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Abstract

A graph G is called r-spanning cyclable if for every r distinct vertices
v1, v2, . . . , vr of G, there exists r cycles C1, C2, . . . , Cr in G such that vi is on
Ci for every i, and every vertex of G is on exactly one cycle Ci. In this paper,
we consider the 2-spanning cyclable problem for the generalized Petersen
graph GP (n, k). We solved the problem for k ≤ 4. In addition, we provide
an additional observation for general k as well as stating a conjecture.
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1. Introduction and Preliminaries

Hamiltonicity is a well-studied and important concept. A number of variations
have been developed, including pancyclicity [6, 12], super spanning connectivity
[1, 19, 20], Hamiltonian decompositions [3, 21, 22], and many other areas. Until
the 1970’s, the main interest in Hamiltonian cycles is due to their relationship
with the 4-color problem. More recently, the study of Hamiltonian cycles in
general graphs has been motivated by its applicability to the study of complexity
and practical applications. In particular, having Hamiltonian-like property is a
major requirement in designing good interconnection networks. The Hamiltonian
condition can be adjusted in a number of ways. On the one hand, one can
strengthen the condition to include a prescribed set of r vertices in a specific
order, this is the r-ordered Hamiltonian problem [9, 10, 13, 16, 18, 23, 24]. On
the other hand, one can relax the Hamiltonian condition to a union of disjoint
cycles. In this paper, we study a relaxation/generalization of the Hamiltonian
property. We allow the graph to be spanned by a prescribed number of disjoint
cycles. However, each must contain a prescribed vertex. This concept can be
applied to the problem of identifying faulty processors and other related issues
in interconnection networks [8, 11,14,17].

Throughout this paper we use standard graph theory terminology as in [15].
A graph G is Hamiltonian if it contains a Hamiltonian cycle, that is, a cycle
containing all vertices of G. Let k be a positive integer. A graph G is r-spanning
cyclable if for every r distinct vertices v1, v2, . . . , vr of G, there exists r cycles
C1, C2, . . . , Cr in G such that vi is on Ci for every i, and every vertex of G is
on exactly one cycle Ci. Throughout the paper, we refer these r-disjoint cycles
C1, C2, . . . , Cr whose union spans G as r-spanning cycles. (We note that one can
generalize this concept by prescribing disjoint sets A1, A2, . . . , Ar of vertices and
insisting that Ci must contain all the elements of Ai for every i. However, further
restrictions on the Ai’s must be placed; otherwise, it may be impossible for r ≥ 2.
For example, we may simply pick two vertices u and v and set A1, A2 to be {u, v}
and V (G) \ {u, v}, respectively.) If r = 1, then this is the usual Hamiltionian
problem. An obvious question is whether this property is nested, that is, if a
graph is r-spanning cyclable, does it imply that it is (r − 1)-spanning cyclable
or vice versa? The answer is no. The Petersen graph is not 1-spanning cyclable
but it is 2-spanning cyclable. For the other direction, a graph being r-spanning
cyclable also does not imply that it is (r + 1)-spanning cyclable. An n-cycle is
1-spanning cyclable but it is not 2-spanning cyclable.

Although we will not discuss the r-ordered Hamiltonian problem here, we will
briefly mention this concept for the purpose of illustrating the inherent difficulties
of any Hamiltonian related problems. A graph G is called r-ordered if for any
sequence of r distinct vertices of G, there exists a cycle in G containing these
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r vertices in the specified order. It is r-ordered-Hamiltonian if, in addition, the
required cycle is Hamiltonian in G. This concept was introduced in [24], and the
following open problem was posed: Find an infinite class of 3-regular 4-ordered-
Hamiltonian graphs. This problem remained open for many years and it was
solved only recently [13, 16]. On the other hand, there are many papers on its
sufficient conditions; in particular, [9] provides a comprehensive survey. So it is
reasonable to expect that the r-spanning cyclability problem to be “difficult.”
Since the motivation is related to interconnection networks, we naturally restrict
our attention to regular graphs. In particular, we want to find classes with this
property where r ≥ 2. In this paper, we show that such examples can be found
in the class of generalized Petersen graphs.

The Petersen graph is an important graph in graph theory and there are
several generalizations of it. One such generalization is the class of generalized
Petersen graphs introduced in [28], which has attracted much research throughout
the years. Some recent research include [4,5,26,27,29]. The generalized Petersen
graph GP (n, k), where n ≥ 3 and 1 ≤ k ≤ b(n− 1)/2c, has {ui, vi : 0 ≤ i < n} as
its vertex set. There are three types of edges. The first is of the form (ui, ui+1)
(with i+1 computed modulo n) for 0 ≤ i < n. The second is of the form (vi, vi+k)
(with i + k computed modulo n) for 0 ≤ i < n. The third is of the form (ui, vi)
for 0 ≤ i < n, which will be called columns. We call the edges in the first case
the outer edges, the edges in the second case the inner edges and the edges in
the third case the columns. We also call the ui’s outer vertices and the vi’s inner
vertices.

It is clear that GP (n, k) is 3-regular. We note that the subgraph induced
by the vertices ui, 0 ≤ i < n, form an n-cycle, and the subgraph induced by
the vertices vi, 0 ≤ i < n, form essentially a circulant graph. So GP (5, 2) is the
Petersen graph. (We remark that in [4], the authors defined the GP (n, k) for the
range 1 ≤ k < n. The two definitions are equivalent except for the case k = n/2
when n is even. If n/2 < k < n, then GP (n, k) is isomorphic to GP (n, n − k).
If k = n/2, then the resulting graph is not trivalent.) One major task was to
determine which of these graphs are Hamiltonian. There were incremental re-
sults in various papers [7, 25]. The complete classification was finally solved by
Alspach [2]: GP (n, k) is Hamiltonian except for GP (n, 2) for n ≡ 5 (mod 6). We
refer the reader to Alspach [2] for the history, motivation and development of this
problem and its solution. For the related problem in classifying which of these
graphs are “Hamiltonian-connected/Hamiltonian-laceable,” it is still unsolved.
Alspach conjectured over twenty years ago that if GP (n, k) is not isomorphic to
GP (6m + 5, 2), and n and k are relatively prime, then GP (n, k) is Hamiltonian-
connected unless it is bipartite, in which case it is Hamiltonian-laceable. We
note that GP (n, k) is bipartite if and only if n is even and k is odd. Alspach [4]
commented that this condition on n and k is not well understood, and further
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commented that this condition may be misleading after proving that the con-
jecture is true for k = 1, 2, 3 although the relatively prime condition is far from
necessary. A refinement of this conjecture was proposed in [13]. This problem has
only been solved for small k. It turns out that the generalized Petersen graphs
also form a rich class of examples for the k-ordered problem. Again, one can con-
sider the corresponding classification problem and it is only solved for k = 2 and
k = 3. Given these research, it is reasonable to expect that GP (n, k) will pro-
vide good examples of k-spanning cyclability and the corresponding classification
problem would be “difficult.” We start with the following observation.

Proposition 1. If a graph G is r-spanning cyclable, then every vertex has degree
at least r + 1.

Proof. Let u be a vertex of G with minimum degree, and let its neighbors be
v1, v2, . . . , vr. Then G cannot be r-spanning cyclable. Otherwise, we pick the r
prescribed vertices to be v1, v2, . . . , vr. Since u must be on some cycle, such a
cycle must contain two of v1, v2, . . . , vr.

The above observation tells us that for cubic graphs and hence generalized
Petersen graphs, the best we can hope for is 2-spanning cyclability. The next
observation shows that such graphs have girth at least 4.

Proposition 2. If a cubic graph G is 2-spanning cyclable, then G has girth at
least 4.

Proof. Suppose G has a 3-cycle with vertices v1, v2, v3. Choose v1 and v2 to
be the two prescribed vertices. Since G is 2-spanning cyclable, there exist valid
cycles C1 and C2 such that v1 is on C1 and v2 is on C2. Since v2 is not on
C1 and G is cubic, v3 must be on C1. Similarly v3 must be on C2. This is a
contradiction.

Theorem 3. Let k ≥ 2 and n = rk+1 where r ≥ 2. Then GP (n, k) is 2-spanning
cyclable.

Proof. By the definition of generalized Petersen graphs, the outer edges form an
n-cycle. It follows from the assumption of n that the inner edges form an n-cycle.
Then we are done if exactly one of the two prescribed vertices is an inner vertex
(and the other one is an outer vertex) as we may choose the two n-cycles formed
by the outer edges and the inner edges, respectively. Thus we may assume both
prescribed vertices are inner or both outer. We will now construct two spanning
cycles. Consider the outer vertices

(u1, u2, . . . , uk), (uk+1, uk+2, . . . , u2k), . . . , (u(r−2)k+1, u(r−2)k+2, . . . , u(r−1)k),

(u(r−1)k+1, u(r−1)k+2, . . . , urk), u0.
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The parentheses in the list are inserted to highlight how we group the ver-
tices. The first cycle C1 is constructed using the path with the outer vertices
uk, uk+1, uk+2, . . . , urk followed by the edges

(urk, vrk), (vrk, v(r−1)k), (v(r−1)k, v(r−2)k), . . . , (v2k, vk), (vk, uk).

For the second cycle, we start with

(u0, v0), (v0, v(r−1)k+1), (v(r−1)k+1, v(r−2)k+1), . . . , (vk+1, v1),

then

(v1, v(r−1)k+2), (v(r−1)k+2, v(r−2)k+2), . . . , (vk+2, v2),

which will be followed by

(v2, v(r−1)k+3), (v(r−1)k+3, v(r−2)k+3), . . . , (vk+3, v3).

Continue in this process, we will use

(vk−2, v(r−1)k+(k−1)), (v(r−1)k+(k−1)), v(r−2)k+(k−1)), . . . , (vk+(k−1), vk−1).

Then we use the edge (vk−1, uk−1) followed by the path (uk−1, uk−2, . . . , u1, u0).
See Figure 1 for an illustration of the general case and Figure 2 for the specific
case when r = 5 and k = 4. (We remark that to avoid clutters, there are dangling
edges on both sides of a graph but it is clear how the edges on one side continue
to the other side. We will use this convention throughout the paper.)

Figure 1. The two spanning cycles of GP (rk + 1, k).

Figure 2. The two spanning cycles of GP (21, 4).



718 M.-C. Yang, L.-H. Hsu, C.-N. Hung and E. Cheng

We first suppose the two prescribed vertices x and y are outer vertices. We
may assume one of them is x = u0. Since r ≥ 2, we may assume that y is not
one of u1, u2, . . . , uk−1. Thus C1 and C2 give the desired two cycles with x on C2

and y on C1. Now assume both x and y are inner vertices. We may assume that
x = vk. Then we are done unless y ∈ {v2k, v3k, . . . , vrk} as vk, v2k, v3k, . . . , vrk
are on C1 and all the other inner vertices are on C2. So assume that x and y are
prescribed as such. We shift our reference point and we may assume that x = v0
and hence y ∈ {vk, v2k, . . . , v(r−1)k}. But then x is on C2 and y is on C1.

Theorem 3 shows that for every k ≥ 2, there are infinitely many GP (n, k) that
are 2-spanning cyclable. It would be interesting to see exactly which GP (n, k)
have this property. We first consider k = 1, which can easily be solved.

Proposition 4. Let n ≥ 3. Then GP (n, 1) is 2-spanning cyclable if and only if
n 6= 3.

Proof. We first note that GP (n, 1) is the Cartesian product of an n-cycle and the
complete graph K2, that is, it can be obtained by taking two copies of an n-cycle,
and puting an edge between every pair of corresponding vertex of the first cycle
and the corresponding vertex of the second cycle. If follows from Proposition 2
that for n = 3 GP (n, 1) is not 2-spanning cyclable. Let n ≥ 4. As in the proof of
Theorem 3, we may assume the two prescribed vertices x and y are either both
outer vertices or both inner vertices. In this case, they are equivalent; so assume
both are outer vertices. We may assume that x = u0 and y 6= u1. Then let
C1 = (u0, u1, v1, v0, u0), C2 = (u2, u3, . . . , un−2, un−1, vn−1, vn−2, . . . , v3, v2, u2),
and we are done.

Unfortunately, for k ≥ 2, the classification is not as simple. We will study
k = 2, 3, 4 in this paper.

2. GP (n, 2)

In this section, we determine the n for which GP (n, 2)’s are 2-spanning cyclable.
By definition, n ≥ 5. This result here is more interesting than GP (n, 1) as there
are infinitely many graphs in the set that are not 2-spanning cyclable. Essentially,
it is 2-spanning cyclable if and only if n is odd.

Theorem 5. Let n ≥ 5. Then GP (n, 2) is 2-spanning cyclable if and only if n
is odd.

Proof. If n is odd and n ≥ 5, then GP (n, 2) is 2-spanning cyclable by Theorem 3.
It remains to show that if n is even, then GP (n, 2) is not 2-spanning cyclable.
We first observe that GP (n, 2) is planar. Note that the inner edges form two
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disjoint n/2-cycles. The graph can be embedded so that it has three “rings.”
The middle ring is an n-cycle (using the outer edges). Figure 3(a) shows an
example. The outside ring and the inside ring are both n/2-cycles using the
inner edges. Essentially, we flip one of the n/2-cycles to the outside. In this
embedding, every face is of size 5, except two, each having a size of n/2. We will
use Grinberg’s condition; more precisely, the following corollary. If a planar graph
can be embedded in a way such that every face except one has size 2 modulo 3,
and the exceptional face has size not congruent to 2 modulo 3, then the graph is
not Hamiltonian. We consider three cases.

Figure 3. The graph GP (6k, 2) for k = 3.

Case 1. n = 6k. We pick the two exceptional vertices a and b as indicated
in Figure 3(a). Suppose two desired cycles exist. Since these two vertices are
adjacent and the graph is 3-regular, this implies that the two edges incident to
a, other than (a, b), must be on the cycle C1 containing a. Similarly, the two
edges incident to b, other than (a, b), must be on the cycle C2 containing b. Now
C1 and C2 can be “merged” into a Hamiltonian cycle for a new graph adjusted
from GP (n, 2). (Delete (a, b) from GP (n, 2), then take (a, c) on C1 and (b, d)
on C2. Replace (a, c) by (a, x, y, c) and (b, d) by (b, u, v, d) where x, y, u, v are
new vertices. Now replace (x, y) and (u, v) by (x, u) and (y, v) to obtain the new
graph.) See Figure 3(b) for an example. This new graph is planar such that
every face is of size 5, except three with size 14, 3k and 3k + 2. By construction,
this graph is Hamiltonian. However, by the corollary to Grinberg’s condition, it
should not be Hamiltonian.

Case 2. n = 6k+2. We pick the two exceptional vertices a and b as indicated
in Figure 4(a). Again a and b are adjacent and we can determine which two edges
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Figure 4. The graph GP (6k + 2, 2) for k = 3.

incident to a belong to C1, a cycle containing a, and which two edges incident to b
belong to C2, a cycle containing b. Using similar construction (see Figure 4(b)) to
arrive at a planar graph with the property that every face is of size 5, except two
with size 3k+1 and 3k+8, respectively. (Since a and b are adjacent, C1 containing
a must use (x, a) and (y, a), and C2 containing b must use (u, b) and (v, b). Now
delete (a, b) from GP (n, 2), replace (x, a) and (u, b) by (x, x′, u′, u) and replace
(y, a) and (v, b) by (y, y′, v′, v), where x′, u′, y′ and v′ are new vertices.) Again, it
gives a contradiction as it is Hamiltonian by “merging” C1 and C2 but it is not
Hamiltonian by the corollary to Grinberg’s condition.

Figure 5. The graph GP (6k + 4, 2) for k = 3.
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Case 3. n = 6k+4. We pick the two exceptional vertices a and b as indicated
in Figure 5(a). Again a and b are adjacent and we can determine which two edges
incident to a belong to C1, a cycle containing a, and which two edges incident to
b belong to C2, a cycle containing b. Using similar construction (see Figure 5(b))
to arrive at a planar graph with the property that every face is of size 5, except
three with size 14, 3k+ 2 and 3k+ 4, respectively. Again, it gives a contradiction
as it is Hamiltonian by “merging” C1 and C2 but it is not Hamiltonian by the
corollary to Grinberg’s condition.

3. GP (n, 3)

In this section, we determine the n for which GP (n, 3)’s are 2-spanning cyclable.
By definition, n ≥ 7. Given the classification of GP (n, 2), one may expect a
similar result. However, this is not the case. We note that the inner edges form
an n-cycle if and only if n is not divisible by 3. If n is divisible by 3, then
they induce three n/3-cycles. Thus GP (9, 3) contains a 3-cycle and hence not
2-spanning cyclable by Proposition 2.

Theorem 6. Let n ≥ 7. Then GP (n, 3) is 2-spanning cyclable if and only if
n 6= 9.

Proof. If n is congruent to 1 modulo 3, then the claim is true by Theorem 3.
We now suppose n is congruent to 2 modulo 3. As usual, we may assume the two
prescribed vertices x and y are either both outer vertices or both inner vertices.
Similar to the construction given in the proof of Theorem 3, we can construct
another set of two cycles. Rather than listing the cycles as we have done in
the proof of Theorem 3, we will present an example that clearly generalizes, to
avoid such complicated notations, see Figure 6. Note that one cycle contains all
the outer vertices except u0, u1, u2. Since n ≥ 7, we may assume x = u0 and
y 6∈ {u1, u2}. Thus we have the two desired cycles. Now assume both are inner
vertices. We may assume that x = v0. It follows from our construction that
we are done unless y ∈ {v2, v5, v8, . . . , v3(k−1)+2}. So assume that x and y are
prescribed as such. This is covered by an alternate set of 2 cycles as shown in
Figure 7. (Again it is clear that it generalizes.) We note that we actually do not
need this alternate solution as we may simply label v1, v2, . . . , v3k+1 in reverse to
v3k+1, . . . , v2, v1.

We now consider the case when n = 3r where r ≥ 4. Since the inner edges
no longer form one n-cycle, we have to consider the case when x is outer and y
is inner. Consider the set of two cycles given in Figure 8(a) (Again it is clear
that it generalizes.) Here one cycle C1 contains all the outer vertices with some
inner vertices and another cycle C2 contains exactly v0, v3, v6, . . . , v3(r−1). Thus
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Figure 6. Two spanning cycles for GP (3k + 2, 3) for k = 4.

Figure 7. Another two spanning cycles for GP (3k + 2, 3) for k = 4.

we can assume y = v3 and hence x is on C1 and y is on C2. To complete the
proof, we need another set of two cycles. Here the first cycle C ′1 is obtained by
use the path (u1, u2, u3, . . . , u3r−8), followed by the edges

(u3r−8, v3r−8), (v3r−8, v3r−11), (v3r−11, v3r−14), . . . , (v7, v4), (v4, v1), (v1, u1).

The second cycle C ′2 contains the rest of the vertices. Indeed the cycle is forced.
See Figure 8(b), (c), (d) for r = 4, 5, 6. Since C ′1 contains u1, u2, u3, . . . , u3r−8
and C ′2 contains u3r−7, u3r−6, . . . , u3r−2, u3r−1, u0, clearly we may assume x is one
of u1, u2, u3, . . . , u3r−8 and y is one of u3r−7, u3r−6, . . . , u3r−2, u3r−1, u0 if both
are outer vertices. (We may let y = u0, then by looking at either direction,
we may assume x is one of u1, u2, u3, . . . , u3r−8 unless r = 4 and (x, y) is one
of (u5, u0), (u6, u0), (u7, u0). But this is equivalent to (u6, u1), (u7, u1), (u8, u1),
respectively.) Now consider both x and y are inner vertices. Without loss of
generality, we may assume that x = v3r−8. So x is on C ′1. Then we are done
unless y ∈ {v1, v4, v7, . . . , v3r−11}, which are on C ′1. But this is equivalent to
x = v3r−5 and y ∈ {v4, v7, v10, . . . , v3r−8} and hence x is on C ′2 and y is on C ′1.

4. GP (n, 4)

In this section, we determine the n for which GP (n, 4)’s are 2-spanning cyclable.
By definition, n ≥ 9. We note that the inner edges of GP (12, 4) induce four
3-cycles; hence it is not 2-spanning cyclable. It turns out that GP (10, 4) is also
not 2-spanning cyclable. Since it is a 3-regular graph with 20 vertices, it is a
graph that is small enough to check by hand. Note that the inner edges form
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Figure 8. Two spanning cycles for GP (3r, 3) for r = 4, 5, 6.

two 5-cycles. One can check that if the two prescribed vertices are both on such
a 5-cycle, then there is no valid pair of cycles. We omit the details.

Theorem 7. Let n ≥ 9. Then GP (n, 4) is 2-spanning cyclable if and only if
n 6∈ {10, 12}.

Proof. We have already concluded that GP (10, 4) and GP (12, 4) are not 2-
spanning cyclable. We now show that these are the only exceptional cases. As
usual, let x and y be the two prescribed vertices. If n is congruent to 1 modulo
4, then the claim is true by Theorem 3. We consider three additional cases.

Case 1. n = 4r where r ≥ 4. We construct C1 by starting with the path
(u2, u3, v3, v7, v11, . . . , v4(r−1)+3) followed by (v4(r−1)+3, u4(r−1)+3), then by the
path with only outer vertices, (u4(r−1)+3, u4(r−1)+2, . . . , u7, u6), followed by (u6, v6,
v10, v14, . . . , v4(r−1)+2, v2, u2). Similarly, one can construct C2 using the remaining
vertices, see Figure 9. We first suppose x is an outer vertex and y is an inner ver-
tex. We may assume that y = v8. Then C1 and C2 give the desired cycles unless
x ∈ {u0, u1, u4, u5}. Then by changing our reference point, x being u0, u1, u4, u5
is equivalent to x being u16, u15, u12, u11, respectively. (This argument fails for



724 M.-C. Yang, L.-H. Hsu, C.-N. Hung and E. Cheng

n = 12.) Now suppose both x and y are outer vertices. We may assume that
x = u5, then C1 and C2 give the desired cycles unless y ∈ {u0, u1, u4}. Again we
consider the other direction, that is, y being u0, u1, u4 is equivalent to y being
u10, u9, u6, respectively. Finally assume both x and y are inner vertices. We first
observe that vi is on C2 if and only if i is congruent to 0 or 1 modulo 4. We may
assume that x = v0. Then we are done unless y = vj where j 6= 0 is congruent to
0 or 1 modulo 4. Those that are congruent to 1 modulo 4 are vertices that are
1, 5, 9, . . . away from v0 with respect to the subscript. Again we can change our
reference point by considering x = v1 and this will cover those vertices that are
1, 5, 9, . . . away from v1 with respect to the subscript.

Figure 9. Two spanning cycles for GP (4r, 4) for r = 5.

It remains to cover those that are 4, 8, 12, . . . away from v0 with respect to the
subscript. For this, we consider another pair of cycles. This pair is actually more
difficult to describe. So we describe it via an inductive argument. We consider
n ≥ 20. (The case n = 16 is not covered here.) See Figure 10 for the case n = 20
and n = 24. It is easy to see that the pair of cycles for n = 24 can be obtained
from the pair for n = 20 by inserting 4 columns between column 16 and column
17 and extend appropriately. Moreover Figure 11 shows how to extend GP (20, 4)
to GP (24, 4) and Figure 12 shows how to extend the pair of cycles. (We remark
that Figure 11 and Figure 12 only show part of GP (20, 4) and part of GP (24, 4),
so the dangling edges on the right do not correspond to the dangling edges on
the left as in other pictures.) By an inductive argument, we obtain such pair for
every n = 4r where r ≥ 5. We note that this construction produces two cycles
C ′1 and C ′2 where the only inner vertices belonging to C ′1 are

{v2, v3, v7, v11} ∪ {vi : 14 ≤ i ≤ 4r − 1 and i is congruent to 2 or 3 modulo 4}.

Now change our point of reference and let x = v10, which is on C ′2. But
v14, v18, . . . , v4r−2 are on C ′1 as the subscripts are congruent to 2 modulo 4. Thus
we are done if y = v14, v18, . . . , v4r−2. Now observe that (x, y) = (v10, v6) is
equivalent to (x, y) = (v10, v14) so (x, y) = (v10, v6) is done. Now v2 is on C ′1
and so (x, y) = (v10, v2) is done. For n = 16, we still need to consider the cases
when (x, y) ∈ {(v0, v4), (v0, v8), (v0, v12)}. Now (v0, v4) and (v0, v12) are equiva-
lent. Thus we only have to consider (v0, v8) and (v0, v12), which are solved by the
two cycles given in Figure 13.
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Figure 10. Another two spanning cycles for GP (4r, 4) for r = 5 and r = 6.

Figure 11. Expanding the graph from GP (20, 4) to GP (24, 4).

Figure 12. Expanding a pair of valid cycles from GP (20, 4) to GP (24, 4).

Case 2. n = 4r + 2 where r ≥ 3. The case n = 14 will be covered sepa-
rately. Henceforth, we assume r ≥ 4. Construct C1 by starting with the path
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Figure 13. Two spanning cycles for GP (4r, 4) for r = 4.

(u0, u1, u2, . . . , u4r−12) with only outer vertices, followed by (u4r−12, v4r−12), then
by (v4r−12, v4r−16, . . . , v4, v0), and finally by (v0, u0). It is not too difficult to see
that the remaining vertices will be on a cycle C2. This is essentially forced if we
want the following five subpaths on C2:

(v4r−11, u4r−11, u4r−10, u4r−9, u4r−8, v4r−8), (v4r−7, u4r−7, u4r−6, u4r−5, v4r−5),

(v4r−4, u4r−4, u4r−3, v4r−3), (v4r−2, u4r−2, u4r−1, v4r−1), (v4r, u4r, u4r+1, v4r+1).

See Figure 14 for n = 18 and n = 22. Since the inner edges no longer form
one n-cycle, we have to consider the case when x is outer and y is inner. We
may assume x = u0. Then C1 and C2 give the desired cycles unless y ∈
{v0, v4, v8, v4r−16, v4r−12}. Then we change our reference point to x = u1 and
we only have to consider y ∈ {v1, v5, v9, v4r−15, v4r−11}. We are done as u1 is on
C1 and v1, v5, v9, v4r−15, v4r−11 are on C2.

Figure 14. Two spanning cycles for GP (4r + 2, 4) for r = 4, 5.

We now suppose both x are y are outer vertices. We may assume that x =
u4r+1. Then C1 and C2 give the desired cycles unless y ∈ {u4r−11, u4r−10, . . . , u4r}.
We note that {u4r−11, u4r−10, . . . , u4r} is of size 12. If r ≥ 6, then {u0, u1, u2, . . . ,
u4r−12} is of size at least 12 and we can change our reference point to x = u4r−11.
For r = 5, the same argument eliminates all except (x, y) ∈ {(u21, u9), (u21, u10),
(u21, u11)} which can be solved by considering (x, y) ∈ {(u20, u8), (u19, u8), (u18,
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u8)}. For r = 4, the same argument eliminate all except (x, y) = (u17, ui) where
i = 5, 6, . . . , 11, which can be solved by considering (x, y) = (ui, u4), where
i = 16, 15, . . . , 10.

Finally suppose both x are y are inner vertices. We may assume that x = v0.
Then C1 and C2 give the desired cycles unless y = v4, v8, . . . , v4r−12. Again
we change our reference point by considering x = v4r−8 and hence (x, y) =
(v0, v4) is equivalent to (x, y) = (v4r−8, v4r−12), (x, y) = (v0, v8) is equivalent to
(x, y) = (v4r−8, v4r−16) and so on ending with (x, y) = (v0, v4r−12) is equivalent
to (x, y) = (v4r−8, v4).

For n = 14, see Figure 15. Clearly these two cycles cover all cases.

Figure 15. Two spanning cycles for GP (4r + 2, 4) for r = 3.

Case 3. n = 4r + 3 where r ≥ 2. We note that for this case, the inner edges
form one n-cycle. We construct a pair of cycles similar to Case 2. Construct C1

by starting with the path (u0, u1, u2, . . . , u4r−4) with only outer vertices, followed
by (u4r−4, v4r−4), then by (v4r−4, v4r−8, . . . , v4, v0), and finally by (v0, u0). It is
not too difficult to see that the remaining vertices will be on a cycle C2. This is
essentially forced if we want the following three subpaths on C2:

(v4r−3, u4r−3, u4r−2, v4r−2), (v4r−1, u4r−1, u4r, v4r), (v4r+1, u4r+1, u4r+2, v4r+2),

see Figure 16.

We now suppose both x are y are outer vertices. We may assume that x =
u4r+2. Then C1 and C2 give the desired cycles unless y ∈ {u4r−3, u4r−2, u4r−1, u4r,
u4r+1}. Since r ≥ 2, the set {u0, u1, u2, . . . , u4r−4} is of size at least 5 and we can
change our reference point to x = u4r−5.

Finally suppose both x are y are inner vertices. We may assume that x = v0.
Then C1 and C2 give the desired cycles unless y = v4, v8, . . . , v4r−4. Again we
change our reference point by considering x = v4r and hence (x, y) = (v0, v4)
is equivalent to (x, y) = (v4r, v4r−4), (x, y) = (v0, v8) is equivalent to (x, y) =
(v4r, v4r−8) and so on ending with (x, y) = (v0, v4r−4) is equivalent to (x, y) =
(v4r, v4).
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Figure 16. Two spanning cycles for GP (4r + 3, 4) for r = 2, 3.

5. Conclusion

In this paper, we studied the 2-spanning cyclability problem for the generalized
Petersen graphs. A typical way in proving that GP (n, k) has certain property is
by induction. For example, we have seen how GP (n+ 4, 4) can be obtained from
GP (n, 4) by inserting four columns. We have also seen how a pair of cycles in
GP (n+4, 4) can be obtained from GP (n, 4). Note that there are five special edges
in Figure 11 and the extension of a pair of cycles depending on which of these
five edges are being used. Thus there are 25 cases. In fact, often the extension
is difficult and one has to “insert” more columns. Moreover, the more columns
that we need to insert, the larger number of base cases that we have to check.
Indeed, this was the approach that we had used (via a computer search) until we
observed a pattern in the computer output and the induction step. Thus we are
able to obtain a self-contained proof without the need of including a “computer
proof” for the base cases. The case k = 2 is more traceable as there are only two
prescribed vertices. However, our computer solution does not show a pattern for
the general k. Nevertheless, the result for n = rk + 1 is relatively easy. We were
hoping to obtain a result for GP (n, k) when n and k are relatively prime but we
were unsuccessful. We end this paper with the following conjecture. We remark
that we do not have enough data to give an estimate of n with respect to k in
the second part of the conjecture.

Conjecture 1. Let k ≥ 1 and n ≥ 2k + 1.

1. If n and k are relatively prime, then GP (n, k) is 2-spanning cyclable.

2. If n and k are not relatively prime and k ≥ 3, then GP (n, k) is 2-spanning
cyclable when n is sufficiently large.
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