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Abstract

An (r − 1, 1)-coloring of an r-regular graph G is an edge coloring (with
arbitrarily many colors) such that each vertex is incident to r − 1 edges
of one color and 1 edge of a different color. In this paper, we completely
characterize all 4-regular pseudographs (graphs that may contain parallel
edges and loops) which do not have a (3, 1)-coloring. Also, for each r ≥ 6
we construct graphs that are not (r−1, 1)-colorable and, more generally, are
not (r − t, t)-colorable for small t.
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1. Introduction

A graph with no loops or multiple edges is called simple; a graph in which both
multiple edges and loops are allowed is called a pseudograph. Unless specified
otherwise, the word “graph” in this paper is reserved for pseudographs. All
(pseudo)graphs considered here are undirected and finite. Note that we count a
loop twice in the degree of a vertex.

The famous Berge-Sauer conjecture asserts that every 4-regular simple graph
contains a 3-regular subgraph [6]. This conjecture was settled by Tashkinov in
1982 [12]. In fact, he proved that every connected 4-regular pseudograph with
either at most two pairs of multiple edges and no loops or at most one pair of
multiple edges and at most one loop contains a 3-regular subgraph. Observe that
this cannot hold for all 4-regular pseudographs, because the graph consisting of
a single vertex with two loops contains no 3-regular subgraph. The following
question remains open.

Question 1. Which 4-regular pseudographs contain 3-regular subgraphs ?

Note that in 1988, Tashkinov [13] determined the values of t and r for
which every r-regular pseudograph contains a t-regular subgraph. Beyond find-
ing regular subgraphs in regular graphs, finding factors—that is, regular spanning
subgraphs—in regular graphs is also of special interest. As early as 1891, Petersen
[10] studied the existence of factors in regular graphs. Since then numerous re-
sults on factors have appeared—see, for example, [2, 5, 7, 11]. The concept of
factors can be generalized as follows: for any set of integers S, an S-factor of
a graph is a spanning subgraph in which the degree of each vertex is in S [8].
Several authors [1, 3, 9] have recently studied {a, b}-factors in r-regular graphs
with a+b = r. In particular, Akbari and Kano [1] made the following conjecture:

Conjecture 1. If r is odd and 0 ≤ t ≤ r, then every r-regular graph has an

{r − t, t}-factor.
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However, Axenovich and Rollin [3] disproved this conjecture. The following
theorem summarizes what is known about {r − t, t}-factors of r-regular graphs.
(Note that although intended for simple graphs, the result of Petersen [10] applies
to pseudographs as well.)

Theorem 2. Let t and r be positive integers with t ≤ r
2 .

(a) When r is even.

• If t is even, then every r-regular graph has a t-factor, and thus has an {r−t, t}-
factor (Petersen [10]).

• Every r-regular graph of even order has an
{

r
2 + 1, r2 − 1

}

-factor (Lu, Wang,

and Yu [9]).

• If t is odd and t ≤ r
2 −2, then there exists a connected r-regular graph of even

order that has no {r − t, t}-factor [9].

• If t is odd and t = r
2 , then every r-regular subgraph of even order has an

{r − t, t}-factor [9].

• If t is odd, then trivially, no r-regular graph of odd order has an {r − t, t}-
factor.

(b) When r is odd and r ≥ 5.

• If t is even, then every r-regular graph has an {r − t, t}-factor (Akbari and
Kano [1]).

• If t is odd and r
3 ≤ t, then every r-regular graph has an {r − t, t}-factor [1].

• If t is odd and (t+1)(t+2) ≤ r, then there exists an r-regular graph that has

no {r − t, t}-factor (Axenovich and Rollin [3]).

(c) Every 3-regular graph has a {2, 1}-factor (Tutte [14]).

An (r − t, t)-coloring of an r-regular graph G is an edge-coloring (with at
least two colors) such that each vertex is incident to r− t edges of one color and t

edges of a different color. An ordered (r−t, t)-coloring of G is an (r−t, t)-coloring
using integers as colors such that each vertex is incident to r − t edges of some
color i and t edges of some color j with i < j. Thus, in a graph with an ordered
(r− t, t)-coloring, regardless of how many colors are used, the set of edges colored
with the minimum integer induces an (r − t)-regular subgraph, and the set of
edges colored with the maximum integer induces a t-regular subgraph.

Bernshteyn [4] introduced (3, 1)-colorings as an approach to answer Ques-
tion 1. A possible advantage of working with (3, 1)-colorings is that this is a
locally-defined notion. Bernshteyn proved the following.

Theorem 3 (Bernshteyn [4]). A connected 4-regular graph contains a 3-regular
subgraph if and only if it admits an ordered (3, 1)-coloring.

We observe that the notion of an (r − t, t)-coloring of an r-regular graph
generalizes that of an {r − t, t}-factor. Indeed, an r-regular graph G has an



798 A. Bernshteyn et al.

(r− t, t)-coloring with two colors if and only if G has an {r− t, t}-factor: the two
color classes are precisely the {r−t, t}-factor and its complement, which is another
{r−t, t}-factor. Thus, (r−t, t)-colorings provide a common approach to attacking
Question 1 as well as any unresolved cases from Conjecture 1, specifically, when
r and t are both odd and 3t < r < (t + 1)(t + 2). As an (r − t, t)-coloring with
more than two colors can exist when there is no {r− t, t}-factor, we consider the
following general question.

Question 2. For which r and t does every r-regular graph have an (r − t, t)-
coloring ?

For r ≥ 6, we resolve Question 2 for various values of t, including t = 1 (see
Section 3). However, the question remains open for r = 5 and t = 1.

There are trivial examples of 4-regular graphs without (3, 1)-colorings, such
as a single vertex with two loops. However, Theorem 3 motivates the following
weaker version of Question 1.

Question 3. Which 4-regular graphs have (3, 1)-colorings ?

The arrows in Figure 1 indicate the relationships among t-factors, {r− t, t}-
factors, ordered (r− t, t)-colorings, (r− t, t)-colorings, and t-regular subgraphs of
r-regular graphs that hold for arbitrary r and t.

G has a t-factor.

G has an {r − t, t}-factor. G has an ordered (r − t, t)-coloring.

G has a t-regular subgraph.G has an (r − t, t)-coloring.

Figure 1. Implications that hold for every r-regular graph G and for all integers 0 < t < r.

Now we are ready to describe our main results. First, in Section 2, we charac-
terize all 4-regular graphs which are not (3, 1)-colorable, which settles Question 3.
Because the statement of the result requires additional definitions, we postpone
it until then (see Theorem 4). Then, in Section 3, we construct relevant examples
of r-regular graphs for r ≥ 6 and various t: some with no (r−t, t)-coloring, others
with an (r − t, t)-coloring but no {r − t, t}-factor.

2. (3, 1)-Colorings in 4-Regular Graphs

In this section we characterize 4-regular graphs that do not admit (3, 1)-colorings.
Let us first establish some terminology. Let G1 and G2 be vertex-disjoint graphs
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with (possibly loop) edges e1 = u1v1 ∈ E(G1) and e2 = u2v2 ∈ E(G2). The
disjoint union of X and Y is denoted by X ∪̇Y . The edge adhesion of G1 and G2

at e1 and e2 is the graph G = (G1, e1) + (G2, e2) obtained by subdividing edges
e1 and e2 and identifying the two new vertices. (See Figure 2.) That is,

V (G) = V (G1) ∪̇ V (G2) ∪̇ {w};

E(G) = (E(G1) \ {e1}) ∪̇ (E(G2) \ {e2}) ∪̇ {u1w, v1w, u2w, v2w}.

e1 + e2G1 G2 =

G

Figure 2. Edge adhesion of two graphs, G = (G1, e1) + (G2, e2).

The adhesion of a loop to graph H at edge e = uv ∈ E(H) is the graph
H ′ = (H, e) +O obtained by subdividing e and adding a loop at the new vertex.
(See Figure 3.) That is,

V (H ′) = V (H) ∪̇ {x};

E(H ′) = (E(H) \ {e}) ∪̇ {ux, vx, xx}.

e

H

+ O =

H ′

Figure 3. Adhesion of a loop at an edge, H ′ = (H, e) +O.

Let C be a cycle, which has |E(C)| = |V (C)| (allowing for a degenerate cycle
on 1 or 2 vertices). A double cycle is obtained from C by doubling each edge. We
say a double cycle is even (respectively, odd) if it has an even (respectively, odd)
number of vertices. (See Figure 4.)

Clearly, double cycles and graphs resulting from edge adhesion of two 4-
regular graphs or from the adhesion of a loop to a 4-regular graph are all 4-regular.
We are now ready to give the main result of this section.

Theorem 4. A connected 4-regular graph is not (3, 1)-colorable if and only if it

can be constructed from odd double cycles via a sequence of edge adhesions.
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· · ·

· · ·

Figure 4. Double cycles (odd on top, even on bottom).

From Theorem 4 we see that any 4-regular graph that is not (3, 1)-colorable
has an odd number of vertices. Indeed, any 4-regular graph with an even number
of vertices has a {3, 1}-factor by Theorem 2 and hence a (3, 1)-coloring using two
colors.

Remark 5. Theorem 4 naturally lends itself to a proof by induction. In partic-
ular, an equivalent statement is that a connected 4-regular graph is not (3, 1)-
colorable if and only if it is an odd double cycle or obtained from two 4-regular,
non-(3, 1)-colorable graphs by a sequence of edge adhesions.

Before we prove Theorem 4, we need to develop a few lemmas.

Lemma 6. A double cycle with n ≥ 1 vertices is (3, 1)-colorable if and only if n

is even.

Proof. Even double cycles have perfect matchings and are thus (3, 1)-colorable.
Assume that there is a (3, 1)-coloring c of an odd double cycle G. Let G′

denote the cycle obtained by removing one of the parallel edges between any two
adjacent vertices in G. Color an edge in G′ red if its corresponding parallel edges
in G are of the same color under c and blue otherwise. Observe that the edges
incident to any vertex in G′ are of different colors, since c is a (3, 1)-coloring of G.
This is a contradiction since G′ is an odd cycle.

Lemma 7 (Bernshteyn [4]). If G is a 4-regular graph and there exists a non-

double edge uv in G with u 6= v such that G − {u, v} is connected, then G is

(3, 1)-colorable.

Lemma 8 (Bernshteyn [4]). If G is a 4-regular graph and G′ = (G, e) + O for

some edge e ∈ E(G), then either G or G′ has a 3-regular subgraph.

Lemma 9. Let G1 and G2 be (3, 1)-colorable 4-regular graphs and let G2 have a

loop vv. Construct G by subdividing an edge uw in G1, identifying the new vertex

with v, and removing the loop vv, so

V (G) = V (G1) ∪̇ V (G2);

E(G) = (E(G1) \ {uw}) ∪̇ (E(G2) \ {vv}) ∪̇ {uv, wv}.

(See Figure 5.) Then G is (3, 1)-colorable.
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u

w
G2G1

v
−→

G

u

w

v

Figure 5. Joining G2 to G1 at a loop, as in Lemma 9.

Proof. Fix (3, 1)-colorings ci of Gi for i ∈ {1, 2}. Note that v in G2 is incident to
only one loop and that the two non-loop edges incident to v have different colors
under c2. Without loss of generality, assume that c1(uw) is equal to the color of
one of the non-loop edges incident to v. Therefore the colorings c1 and c2 extend
to a (3, 1)-coloring of G by coloring the edges uv and uw with color c1(uw).

Corollary 10. Suppose exactly one of the connected 4-regular graphs G1 and G2

is (3, 1)-colorable. Then for any e1 ∈ E(G1) and e2 ∈ E(G2), (G1, e1) + (G2, e2)
is (3, 1)-colorable.

Proof. Without loss of generality, we assume that G1 is (3, 1)-colorable and G2

is not. Let e1 ∈ E(G1) and e2 ∈ E(G2). By Theorem 3 and Lemma 8, the graph
G′

2 = (G2, e2) + O is (3, 1)-colorable. Applying Lemma 9 to G1 and G′

2, we see
that (G1, e1) + (G2, e2) is (3, 1)-colorable.

Lemma 11. Let G be a 4-regular graph that is not (3, 1)-colorable. If G has a

non-double, non-loop edge, then G is not 2-connected.

Proof. Let uv be a non-double, non-loop edge, and suppose for contradiction
that G is 2-connected. By Lemma 7, since G is not (3, 1)-colorable, G′ =
G − {u, v} is disconnected. Since G is 2-connected, neither u nor v is a cut-
vertex. Therefore, every component of G′ must contain at least one vertex from
NG(u) and at least one vertex from NG(v). Since the sum of the degrees of the
vertices must be even in each component, the 4-regularity of G implies that each
component of G′ must have been connected to {u, v} by an even number of edges.
Let NG(u) \ {v} = {u1, u2, u3} and NG(v) \ {u} = {v1, v2, v3}. Without loss of
generality, G′ is the disjoint union of a component G1 containing u1 and v1 and
a subgraph G2 (of one or two components) containing u2, u3, v2, and v3.

Let G′

1 = (G1 + u1v1, u1v1) + O and G′

2 = ((G − G1) + uv, uv) + O. (See
Figure 6.) That is,

V (G′

1) = V (G1) ∪̇ {w1};

E(G′

1) = E(G1) ∪̇ {u1w1, v1w1, w1w1};

V (G′

2) = V (G2) ∪̇ {u, v, w2};

E(G′

2) = E(G2) ∪̇ {uu2, uu3, uv, vv2, vv3, uw2, vw2, w2w2}.
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G u v

u1 v1
G1

u2 v2u3 v3

G2

w2

u2

u

v2

v

u3 v3

G′

2

u1 v1

w1 G′

1

Figure 6. Splitting a 2-connected graph into two (3, 1)-colorable graphs, from the proof
of Lemma 11.

By the assumption of 2-connectedness, the vertex u1 is not a cut-vertex of G.
If u1 = v1, then the vertex also has a loop (so as not to be a cut vertex) and then
G′

1 is trivially (3, 1)-colorable. Otherwise, u1 6= v1 and G′

1−{u1, w1} is connected.
Thus by Lemma 7, G′

1 is (3, 1)-colorable. Likewise, G′

2 − {u,w2} is connected,
so G′

2 is (3, 1)-colorable. Select (3, 1)-coloring ci of G
′

i for i ∈ {1, 2}. Note that
because of the loops, c1(u1w1) 6= c1(v1w1) and c2(uw2) 6= c2(vw2). We can assume
that c1(u1w1) = c2(uw2) and c1(v1w1) = c2(vw2). Therefore, the colorings c1 and
c2 easily extend to a (3, 1)-coloring c of G, which is a contradiction.

Lemma 12. Let G be a connected 4-regular graph that is not 2-connected. Then

G = (G1, e1) + (G2, e2) for some 4-regular graphs G1, G2 and edges e1 ∈ E(G1),
e2 ∈ E(G2).

Proof. Indeed, let w ∈ V (G) be a cut-vertex. Now the lemma is implied by
the following observation. Since the number of vertices with odd degrees in a
graph is always even, G−w consists of exactly two components and each of these
components receives exactly two of the edges incident to w.

Proof of Theorem 4. Consider 4-regular graphs G1 and G2 and edges e1 in
G1, e2 in G2. Any (3, 1)-coloring of (G1, e1) + (G2, e2) yields a (3, 1)-coloring of
G1 or G2, since the edges obtained by subdividing e1 or e2 are of the same color.
Therefore every graph that is obtained from odd double cycles via edge adhesion
is not (3, 1)-colorable due to Lemma 6.

Now let G be a connected 4-regular graph that is not (3, 1)-colorable. We
use induction on |V (G)| to prove that G is constructed from odd double cycles
via edge adhesion. If |V (G)| = 1, then G is a double cycle of one vertex and
the theorem trivially holds. Assume that |V (G)| ≥ 2. We may also assume that
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G contains a non-double edge. Otherwise, if every edge is double, then G is a
double cycle, and by Lemma 6, G is an odd double cycle, and thus we are done.

If each non-double edge is a loop, then one can easily check that G is not
2-connected. If G has a non-double non-loop edge, Lemma 11 implies that it is
not 2-connected. By Lemma 12, G = (G1, e1)+(G2, e2) for some 4-regular graphs
G1, G2 and edges e1 ∈ E(G1), e2 ∈ E(G2). Corollary 10 implies that either both
G1 and G2 are (3, 1)-colorable or neither of them is (3, 1)-colorable. In the latter
case, by the inductive hypothesis, we are done.

Assume that both G1 and G2 are (3, 1)-colorable. Let G′

1 = (G1, e1) + O

and observe that G is obtained from G′

1 and G2 as in the statement of Lemma 9.
Since G2 is (3, 1)-colorable, but G is not, Lemma 9 implies that G′

1 is not (3, 1)-
colorable. Therefore, by the inductive hypothesis, G′

1 is obtained from odd double
cycles via edge adhesion. Since G′

1 contains a loop and at least two vertices, it is
not a double cycle. Thus, G′

1 = (G′

11, e
′

11)+(G′

12, e
′

12), where neither G
′

11 nor G
′

12

is (3, 1)-colorable. Note that, without loss of generality, G′

11 does not contain the
subdivided edge e1, and so G = (G′

11, e
′

11) + (H, f) for some graph H and edge f

in H. Since both G and G′

11 are not (3, 1)-colorable, neither is H by Corollary 10.
We have shown that G is obtained from two graphs that are not (3, 1)-colorable
via edge adhesion, and so the inductive step is complete.

3. r-Regular Graphs for r ≥ 5

Question 2 for r = 5 remains open at this time. However, in this section we
demonstrate that there are r-regular graphs with no (1, r − 1)-coloring for each
r ≥ 6. More generally, for each odd t and each even r, as well as for each odd t

and each odd r ≥ (t+2)(t+1), we construct an r-regular graph with no (r− t, t)-
coloring. Note that for even t, every r-regular graph has an (r− t, t)-coloring and
for odd t ≥ r

3 and even r every r-regular graph has a (r − t, t)-coloring due to
Theorem 2.

Theorem 13. Let r and t be positive integers with t ≤ r
2 odd. If r is even

or r ≥ (t + 2)(t + 1), then there exists a connected r-regular graph that is not

(r − t, t)-colorable.

Observe that this is the same upper bound on odd r as in Theorem 2(b) (due
to [3]) for the existence of r-regular graphs without {r − t, t}-factors.

Proof. First, if r is even, then the r-regular graph with one vertex and r
2 loops

has no (r − t, t)-coloring, since t is odd.
Now suppose that r ≥ (t+2)(t+1) ≥ 6 is odd. Let G be a graph on vertices

v, u, u1, . . . , ut+1 with t + 2 edges between v and ui and
r−t−2

2 loops incident to

ui, 1 ≤ i ≤ t+ 1, and r− (t+ 2)(t+ 1) ≥ 0 edges between v and u and (t+2)(t+1)
2
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loops incident to u. Observe that G is r-regular. Suppose that G admits an
(r − t, t)-coloring. Then there is an i such that all t + 2 edges between v and
ui are of the same color. However, this is a contradiction, because there is no
coloring of the loops incident to this ui such that there are exactly t edges of
another color incident to ui, as t is odd.

Now we will exhibit r-regular graphs of even order that have (r − 1, 1)-
colorings but not {r−1, 1}-factors. The constructions are similar to constructions
in [9].

Theorem 14. For every even r ≥ 6 there exists a connected (r − 1, 1)-colorable
r-regular graph of even order without an {r − 1, 1}-factor.

Proof. Note that Kr+1 has an odd number of vertices and thus does not have
an {r− 1, 1}-factor, as r− 1 is odd. However, there is an (r− 1, 1)-coloring with
3 colors. Indeed color a copy of Kr red, r − 1 of the remaining edges blue, and
the last edge green.

If r
2 is odd, then let G1, . . . , G r

2

be vertex-disjoint copies of Kr+1 − e. Form
a graph G from the union of Gi by connecting all vertices of degree r − 1 in
the Gi to a new vertex u. Then G has an even number of vertices and is r-
regular. Moreover there is an (r − 1, 1)-coloring with 3 colors. Indeed, start by
coloring r − 1 of the edges incident to u green, and the other blue. For each of
the r

2 − 1 copies of Kr+1 − e with two incoming green edges, color red a copy
of Kr that contains exactly one of the neighbors of u, and color the other r − 1
edges (incident to the other neighbor of u) blue. In the final copy of Kr+1− e, do
the same, making sure that the Kr contains the neighbor of u with the incoming
blue end. Now that we have shown G to be (r − 1, 1)-colorable, assume that G

has an {r− 1, 1}-factor, i.e., an (r− 1, 1)-coloring in two colors. Then there is an
i, 1 ≤ i ≤ r

2 , such that both edges between Gi and u are of the same color. This
yields an (r − 1, 1)-coloring of Kr+1 in two colors, a contradiction.

If r
2 is even, then let t = 3( r2 − 1). Let G1, . . . , Gt be vertex-disjoint copies

of Kr+1 − e. Form a graph G from the union of the Gi and a disjoint copy of K3

with vertex set {u0, u1, u2} by connecting both vertices of degree r − 1 in Gi to
uj if j(

r
2 − 1) < i ≤ (j+1)( r2 − 1). Then G has an even number of vertices and is

r-regular. One can show that G has an (r− 1, 1)-coloring but no {r− 1, 1}-factor
with arguments similar to those given above.

4. Concluding Remarks

Here we state a number of open problems related to our work. Recall from
the Introduction that Tashkinov [12] showed that every 4-regular graph with no
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multiple edges and at most one loop contains a 3-regular subgraph. It is not
known whether the restriction on the number of loops is necessary.

Question 4. Does every 4-regular graph with no multiple edges have a 3-regular
subgraph ?

Let us note that Question 4 is open even for the class of 4-regular graphs
with no multiple edges and at most two loops. (Note that we regard two loops
at a single vertex as a pair of multiple edges.)

Most of our unanswered questions concern 5-regular graphs. The first case
of Conjecture 1 that Theorem 2 does not address is when r = 5 and t = 1.

Conjecture 15. Every 5-regular graph has a {4, 1}-factor.

Weakening this, we have the following unresolved case of Question 2.

Question 5. Does every 5-regular graph have a (4, 1)-coloring ?

Another variation of this question concerns colorings with a bounded number
of colors. Bernshteyn [4] showed that if G is a 4-regular graph that has a (3, 1)-
coloring, then G has a (3, 1)-coloring that uses at most three colors.

Question 6. Is there a positive integer K such that every 5-regular graph has a

(4, 1)-coloring using at most K colors ?

Question 6 lies “between” Conjecture 15 and Question 5 in the following
sense. An affirmative answer to Question 6 clearly gives an affirmative answer to
Question 5. On the other hand, as observed in the Introduction, Conjecture 15
implies an affirmative answer to Question 6 with K = 2.

Our final question concerns ordered (r − 1, 1)-colorings.

Question 7. For r ≥ 5, if G is an r-regular graph with an (r−1)-regular subgraph,
does G admit an ordered (r − 1, 1)-coloring ?

As observed in the Introduction, the converse to this statement always holds
(see Figure 1). Also, Theorem 3 implies that the corresponding statement is true
for r = 4.
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