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I.A.E., Université Jean Moulin (Lyon 3)
6 cours Albert Thomas

69355 Lyon Cedex 08, France

e-mail: norbert.polat@univ-lyon3.fr

Abstract

We prove that an antipodal bipartite graph is a partial cube if and only
it is interval monotone. Several characterizations of the principal cycles of
an antipodal partial cube are given. We also prove that an antipodal partial
cube G is a prism over an even cycle if and only if its order is equal to
4(diam(G)− 1), and that the girth of an antipodal partial cube is less than
its diameter whenever it is not a cycle and its diameter is at least equal to 6.
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1. Introduction

If x, y are two vertices of a connected graph G, then y is said to be a relative

antipode of x if dG(x, y) ≥ dG(x, z) for every neighbor z of y, where dG denotes
the usual distance in G; and it is said to be an absolute antipode of x if dG(x, y) =
diam(G) (the diameter of G). The graph G is said to be antipodal if every vertex
x of G has exactly one relative antipode.

Bipartite antipodal graphs were introduced by Kotzig [14] under the name
of S-graphs. Later Glivjak, Kotzig and Plesńık [9] proved in particular that a

graph G is antipodal if and only if for any x ∈ V (G) there is an x ∈ V (G) such

that

(1) dG(x, y) + dG(y, x) = dG(x, x), for all y ∈ V (G).

By (1), the vertex x, which is clearly the unique relative antipode of x, is obviously
an absolute antipode. The antipodal map x 7→ x, x ∈ V (G), is an automorphism
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of G, i.e., xy ∈ E(G) whenever xy ∈ E(G). The definition of antipodal graph
was extended to the non-bipartite case by Kotzig and Laufer [15]. Several papers
followed.

Partial cubes, i.e., isometric subgraphs of hypercubes, which were introduced
by Firsov [7] and characterized by Djoković [6] and Winkler [23], have been exten-
sively studied, see [4, 12, 13, 16, 20] for recent papers. In [12, 13, 20], antipodal
partial cubes and very closed concepts, such as diametrical and harmonic partial
cubes, play a very important role.

Recall that partial cubes are interval monotone bipartite graphs, i.e., bipar-
tite graphs all of whose intervals are convex, but that there exist interval mono-
tone bipartite graphs that are not partial cubes (see [2]). In Section 4, we show
that the condition of interval monotony is sufficient for an antipodal bipartite
graph to be a partial cube.

In the subsequent sections, besides some characterizations of the principal
cycles of an antipodal partial cube (see Section 5), we study two properties of
partial cubes that are specific to these particular graphs.

Göbel and Veldman [10, Theorem 18] proved that if G is an antipodal graph

of order n and diameter d which is not a cycle, then n ≥ 4d − 4. They noticed
that the equality is attained for prisms over a cycle. Actually, these are not the
only examples of bipartite graphs for which this equality is attained. We will see
in Section 4 that the bipartite graph K4,4 minus a perfect matching is antipodal
but is not a partial cube; this graph has diameter d = 3 and order n = 8, and
thus satisfies the equality n = 4d− 4. In Section 6, we show that the prisms over
an even cycle are the only antipodal partial cubes that satisfy the above equality.

In Section 7, we are concerned with the relation between the girth and the
diameter of an antipodal partial cube G. By a result of Kotzig (see [1]), γ(G) ≤
diam(G)+1, where γ(G) denotes the girth of the graph G, whenever G is neither

K2 nor an even cycle. In [21, Corollary 4.5 and Theorem 4.6] Sabidussi improved
this result by showing that γ(G) ≤ diam(G) whenever G is not a cycle and its

diameter is greater than 6. For a partial cube we improve this last result by
extending it to partial cubes of diameter 6, and by showing that the equality is
impossible.

To prove several of those results we use the concept of expansion of a graph
that we recall in Section 3.

2. Preliminaries

The graphs we consider are undirected, without loops or multiple edges, and are
finite and connected. If x ∈ V (G), the set NG(x) = {y ∈ V (G) : xy ∈ E(G)} is
the neighborhood of x in G. For a set S of vertices of a graph G we denote by
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G[S] the subgraph of G induced by S, and we put G − S = G[V (G) \ S]. We
also denote by ∂G(S) the edge-boundary of S in G, that is, the set of all edges of
G having exactly one endvertex in S. A path P = 〈x0, . . . , xn〉 is a graph with
V (P ) = {x0, . . . , xn}, xi 6= xj if i 6= j, and E(P ) = {xixi+1 : 0 ≤ i < n}. If x
and y are two vertices of a path P , then we denote by P [x, y] the subpath of P
whose endvertices are x and y. A cycle C with V (C) = {x1, . . . , xn}, xi 6= xj if
i 6= j, and E(C) = {xixi+1 : 1 ≤ i < n} ∪ {xnx1}, is denoted by 〈x1, . . . , xn, x1〉.

The usual distance between two vertices x and y of a graph G, that is, the
length of any (x, y)-geodesic (shortest (x, y)-path) in G, is denoted by dG(x, y).
A connected subgraph H of G is isometric in G if dH(x, y) = dG(x, y) for all
vertices x and y of H. The (geodesic) interval IG(x, y) between two vertices x
and y of G consists of the vertices of all (x, y)-geodesics in G.

In the geodesic convexity, that is, the convexity on V (G) which is induced
by the geodesic interval operator IG, a subset C of V (G) is convex provided it
contains the geodesic interval IG(x, y) for all x, y ∈ C. The convex hull coG(A)
of a subset A of V (G) is the smallest convex set which contains A. A subset H of
V (G) is a half-space if H and V (G)\H are convex. We denote by IG the pre-hull
operator of the geodesic convex structure of G, i.e., the self-map of P(V (G))
such that IG(A) =

⋃

x,y∈A IG(x, y) for each A ⊆ V (G). The convex hull of a set
A ⊆ V (G) is then coG(A) =

⋃

n∈N In
G(A). Furthermore we say that a subgraph

of a graph G is convex if its vertex set is convex, and by the convex hull coG(H)
of a subgraph H of G we mean the smallest convex subgraph of G containing H
as a subgraph, that is,

coG(H) = G[coG(V (H))].

A graph is said to be interval monotone if all its intervals are convex.

For an edge ab of a graph G, let

Wab = {x ∈ V (G) : dG(a, x) < dG(b, x)}.

Note that the sets Wab and Wba are disjoint and that V (G) = Wab ∪Wab if G is
bipartite.

Two edges xy and uv are in the Djoković-Winkler relation Θ if

dG(x, u) + dG(y, v) 6= dG(x, v) + dG(y, u).

If G is bipartite, the edges xy and uv are in relation Θ if and only if dG(x, u) =
dG(y, v) and dG(x, v) = dG(y, u). The relation Θ is clearly reflexive and symmet-
ric.

We recall that, by Djoković [6, Theorem 1] and Winkler [23], a connected bi-

partite graph G is a partial cube, that is, an isometric subgraph of some hypercube,

if it has the following equivalent properties.
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(Conv.) For every edge ab of G, the sets Wab and Wba are convex.

(Trans.) The relation Θ is transitive, and thus is an equivalence relation.

It follows in particular that the half-spaces of a partial cube G are the sets

Wab, ab ∈ E(G). In the following lemma we recall two well-known properties of
partial cubes.

Lemma 2.1. Let G be a partial cube. We have the following properties.

(i) Let x, y be two vertices of G, P an (x, y)-geodesic and W an (x, y)-path of

G. Then each edge of P is Θ-equivalent to some edge of W .

(ii) A path P in G is a geodesic if and only if no two distinct edges of P are

Θ-equivalent.

(iii) Any shortest cycle of G is convex in G.

Lemma 2.2. If H is connected subgraph of a partial cube G, then any edge of

coG(H) is Θ-equivalent to an edge of H.

Proof. We recall that coG(H) = G
[
⋃

N∈N
In
G(V (H))

]

. We prove by induction
on n that any edge of G [In

G(V (H))] is Θ-equivalent to an edge of H. This is
trivial if n = 0. Suppose that this is true for some n ≥ 0. Let e be an edge
of G

[

In+1
G (V (H))

]

that is not an edge of G [In
G(V (H))]. Then e is an edge of

an (x, y)-geodesic P , for some x, y ∈ In
G(V (H)). Let W be an (x, y)-path of

G[In
G(V (H))], note that this graph is connected. Then e is Θ-equivalent to some

edge e′ of W by Lemma 2.1(i). By the induction hypothesis, e′ is Θ-equivalent
to an edge e′′ of H. Hence e and e′′ are Θ-equivalent by the transitivity of the
relation Θ.

3. Expansion

In this section we recall some properties of expansions of a graph, a concept that
we will need in the next section and which was introduced by Mulder [17] to
characterize median graphs and which was later generalized by Chepoi [3].

Definition 3.1. A pair (V0, V1) of sets of vertices of a graph G is called a proper

cover of G if it satisfies the following conditions:

• V0 ∩ V1 6= ∅ and V0 ∪ V1 = V (G);

• there is no edge between a vertex in V0\V1 and a vertex in V1\V0;

• G[V0] and G[V1] are isometric subgraphs of G.

Recall that the prism over a graph G is the Cartesian product of G and K2,
i.e., the graph denoted by G2K2 whose vertex set is V (G) × V (K2), and such
that, for all x, y ∈ V (G) and i, j ∈ V (K2) = {0, 1}, (x, i)(y, j) ∈ E(G2K2) if
xy ∈ E(G) and i = j, or x = y and i 6= j.
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Definition 3.2. An expansion of a graph G with respect to a proper cover
(V0, V1) of G is the subgraph of the prism over G induced by the vertex set
(V0 × {0}) ∪ (V1 × {1}) (where {0, 1} is the vertex set of K2).

An expansion of a bipartite graph (respectively, a partial cube) is a bipartite
graph (respectively, a partial cube (see [3])). If G′ is an expansion of a partial
cube G, then we say that G is a Θ-contraction of G′, because, as we can easily
see, G is obtained from G′ by contracting each element of some Θ-class of edges
of G′. More precisely, let G be a partial cube different from K1 and let uv be an
edge of G. Let G/uv be the quotient graph of G whose vertex set V (G/uv) is the
partition of V (G) such that x and y belong to the same block of this partition
if and only if x = y or xy is an edge which is Θ-equivalent to uv. The natural
surjection γuv of V (G) onto V (G/uv) is a contraction (weak homomorphism in
[11]) of G onto G/uv, that is, an application which maps any two adjacent vertices
to adjacent vertices or to a single vertex. Then clearly the graph G/uv is a partial
cube and (γuv(W

G
uv), γuv(W

G
vu)) is a proper cover of G/uv with respect to which

G is an expansion of G/uv. We will say that G/uv is the Θ-contraction of G with

respect to the Θ-class of uv.
Let G′ be an expansion of a graph G with respect to a proper cover (V0, V1)

of G. We will use the following notation.

• For i = 0, 1 denote by ψi : Vi → V (G′) the natural injection ψi : x 7→ (x, i),
x ∈ Vi, and let V ′

i = ψi(Vi). Note that V ′

0 and V ′

1 are complementary half-
spaces of G′.

• For A ⊆ V (G) put

ψ(A) = ψ0(A ∩ V0) ∪ ψ1(A ∩ V1).

The following lemma is a restatement with more precisions of [19, Lemma
4.5] (also see [18, Lemma 8.1]).

Lemma 3.3. Let G be a connected bipartite graph and G′ an expansion of G with

respect to a proper cover (V0, V1) of G, and let P = 〈x0, . . . , xn〉 be a path in G.
We have the following properties.

(i) If x0, xn ∈ Vi for some i = 0 or 1, then

• dG′(ψi(x0), ψi(xn)) = dG(x0, xn);

• IG′(ψi(x0), ψi(xn)) = ψi(IG[Vi](x0, xn)) ⊆ ψ(IG(x0, xn)).

(ii) If x0 ∈ Vi and x1 ∈ V1−i for some i = 0 or 1, then

• dG′(ψi(x0), ψ1−i(xn)) = dG(x0, xn) + 1;

• IG′(ψi(x0), ψ1−i(xn)) = ψ(IG(x0, xn)).

Now we introduce a variety of expansions that are related to antipodal partial
cubes.
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If A is a set of vertices of an antipodal graph G, we write

A = {x̄ : x ∈ A}.

Note that, by (1), a graph G is antipodal if and only if

(2) IG(x, x) = V (G), for all x ∈ V (G).

Lemma 3.4 (Polat [20, Lemma 4.4]). If G is an antipodal partial cube, then

Wab =Wba for every edge ab of G.

Definition 3.5. A proper cover (V0, V1) of an antipodal partial cube G is said
to respect the antipodality, or to be antipodality-repectful, if V0 = V1.

Clearly, if V0 = V1, then V1 = V0 and V0 ∩ V1 = V0 ∩ V1. For any antipodal
partial cube G, there always exists a proper cover that respects the antipodality.
For example, the proper cover (V0, V1) such that V0 = V1 = V (G) respects the
antipodality, and the expansion of G with respect to this proper cover is the
prism over G.

Definition 3.6. An expansion of an antipodal partial cube G with respect to
an antipodality-respectful proper cover of G is called an antipodality-repectful

expansion of G.

These antipodality-repectful expansions were already defined in [8] under the
name of acycloidal expansions.

Lemma 3.7 (Polat [20, Lemma 4.7]). Any antipodality-repectful expansion of an

antipodal partial cube is an antipodal partial cube.

Lemma 3.8 (Polat [20, Lemma 4.8]). Let G′ be an expansion of a partial cube

G with respect to a proper cover (V0, V1). If G′ is antipodal, then so is G and

moreover (V0, V1) is an antipodality-repectful proper cover of G.

We obtain immediately.

Corollary 3.9. Any Θ-contraction of an antipodal partial cube is an antipodal

partial cube.

Proposition 3.10 (Polat [20, Theorem 4.9]). A finite graph is an antipodal

partial cube if and only if it can be obtained from K1 by a sequence of antipodality-

respectful expansions.

The number of iterations to obtain some antipodal partial cube G from K1

is equal to the number of Θ-classes of E(G), that is, to the isometric dimension

of G, i.e., the least non-negative integer n such that G is an isometric subgraph
of an n-cube. We denote it by idim(G). Note that a result similar to the above
ones is given by Knauer and Marc [13, Lemma 2.14].
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4. Antipodal Bipartite Graphs vs Antipodal Partial Cubes

By Tardif [22] (see [5]), an antipodal bipartite graph is a partial cube if and only
if it contains no subdivision of K3,3. It follows that the bipartite antipodal graph
Kn,n−M , where n > 4 andM is a perfect matching of Kn,n, is not a partial cube
since it clearly contains a subdivision of K3,3. Note that this graph is not interval
monotone. Indeed, let {ui : 0 ≤ i < n} and {vi : 0 ≤ i < n} be the natural
partitions of Kn,n, and let G = Kn,n − {uivi : 0 ≤ i < n}. Then diam(G) = 3,
and ui = vi for 0 ≤ i < n, and thus the interval IG(ui, vi) = V (G) is trivially
convex. On the other hand distG(u0, u1) = 2, v2, v3 ∈ IG(u0, u1), u4 ∈ IG(v2, v3),
but u4 /∈ IG(u0, u1). Hence the interval IG(u0, u1) is not convex.

We will show that the condition of interval monotony is sufficient for an
antipodal bipartite graph to be a partial cube, which is not the case if the graph
is not antipodal (see [2]). We need the following lemma where we use the notation
introduced in Section 3.

Lemma 4.1. Let G′ be an expansion of a connected bipartite graph with respect

to a proper cover (V0, V1) of G. Let K ′ be a convex set of G′ which meets both V ′

0

and V ′

1. Then K = pr(K ′) is a convex set of G, where pr denotes the projection

of G′ onto G.

Proof. Let u, v ∈ K. If u ∈ Vi and v ∈ V1−i for some i = 0 or 1, then IG(u, v) =
pr(IG′(u′, v′)) by Lemma 3.3, and hence IG(u, v) ⊆ K.

Now assume that u, v ∈ Vi for some i = 0 or 1, say i = 0. Let P = 〈x0, . . . , xn〉
be a (u, v)-geodesic in G with x0 = u and xn = v. In general, not all of P is
contained in G[V0]. Let 0 = i0 < i1 < · · · < i2p+1 = n be subscripts such that
the segments P [xi0 , xi1 ], P [xi1 , xi2 ], . . . , P [xi2p , xi2p+1

] are alternatively contained
in G[V0] and G[V1]. Thus xi1 , . . . , xi2p ∈ V0 ∩ V1. Since G[V0] is isometric in
G there is an

(

xi2h−1
, xi2h

)

-geodesic Ph in G[V0], h = 1, . . . , p. Replacing each
(

xi2h−1
, xi2h

)

-segment of P by the corresponding Ph one obtains a new (u, v)-
geodesic P0 with V (P0) ⊆ V0. Hence ψ0(P0) is a (u′, v′)-geodesic in G′, and
therefore V (P0) ⊆ K.

It follows in particular that ψ0(xik) ∈ K ′ ∩ V ′

0 , k = 1, . . . , 2p. By hypothesis,
there exists a vertex w ∈ K ′ ∩ V ′

1 . From the construction of G′ it then follows
that yk = ψ1(xik) ∈ IG′

(

ψ0(xik), w
)

, and hence yk ∈ K ′. Since G[V1] is an
isometric subgraph of G we deduce that ψ1

(

P
[

xi2k−1
, xi2k

])

is a (y2k−1, y2k)-
geodesic. Hence V

(

P
[

xi2k−1
, xi2k

])

⊆ K, and therefore V (P ) ⊆ K.

Definition 4.2. We say that a graph G is weakly interval monotone if every
interval of G whose length is at least diam(G)− 1 is convex.
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Theorem 4.3. Let G be a bipartite antipodal graph. The following assertions

are equivalent.

(i) G is a partial cube.

(ii) G is interval monotone.

(iii) G is weakly interval monotone.

Proof. The implications (i)⇒(ii)⇒(iii) are obvious.
(iii)⇒(i) First note that, in an antipodal graph H, an interval of length

diam(H) is an interval IH(x, x) for some vertex x, and thus is equal to V (H),
which implies that this interval is convex. Hence H is weakly interval monotone
if and only if any interval of length diam(H)− 1 is convex, and such an interval
is equal to IH(x, y) for some x ∈ V (H) and y ∈ NH(x).

We proceed by induction on diam(G). This is obvious if diam(G) = 0 or 1
since the only antipodal graphs of diameter 0 and 1 are K1 and K2, respectively,
which are hypercubes. Let n ≥ 1. Suppose that every bipartite antipodal graph
whose diameter is at most n and which is weakly interval monotone is a partial
cube. Let G be a weakly interval monotone bipartite antipodal graph whose
diameter is n+ 1.

Because G is finite, there exists a non-trivial convex set K of G which is
maximal with respect to inclusion. Let x ∈ K. Because K 6= V (G) = IG(x, x), it
follows that x ∈ V (G)\K. Let K = {x : x ∈ K}. Then K ⊆ V (G)\K. Moreover
K is convex since so is K. Indeed, let P be an (x, y)-geodesic for some x, y ∈ K.
Then α(P ), where α is the antipodal map of G, is an (x, y)-geodesic, and thus is
a path in G[K] since K is convex. Hence P is a path in G[K], which proves that
K is convex.

Claim 1. K = V (G)\K, i.e., K is a half-space.

Suppose that this is not true. Then there is a vertex a ∈ V (G)\(K ∪ K)
that is adjacent to some vertex b ∈ K ∪K, say b ∈ K. Then a ∈ V (G)\(K ∪K)
is adjacent to b which belongs to K. Because G is antipodal, IG(a, a) = V (G),
and thus K ⊆ IG(a, a). On the other hand K ⊆ Wba since G is bipartite and
K is convex. Hence K ⊆ IG(b, a). Because G is weakly interval monotone by
assumption, it follows that IG(b, a) is a convex set that contains K but not b,
contrary to the maximality of K. Therefore K = V (G)\K, i.e., K is a half-space.

Because K is a half-space, it follows that all edges in ∂G(K) are pairwise in
relation Θ. Let F be the graph obtained from G by identifying the endvertices
of each edge between K and V (G)\K. Clearly G is an expansion of F . More
precisely, G is the expansion of F with respect to the proper cover (V0, V1), where
V0 and V1 are the projections of K and K on V (F ), respectively.

Moreover F is bipartite since any cycle of G contains an even number of
edges in ∂G(K), and diam(F ) = diam(G)−1. By Lemma 3.8, it is antipodal and
(V0, V1) respects the antipodality.
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Claim 2. F is weakly interval monotone.

Let u, v ∈ V (F ) be such that dG(u, v) = diam(F )− 1. Then v is a neighbor
of u since F is antipodal. Assume that u ∈ V0. If u ∈ V0\V1, then u ∈ V1\V0,
and thus v ∈ V1. If u ∈ V0 ∩ V1, then u ∈ V0 ∩ V1, and thus v ∈ V0 ∪ V1. Suppose
that v ∈ Vi for some i = 0 or 1. Then u ∈ V1−i, u ∈ Vi, and IG(ψ1−i(u), ψi(v)) =
ψ(IF (u, v)) by Lemma 3.3. The length of the interval IG(ψ1−i(u), ψi(v)) is equal
to dF (u, v)+1 = diam(F ) = diam(G)−1. Hence this interval is a convex set, since
G is weakly interval monotone, that meets K and K. It follows that IF (u, v),
which is equal to pr(IG(ψ1−i(u), ψi(v))), is convex, by Lemma 4.1.

Therefore, by the induction hypothesis, F is a partial cube, and thus so is
G, because any expansion of a partial cube is also a partial cube.

5. Principal Cycles of an Antipodal Partial Cube

Definition 5.1. An isometric cycle C of an antipodal graph G is called principal

if α(C) = C, where α is the antipodal map of G.

Principal cycles always exist, indeed, any geodesic in G lies on a principal
cycle. Moreover, we have the following result.

Proposition 5.2 (Glivjak, Kotzig and Plesńık [9]). An isometric cycle C of an

antipodal graph G is principal if and only if diam(C) = diam(G).

We say that a subgraph H of a partial cube G is median-stable if, for any
triple (x, y, z) of vertices of H, if (x, y, z) has a median m in G, then m ∈ V (H).
Note that, if H is isometric in G, then m is the median of (x, y, z) in H. The
smallest median-stable subgraph F of a partial cube G which contains a subgraph
H of G is called the median-closure of H. Such a subgraph F always exists.

Lemma 5.3. Let C be a principal cycle of an antipodal partial cube G. For each

edge uv of G, if ab is an edge of C which is Θ-equivalent to uv, then u ∈ IG(a, b)
and v ∈ IG(b, a).

Proof. Let uv be an edge of G, and ab an edge of C which is Θ-equivalent to
uv. Note that the antipodal edge ba of ab in C is Θ-equivalent to ab, and thus
to uv. Then u ∈ IG(a, a) since G is antipodal. On the other hand, because uv is
Θ-equivalent to ba, it follows that b ∈ IG(u, a). Hence u ∈ IG(a, b), and likewise
v ∈ IG(b, a).

By Lemma 2.1(ii) we clearly have

diam(G) ≤ idim(G).
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We need the following lemma which is an immediate consequence of Desharnais
[5, Lemme 1.6.9] (also see [20, Lemma 3.2] for an alternative proof, [12, Proposi-
tion 3.1] for a weaker similar result). We recall that a graph G is diametrical if
every vertex of G has exactly one absolute antipode. Antipodal graphs are then
diametrical.

Lemma 5.4. Let G be a diametrical partial cube. Then G is antipodal if and

only if diam(G) = idim(G).

Theorem 5.5. Let C be an isometric cycle of an antipodal partial cube G. The

following assertions are equivalent.

(i) C is a principal cycle of G.

(ii) diam(C) = diam(G).

(iii) idim(C) = idim(G).

(iv) IG(C) = G.

(v) The convex hull of C is G.

(vi) The median-closure of C is G.

Proof. The equivalences (i) ⇔ (ii) ⇔ (iii) are consequences of Proposition 5.2
and Lemma 5.4.

(i) ⇒ (iv) Assume that C is a principal cycle of G, and let a be a vertex of
C. Then a ∈ V (C), and thus V (G) = IG(a, a) since G is antipodal. Hence, a
fortiori, IG(C) = G.

(iv) ⇒ (v) is obvious, and (v) ⇒ (iii) is a consequence of Lemma 2.2.

(iii) ⇒ (vi) Assume that dim(C) = dim(G). Let F be the median-closure
of C. Suppose that F 6= G. Because G is connected, there exists a vertex u of
G − F which is adjacent to some vertex v of F . Then, by (iii), the edge uv is
Θ-equivalent to some edge ab of C, and thus to the edge ba. By Lemma 5.3,
u ∈ IG(a, b) and v ∈ IG(b, a). It follows that u is the median of the triple (v, a, b),
and thus u ∈ V (F ), contrary to the hypothesis. Therefore G = F .

(vi) ⇒ (v) is obvious.

We immediately obtain the following.

Corollary 5.6. Let C be a principal cycle of some antipodal partial cube. The

following assertions are equivalent.

(i) C is a retract of G.

(ii) C is median-stable.

(iii) C = G.
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6. Order and Diameter

Clearly even cycles and hypercubes are characterized by the relations n = 2d and
n = 2d, respectively. It would be interesting to find other classes of antipodal
partial cubes which are characterized by a relation between their order and di-
ameter. Such a characterization is not obvious even for other classes of regular
antipodal partial cubes such as Cartesian products of families of even cycles and
K2, except, as we will see below, for the class of prisms over an even cycle.

Theorem 6.1. Let G be an antipodal partial cube of order n and diameter d.
Then n = 4d − 4 if and only if G is either a 4-cycle or a prism over an even

cycle.

Proof. We only have to prove the necessity, the sufficiency being obvious. Let
G be an antipodal partial cube such that n = 4d−4. If G is a cycle, then n = 2d,
and thus G is a 4-cycle. Assume that G is not a cycle.

Claim. If the isometric dimension of G is at least 3, then there exists an edge e
of G such that the Θ-class of e has at least four elements.

Proof. Assume that the isometric dimension of G is at least 3. Let C be a
principal cycle of G, and c a vertex of C. Because G is not a cycle, there exists
a vertex x which does not lie on C. Note that x is also not a vertex of C. Then
there exists a principal cycle C ′ of G which passes through c and x, and thus
through c and x. Let e be an edge of C ′ which is incident to x, and let e′ be the
edge of C ′ which is Θ-equivalent to e. Then e′ is incident to x, and thus is not an
edge of C. On the other hand, by Theorem 5.5, idim(C) = idim(G) = idim(C ′),
and thus C has two edges that are Θ-equivalent to e. Hence the Θ-class of e has
at least four elements. 2

Assume now that n = 4d−4. Then G is not a cycle. Recall that the isometric
dimension and the diameter of an antipodal partial cube are equal by Lemma 5.4.
We prove by induction on the isometric dimension of G that G is a prism over
an even cycle. This is clear if the isometric dimension of G is 3, because G is
then a 3-cube. Suppose that the theorem holds for any antipodal partial cube
that is not a cycle and whose isometric dimension is d for some d ≥ 3. Let G be
an antipodal partial cube that is not a cycle, whose isometric dimension is d+1,
and such that n = 4d− 4.

By the claim, there exists an edge e of G such that the Θ-class of e has at
least four elements. Let H = G/e be the Θ-contraction of G with respect to the
Θ-class of e. By Corollary 3.9, H is an antipodal partial cube whose isometric
dimension is d. Denote by n′ and d′ the order and the diameter of H, respectively.
Then d′ = d− 1 and n′ ≤ n− 4. It follows that

n′ ≤ n− 4 = 4(d′ + 1)− 8 = 4d′ − 4.
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We have two cases. IfH is a cycle, thenG is either a cycle, which is impossible
by assumption, or the prism over H, and thus we are done.

If H is not a cycle, then n′ ≥ 4d′ − 4 by [10, Theorem 18]. It follows that

4d′ − 4 ≤ n′ ≤ 4d′ − 4

by the inequality above. Hence n′ = 4d′ − 4. By the induction hypothesis, H
is a prism C2K2 over an even cycle C of length 2(d′ − 1), i.e., 2d − 4. Because
n = 4d − 4, n′ = 4d′ − 4 and d = d′ + 1, it follows that n = n′ + 4. Hence, if G
is the expansion of H with respect to some antipodality-respectful proper cover
(V0, V1) of H, then we must have |V0 ∩ V1| = 4.

On the other hand, let (W0,W1) be some antipodality-respectful proper cover
of C. Note that, either W0 = W1 = V (C) or W0 and W1 are the vertex sets of
two geodesics of length d′ − 1 in C whose union is C. By the properties of
antipodality-respectful proper covers, any antipodality-respectful proper cover of
H is equal either to A′ = (W0 × {0, 1},W1 × {0, 1}) or A′′ = ((W0 × {0, 1}) ∪
(W1 × {0}), (W1 × {0, 1}) ∪ (W0 × {1})).

Therefore, because |V0 ∩ V1| = 4, we infer that (V0, V1) = A′ with W0 6= W1.
It follows that G is the prism over some even cycle of length 2d′, i.e., 2d− 2.

7. Girth of an Antipodal Partial Cube

In this section we will improve for partial cubes the result of Sabidussi [21, Corol-
lary 4.5 and Theorem 4.6], γ(G) ≤ diam(G) whenever diam(G) > 6, where γ(G)
denotes the girth of the graph G, by extending it to partial cubes of diameter 6,
and by showing that the equality is impossible.

We first show, by giving two examples, that 6 is the best lower bound. The
3-cube Q3 is an antipodal partial cube whose diameter is 3 and girth is 4. The
Desargues graphD, i.e., the bipartite double of the Petersen graph, has diameter 5
and girth 6. Moreover D is an antipodal partial cube, in fact D is an antipodality-
respectful expansion of the antipodal partial cube M4,1,, i.e., the cube Q4 from
which a pair of antipodal vertices has been removed.

By a recent result [16, Theorem 2.10] of Marc there exist no finite partial

cubes of girth greater than 6 and minimum degree at least 3. On the other hand,
by [9, Theorem 7], if the degree of some vertex of an antipodal bipartite graph G
is greater than 2, then all vertices of G has degree greater than 2. Note that, for
partial cubes, this last result is an immediate consequence of Proposition 3.10,
because any antipodality-respectful expansion of an even cycle C is either a cycle
or the prism over C, and since any antipodality-respectful expansion of a graph
all of whose vertices have degree greater than 2 is also a graph all of whose vertices
have degree greater than 2. From these two results we infer the following.
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Proposition 7.1. Any antipodal partial cube of girth greater than 6 is an even

cycle.

Theorem 7.2. If G is an antipodal partial cube of diameter at least 6 that is not

a cycle, then

γ(G) < diam(G).

Proof. By proposition 7.1, it remains to prove the case diam(G) = 6. Put
d = diam(G). Assume that d = 6. By proposition 7.1, γ(G) ≤ 6. We are done if
γ(G) = 4. So assume that γ(G) = 6.

Let C = 〈c0, . . . , c5, c0〉 be a cycle of G of minimal length 6. Then C is convex
in G by Lemma 2.1(iii). Because G is antipodal, 〈c0, . . . , c3〉 is a subpath of a
principal cycle

P = 〈c0, . . . , c3, x4, . . . , x11, c0〉.

For all i = 0, 1, 2, because C and P are isometric cycles of G, the edges c3+ic3+i+1

and x6+ix6+i+1 are Θ-equivalent, since both of them are Θ-equivalent to the edge
ci+1ci. It follows that dG(c3+i, x6+i) = dG(c3, x6) = 3 if 0 ≤ i ≤ 3. For all i with
0 ≤ i ≤ 3, denote by Xi a (c3+i, x6+i)-geodesic. We can choose X0 and X3 as
subpaths of P . For 0 ≤ i ≤ 3, put

Xi = 〈yi0, . . . , y
i
3〉

with yi0 = c3+i, y
i
3 = x6+i and y0j = x3+j for j = 1, 2. Because G is bipartite

and since c3+ic3+i+1 and x6+ix6+i+1 are Θ-equivalent, it follows that the paths
Xi and Xi+1 are disjoint, for 0 ≤ i < 3.

For all i with 0 ≤ i < 3, consider the cycle

Ai = Xi ∪ 〈x6+i, x6+i+1〉 ∪Xi+1 ∪ 〈c3+i+1, c3+i〉.

We distinguish two cases.

Case 1. Ai is not isometric in G for some i with 0 ≤ i ≤ n. Without loss of
generality we suppose that A0 is not isometric in G. Because c3c4 and x6x7 are
Θ-equivalent and X0 and X1 are geodesics, it follows that there exist u0 ∈ V (X0)
and u1 ∈ V (X1) such that dG(u0, u1) < dA0

(u0, u1). For these same reasons, and
since G contains no 4-cycles, it follows that the only possibilities are u0 = y01 = x4
and u1 = y12, or u0 = y02 = x5 and u1 = y11.

Suppose that u0 = x4 and u1 = y12. Because dA0

(

x4, y
1
2

)

= 4 and since G is
bipartite, it follows that dG

(

x4, y
1
2

)

= 2. Let v be the common neighbor of x4
and y12. The cycle

〈

c3, c4, y
1
1, y

1
2, v, c4

〉

is isometric since G contains no 4-cycles.
Hence the edge vy12 is Θ-equivalent to the edge c3c4, which is itself Θ-equivalent
to the edge x6x7. It follows that vy

1
2 and x6x7 are Θ-equivalent, and thus y12 and

x6 must be adjacent since so are y12 and x7, contrary to the assumption γ(G) = 6.
We obtain an analogous contradiction if u0 = y02 = x5 and u1 = y11.
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Case 2. Ai is isometric in G for all i with 0 ≤ i ≤ n. Because the cycles
A0 and A1 are isometric, it follows that, for j = 0, 1, 2, the edges y03−j−1y

0
3−j and

y23−j−1y
2
3−j are Θ-equivalent because both of them are Θ-equivalent to the edge

y1j y
1
j+1.

This entails that the paths X0 and X2 are disjoint. Indeed, suppose that
y0j = y2k for some j, k that are as small as possible. Then j = k since otherwise

the edges y00y
0
1 and y20y

2
1 will not be Θ-equivalent; but, on the other hand, j

cannot be equal to k since otherwise the edges y0j−1y
0
j and y2j−1y

0
j will not be

Θ-equivalent.

From above we infer that dG
(

y02, y
2
2

)

= dG(x6, x8) = 2. Clearly, the common
neighbor y of y02 and y22 is distinct from x6+i for i = 0, 1, 2, because G is bipartite
and γ(G) = 6 by assumption. In the same way dG

(

y01, y
2
1

)

= dG(c3, c5) = 2, and
moreover, if z is the common neighbor of y01 and y21, then z is distinct from xi for
i = 3, 4, 5.

On the other hand y02 and y21, and y01 and y22, are not adjacent. Indeed,
suppose that y02 and y21 are adjacent. Then y = y21 and z = y02 since otherwise
G would contain a 4-cycle, contrary to the assumption. It follows that the edges
c3c4 and x7x8 are Θ-equivalent because they both are Θ-equivalent to the edge
y02y

2
1 (recall that any 6-cycle of G is convex), and this is impossible since c3c4 is

also Θ-equivalent to x6x7 which cannot be Θ-equivalent to x7x8.

Because any 6-cycle is convex we have the following chain of Θ-equivalences

c3c4Θzy
2
1Θy

0
2yΘx7x8Θc4c5.

Hence c3c4 and c4c5 are Θ-equivalent by the transitivity of Θ, which is impossible
since these edges are adjacent.

This shows that in Case 2, as well as in Case 1, we cannot have γ(G) = 6.
Hence γ(G) < 6 if d = 6.

Consequently we have γ(G) < diam(G) if diam(G) ≥ 6.
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