (r) : S ∈

(

V (F )

k

)

and ∆ ∈ {0} ∪ [∆(F )]

}

.

Since these maxima are taken over polynomially many values, the desired state-
ment follows.

It seems possible yet challenging to extend this approach to graphs of bounded
tree width.
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