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Abstract

A graph G with the double domination number γ×2(G) = k is said to be
k-γ×2-critical if γ×2(G + uv) < k for any uv /∈ E(G). On the other hand,
a graph G with γ×2(G) = k is said to be k-γ+

×2-stable if γ×2(G + uv) = k

for any uv /∈ E(G) and is said to be k-γ−

×2-stable if γ×2(G − uv) = k for
any uv ∈ E(G). The problem of interest is to determine whether or not
2-connected k-γ×2-critical graphs are Hamiltonian. In this paper, for k ≥ 4,
we provide a 2-connected k-γ×2-critical graph which is non-Hamiltonian. We
prove that all 2-connected k-γ×2-critical claw-free graphs are Hamiltonian
when 2 ≤ k ≤ 5. We show that the condition claw-free when k = 4 is best
possible. We further show that every 3-connected k-γ×2-critical claw-free
graph is Hamiltonian when 2 ≤ k ≤ 7. We also investigate Hamiltonian
properties of k-γ+

×2-stable graphs and k-γ−

×2-stable graphs.
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1. Introduction

All graphs in this paper are connected and simple (i.e., no loops or multiple
edges). We let G denote a finite graph with vertex set V (G) and edge set E(G).
For a vertex subset S of G, 〈S〉 denotes the subgraph of G induced by S. The
neighborhood NG(x) of a vertex x inG is the set of vertices ofG which are adjacent
to x. The degree degG(v) of a vertex v inG is |NG(v)|. For a vertex subsetX and a
vertex y of G, we let NX [y] = (NG(y)∩X)∪{y}. For a graph G, ω(G) denotes the
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number of components of G. A cut set S is a vertex subset for which ω(G−S) >
ω(G). The connectivity κ is the minimum cardinality of a cut set. A graph G is
l-connected if κ ≥ l. An independent set is a set of pairwise non-adjacent vertices.
A graph G is bipartite if there exists a bipartition X and Y of V (G) such that X
and Y are independent sets. A complete bipartite graph Km,n is a bipartite graph
with the partite sets X and Y such that |X| = m and |Y | = n containing all
edges joining the vertices between X and Y . A star K1,n is a complete bipartite
graph when m = 1, in particular if n = 3, a star K1,3 is called a claw. For integers
s1, s2, s3 ≥ 1, let u1, u2, . . . , us1+1; v1, v2, . . . , vs2+1 and w1, w2, . . . , ws3+1 be three
disjoint paths of length s1, s2 and s3, respectively. A net Ns1,s2,s3 is constructed
by adding edges us1+1vs2+1, vs2+1ws3+1 and ws3+1us1+1. For a family of graphs
F , a graph G is said to be F-free if there is no induced subgraph of G isomorphic
to H for all H ∈ F .

For vertex subsets X and Y of G, we say that X doubly dominates Y if
|NX [y]| ≥ 2 for all y ∈ Y . We write X ≻×2 Y if X doubly dominates Y .
Moreover, if Y = V (G), then X is a double dominating set of G. A smallest
double dominating set of G is called a γ×2-set of G. The double domination

number of G is the cardinality of a γ×2-set of G and is denoted by γ×2(G). A
graph G is said to be k double domination critical, or k-γ×2-critical, if γ×2(G) = k
and γ(G + uv) < k for all uv /∈ E(G). On the other hand, a graph G is said
to be double domination edge addition stable, or k-γ+×2-stable, if γ×2(G) = k and
γ(G+ uv) = k for all uv /∈ E(G) and a graph G is said to be double domination

edge removal stable, or k-γ−×2-stable, if γ×2(G) = k and γ(G − uv) = k for all
uv ∈ E(G). A graph which is either k-γ+×2-stable or k-γ−×2-stable is called double

domination stable.

This paper focuses on the Hamiltonicity of double domination critical graphs
and double domination stable graphs. It is worth noting that there are some
results concerning Hamiltonicities of critical graph with respect to other types of
domination numbers. For example, see [1,5,6,8–11,13,17,19]. For related results
in k-γ×2-critical graphs, Thacker [12] first studied these graphs. He characterized
3-γ×2-critical graphs and 4-γ×2-critical graphs with maximum diameter. It is
easy to see that 2-γ×2-critical graphs are complete graphs of order at least two.
When k = 4, Wang and Kang [14] showed that G is factor-critical if G is a
connected 4-γ×2-critical K1,4-free graph of odd order with minimum degree two.
Wang and Shan [15] showed further that if the order is even and at least six then
the connected 4-γ×2-critical K1,4-free graph has a perfect matching except one
family of graphs. Moreover, if G is a 2-connected 4-γ×2-critical claw-free of even
order with minimum degree three or G is a 3-connected 4-γ×2-critical K1,4-free
of even order with minimum degree four, then G is bi-critical. Recently, Wang
et al. [16] established that if a graph G is a 3-connected 4-γ×2-critical claw-free
graph of odd order with minimum degree at least four, then G is 3-factor-critical
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except one family of graphs. All the related results have not been done when
k ≥ 5. In double domination stable graphs, we introduce a new concept in k-
γ+×2-stable graphs and investigate their Hamiltonian property in this paper. For
k-γ−×2-stable graphs, Chellali and Haynes [4] established fundamental properties
of these graphs.

In this paper, we proceed as follows. In Section 2, we provide some results
that we use in our proofs. In Section 3, for k ≥ 4, we give a construction of
a 2-connected k-γ×2-critical graph which is non-Hamiltonian. We prove that 2-
connected k-γ×2-critical claw-free graphs are Hamiltonian when 2 ≤ k ≤ 5. By
the construction, we have that the condition claw-free is sharp when k = 4. We
show further that every 3-connected k-γ×2-critical claw-free graph is Hamiltonian
when 2 ≤ k ≤ 7. In Section 4, for k ≥ 2, we give constructions of a class of k-
γ+×2-stable non-Hamiltonian graphs and a class of k-γ−×2-stable non-Hamiltonian
graphs. We prove that 2-connected k-γ+×2-stable claw-free graphs are Hamiltonian
when 2 ≤ k ≤ 3. We also prove that 3-connected k-γ+×2-stable claw-free graphs
are Hamiltonian when 2 ≤ k ≤ 5. For k-γ−×2-stable graphs, we prove that 2-
connected k-γ−×2-stable claw-free graphs are Hamiltonian when 2 ≤ k ≤ 4. We
also prove that 3-connected k-γ−×2-stable claw-free graphs are Hamiltonian when
2 ≤ k ≤ 6.

2. Preliminaries

In this section, we state a number of results from the literature that we make
use of in our work. We begin with a result of Chvátal [3] which is a well known
property of a Hamiltonian graph.

Proposition 1 [3]. If G is a Hamiltonian graph, then
|S|

ω(G−S) ≥ 1 for every cut

set S ⊆ V (G).

In the following, we introduce the technique in Ryjáček [7] so called local

completion to study Hamiltonian properties of claw-free graphs. Let G be a claw-
free graph. A vertex x in G is eligible if 〈NG(x)〉 is connected and non-complete.
Further, let Gx be the graph such that V (Gx) = V (G) and E(Gx) = E(G)∪{uv :
for a pair of non-adjacent vertices u, v ∈ NG(x)}. Then, we repeat this process
until there is no eligible vertex in the graph. That is, we will have a finite
sequence of graphs G0, G1, . . . , Gn0

such that G = G0 and, for 1 ≤ i ≤ n0, we
have Gi = (Gi−1)y where y is an eligible vertex of Gi−1. The process finishes at
Gn0

which contains no eligible vertex. Here Gn0
is the closure of G and is denoted

by cl(G). Brousek et al. [2] use this operation to establish the Hamiltonicities
of {K1,3, Ns1,s2,s3}-free graphs. Before we state this theorem, we need to provide
some classes of graphs from [2].
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The Class H1. Let Z1, . . . , Z5 be complete graphs of order at least three. For
1 ≤ i ≤ 3, let qi, zi be two different vertices of Zi. Moreover, let q′1, q

′
2, q

′
3 be three

different vertices of Z4 and z′1, z
′
2, z

′
3 be three different vertices of Z5. A graph in

this class is constructed from Z1, . . . , Z5 by identifying q′i with qi and z′i with zi
for 1 ≤ i ≤ 3. A graph in this class is given in Figure 1(a).

The Class H2. Let c1, c2, c3, c1 and d1, d2, d3, d1 be two disjoint triangles. We
also let T1 and T2 be two complete graphs of order at least three and T3 a complete
graph of order at least two. Let c′i, d

′
i be two different vertices of Ti for 1 ≤ i ≤ 2

and let c′3, r be two different vertices of T3. A graph in this class is obtained by
identifying c′i with ci and d′i with di for 1 ≤ i ≤ 2 and identifying c′3 with c3 and
adding an edge rd3. A graph in this class is illustrated by Figure 1(b).

The Class H3. Let h1, h2, . . . , h6, h1 be a cycle of six vertices and K a complete
graph of order at least three. Let s and s′ be two different vertices of K. We
define a graph G in the class H3 by adding edges sh1, sh6, s

′h3, s
′h4. A graph in

this class is illustrated by Figure 1(c).
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Figure 1(c). The Class H3.

Let P = p1, p2, p3, P
′ = p′1, p

′
2, p

′
3 and P ′′ = p′′1, p

′′
2, p

′′
3 be three paths of length

two. The graph P3,3,3 is constructed from P, P ′ and P ′′ by adding edges so that
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{p1, p
′
1, p

′′
1} and {p3, p

′
3, p

′′
3} form two complete graphs of order three. Brousek et

al. [2] proved the following.

Theorem 2 [2]. Let G be a 2-connected {K1,3, N1,2,2, N1,1,3}-free graph. Then

either G is Hamiltonian, or G is isomorphic to P3,3,3 or cl(G) ∈ H1 ∪H2 ∪H3.

Recently, Xiong et al. [18] established the following theorem.

Theorem 3 [18]. Let G be a 3-connected {K1,3, Ns1,s2,s3}-free graph. If s1+s2+
s3 ≤ 9 and si ≥ 1, then G is Hamiltonian.

We conclude this section by giving some results on double domination.
Thacker [12] established some observations of this parameter.

Observation 4 [12]. For k ≥ 2, let G be a k-γ×2-critical graph. Moreover, for

a pair of non-adjacent vertices u and v of G, we let Duv be a γ×2-set of G+ uv.
Then Duv ∩ {u, v} 6= ∅.

The following proposition is a special case of a result of Thacker [12] by restricting
the original result to connected graphs.

Proposition 5 [12]. For any connected graph G, let u and v be a pair of non-

adjacent vertices of G. Then

γ×2(G)− 2 ≤ γ×2(G+ uv) ≤ γ×2(G).

The following result, from [4], gives the double domination number of a graph
when any edge is removed.

Observation 6 [12]. For a graph G and edge uv ∈ E(G) such that G− uv have

no isolated vertex, γ×2(G) ≤ γ×2(G− uv).

3. Double Domination Critical Graphs

In this section, we use the claw-free property to determine when 2-connected k-
γ×2-critical claw-free graphs are Hamiltonian. First of all, we give a construction
of k-γ×2-critical graphs when k ≥ 4 which are non-Hamiltonian.

The class D(k). For k ≥ 4, let A = {aibi : 1 ≤ i ≤ k − 1} be a set of k − 1
independent edges and let x be an isolated vertex. A graph G in the class D(k)
is constructed by:

• joining x to every vertex in V (A), and

• adding edges so that b1, b2, . . . , bk−1 form a clique.
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A graph G in this class is illustrated by Figure 2.
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Figure 2. A graph in the class D(k).

Lemma 7. For an integer k ≥ 4, if G ∈ D(k), then G is a 2-connected k-γ×2-

critical non-Hamiltonian graph.

Proof. We first show that γ×2(G) = k. Obviously, {x, a1, a2, . . . , ak−1} ≻×2 G.
By the minimality of γ×2(G), we have γ×2(G) ≤ k. It remains to show that
γ×2(G) ≥ k. Let D be a γ×2-set of G. To doubly dominate {a1}, we must
have |{x, a1, b1} ∩ D| ≥ 2. Similarly, to doubly dominate {a2, a3, . . . , ak−1}, we
have |D ∩ {ai, bi}| ≥ 1 for all 2 ≤ i ≤ k − 1. Thus |D| ≥ k. This implies that
γ×2(G) = k.

We next establish the criticality. Let u and v be a pair of non-adjacent
vertices of G. As x is adjacent to every vertex, we must have that x /∈ {u, v}.
Thus {u, v} ⊆ {a1, b1, a2, b2, . . . , ak−1, bk−1}. By the construction, at least one
of u and v is not in {b1, b2, . . . , bk−1}. Without loss of generality let u = a1
and v ∈ {a2, b2}. Clearly, {x, v, a3, a4, . . . , ak−2, bk−1} ≻×2 G + uv. That is
γ×2(G+ uv) ≤ k− 1 < γ×2(G). This establishes the criticality and hence, G is a
k-γ×2-critical graph.

We finally show that G is non-Hamiltonian. Suppose to the contrary that G is
Hamiltonian. Observe that NG(a1) = {x, b1}. Thus, G is Hamiltonian if and only
if G−a1 has a Hamiltonian path P from x to b1. Since NG−a1(a2) = {x, b2}, it fol-
lows that the path x, a2, b2 is a subgraph of P . Similarly, as NG−a1(a3) = {x, b3},
we must have that the path x, a3, b3 is a subgraph of P . Thus b3, a3, x, a2, b2 is a
subgraph of P . This contradicts x is one of the two end vertices of P . Therefore,
G is non-Hamiltonian. This completes the proof.

In the following, we recall the classes H1,H2 and H3 and the graph P3,3,3

from the previous section. We give an observation for the lower bound of the
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double domination numbers of graphs in these classes.

Observation 8. Let G be a 2-connected claw-free graph. If cl(G) ∈ H1∪H2∪H3

or G is isomorphic to P3,3,3, then γ×2(G) ≥ 6.

Proof. We first consider the case when cl(G) ∈ H1 ∪H2 ∪H3. Let D be a γ×2-
set of cl(G). In view of Proposition 5, it suffices to show that γ×2(cl(G)) ≥ 6.
Suppose first that cl(G) ∈ H1. Since |V (Zi)| ≥ 3, there exist vertices si ∈
V (Zi)−{qi, zi} for all i ∈ {1, 2, 3}. To doubly dominate {s1, s2, s3}, we have that
|D ∩ V (Zi)| ≥ 2. Thus γ×2(cl(G)) = |D| ≥ 6.

We now suppose that cl(G) ∈ H2. Because |V (Ti)| ≥ 3, there exist vertices
ri ∈ V (Ti) − {ci, di} for all i ∈ {1, 2}. To doubly dominate {r, r1, r2}, we have
that |D ∩ V (Ti)| ≥ 2 and |D ∩ (V (T3) ∪ {d3})| ≥ 2. Thus γ×2(cl(G)) = |D| ≥ 6.

We now suppose that cl(G) ∈ H3. Because |V (K)| ≥ 3, there exists a vertex
s′′ ∈ V (K)−{s, s′}. To doubly dominate {s′′, h2, h5}, we have that |D∩V (K)| ≥
2, |D ∩ {h1, h2, h3}| ≥ 2 and |D ∩ {h4, h5, h6}| ≥ 2. Thus γ×2(cl(G)) = |D| ≥ 6.

We finally consider the case when G is isomorphic to P3,3,3. Let D′ be a
γ×2-set of G. To doubly dominate {p2, p

′
2, p

′′
2}, we have that |D′ ∩ V (P )| ≥

2, |D′ ∩ V (P ′)| ≥ 2 and |D′ ∩ V (P ′′)| ≥ 2. Thus γ×2(G) = |D′| ≥ 6. This
completes the proof.

We next establish the following lemma concerning the minimum number of
vertices of a double dominating set when some independent set is given.

Lemma 9. Let G be a claw-free graph, I be an independent set and X be a set

of vertices such that X ≻×2 I. If there exists a vertex in X − I adjacent to at

most one vertex in I, then |I|+ 1 ≤ |X|.

Proof. Let w be a vertex in X − I which is adjacent to at most one vertex in
I. Moreover, we let I1 = X ∩ I, I2 = I − I1 and X ′ = X − (I1 ∪ {w}). Clearly,
|X| = |X ′| + |I1| + 1 and |I| = |I1| + |I2|. Let H be a subgraph of G such that
V (H) = X ′ ∪ {w} ∪ I and E(H) = {uv ∈ E(G) : u ∈ X ′ ∪ {w} and v ∈ I}.
Clearly, H is bipartite with the bipartition sets X ′ ∪ {w} and I. Since X ≻×2 I,
every vertex in I1 is adjacent to at least one vertex in X ′ ∪{w}. Moreover, every
vertex in I2 is adjacent to at least two vertices in X ′ ∪ {w}. Thus, degH(v) ≥ 1
for all v ∈ I1 and degH(v) ≥ 2 for all v ∈ I2. This gives the degree sum of vertices
in I as the following

(1) |I1|+ 2|I2| ≤ Σv∈I degH(v).

Because G is claw-free, every vertex in X ′ is adjacent to at most two vertices
in I. Therefore degH(u) ≤ 2 for all u ∈ X ′. Since w is adjacent to at most one
vertex in I, it follows that

Σu∈X′∪{w} degH(u) ≤ 2 |X ′|+ 1.(2)
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Because H is bipartite, Σv∈I degH(v) = Σu∈X′∪{w} degH(u). By (1) and (2),
we have |I1|+ 2|I2| ≤ 2|X ′|+ 1. Hence,

|I| = |I1|+ |I2| ≤

(

|I1|

2
+ |I2|

)

+
|I1|

2
≤

(

|X ′|+
1

2

)

+
|I1|

2

< |X ′|+ |I1|+ 1 = |X|.

This completes the proof.

We are now ready to establish our main theorems. We recall a net Ns1,s2,s3

from the first section.

Theorem 10. Let G be a 2-connected k-γ×2-critical claw-free graph. If 2 ≤ k ≤
5, then G is Hamiltonian.

Proof. We first show thatG is {K1,3, N1,2,2, N1,1,3}-free. Suppose to the contrary
that G contains N1,2,2 or N1,1,3 as an induced subgraph. We first consider the
case when G contains N1,2,2 as an induced subgraph. Consider G + v1w1. By
Observation 4, |Dv1w1

∩ {v1, w1}| ≥ 1. Suppose that |Dv1w1
∩ {v1, w1}| = 1. By

symmetry, we let w1 ∈ Dv1w1
. Because Dv1w1

is a double dominating set, w1 is
adjacent to a vertex in Dv1w1

, w say. Clearly, {u1, v2, w1, w3} is an independent
set. By claw-freeness, w is adjacent to at most one vertex in {u1, v2, w3}. LetX =
Dv1w1

−{w1}. Clearly,X ≻×2 {u1, v2, w3} andX contains w. In view of Lemma 9,
|X| ≥ 4. This implies that |Dv1w1

| ≥ 5 contradicting the criticality of G. Suppose
that {v1, w1} ⊆ Dv1w1

. Let X ′ = Dv1w1
−{w1}. Thus X

′ ≻×2 {u1, v2, w3} and X ′

contains v1 which is adjacent to at most one vertex in {u1, v2, w3}. This implies
by Lemma 9 that |X ′| ≥ 4. Hence, |Dv1w1

| ≥ 5 contradicting the criticality of G.
Therefore, G does not contains N1,2,2 as an induced subgraph.

We now consider the case when G contains N1,1,3 as an induced subgraph.
Consider G + u1v1. By Observation 4, |Du1v1 ∩ {u1, v1}| ≥ 1. Suppose that
|Du1v1 ∩ {u1, v1}| = 1. By symmetry, we let u1 ∈ Du1v1 . As Du1v1 is a double
dominating set, we must have that u1 is adjacent to a vertex u in Du1v1 . Clearly,
{u1, v2, w1, w3} is an independent set. Since G is claw-free, u is adjacent to
at most one vertex in {v2, w1, w3}. Let Y = Du1v1 − {u1}. Clearly, Y ≻×2

{v2, w1, w3} and Y contains u. In view of Lemma 9, |Y | ≥ 4. Thus |Du1v1 | ≥ 5
contradicting the criticality of G. We then suppose that {u1, v1} ⊆ Du1v1 . Let
Y ′ = Du1v1−{u1}. Thus Y

′ ≻×2 {v2, w1, w3} and Y ′ contains v1 which is adjacent
to at most one vertex in {v2, w1, w3}. This implies by Lemma 9 that |Y ′| ≥ 4.
Hence, |Du1v1 | ≥ 5 contradicting the criticality of G. Therefore, G does not
contain N1,1,3 as an induced subgraph. Hence, G is {K1,3, N1,2,2, N1,1,3}-free.

Because γ×2(G) ≤ 5, by Observation 8, G is not isomorphic to P3,3,3 and
cl(G) /∈ H1 ∪H2 ∪H3. In view of Theorem 2, G is Hamiltonian. This completes
the proof.



Hamiltonicities of Critical and Stable Graphs 681

We can see that a graph G in the class D(k) when 4 ≤ k ≤ 5 is non-
Hamiltonian. Thus the condition claw-free in Theorem 10 is necessary. Moreover,
when k = 4, the graph in the class D(k) is K1,4-free. Hence, the condition claw-
free is best possible for k = 4. We conclude this section with the following
theorem which shows that a graph k-γ×2-critical when 6 ≤ k ≤ 7 is Hamiltonian
if it is 3-connected and claw-free.

Theorem 11. For an integer 2 ≤ k ≤ 7, let G be a 3-connected k-γ×2-critical

claw-free graph. Then G is Hamiltonian.

Proof. We will show that G is N3,3,3-free. Suppose to the contrary that G
contains N3,3,3 as an induced subgraph. Consider G+u1v1. Observation 4 yields
that |Du1v1 ∩ {u1, v1}| ≥ 1. Suppose first that |Du1v1 ∩ {u1, v1}| = 1. By sym-
metry, we may let u1 ∈ Du1v1 . It is easy to see that {u1, u3, v2, v4, w1, w3} is an
independent set. As Du1v1 is a double dominating set, we must have that u1 is
adjacent to a vertex u in Du1v1 . Since G is claw-free, u is adjacent to at most
one vertex in {u3, v2, v4, w1, w3}. Let X = Du1v1 − {u1}. Clearly, X ≻×2 {u3, v2,
v4, w1, w3} and X contains u. Lemma 9 implies that |X| ≥ 6. Thus |Du1v1 | ≥ 7
contradicting the criticality of G. We then suppose that {u1, v1} ⊆ Du1v1 . Let
X ′ = Du1v1 − {u1}. Thus X ′ ≻×2 {u3, v2, v4, w1, w3} and X ′ contains v1 which
is adjacent to at most one vertex in {u3, v2, v4, w1, w3}. This implies by Lemma
9 that |X ′| ≥ 6. Hence, |Du1v1 | ≥ 7 contradicting the criticality of G. Therefore,
G does not contain N3,3,3 as an induced subgraph. Theorem 3 implies that G is
Hamiltonian. This completes the proof.

We see that the graphs in the class D(k) when 6 ≤ k ≤ 7 are non-Hamil-
tonian. Thus, the condition claw-free together with 3-connected is necessary in
Theorem 11.

4. Double Domination Stable Graphs

In this section, we use the claw-free property to determine when 2-connected
k-γ+×2-stable claw-free graphs and 2-connected k-γ−×2-stable claw-free graphs are
Hamiltonian. We first establish the following lemma concerning the minimum
number of vertices of a double dominating set when some independent set is
given. The proof of which is similar to Lemma 9. For completeness, we provide
the proof.

Lemma 12. Let G be a claw-free graph, I be an independent set and X be a set

of vertices such that X ≻×2 I. Then |I| ≤ |X|.

Proof. Let I1 = X ∩ I, I2 = I − I1 and X ′ = X − I1. Clearly, |X| = |X ′|+ |I1|
and |I| = |I1| + |I2|. Let H be a subgraph of G such that V (H) = X ′ ∪ I and
E(H) = {uv ∈ E(G) : u ∈ X ′ and v ∈ I}. Clearly, H is bipartite with the
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bipartition sets X ′ and I. Since X ≻×2 I, every vertex in I1 is adjacent to at
least one vertex in X ′ and, every vertex in I2 is adjacent to at least two vertices
in X ′. Thus, degH(v) ≥ 1 for all v ∈ I1 and degH(v) ≥ 2 for all v ∈ I2. This
gives the degree sum of vertices in I as the following

(3) |I1|+ 2|I2| ≤ Σv∈I degH(v).

Because G is claw-free, every vertex in X ′ is adjacent to at most two vertices
in I. Therefore degH(u) ≤ 2 for all u ∈ X ′. Thus,

(4) Σu∈X′ degH(u) ≤ 2|X ′| = 2|X| − 2|I1|.

Because H is bipartite, Σv∈I degH(v) = Σu∈X′ degH(u). By (3) and (4), we
have |I1|+ 2|I2| ≤ 2|X| − 2|I1|. Hence,

|I| = |I1|+ |I2| ≤ 3|I1|/2 + |I2| ≤ |X|.

This completes the proof.

By Lemma 12 and Theorems 2 and 3, we easily establish the following corol-
laries.

Corollary 13. Let G be a 2-connected claw-free graph with γ×2(G) ≤ 3. Then

G is Hamiltonian.

Proof. By Observation 8, cl(G) /∈ H1 ∪ H2 ∪ H3 and G is not isomorphic to
P3,3,3. Thus, by Theorem 2, it suffices to show that G is {N1,2,2, N1,1,3}-free.
Suppose to the contrary that G contains N1,2,2 as an induced subgraph. Clearly,
{u1, v1, v3, w2} is an independent set of four vertices. Lemma 12 yields that
4 ≤ γ×2(G) ≤ 3, a contradiction. Thus, G is N1,2,2-free. We can prove that G is
N1,1,3-free by the same arguments. Thus, by Theorem 2, G is Hamiltonian.

Corollary 14. Let G be a 3-connected claw-free graph with γ×2(G) ≤ 5. Then

G is Hamiltonian.

Proof. By Theorem 3, it suffices to show that G is N3,3,3-free. Suppose to the
contrary that G contains N3,3,3 as an induced subgraph. Clearly, {u1, u3, v1, v3,
w1, w3} is an independent set of six vertices. Lemma 12 gives that 6 ≤ γ×2(G) ≤
5, a contradiction. Thus, G is N3,3,3-free. By Theorem 3, G is Hamiltonian.

4.1. k-γ+

×2-stable claw-free graphs

In this subsection, we study Hamiltonian property of k-γ+×2-stable claw-free
graphs. Although all 2-γ×2-critical graphs of order at least three are Hamiltonian
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because they are complete graphs, this is not always true for 2-γ+×2-stable graphs.
That is there exist 2-γ+×2-stable graphs which are non-Hamiltonian. We first give
a construction of k-γ+×2-stable graphs when k ≥ 2 which are non-Hamiltonian.

The class S+(k). For k ≥ 2, let Kk be a complete graph of order k with the
vertices x1, x2, . . . , xk and for 1 ≤ i 6= j ≤ k, we let a{i,j}, b{i,j}, c{i,j} be 3 ·

(

k
2

)

isolated vertices. The graph G in this class is obtained from Kk and all the 3 ·
(

k
2

)

isolated vertices by adding the edges a{i,j}xp, b{i,j}xp, c{i,j}xp for all 1 ≤ i 6= j ≤ k
and for all p ∈ {i, j}. The following lemma establishes the properties of the graphs
in the class S+(k).

Lemma 15. For an integer k ≥ 2, if G ∈ S+(k), then G is a 2-connected k-γ+×2-

stable non-Hamiltonian graph.

Proof. Clearly, G is 2-connected. Moreover, it is easy to see that G is k-γ+×2-
stable when k = 2. Hence, we assume that k ≥ 3. We first show that γ×2(G) = k.
Obviously, V (Kk) ≻×2 G. By the minimality of γ×2(G), we have γ×2(G) ≤ k.
Let D be a γ×2-set of G. So, |D| ≤ k. We will show that V (Kk) ⊆ D. Suppose
to the contrary that {x1, x2, . . . , xk} * D. Without loss of generality, let x1 /∈ D.
To doubly dominate A1 =

{

a{1,j}, b{1,j}, c{1,j} : 1 < j ≤ k
}

, we must have that
A1 ⊆ D. Since k ≥ 3, it follows that k ≥ |D| ≥ |A1| = 3k−3 > k, a contradiction.
Thus V (Kk) ⊆ D and |D| ≥ k. This implies that γ×2(G) = k.

We next establish the stability. Let u and v be a pair of non-adjacent vertices
of G and let Duv be a γ×2-set of G+ uv. Because V (Kk) ≻γ×2

G+ uv, it follows
that |Duv| ≤ |V (Kk)| = k. It suffice to show that |Duv| ≥ k. By the construction,
|{u, v} ∩ V (Kk)| ≤ 1. We first consider the case when |{u, v} ∩ V (Kk)| = 1.
Without loss of generality let u = x1 and v = a{2,3}. Suppose that there exists
xi /∈ Duv. If i 6= {1, 2, 3}, then, to doubly dominate Ai =

{

a{i,j}, b{i,j}, c{i,j} :
1 ≤ j ≤ k and j 6= i

}

, we must have that Ai ⊆ Duv. This implies that |Duv| ≥
3k − 3 > k contradicting |Duv| ≤ k. Thus, i ∈ {1, 2, 3}. To doubly dominate
Ai −

{

a{2,3}
}

, we must have that
(

Ai −
{

a{2,3}
})

⊆ Duv. This implies that
k ≥ |Duv| ≥ 3k − 4 > k, a contradiction. Thus, V (Kk) ⊆ Duv. This implies that
|Duv| ≥ k.

We now consider the case when |{u, v} ∩ V (Kk)| = 0. Similarly, suppose
that there exists xi /∈ Duv. To doubly dominate Ai − {u, v}, we must have
that (Ai − {u, v}) ⊆ Duv. This implies that k ≥ |Duv| ≥ (3k − 3) − 2 > k, a
contradiction. Thus, V (Kk) ⊆ Duv. This implies that |Duv| ≥ k. This establishes
the stability and hence, G is a k-γ+×2-stable graph.

We finally show that G is non-Hamiltonian. Clearly, V (Kk) is a cut set of
G such that G − V (Kk) has 3 ·

(

k
2

)

isolated vertices as the components. Thus,
|V (Kk)|

ω(G−V (Kk))
< 1. By Proposition 1, G is non-Hamiltonian. This completes the

proof.



684 P. Kaemawichanurat

By Lemma 15, there exist 2-connected k-γ+×2-stable graphs which are non-
Hamiltonian for all k ≥ 2. However, by using Corollaries 13 and 14, we easily
obtain that all 2-connected k-γ+×2-stable graphs are Hamiltonian when k is small.
The proofs are omitted as the class of 2-connected k-γ+×2-stable graphs is a sub-
class of graphs with γ×2(G) = k.

Corollary 16. Let G be a 2-connected k-γ+×2-stable claw-free graph. If 2 ≤ k ≤ 3,
then G is Hamiltonian.

Corollary 17. For an integer 2 ≤ k ≤ 5, let G be a 3-connected k-γ+×2-stable

claw-free graph. Then G is Hamiltonian.

Observe that a graph G ∈ S+(2) is K1,4-free. Hence, the condition claw-free
in Corollaries 13 and 16 is best possible when k = 2. For a graph G ∈ S+(3),
it is easy to see that the graph G′ = G − c{1,2} − b{1,3} − c{1,3} − b{2,3} − c{2,3}
is 3-γ+×2-stable K1,4-free graph. Hence, the condition claw-free in Corollaries 13
and 16 is best possible when k = 3.

4.2. k-γ−

×2-stable claw-free graphs

We first give a construction of k-γ−×2-stable graphs when k ≥ 2 which are non-
Hamiltonian.

The class S−(k). For k ≥ 2, we letK2k be a complete graph of order 2k with the
vertices x1, y1, x2, y2, . . . , xk, yk and for 1 ≤ i 6= j ≤ k, we let a{i,j}, b{i,j}, c{i,j},

d{i,j}, e{i,j} be 5 ·
(

k
2

)

isolated vertices. The graph G in this class is obtained

from K2k and all the 5 ·
(

k
2

)

isolated vertices by joining the vertices xp and yp to
a{i,j}, b{i,j}, c{i,j}, d{i,j}, e{i,j} for all 1 ≤ i 6= j ≤ k and for all p ∈ {i, j}. The
following lemma establishes the properties of the graphs in the class S−(k).

Lemma 18. For an integer k ≥ 2, if G ∈ S−(k), then G is a 2-connected k-γ−×2-

stable non-Hamiltonian graph.

Proof. Clearly, G is 2-connected. Moreover, it is easy to see that G is k-γ−×2-
stable when k = 2. Hence, we assume that k ≥ 3. We first show that γ×2(G) = k.
Since {x1, x2, . . . , xk} ≻×2 G, it follows that γ×2(G) ≤ k. It remains to show that
γ×2(G) ≥ k. Let D be a γ×2-set of G. By the minimality of D, we have |D| ≤ k.
If |{xi, yi} ∩D| ≥ 1 for all 1 ≤ i ≤ k, then |D| ≥ k as required. We may suppose
that there exists i ∈ {1, 2, . . . , k} such that {xi, yi}∩D = ∅. To doubly dominate
Ai =

{

a{i,j}, b{i,j}, c{i,j}, d{i,j}, e{i,j} : 1 ≤ j ≤ k and j 6= i
}

, we must have that
∣

∣D∩
{

a{i,j}, b{i,j}, c{i,j}, d{i,j}, e{i,j}, xj , yj
}∣

∣ ≥ 2 for all 1 ≤ j ≤ k and j 6= i. This
implies that k ≥ |D| ≥ 2(k − 1) > k, a contradiction. Thus, γ×2(G) = |D| ≥ k.
Therefore γ×2(G) = k.
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We next establish the stability. Let u and v be a pair of adjacent vertices of G.
By Observation 6, we have γ×2(G−uv) ≥ k. Hence, it suffices to show that there
exists a γ×2-set of G − uv containing k vertices. Clearly, |{u, v} ∩ V (K2k)| ≥
1. We first suppose that |{u, v} ∩ V (K2k)| = 1. Without loss of generality
let u ∈ V (K2k). If u ∈ {x1, x2, . . . , xk}, then {y1, y2, . . . , yk} ≻×2 G − uv. If
u ∈ {y1, y2, . . . , yk}, then {x1, x2, . . . , xk} ≻×2 G − uv. Hence, we now suppose
that u, v ∈ V (K2k). We consider the case when {u, v} = {xi, yj} for some
i, j ∈ {1, 2, . . . , k}. Clearly {x1, x2, . . . , xk} ≻×2 G − uv. We now consider the
case when {u, v} = {xi, xj}. Thus, {y1, y2, . . . , yk} ≻×2 G − uv. Similarly,
{x1, x2, . . . , xk} ≻×2 G− uv when {u, v} = {yi, yj}. Therefore, G is k-γ−×2-stable
graph.

We finally show that G is non-Hamiltonian. Clearly, V (K2k) is a cut set of
G such that G − V (K2k) has 5 ·

(

k
2

)

isolated vertices as the components. Thus,
|V (K2k)|

ω(G−V (Kk))
< 1. By Proposition 1, G is non-Hamiltonian. This completes the

proof.

We next establish the following theorems.

Theorem 19. Let G be a 2-connected k-γ−×2-stable claw-free graph. If 2 ≤ k ≤ 4,
then G is Hamiltonian.

Proof. We first show that G is {N1,2,2, N1,1,3}-free. Suppose to the contrary that
G contains N1,2,2 or N1,1,3 as an induced subgraph. We first consider the case
when G contains N1,2,2 as an induced subgraph. Consider G− v1v2. By stability
of G, γ×2(G − v1v2) = k. Clearly, {u1, v1, v2, w1, w3} is an independent set of
G− v1v2 containing 5 vertices. Lemma 12 implies that 4 ≥ γ×2(G− v1v2) ≥ 5, a
contradiction. Thus, G is N1,2,2-free.

We now consider the case when G contains N1,1,3 as an induced subgraph.
Consider G−u1u2. By stability of G, γ×2(G−u1u2) = k. Clearly, {u1, u2, v1, w1,
w3} is an independent set of G − u1u2 containing 5 vertices. Lemma 12 implies
that 4 ≥ γ×2(G− v1v2) ≥ 5, a contradiction. Thus, G is N1,1,3-free. Hence, G is
{K1,3, N1,2,2, N1,1,3}-free.

Because γ×2(G) ≤ 4, by Observation 8, G is not isomorphic to P3,3,3 and
cl(G) /∈ H1 ∪H2 ∪H3. In view of Theorem 2, G is Hamiltonian. This completes
the proof.

Theorem 20. Let G be a 3-connected k-γ−×2-stable claw-free graph. If 2 ≤ k ≤ 6,
then G is Hamiltonian.

Proof. We will show that G is N3,3,3-free. Suppose to the contrary that G
contains N3,3,3 as an induced subgraph. Consider G − u1u2. By stability of G,
γ×2(G − u1u2) = k. We see that {u1, u2, u4, v1, v3, w1, w3} is an independent
set of G − u1u2 containing 7 vertices. By Lemma 12, 6 ≥ γ×2(G − u1u2) ≥ 7,
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a contradiction. Therefore, G does not contain N3,3,3 as an induced subgraph.
Theorem 3 implies that G is Hamiltonian. This completes the proof.

5. Discussion

On double domination critical graphs. For 6 ≤ k ≤ 7, we have seen neither
2-connected k-γ×2-critical claw-free graphs which are non-Hamiltonian nor 3-
connected k-γ×2-critical graphs which are non-Hamiltonian. Hence, the questions
that arise are, for an integer 6 ≤ k ≤ 7, is every 2-connected k-γ×2-critical claw-
free graph Hamiltonian? and is every 3-connected k-γ×2-critical graph Hamilto-
nian?

On double domination stable graphs. We have seen neither 2-connected
k-γ+×2-stable claw-free graphs which are non-Hamiltonian for 4 ≤ k ≤ 5 nor 2-
connected k-γ−×2-stable graphs which are non-Hamiltonian for 5 ≤ k ≤ 6. Hence,
the questions that arise are, for 4 ≤ k ≤ 5, is every 2-connected k-γ+×2-stable claw-
free graph Hamiltonian? and, for 5 ≤ k ≤ 6, is every 2-connected k-γ−×2-stable
claw-free graph Hamiltonian?
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