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Abstract

Let S = (a1, . . . , am; b1, . . . , bn), where a1, . . . , am and b1, . . . , bn are
two sequences of nonnegative integers. We say that S is a bigraphic pair

if there exists a simple bipartite graph G with partite sets {x1, x2, . . . , xm}
and {y1, y2, . . . , yn} such that dG(xi) = ai for 1 ≤ i ≤ m and dG(yj) = bj
for 1 ≤ j ≤ n. In this case, we say that G is a realization of S. Analogous
to Kundu’s k-factor theorem, we show that if (a1, a2, . . . , am; b1, b2, . . . , bn)
and (a1 − e1, a2 − e2, . . . , am − em; b1 − f1, b2 − f2, . . . , bn − fn) are two
bigraphic pairs satisfying k ≤ fi ≤ k + 1, 1 ≤ i ≤ n (or k ≤ ei ≤ k + 1,
1 ≤ i ≤ m), for some 0 ≤ k ≤ m−1 (or 0 ≤ k ≤ n−1), then (a1, a2, . . . , am;
b1, b2, . . . , bn) has a realization containing an (e1, e2, . . . , em; f1, f2, . . . , fn)-
factor. For m = n, we also give a necessary and sufficient condition for an
(kn; kn)-factorable bigraphic pair to be connected (kn; kn)-factorable when
k ≥ 2. This implies a characterization of bigraphic pairs with a realization
containing a Hamiltonian cycle.
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1. Introduction

If there is no special explanation, graphs in this paper are simple graphs, i.e., fi-
nite undirected graphs without loops or multiple edges. Terms and notation not
defined here are from [1]. A sequence (d1, d2, . . . , dn) of nonnegative integers is
said to be a graphic sequence if it is the degree sequence of a graph G on n vertices.
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In this case, G is referred to as a realization of (d1, d2, . . . , dn). An (k1, k2, . . . , kn)-
factor of G is a spanning subgraph of G whose degree sequence is (k1, k2, . . . , kn).
A graphic sequence (d1, d2, . . . , dn) is called to be (k1, k2, . . . , kn)-factorable (con-
nected (k1, k2, . . . , kn)-factorable) if (d1, d2, . . . , dn) has a realization G containing
an (k1, k2, . . . , kn)-factor (connected (k1, k2, . . . , kn)-factor). The following theo-
rem was conjectured by Rao and Rao [7] for the case ki = k for all i, and was
proved by Kundu by using an alternating chain approach.

Theorem 1 (Kundu [5]). Let (d1, d2, . . . , dn) and (d1 − k1, d2 − k2, . . . , dn − kn)
be two graphic sequences satisfying k ≤ ki ≤ k + 1, 1 ≤ i ≤ n, for some k ≥ 0.
Then (d1, d2, . . . , dn) is (k1, k2, . . . , kn)-factorable.

Some generalizations of Theorem 1 were obtained by Kundu [6], Kleitman
and Wang [4]. Chen [2] gave a very short proof of Theorem 1. We denote (k1,
k2, . . . , kn) = (kn) if ki = k for 1 ≤ i ≤ n. Rao and Rao [7] gave a necessary
and sufficient condition for an (kn)-factorable graphic sequence to be connected
(kn)-factorable when k ≥ 2.

Theorem 2 (Rao and Rao [7]). Let k ≥ 2 and (d1, d2, . . . , dn) be a graphic

sequence with d1 ≥ d2 ≥ · · · ≥ dn. Then (d1, d2, . . . , dn) is connected (kn)-facto-
rable if and only if (d1, d2, . . . , dn) is (k

n)-factorable and
∑s

i=1
di < s(n−s−1)+∑n

i=n−s+1
di for all s with s < n

2
.

The following corollary is a direct consequence of Theorems 1 and 2.

Corollary 3 (Kundu [5]). Let (d1, d2, . . . , dn) be a graphic sequence with d1 ≥
d2 ≥ · · · ≥ dn. Then (d1, d2, . . . , dn) has a realization G containing a Hamiltonian

cycle if and only if (d1− 2, d2− 2, . . . , dn− 2) is graphic and
∑s

i=1
di < s(n− s−

1) +
∑n

i=n−s+1
di for all s with s < n

2
.

For n ≥ r, Yin [9] extended Corollary 3 and characterized all graphic se-
quences π = (d1, d2, . . . , dn) such that π has a realization G containing Cr, a
cycle on r vertices.

Analogous problems are also studied in this paper. Let G be a bipartite
graph with partite sets {x1, x2, . . . , xm} and {y1, y2, . . . , yn}. Denote ai = dG(xi)
for 1 ≤ i ≤ m and bj = dG(yj) for 1 ≤ j ≤ n. Then (a1, a2, . . . , am; b1, b2, . . . , bn)
is called the degree sequence pair of G. Let S = (a1, a2, . . . , am; b1, b2, . . . , bn) be
a pair of sequences of nonnegative integers. We say that S is a bigraphic pair if
there exists a bipartite graph G whose degree sequence pair is S. In this case, we
say that G is a realization of S. One easy method to determine if S is a bigraphic
pair is the Gale-Ryser characterization.

Theorem 4 (Gale [3], Ryser [8]). Let S = (a1, a2, . . . , am; b1, b2, . . . , bn) be a

pair of sequences of nonnegative integers with a1 ≥ a2 ≥ · · · ≥ am and b1 ≥
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b2 ≥ · · · ≥ bn. Then S is a bigraphic pair if and only if
∑m

i=1
ai =

∑n
i=1

bi and∑k
i=1

ai ≤
∑n

j=1
min{k, bj} for all k with 1 ≤ k ≤ m.

Let G be a bipartite graph with partite sets {x1, x2, . . . , xm} and {y1, y2,
. . . , yn}. An (e1, e2, . . . , em; f1, f2, . . . , fn)-factor of G is a spanning subgraph F
of G such that dF (xi) = ei for 1 ≤ i ≤ m and dF (yj) = fj for 1 ≤ j ≤ n. Let
S = (a1, a2, . . . , am; b1, b2, . . . , bn) and S′ = (e1, e2, . . . , em; f1, f2, . . . , fn) be two
bigraphic pairs. Then S is called to be S′-factorable (connected S′-factorable) if
S has a realization G containing an S′-factor (connected S′-factor).

In this paper, we obtain a theorem on factorable bigraphic pairs as follows.

Theorem 5. Let (a1, a2, . . . , am; b1, b2, . . . , bn) and (a1−e1, a2−e2, . . . , am−em;
b1 − f1, b2 − f2, . . . , bn − fn) be two bigraphic pairs satisfying k ≤ fi ≤ k+ 1, 1 ≤
i ≤ n (or k ≤ ei ≤ k+1, 1 ≤ i ≤ m), for some 0 ≤ k ≤ m−1 (or 0 ≤ k ≤ n−1).
Then (a1, a2, . . . , am; b1, b2, . . . , bn) is (e1, e2, . . . , em; f1, f2, . . . , fn)-factorable.

For m = n, we give a necessary and sufficient condition for an (kn; kn)-
factorable bigraphic pair to be connected (kn; kn)-factorable when k ≥ 2.

Theorem 6. Let k ≥ 2 and (a1, a2, . . . , an; b1, b2, . . . , bn) be a bigraphic pair with

a1 ≥ a2 ≥ · · · ≥ an and b1 ≥ b2 ≥ · · · ≥ bn. Then (a1, a2, . . . , an; b1, b2, . . . , bn)
is connected (kn; kn)-factorable if and only if (a1, a2, . . . , an; b1, b2, . . . , bn) is

(kn; kn)-factorable and
∑s

i=1
ai < s(n− s) +

∑n
i=n−s+1

bi for all s with s < n.

The following corollary is a direct consequence of Theorems 5 and 6.

Corollary 7. Let (a1, a2, . . . , an; b1, b2, . . . , bn) be a bigraphic pair with a1 ≥
a2 ≥ · · · ≥ an and b1 ≥ b2 ≥ · · · ≥ bn. Then (a1, a2, . . . , an; b1, b2, . . . , bn) has a

realization G containing a Hamiltonian cycle if and only if (a1−2, a2−2, . . . , an−
2; b1−2, b2−2, . . . , bn−2) is a bigraphic pair and

∑s
i=1

ai < s(n−s)+
∑n

i=n−s+1
bi

for all s with s < n.

2. Proof of Theorem 5

Firstly, we give a lemma which ensures that the condition in Theorem 5 that
k ≤ fi ≤ k + 1, 1 ≤ i ≤ n (or k ≤ ei ≤ k + 1, 1 ≤ i ≤ m) implies that
(e1, e2, . . . , em; f1, f2, . . . , fn) is a bigraphic pair.

Lemma 8. Let (e1, e2, . . . , em; f1, f2, . . . , fn) be a pair of sequences of non-

negative integers with ei ≤ n for 1 ≤ i ≤ m, fi ≤ m for 1 ≤ i ≤ n and∑m
i=1

ei =
∑n

i=1
fi. If k ≤ fi ≤ k + 1, 1 ≤ i ≤ n (or k ≤ ei ≤ k + 1, 1 ≤ i ≤ m),

for some 0 ≤ k ≤ m − 1 (or 0 ≤ k ≤ n − 1), then (e1, e2, . . . , em; f1, f2, . . . , fn)
is a bigraphic pair.
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Proof. Without loss of generality, we may assume that e1 ≥ e2 ≥ · · · ≥ em
and f1 ≥ f2 ≥ · · · ≥ fn. By Theorem 4, we only need to check that

∑t
i=1

ei ≤∑n
j=1

min{t, fj} for all t with 1 ≤ t ≤ m. If 1 ≤ t ≤ k, then
∑t

i=1
ei ≤ tn =

∑n
j=1

min{t, fj}. If k + 1 ≤ t ≤ m, then
∑t

i=1
ei ≤

∑m
i=1

ei =
∑n

i=1
fi =∑n

j=1
min{t, fj}.

Now, we give a lemma which is a version of Theorem 5.

Lemma 9. Let (a1, a2, . . . , am; b1, b2, . . . , bn) and (c1, c2, . . . , cm; d1, d2, . . . , dn)
be two bigraphic pairs satisfying k ≤ bi ≤ k+1, 1 ≤ i ≤ n, for some 0 ≤ k ≤ m−1.
If (a1 − c1, a2 − c2, . . . , am − cm; b1 − d1, b2 − d2, . . . , bn − dn) is a bigraphic pair,

then (a1, a2, . . . , am; b1, b2, . . . , bn) is (c1, c2, . . . , cm; d1, d2, . . . , dn)-factorable.

Proof. Let F and H be realizations of (c1, c2, . . . , cm; d1, d2, . . . , dn) and (a1 −
c1, a2− c2, . . . , am− cm; b1−d1, b2−d2, . . . , bn−dn) respectively with partite sets
{x1, x2, . . . , xm} and {y1, y2, . . . , yn} such that dF (xi) = ci, dF (yj) = dj , dH(xi) =
ai − ci, dH(yj) = bj − dj for all i and j and the multigraph F ∪H (V (F ∪H) =
V (F ) = V (H), E(F ∪ H) = E(F ) ∪ E(H) and there are at most two edges
between two vertices) has the minimum number of multiple edges. If F ∪H has
no multiple edges, the lemma is proved. Otherwise, suppose that F ∪ H has a
multiple edge xtyr, i.e., there are two edges between xt and yr in F∪H, where xt ∈
{x1, x2, . . . , xm} and yr ∈ {y1, y2, . . . , yn}. Since dF∪H(xt) = dF (xt) + dH(xt) =
ct + (at − ct) = at ≤ n, there exists a vertex yq ∈ {y1, y2, . . . , yn} with q 6= r such
that there is no any edge between xt and yq in F ∪H, that is, xtyq /∈ E(F ∪H).
By dF∪H(yr) = br, dF∪H(yq) = bq and k ≤ bi ≤ k+1 for all i, we can find a vertex
xp ∈ {x1, x2, . . . , xm} with p 6= t such that the number of edges joining yr and
xp is less than the number of edges joining yq and xp. Without loss of generality,
we may assume that yqxp ∈ E(F ) and yrxp /∈ E(F ). Therefore we must have
either yrxp /∈ E(H) or yrxp, yqxp ∈ E(H). If yrxp /∈ E(H), then there is no
any edge between xp and yr in F ∪H; let F ′ = F − {xtyr, yqxp} + {xtyq, yrxp}.
Then F ′ is a realization of (c1, c2, . . . , cm; d1, d2, . . . , dn). Clearly, F ′ ∪ H has
fewer multiple edges than F ∪ H, a contradiction. If yrxp, yqxp ∈ E(H), then
there are two edges between xp and yq in F ∪ H, by xtyq /∈ E(F ∪ H) and
yrxp /∈ E(F ); let F ′ = F − {xtyr, yqxp} + {xtyq, yrxp}. Then F ′ is a realization
of (c1, c2, . . . , cm; d1, d2, . . . , dn). However, F

′ ∪H has fewer multiple edges than
F ∪H, a contradiction.

Proof of Theorem 5. Since (a1, a2, . . . , am; b1, b2, . . . , bn) and (a1 − e1, a2 −
e2, . . . , am − em; b1 − f1, b2 − f2, . . . , bn − fn) are bigraphic, we have that ei ≤ n
for 1 ≤ i ≤ m, fi ≤ m for 1 ≤ i ≤ n and

∑m
i=1

ei =
∑n

i=1
fi. It follows from

k ≤ fi ≤ k + 1 for each i and Lemma 8 that (e1, e2, . . . , em; f1, f2, . . . , fn) is
bigraphic. Clearly, (a1, a2, . . . , am; b1, b2, . . . , bn) is (e1, e2, . . . , em; f1, f2, . . . , fn)-
factorable if and only if (n− e1, n− e2, . . . , n− em; m− f1,m− f2, . . . ,m− fn)
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is (n − a1, n − a2, . . . , n − am; m − b1,m − b2, . . . ,m − bn)-factorable. Now by
k ≤ fi ≤ k + 1, 1 ≤ i ≤ n, for some 0 ≤ k ≤ m − 1, we have that s ≤
m − fi ≤ s + 1, 1 ≤ i ≤ n, for s = m − k − 1 with 0 ≤ s ≤ m − 1. Moreover,
((n− e1)− (n− a1), (n− e2)− (n− a2), . . . , (n− em)− (n− am); (m− f1)− (m−
b1), (m−f2)− (m− b2), . . . , (m−fn)− (m− bn)) = (a1− e1, a2− e2, . . . , am− em;
b1 − f1, b2 − f2, . . . , bn − fn) is a bigraphic pair. It follows from Lemma 9 that
(n−e1, n−e2, . . . , n−em; m−f1,m−f2, . . . ,m−fn) is (n−a1, n−a2, . . . , n−am;
m − b1,m − b2, . . . ,m − bn)-factorable. Thus (a1, a2, . . . , am; b1, b2, . . . , bn) is
(e1, e2, . . . , em; f1, f2, . . . , fn)-factorable. The proof is completed.

3. Proof of Theorem 6

In order to prove Theorem 6, we also need some lemmas. For a bipartite graph
G with partite sets X and Y , we let G1 to be a connected subgraph of G with
partite sets X1 and Y1 and G2 to be a subgraph of G with partite sets X2 and Y2
so that Xi ⊆ X and Yi ⊆ Y for i = 1, 2 and V (G1) ∩ V (G2) = ∅. If xy ∈ E(G)
for all x ∈ X1 and y ∈ Y2 and uv /∈ E(G) for all u ∈ Y1 and v ∈ X2, then we
write G1 → G2. We first give Lemma 10 as follows.

Lemma 10. Let k ≥ 2 and F be an k-regular bipartite graph with partite sets X
and Y . If F is connected, then F is 2-edge-connected.

Proof. To the contrary, we assume that F has a cut edge xy with x ∈ X and
y ∈ Y . Let F ′ be a component of F − xy with x ∈ V (F ′). Then F ′ is a bipartite
graph with dF ′(z) = k for all z ∈ V (F ′) \ {x} and dF ′(x) = k − 1. If X ′ and Y ′

are the partite sets of F ′ with X ′ ⊆ X and Y ′ ⊆ Y , then k|X ′| − 1 = k|Y ′|, a
contradiction since k ≥ 2.

We now prove the following Lemma 11.

Lemma 11. Let k ≥ 2 and S = (a1, a2, . . . , an; b1, b2, . . . , bn) be an (kn; kn)-
factorable, but not connected (kn; kn)-factorable, bigraphic pair and let G be a

realization of S with partite sets X and Y such that G contains an (kn; kn)-
factor having the minimum possible number p of components, F1, . . . , Fp. Then

either Fi → Fj or Fj → Fi for any two components Fi and Fj.

Proof. By Lemma 10, Fi is 2-edge-connected for each i. Without loss of gener-
ality, we consider the components F1 and F2. For i = 1, 2, we let Fi have partite
sets Xi and Yi so that Xi ⊆ X and Yi ⊆ Y . For x ∈ X1, we denote by A(x, F1)
(respectively, B(x, F1)) the set of all vertices of F1 at even (respectively, odd) dis-
tance in F1 from x. Clearly, A(x, F1) = X1 and B(x, F1) = Y1. Let xy ∈ E(F1)
and uv ∈ E(F2) with x ∈ X1, u ∈ X2, y ∈ Y1 and v ∈ Y2. If xv, yu ∈ E(G) or
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xv, yu /∈ E(G), then F1 and F2 can be combined into a single component by a
simple interchange of edges. So we may assume that either xv ∈ E(G), yu /∈ E(G)
or xv /∈ E(G), yu ∈ E(G). By the symmetry, we let xv ∈ E(G), yu /∈ E(G). If
y′ is any vertex adjacent to x in F1 and x′ is any vertex adjacent to y′ in F1,
then y′u /∈ E(G) and x′v ∈ E(G). Proceeding further, we get that every vertex
of A(x, F1) is adjacent to v in G and every vertex of B(x, F1) is not adjacent to
u in G. If v′ is any vertex adjacent to u in F2 and u′ is any vertex adjacent to
v′ in F2, then by the same argument, every vertex of A(x, F1) is adjacent to v′

in G and every vertex of B(x, F1) is not adjacent to u′ in G. Proceeding further,
we finally get that every vertex of A(x, F1) is adjacent to every vertex of Y2 in G
and every vertex of B(x, F1) is not adjacent to every vertex of X2 in G. In other
words, F1 → F2. The proof is completed.

Lemma 12 (Corollary 10.2 of [1]). A tournament contains a vertex from which

every other vertex is reachable by a directed path of length at most two.

Proof of Theorem 6. Let G be any realization of (a1, a2, . . . , an; b1, b2, . . . , bn)
with partite sets {x1, x2, . . . , xn} and {y1, y2, . . . , yn} such that ai = dG(xi) and
bi = dG(yi) for 1 ≤ i ≤ n. Let A = {x1, . . . , xs} and B = {yn−s+1, . . . , yn}.
Then we can see that

∑s
i=1

ai =
∑s

i=1
dG(xi) ≤ |A| × |{y1, y2, . . . , yn} \ B| +∑n

i=n−s+1
dG(yi) = s(n− s) +

∑n
i=n−s+1

bi. If
∑s

i=1
ai = s(n− s) +

∑n
i=n−s+1

bi,
then every edge with one end vertex in B has the other end vertex in A. It follows
from |A| = |B| < n that G does not contain a connected (kn; kn)-factor. This
proves the necessity.

To prove the sufficiency, let (a1, a2, . . . , an; b1, b2, . . . , bn) be (kn; kn)-factor-
able and

∑s
i=1

ai < s(n − s) +
∑n

i=n−s+1
bi for all s with s < n. Let G be a

realization of (a1, a2, . . . , an; b1, b2, . . . , bn) with partite sets X and Y such that
G contains an (kn; kn)-factor having the minimum number of components. Let
F1, . . . , Fp be the components in this (kn; kn)-factor of G. By Lemma 10, Fi is
2-edge-connected for each i. Assume p ≥ 2. Then by Lemma 11, either Fi → Fj

or Fj → Fi for any two components Fi and Fj . Let Fi have partite sets Xi and
Yi with Xi ⊆ X and Yi ⊆ Y for each i. Construct a directed graph D with
F1, F2, . . . , Fp as its vertices, an arc going from Fi to Fj if Fi → Fj in G. Then
D is a tournament. By Lemma 12, D contains a vertex from which every other
vertex is reachable by a directed path of length at most two. Thus either there
is a directed 3-cycle in D or there is a Fi such that Fi → Fj for all j with j 6= i.
Without loss of generality, if F1 → F2 → F3 → F1, let xiyi ∈ E(Fi) with xi ∈ Xi

and yi ∈ Yi for i = 1, 2, 3, then x1y2, x2y3, x3y1 ∈ E(G). Thus the components
F1, F2 and F3 can be combined into a single component by a simple interchange
of edges, a contradiction to the definition of p. If F1 → Fi for i = 2, . . . , p, then
F1 → G− V (F1), where G− V (F1) has partite sets X \X1 and Y \ Y1. Denote
s = |X1| = |Y1|. Then s < n, and we can see that

∑s
i=1

ai ≥
∑

x∈X1
dG(x) =
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|X1|×|Y \Y1|+
∑

y∈Y1
dG(y) ≥ s(n−s)+

∑n
i=n−s+1

bi, a contradiction. Therefore,
p = 1. In other words, G contains a connected (kn; kn)-factor. The proof is
completed.
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