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Abstract

Let S = (a1,...,am; b1,...,b,), where aq,...,a,, and by,...,b, are
two sequences of nonnegative integers. We say that S is a bigraphic pair
if there exists a simple bipartite graph G with partite sets {z1,za,...,Zm}
and {y1,¥2,...,Yn} such that dg(x;) = a; for 1 < i < m and dg(y;) = b;
for 1 < j < n. In this case, we say that G is a realization of S. Analogous
to Kundu’s k-factor theorem, we show that if (a1,as,...,am;b1,b2,...,by)
and (a1 — e1,a3 — €2, ..., am — €m; by — f1,b0 — fo,..., by — fn) are two
bigraphic pairs satisfying £k < f; < k+1, 1 <i<n(ork <e <k+1,
1<i<m), forsome0<k<m—1(or0<k<n-—1),then (ar,as,...,an;
b1,bs,...,by,) has a realization containing an (e, ea,...,em; f1, f2,. -, fn)-
factor. For m = n, we also give a necessary and sufficient condition for an
(k™; k™)-factorable bigraphic pair to be connected (k™; k™)-factorable when
k > 2. This implies a characterization of bigraphic pairs with a realization
containing a Hamiltonian cycle.
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1. INTRODUCTION

If there is no special explanation, graphs in this paper are simple graphs, i.e., fi-
nite undirected graphs without loops or multiple edges. Terms and notation not
defined here are from [1]. A sequence (dy,ds,...,d,) of nonnegative integers is
said to be a graphic sequence if it is the degree sequence of a graph G on n vertices.
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In this case, G is referred to as a realization of (dy,da, ... ,dy). An (k1, ke, ..., kp)-
factor of G is a spanning subgraph of G whose degree sequence is (k1, ka, . .., ky).
A graphic sequence (dy,da, ..., d,) is called to be (ki, ko, ..., ky)-factorable (con-
nected (ki, ka, ..., kn)-factorable) if (dy,da, ..., d,) has a realization G containing
an (k1,ka,...,kn)-factor (connected (k1, ko, ..., k,)-factor). The following theo-
rem was conjectured by Rao and Rao [7] for the case k; = k for all i, and was
proved by Kundu by using an alternating chain approach.

Theorem 1 (Kundu [5]). Let (di,da,...,dyn) and (dy — k1,d2 — ko, ..., dn — ky)
be two graphic sequences satisfying k < k; < k+1, 1 <1i <mn, for some k > 0.
Then (dyi,da,...,dy) is (k1, ke, ..., ky)-factorable.

Some generalizations of Theorem 1 were obtained by Kundu [6], Kleitman
and Wang [4]. Chen [2] gave a very short proof of Theorem 1. We denote (ki,
ko, ... kn) = (k™) if k; = k for 1 < i < n. Rao and Rao [7] gave a necessary
and sufficient condition for an (k™)-factorable graphic sequence to be connected
(k™)-factorable when k& > 2.

Theorem 2 (Rao and Rao [7]). Let k > 2 and (dy,da,...,dy,) be a graphic
sequence with dy > dg > -+ > d,,. Then (dy,ds,...,d,) is connected (k™)-facto-
rable if and only if (d1,ds, ..., dy) is (k™)-factorable and Y ;_, d; < s(n—s—1)+
Yo si1 Qi for all s with s < 3.

The following corollary is a direct consequence of Theorems 1 and 2.

Corollary 3 (Kundu [5]). Let (di,da,...,d,) be a graphic sequence with d; >
dy > -+ >dy,. Then (di,ds,...,d,) has a realization G containing a Hamiltonian
cycle if and only if (di —2,d2 —2,...,d,, —2) is graphic and Y ;_, d; < s(n —s —
1)+ > di for all s with s < 3.

For n > r, Yin [9] extended Corollary 3 and characterized all graphic se-
quences m = (di,da,...,d,) such that 7 has a realization G containing C,, a
cycle on r vertices.

Analogous problems are also studied in this paper. Let G be a bipartite
graph with partite sets {z1,z2,..., 2y} and {y1,y2,...,yn}. Denote a; = dg(x;)
for 1 <i <m and b; = dg(y;) for 1 < j <n. Then (a1,az,...,am; bi,b2,...,by)
is called the degree sequence pair of G. Let S = (ay,aq,...,am; b1,ba,...,b,) be
a pair of sequences of nonnegative integers. We say that S is a bigraphic pair if
there exists a bipartite graph G whose degree sequence pair is S. In this case, we
say that G is a realization of S. One easy method to determine if S is a bigraphic
pair is the Gale-Ryser characterization.

Theorem 4 (Gale [3], Ryser [8]). Let S = (a1,a2,...,am; b1,b2,...,b,) be a
pair of sequences of nonnegative integers with a1 > as > -+ > an, and by >
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by > -+ >b,. Then S is a bigraphic pair if and only if > i~ a; = ;i bi and
Ele a; <375y min{k, b;} for all k with 1 <k < m.

Let G be a bipartite graph with partite sets {x1,z2,...,2n} and {y1,y2,
<y Yn}. An (e1,e2,...,em; fi, fo,..., fn)-factor of G is a spanning subgraph F'
of G such that dp(z;) = e; for 1 < i < m and dp(y;) = fj for 1 < j < n. Let
S = (a1,az2,...,am; by,ba,...,by) and S’ = (e1,ea,...,€m; f1, f2,---, fn) be two
bigraphic pairs. Then S is called to be S’-factorable (connected S’-factorable) if
S has a realization G containing an S’-factor (connected S’-factor).
In this paper, we obtain a theorem on factorable bigraphic pairs as follows.

Theorem 5. Let (a1,a2,...,am; b1,ba, ..., by) and (a1 —ej,a2—€2,. .., Qm —Em;
b1 — fi,b2 — fo,..., by — fn) be two bigraphic pairs satisfying k < f; <k+1,1<
i<n(ork<e <k+1,1<i<m), forsome0<k<m-—1(or 0<k<n-1).
Then (a1, a2, ... ,am; bi,ba, ... by) is (e1,€2,...,em; f1, fo,..., fn)-factorable.

For m = n, we give a necessary and sufficient condition for an (k";k")-
factorable bigraphic pair to be connected (k™; k™)-factorable when k > 2.

Theorem 6. Let k > 2 and (aj,a,...,an; by, ba, ..., by) be a bigraphic pair with
ap > ag > - > ap and by > by > -+ > by,. Then (a1,az,...,a,; b1,bo, ..., by)
is connected (k™;k™)-factorable if and only if (a1,az,...,an; bi,ba, ... by) is
(k™; k™)-factorable and Y 7;_, a; < s(n —s)+ > i, _ b for all s with s < n.

The following corollary is a direct consequence of Theorems 5 and 6.

Corollary 7. Let (ay,a2,...,an; b1,ba,...,by) be a bigraphic pair with a; >
ag > -+ > ap and by > by > -+ > b,. Then (a1, az,...,ay; by, ba, ..., by) has a
realization G containing a Hamiltonian cycle if and only if (a1 —2,a2—2, ..., an,—
2;01-2,ba—2,...,b,—2) is a bigraphic pair and y_;_; a; < s(n—s)+> 1 b
for all s with s < n.

2. PROOF OF THEOREM 5

Firstly, we give a lemma which ensures that the condition in Theorem 5 that
k<fi<k+1l, 1<i<n(ork<e<k+1, 1<i<m)implies that
(e1,€2,...,em; f1, f2,..., fn) is & bigraphic pair.

Lemma 8. Let (ej,ea,...,em; fi,f2,...,fn) be a pair of sequences of non-
negative integers with ¢; < n for 1 < i < m, fi < m for1 < i < n and
Srei=>r fie fk<fi<k+1,1<i<n (or k<e; <k+1,1<i<m),
for some 0 <k <m-—1(or 0 <k <n-—1), then (e1,e2,-..,em; f1,f2,---, fn)
is a bigraphic pair.
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Proof. Without loss of generality, we may assume that e; > ey > --- > e
and f1 > fo > -+ > f,. By Theorem 4, we only need to check that Zle e

2?21 min{t, f;} for all ¢ with 1 <t < m. If 1 <t < k, then 25:1 e; < tn

doioymin{t, fi}. If k+1 <t < m, then St e < S e =S f
Zj:l min{¢, f;}.

Now, we give a lemma which is a version of Theorem 5.

NS

Lemma 9. Let (aj,ag,...,am; b1,ba,...,by) and (c1,c2,...,Cm; di,da, ..., dy)
be two bigraphic pairs satisfying k < b; < k+1,1 <i <mn, for some0 < k < m—1.
If (ay —c1,a9 — ¢y .oy — ¢y b1 —di,ba — da, ..., by — dy,) is a bigraphic pair,
then (a1,a2,...,am; b1,ba, ... by) is (c1,¢2, ..., cm; di,da, ..., dy)-factorable.

Proof. Let F and H be realizations of (c1,c¢2,...,¢n; di,da,...,d,) and (a1 —
Cl, a2 —C2y .., am — Cp; by —d1,ba —da, ..., by, —d,) respectively with partite sets
{z1,29,...,2m} and {y1, 92, ..., yn} such that dp(z;) = ¢;, dp(y;) = dj, du(z;) =
a; — ¢, dp(y;) = bj — d; for all 4 and j and the multigraph FUH (V(FUH) =
V(F) = V(H), E(F UH) = E(F)U E(H) and there are at most two edges
between two vertices) has the minimum number of multiple edges. If F'U H has
no multiple edges, the lemma is proved. Otherwise, suppose that F'U H has a
multiple edge x.y,, i.e., there are two edges between z; and y, in FUH, where x; €
{z1,79,.. ., 2} and v € {y1,y2,...,Yn}. Since dpyg(7) = dp(x) + dg(zy) =
¢t + (ar — ¢¢) = ay < n, there exists a vertex y, € {y1,%2,...,yn} With ¢ # r such
that there is no any edge between z; and y, in F'U H, that is, z,y, ¢ E(F U H).
By drun(yr) = by, drub (yq) = bg and k < b; < k+1 for all 4, we can find a vertex
xp € {x1,22,...,2y} with p # ¢ such that the number of edges joining y, and
xp is less than the number of edges joining y, and x,. Without loss of generality,
we may assume that y,z, € E(F) and y,z, ¢ E(F). Therefore we must have
either y,x, ¢ E(H) or yrxp,yqxp, € E(H). If ypxp, ¢ E(H), then there is no
any edge between z, and y, in F'U H; let F' = F — {zy,, yqrp} + {21yq, Yrxp}-
Then F’ is a realization of (cq,co,...,¢m; di,da,...,dy). Clearly, F/ U H has
fewer multiple edges than F'U H, a contradiction. If y,zp,ysx, € E(H), then
there are two edges between z, and y, in F'U H, by xy, ¢ E(F U H) and
yrzp ¢ E(F); let F' = F — {x¢yr, ygtp} + {@yq, yraxp}. Then F' is a realization
of (c1,¢2,...,¢m; di,da, ..., dy,). However, F' U H has fewer multiple edges than

F U H, a contradiction. [
Proof of Theorem 5. Since (a1,as,...,amn; b1,be,...,b,) and (a1 — e1,a2 —
€9,y Am — €m; b1 — f1,b2 — fo,...,by — fp) are bigraphic, we have that e; <n

for 1 <i<m, fy <mforl<i<mnand) " e =>.,fi. It follows from
kE < fi < k+1 for each i and Lemma 8 that (ej,ea,...,em; f1,fo, .., fn) is
bigraphic. Clearly, (a1, as9,...,am; b1,ba, ..., by) is (e1,€2,...,€m; f1, foy- oy fn)-
factorable if and only if (n —e1,n —ea,...,n —ep; m — fi,m— fo,...,m— f,)
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is (n —ay,n —ag,...,n — ap; m—by,m —by,...,m — by)-factorable. Now by
k< fi <k+1,1 < i <mn, for some 0 < k < m — 1, we have that s <
m—fi <s+1,1<i<mn,fors=m-—k—1with 0 <s <m— 1. Moreover,

(n—e1)—(n—a1),(n—e2) = (n—az),....,(n—em) — (n—ap); (m— f1) — (m—
b1),(m—fa)—(m—"0ba),...,(m—fp)—(m—">y,)) = (a1 —e1,a2 — €2, ..., anm — em;
b1 — f1,b2 — fa,...,by — fn) is a bigraphic pair. It follows from Lemma 9 that
(n—ei,n—eg,...,n—em;m—fr,m—fo,....m—fp)is (n—ai,n—asg,...,n—ap;
m — by,m — ba,...,m — by)-factorable. Thus (a1, as,...,am; bi,ba,...,by) is
(e1,€2,...,em; f1, f2,..., fn)-factorable. The proof is completed. [ |

3. PROOF OF THEOREM 6

In order to prove Theorem 6, we also need some lemmas. For a bipartite graph
G with partite sets X and Y, we let G; to be a connected subgraph of G with
partite sets X7 and Y7 and G4 to be a subgraph of G with partite sets X5 and Y5
sothat X; C X and Y; CY for i = 1,2 and V(G1) NV (Gs) = 0. If zy € E(G)
for all z € X; and y € Y and uv ¢ E(G) for all u € Y7 and v € Xo, then we
write G1 — G5. We first give Lemma 10 as follows.

Lemma 10. Let k > 2 and F' be an k-reqular bipartite graph with partite sets X
and Y. If F is connected, then F is 2-edge-connected.

Proof. To the contrary, we assume that F' has a cut edge zy with x € X and
y €Y. Let F' be a component of F' — xy with x € V(F’). Then F’ is a bipartite
graph with dp/(z) =k for all z € V(F')\ {z} and dp/(z) =k — 1. If X" and Y’
are the partite sets of F’ with X’ C X and Y’ C Y, then k|X'| — 1 = k|Y’], a
contradiction since k > 2. [ ]

We now prove the following Lemma 11.

Lemma 11. Let k > 2 and S = (a1, a2,...,an; b1,ba,...,by) be an (kE™; k™)-
factorable, but not connected (k™;k™)-factorable, bigraphic pair and let G be a
realization of S with partite sets X and Y such that G contains an (k™;k™)-
factor having the minimum possible number p of components, Fi,...,F,. Then
either F; — F; or F; — F; for any two components F; and F.

Proof. By Lemma 10, F; is 2-edge-connected for each i. Without loss of gener-
ality, we consider the components F; and Fs. For i = 1,2, we let F; have partite
sets X; and Y; so that X; C X and Y; C Y. For x € X1, we denote by A(x, F1)
(respectively, B(x, F1)) the set of all vertices of F} at even (respectively, odd) dis-
tance in Fy from z. Clearly, A(x, F}) = X; and B(z, F1) = Y;. Let zy € E(F)
and uv € E(Fy) with x € X1, u € Xy, y € Y] and v € Y. If zv,yu € E(G) or
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zv,yu ¢ E(G), then Fy and Fy can be combined into a single component by a
simple interchange of edges. So we may assume that either zv € E(G),yu ¢ E(G)
or zv ¢ E(G),yu € E(G). By the symmetry, we let xv € E(G),yu ¢ E(G). If
y’ is any vertex adjacent to x in F} and z’ is any vertex adjacent to vy’ in Fj,
then y'u ¢ E(G) and 2'v € E(G). Proceeding further, we get that every vertex
of A(z, Fy) is adjacent to v in G and every vertex of B(x, F1) is not adjacent to
uw in G. If v’ is any vertex adjacent to u in Fy and u’ is any vertex adjacent to
v' in Fy, then by the same argument, every vertex of A(x, F}) is adjacent to v’
in G and every vertex of B(x, F}) is not adjacent to v/ in G. Proceeding further,
we finally get that every vertex of A(x, F) is adjacent to every vertex of Y in G
and every vertex of B(z, F}) is not adjacent to every vertex of Xs in G. In other
words, F7; — Fy. The proof is completed. [

Lemma 12 (Corollary 10.2 of [1]). A tournament contains a vertex from which
every other vertex is reachable by a directed path of length at most two.

Proof of Theorem 6. Let G be any realization of (a1, as,...,an; b1,ba,... by)
with partite sets {x1,2z2,...,2,} and {y1,92,...,yn} such that a; = dg(z;) and
bi = dg(y;) for 1 < i < n. Let A = {x1,...,25s} and B = {yn—s41,---,Yn}-
Then we can see that > > ,a;, = > i ;da(zi) < |A] x {y1,v2,--.,yn} \ B +
St () = s(n = 8) 4 gy b S0 = s(n—5) + 0, b
then every edge with one end vertex in B has the other end vertex in A. It follows
from |A| = |B| < n that G does not contain a connected (k";k"™)-factor. This
proves the necessity.

To prove the sufficiency, let (a1, ag,...,an; by,ba,...,b,) be (E™; k™)-factor-
able and 77 a; < s(n—s) 4+ >, .. b for all s with s < n. Let G be a
realization of (a1, az,...,an; by,ba, ..., b,) with partite sets X and Y such that
G contains an (k™; k™)-factor having the minimum number of components. Let
Fy,..., F, be the components in this (k"; k")-factor of G. By Lemma 10, F; is
2-edge-connected for each i. Assume p > 2. Then by Lemma 11, either F; — F
or F; — F; for any two components F; and Fj. Let F; have partite sets X; and
Y, with X; € X and Y; C Y for each i. Construct a directed graph D with
F1, Fy, ..., F, as its vertices, an arc going from F; to F} if F; — F; in G. Then
D is a tournament. By Lemma 12, D contains a vertex from which every other
vertex is reachable by a directed path of length at most two. Thus either there
is a directed 3-cycle in D or there is a Fj such that F; — Fj for all j with j # <.
Without loss of generality, if Fy — Fy — F3 — F1, let z;y; € E(F;) with z; € X;
and y; € Y; for ¢ = 1,2,3, then z1y2, x2y3, z3y1 € F(G). Thus the components
F1, F5 and F3 can be combined into a single component by a simple interchange
of edges, a contradiction to the definition of p. If F} — F; for ¢ = 2,...,p, then
F, - G — V(F1), where G — V(F}) has partite sets X \ X7 and Y \ Y7. Denote
s = |X1| = [Y1]. Then s < n, and we can see that >°7_ a; > > x, da(z) =
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[ X% [YA\Y1[+3", v, da(y) = s(n—s)+>"1L,, . bi, a contradiction. Therefore,
p = 1. In other words, G contains a connected (k™;k™)-factor. The proof is
completed. [
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