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Abstract

We say that a graph F strongly arrows a pair of graphs (G,H) and write

F
ind
−→(G,H) if any 2-coloring of its edges with red and blue leads to either

a red G or a blue H appearing as induced subgraphs of F . The induced

Ramsey number, IR(G,H) is defined as min{|V (F )| : F
ind
−→(G,H)}. We will

consider two aspects of induced Ramsey numbers. Firstly we will show that
the lower bound of the induced Ramsey number for a connected graph G

with independence number α and a graph H with clique number ω is roughly
ω

2
α

2
. This bound is sharp. Moreover we will also consider the case when G

is not connected providing also a sharp lower bound which is linear in both
parameters.
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1. Introduction

We say that a graph F strongly arrows a pair of graphs (G,H) and write

F
ind
−→(G,H) if any 2-coloring of its edges with red and blue leads to either a

red G or a blue H appearing as induced subgraphs of F . We call the graph F

a strongly arrowing graph. The induced Ramsey number, IR(G,H) is defined as

min{|V (F )| : F
ind
−→(G,H)}. It is a generalization of standard Ramsey numbers

R(G,H), where we color the edges of a complete graph and do not require the
monochromatic copies to be induced. It is a corollary of the famous theorem of
Ramsey that those numbers are always finite.

The existence of the induced Ramsey number is not obvious and it was a
subject of intensive studies. Finally that was proved independently by Deuber [5],
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Erdős, Hajnal and Pósa [8] and Rödl [16, 17]. Since in case of complete graphs
an induced subgraph is the same as a subgraph it is obvious that IR(Km,Kn) =
R(Km,Kn). When at least one of the graphs in the pair is not complete these
functions differ.

Little is known about the behaviour of the induced Ramsey numbers. The
results are mostly of asymptotic type and concern upper bounds. It is surely
motivated by the fact that these ones following from the above mentioned proofs
are enormous and Erdős conjectured [7] that there is a positive constant c such
that every graph G with n vertices satisfies IR(G,G) ≤ 2cn. The most recent
result in that direction is that of Conlon, Fox and Sudakov [2] who showed that
IR(G,G) ≤ 2cn logn improving the earliear result IR(G,G) ≤ 2cn(logn)

2

of Ko-
hayakawa, Prömel and Rödl [13].

Moreover these results are generally upper bounds obtained either by proba-
bilistic ([1, 12, 13, 15]) or by constructive methods [14]. A comparision of results
of both types can be found in the paper of Shaefer and Shah [18]. The au-
thors show there arrowing graphs for a number of pairs of graphs including trees,
complete graphs, bipartite graphs and cycles.

As for the lower bound, it is obvious by the definition

(1) IR(G,H) ≥ R(G,H)

and, as far as we know, it is the only general lower bound known so far.

The main result of this short note is Theorem 1 which establishes a lower
bound for the induced Ramsey number in terms of independence and clique num-
bers. Although the inductive proof of this theorem is not complicated the result
is the first step from this standpoint. The theorem is somehow similar in spirit
to the result of Chvátal and Harary [3] for Ramsey numbers who observed that
for connected G

(2) R(G,H) ≥ (|V (G)| − 1)(χ(H) − 1) + 1.

To prove (2), consider a 2-edge-coloring of the complete graph on (|V (G)| −
1)(χ(H) − 1) vertices consisting of (χ(H) − 1) disjoint red cliques of size |V (G)|
−1. This coloring has no red G because all red connected components have size
|V (G)| − 1, and there is no blue H since the partition of this H induced by red
cliques would give a coloring of H by χ(H) − 1 colors.

For some graphs the bound in (2) is quite far from the truth. For example
Erdős [6] showed that R(Kn,Kn) ≥ Ω(2n/2) which is much larger than the quad-
ratic bound we get from (2).

The bound in Theorem 1 is sharp in that sense that for a pair: a star versus
a complete graph this lower bound is actually the exact value of the induced
Ramsey number. This theorem has its nontrivial application in all cases that the
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independence (clique) number differs not much from the number of vertices of
the graph.

Finally we mention that the only known exact values (not concerning the
pairs of small graphs) are for a pair of stars by Harary, Nešetřil and Rödl [11], a
path P3 versus unions of complete or complete multipartite graphs by Kostochka
and Sheikh [14], matchings versus complete graphs by Gorgol and  Luczak [10]
and for stars versus complete graphs by Gorgol [9]. The two latter will serve as
examples of sharpness of our theorems.

2. Notation

In this paper we do not introduce any special notation. A graph G is a subgraph
of a graph H (denoted by G ⊂ H) if V (G) ⊂ V (H) and E(G) ⊂ E(H). A graph
G is an induced subgraph of a graph H (denoted by G ≺ H) if V (G) ⊂ V (H)
and E(G) = {uv ∈ E(H) : u, v ∈ V (G)}. By F [S] we mean the graph induced
by a vertex-set S. Let t be a positive integer and F be a graph. By a symbol
tF we mean a graph consisting of t disjoint copies of the graph F . For graphs
G, H the symbol G ∪H denotes a disjoint sum of graphs and G \H denotes a
graph obtained from G by removing a subgraph H (with all incident edges). The
independence number of a graph G, i.e. the size of the largest set of mutually
nonadjacent vertices, we denote by α(G), the clique number, i.e., the size of the
largest clique, by ω(G) and the chromatic number, i.e., the smallest number of
colors needed to color the vertices of G so that no pair of adjacent vertices have
the same color by χ(G). The symbols Pn, Cn, Kn stand for a path, a cycle and
a complete graph on n vertices, respectively and Sk for a star with k rays.

3. Lower Bounds for an Induced Ramsey Number

As we mentioned in the introduction, little is known about lower bounds for the
induced Ramsey numbers and a natural lower bound is the usual Ramsey number.
To prove a lower bound for the induced Ramsey number we should show that we
can color every graph F with a prescribed number of vertices without induced
monochromatic copies of given graphs (G,H). Thus we have to examine not only
the number of vertices of the graph F but also its structure. It turns out that
if we consider the independence number of the graph G and the clique number
of the graph H, as somehow opposite notions, it is not so difficult to deduce
something about the structure of an arrowing graph F . Then we can construct
appropriate colorings. The constructions described below mainly arose from the
fact that since ω(H) = ω, Kω is contained in F and a subgraph and an induced
subgraph in case of cliques is the same. Therefore if we avoid a blue Kω, we
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avoid an induced H as well. The colorings avoid connected red graphs with the
independence number α simply by taking red subgraphs with the independance
number at most α− 1.

Theorem 1. Let G be an arbitrary connected graph with α(G) = α ≥ 2 and H

be an arbitrary graph with ω(H) = ω. Then

IR(G,H) ≥ (α− 1)
ω(ω − 1)

2
+ ω.

Proof. Let F be an arbitrary graph on (α− 1)ω(ω−1)
2 + ω− 1 vertices. We shall

show that F can be 2-colored with no red induced G and no blue induced H.
The proof will be conducted by induction on ω. Note that is enough to prove

the theorem for H = Kω. It is trivial for ω = 2. Note that certainly F contains
a clique Kω otherwise it could be colored blue. Let us denote this clique K0

and color it red. It is easy to observe that F \ K0 must contain a clique Kω−1

otherwise we could color the remaining edges of F blue. Denote this clique K1

and color F1 = F [V (K0) ∪ V (K1)] red. Similarly F \ F1 must contain a clique
Kω−1 which we denote by K2. Repeating the above consideration we conclude
that apart from K0 the graph F contains α− 2 disjoint cliques Kω−1 denoted by
K1, K2, . . . ,Kα−2. Let all edges of F [V (

⋃α−2
i=0 Ki)] be red. Let F ′ = F \

⋃α−2
i=0 Ki.

Note that

|V (F ′)| = |V (F )| − [(α− 1)(ω − 1) + 1]

= (α− 1)
ω(ω − 1)

2
+ ω − 1 − [(α− 1)(ω − 1) + 1]

= (α− 1)[
ω(ω − 1)

2
− (ω − 1)] + (ω − 1) − 1

= (α− 1)
(ω − 1)(ω − 2)

2
+ (ω − 1) − 1,

so F ′ fulfills the inductive assumption. Therefore it can be 2-colored with no
red induced G and no blue Kω−1. Let all not so far colored edges of F be
blue. In such a coloring there is no red induced G and no blue induced H.
Indeed each connected red subgraph has the independence number at most α−1.
Moreover, we can take at most one vertex from V (

⋃α−2
i=0 Ki) to widen a blue

clique from F ′, so the order of the largest blue clique is at most ω− 1. Therefore
IR(G,H) > (α− 1)ω(ω−1)

2 + ω − 1.

It follows from the above inductive proof that the strongly arrowing graph F

must contain a number of disjoint cliques. Precisely
⋃ω−2

j=0 (Kω−j∪(α−2)Kω−j−1)
is a subgraph of F .

As we mentioned the lower bound from Theorem 1 is sharp. Gorgol [9]
showed the exact value of the induced Ramsey number for stars versus complete
graphs.
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Theorem 2 [9]. For arbitrary k ≥ 1 and n ≥ 2 holds

IR(Sk,Kn) = (k − 1)
n(n− 1)

2
+ n.

On the other hand if we take a path instead of the star we obtain IR(Pt,Kn) ≥
(⌈

t
2

⌉

− 1
) n(n−1)

2 + n. Comparing this with the well known result of Chvàtal [4]
R(T,Kn) = (t − 1)(n − 1) + 1, where T denotes a tree on t vertices, we obtain
a better result for big complete graphs obtaining a quadratic instead of a linear
bound. We can claim similarly if we take a cycle instead of a path, assuming that
the conjecture of Erdős (R(Ct,Kn) = (t− 1)(n− 1) + 1) is true.

Moreover Kohayakawa, Prömel and Rödl [13] showed that the induced Ram-
sey number of a tree T and any graph H grows polynomially with |T | = t and
|H| = n

IR(T,H) ≤ ct2n4

(

log(tn2)

log log log(tn2)

)

.

Some more effort is needed to prove the analogous lower bound if we allow
the graph G not necessarily to be connected. However we assume that it does
not contain isolates. The proof is inductive again, but now the first step requires
a little bit more attention.

Lemma 3. Let G be an arbitrary isolates-free graph with α(G) = 2 and H be an

arbitrary graph with ω(H) = ω ≥ 3. Then

IR(G,H) ≥ 2ω.

Proof. Let F be an arbitrary graph on 2ω−1 vertices. We will show that it can
be colored without red induced graph with α = 2 and blue induced graph with
clique number ω. Obviously F is not complete. Assume that x, y are such that
xy 6∈ E(F ). While constructing our coloring we take into account the following
fact.

(i) If there exist two independent red edges xu and yv, then at least one the
edges uv, xv, yu must exist and be blue.

Note that if Kt ⊂ F and t > ω, then we color this Kt red, all the remaining
edges blue and we are done. Hence we assume that there is no Kω+1 in F . On
the other hand F must contain K1 = Kω, otherwise it could be colored blue.
Similary, like in the proof of Theorem 1 coloring this Kω red we conclude that
the remaining ω − 1 vertices form a clique K2 = Kω−1.

If K2 does not form Kω with some vertices from K1, then we color K1 red
and all remaining edges blue.

Therefore assume that there exists A ⊂ V (K1) and C ⊂ V (K2) such that
F [A ∪B] = Kω = K3. Let s = |A|. Certainly 1 ≤ s ≤ ω − 1. Let us take A with
maximum s. Let B = V (K1) \A and D = V (K2) \ C.
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If s = 1 then we have two cliques Kω sharing one vertex, say a. Then we
color with red two edges: ab for arbitrary b ∈ B and c1c2 for c1, c2 ∈ C and the
remaining edges blue. This coloring fulfils (i).

Let now s ≥ 2. Note that apart from K1 and K3 the graph F may contain
at most two more cliques Kω. There exists at most one a ∈ A such that F [B ∪
D ∪ {a}] = Kω and at most one c ∈ C such that F [B ∪D ∪ {c}] = Kω. For more
than one such vertices we would obtain a larger clique. By the choice of s, there
is no Kω with vertices in all four sets A, B, C and D.

We color the edges aa1, ab, cd, where a1 ∈ A, b ∈ B, d ∈ D are chosen
arbitrarily, red. If any of these additional cliques does not exist, adequate a and
c we can also choose arbitrarily. This coloring also fulfills (i).

Theorem 4. Let G be an arbitrary isolates-free graph with α(G) = α ≥ 2 and

H be an arbitrary graph with ω(H) = ω ≥ 3. Then

IR(G,H) ≥ αω.

Proof. Let F be an arbitrary graph on αω−1 vertices. We apply induction on α

to prove that F can be 2-colored with no red induced G and no blue induced H.

The assertion for α = 2 follows from Lemma 3. Thus, let α > 2. We may
assume that G contains a clique Kω, otherwise we color all edges of F blue. Colour
this clique red. A graph induced by the remaining vertices fulfills the inductive
assumption so it can be colored with no red induced graph with independence
number (α−1) and no blue induced H. Now, color red all edges of F which have
not been colored so far.

It is worth noticing that if we allow the graph G to be disconnected this
lower bound is sharp. Gorgol and  Luczak [10] have shown the exact value of the
induced Ramsey number for a matching and a complete graph.

Theorem 5 [10]. For arbitrary k ≥ 1 and n ≥ 2

IR(kK2,Kn) = kn.
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