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Abstract

Two distinct crossings are independent if the end-vertices of the crossed
pair of edges are mutually different. If a graph G has a drawing in the plane
such that every two crossings are independent, then we call G a plane graph
with independent crossings or IC-planar graph for short. A proper total-k-
coloring of a graph G is a mapping c : V (G) ∪ E(G) → {1, 2, . . . , k} such
that any two adjacent elements in V (G)∪E(G) receive different colors. Let
∑

c
(v) denote the sum of the color of a vertex v and the colors of all incident

edges of v. A total-k-neighbor sum distinguishing-coloring of G is a total-k-
coloring of G such that for each edge uv ∈ E(G),

∑

c
(u) 6=

∑

c
(v). The least

number k needed for such a coloring of G is the neighbor sum distinguishing
total chromatic number, denoted by χ′′

Σ
(G). In this paper, it is proved that

if G is an IC-planar graph with maximum degree ∆(G), then ch′′

Σ
(G) ≤

max{∆(G) + 3, 17}, where ch′′

Σ
(G) is the neighbor sum distinguishing total

choosability of G.
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1. Introduction

All graphs considered are finite, simple and undirected. Let G be a graph. We
use V (G), E(G), ∆(G) and δ(G) to denote its vertex set, edge set, maximum
degree and minimum degree, respectively. For planar graph G, F (G) denotes its
face set, d(v) denotes the degree of a vertex v in G. The length or degree of
a face f , denoted by d(f), is the length of the boundary walk of f in G. We
call v a k-vertex, or a k+-vertex, or a k−-vertex if d(v) = k, or d(v) ≥ k, or
d(v) ≤ k, respectively and call f a k-face, or a k+-face, or a k−-face if d(f) = k,
or d(f) ≥ k, or d(f) ≤ k, respectively. Any undefined notation follows that of
Bondy and Murty [3].

A proper total-k-coloring of a graph G is a mapping c : V (G) ∪ E(G) →
{1, 2, . . . , k} such that any two adjacent elements in V (G)∪E(G) receive different
colors. Let

∑

c(v) be the sum of the color of a vertex v and the colors of all edges
incident with v. If for each edge uv ∈ E(G),

∑

c(u) 6=
∑

c(v), then we say
such total-k-coloring a neighbor sum distinguishing total-k-coloring, denoted by
tnsd-k-coloring for short. The least number k needed for such a coloring of G
is the neighbor sum distinguishing total chromatic number, denoted by χ′′

Σ(G).
For neighbor sum distinguishing total colorings, we have the following conjecture
proposed by Piĺsniak and Woźniak [11].

Conjecture 1. For any graph G, χ′′
Σ(G) ≤ ∆(G) + 3.

Loeb and Tang [10] proved that this bound was asymptotically correct by
showing that χ′′

Σ(G) ≤ ∆(G)(1 + o(1)). Piĺsniak and Woźniak [11] proved that
Conjecture 1 holds for complete graphs, cycles, bipartite graphs and subcubic
graphs. With the Combinatorial Nullstellensatz, neighbor sum distinguishing
total coloring have been studied widely, see [4–6,8, 9, 12, 19]

For a given graph G, let Lx(x ∈ V ∪E) be a set of lists of real numbers and
each of size k. The neighbor sum distinguishing total choosability of G is the least
number k for which for any specified collection of such lists, there exists a neighbor
sum distinguish total coloring with colors from Lx for each x ∈ V ∪ E, and we
denote it by ch′′Σ(G). We call such a coloring of G list neighbor sum distinguish

total-k-coloring and denote it by ltnsd-k-coloring. Ding et al. [4] proved that for
any graph G, ch′′Σ(G) ≤ 2∆(G) + col(G)−1, where col(G) is the coloring number
of G. Later Ding et al. [5] improved the bound to ch′′Σ(G) ≤ 2∆(G) + col(G)− 2.

Recently, Lu et al. [20] improved the bound to ch′′Σ(G) ≤ max{∆(G)+
⌊

3col(G)
2

⌋

−

1, 3col(G)−2}. The list neighbor sum distinguish total-k-coloring of some special
classes of graphs were also investigated. Graphs with bounded maximum average
degree (Yao and Kong [16]); d-degenerate graphs (Yao et al. [18]); planar graphs
(Qu et al. [13], Wang et al. [15]).

In this paper, we consider IC-planar graphs and prove the following result.
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Theorem 2. Let G is an IC-planar graph with maximum degree ∆(G). Then

ch′′Σ(G) ≤ max{∆(G) + 3, 17}.

An IC-plane graph is a topological graph where every edge is crossed at
most once and no two crossed edges share a vertex, i.e., two distinct crossings
are independent if the end-vertices of the crossed pair of edges are mutually
different. If a graph G has a drawing in the plane in which every two crossings
are independent, then we call G a plane graph with independent crossings or IC-
planar graph for short throughout this paper. This definition of IC-planar graph
was introduced by Albertson [1] in 2008. Setting a conjecture of Albertson [1],
Král and Stacho [7] showed that every IC-planar graph is 5-colorable. Obviously,
every IC-planar graph also is a 1-planar graph. We call G a 1-planar graph if
it can be drawn on a plane such that each edge is crossed by at most one other
edge.

2. Preliminaries

Every IC-planar graph G in this paper has been embedded on a plane such that all
its crossings are independent and the number of crossings is as small as possible.
In other words, we call G an IC-plane graph. The associated plane graph G× of
G is obtained by turning all crossings of G into new 4-vertices on a plane. For
convenience, a vertex in G× is called false if it is not a vertex of G and real
otherwise. For a vertex v ∈ V (G), we use di(v) to denote the number of i-vertices
which are adjacent to v. One can see that every real vertex in G× is adjacent to
at most one false vertex and incident with at most two false faces in G×.

Lemma 3 [17]. Let G be a 1-plane graph and G× be its associated plane graph.

If dG(u) = 3 and v is a crossing vertex in G×, then either uv /∈ E(G×) or uv is

not incident with two 3-faces.

We define that a graph G′ is smaller than a graph G if |E(G′)| < |E(G)|.
We call a graph minimal for a property when no smaller graph satisfies it. Let
from now on G = (V,E) be a minimal counterexample to Theorem 2. We set
k = max{∆(G) + 3, 17}. For each 5−-vertex v ∈ V (G), it is obvious that v has at
most five neighbors and five incident edges, so v has at most 15 forbidden colors.
Since k ≥ 17, we can first erase the color of vertex v and finally recolor it after
arguing. In other words, we may omit the coloring for all 5−-vertices of G in the
following discussion.

Theorem 4 (Combinatorial Nullstellensatz [2]). Let F be an arbitrary field, and

let P = P (x1, x2, . . . , xn) be a polynomial in F[x1, x2, . . . , xn]. Suppose the de-

gree deg(P ) of P equals
∑n

i=1 ki, where each ki is a nonnegative integer, and

suppose the coefficient of xk11 xk22 . . . xknn in P is non-zero. Then if S1, S2, . . . , Sn
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are subsets of F with |Si| > ki, there are s1 ∈ S1, s2 ∈ S2, . . . , sn ∈ Sn so that

P (s1, s2, . . . , sn) 6= 0.

Lemma 5 [14]. If P (x1, x2, . . . , xn) ∈ R[x1, x2, . . . , xn] is of degree ≤ s1 + s2 +
· · · + sn, where s1, s2, . . . , sn are nonnegative integers, then

(

∂

∂x1

)s1
(

∂

∂x2

)s2

· · ·

(

∂

∂xn

)sn

P (x1, x2, . . . , xn)

=

s1
∑

x1=0

· · ·

sn
∑

xn=0

(−1)s1+x1
(

s1
x1

)

· · · (−1)sn+xn

(

sn
xn

)

P (x1, x2, . . . , xn).

Lemma 6 [13]. Let Li be the sets of real numbers, with |Li| = li, where i =

1, 2, . . . , p. Let L =
{

∑p
i=1 xi |xi ∈ Li and

∏

1≤i<j≤p(xi − xj) 6= 0
}

. Then

|L| ≥
∑p

i=1(li − p + 1) − (p− 1) =
∑p

i=1 li − p2 + 1.

3. Proof of Theorem 2

3.1. Unavoidable configurations

In the following, we will often delete some edges to get a proper subgraph G′

of G, then by the minimality of G, there exists an ltnsd-k-coloring c of G′. Let
WG(v) =

∑

e∋v,e∈E(G) c(e) + c(v). We may extend this coloring c to the whole
graph G. For any x ∈ V (G)∪E(G), the available colors are the remaining colors
after excluding the colors of its adjacent edges and vertices in G′ from Lx.

Claim 7. For any vertex v ∈ V (G), it holds that

t
∑

j=1

[dj(v)(∆(G) + 4 − d(v) − j)] ≤ d(v) − 1, (1 ≤ t ≤ 5).

Claim 8. For any vertex v ∈ V (G), d2−(v) ≤
d
6+

(v)−1

∆(G)−d(v)+1 . Moreover, if d(v) =

∆(G), then d2−(v) ≤ d6+(v) − 1.

The proof of Claim 7 and 8 are similar to that of Claim 3.1 and Claim 3.2
in [13], we omit it here. By Claim 7, we can easily get the following Corollaries.

Corollary 9. If d(v) = 8, then d5−(v) ≤ 1.

Corollary 10. If d(v) = 9, then d5−(v) ≤ 2.

Corollary 11. If d(v) = 10, then d5−(v) ≤ 3.

Claim 12. If d(v) = 11 and d6+(v) ≤ 6, then d3−(v) ≤ 1.
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Proof. Suppose to the contrary that v is adjacent to two 3−-vertices. Without
loss of generality, we assume that N(v) = {v1, v2, . . . , v11}, d(v1) = d(v2) = 3
and d(vj) ≥ 6, (6 ≤ j ≤ 11). Consider G′ = G − vv1 − vv2, then G′ admits an
ltnsd-k-coloring c. Now we will color the edges vv1, vv2 and recolor vertices v1, v2.
Let S1, S2 be the sets of available colors for vv1, vv2, respectively. It is easy to
obtain that |Si| = 17−12 = 5, (i = 1, 2). By Lemma 6, |L| ≥ |S1|+ |S2|−4+1 =
7 > 6. We can choose a pair, say (x, y) ∈ S1 × S2 with x 6= y, such that
x + y /∈ {WG(vj) −WG(v) | 6 ≤ j ≤ 11}. Finally, we can recolor v1, v2 to get an
ltnsd-k-coloring of G, a contradiction.

Claim 13. If d(v) = 12 and d6+(v) ≤ 6, then d3−(v) ≤ 2.

Proof. Suppose to the contrary that v is adjacent to three 3−-vertices. Without
loss of generality, we assume that N(v) = {v1, v2, . . . , v12}, d(v1) = d(v2) =
d(v3) = 3 and d(vj) ≥ 6, (7 ≤ j ≤ 12). Consider G′ = G − {vvi | i = 1, 2, 3},
then G′ admits an ltnsd-k-coloring c. Now we will color the edges vv1, vv2, vv3
and recolor vertices v1, v2, v3. Let S1, S2, S3 be the sets of available colors for
vv1, vv2, vv3, respectively. It is easy to obtain that |Si| = 17 − 12 = 5, (1 ≤
i ≤ 3). By Lemma 6, |L| ≥ |S1| + |S2| + |S3| − 9 + 1 = 7 > 6. We can
choose a triple, say (x, y, z) ∈ S1 × S2 × S3 with x, y, z distinct colors, such that
x + y + z /∈

{

WG(vj) −WG(v)|7 ≤ j ≤ 12
}

. Finally, we can recolor v1, v2, v3 to
get an ltnsd-k-coloring of G, a contradiction.

By Lemma 5, if P (x1, x2, . . . , xn) is a polynomial with deg(P ) = n, k1, k2,

. . . , km are non-negative integers with
∑m

i=1 ki = n and cp
(

xk11 xk22 · · ·xkmm

)

is the

coefficient of xk11 xk22 · · ·xkmm in P , then ∂nP

∂
k1
x1

···∂km
xm

= cp
(

xk11 xk22 · · ·xkmm

)

∏m
i=1 ki!. In

the following, we use MATLAB to calculate the coefficients of specific monomials.
Moreover, we will list the codes in Appendix.

Claim 14. Every 5−-vertex is not adjacent to 7−-vertex in G.

Proof. Suppose to the contrary that there exists a 5−-vertex u adjacent to a
7−-vertex v. Without loss of generality, we assume that d(u) = 5, d(v) = 7,
N(u) = {v, u1, . . . , u4}, N(v) = {u, v1, . . . , v6}. Consider G′ = G − uv, then G′

admits an ltnsd-k-coloring c. Now we will recolor the vertices u, v and color the
edge uv. Let S1, S2, S3 be the sets of available colors for u, uv, v, respectively.
Notice that the colors in {c(uui) | 1 ≤ i ≤ 4} ∪ {c(ui) | 1 ≤ i ≤ 4} are forbidden
for u, the colors in {c(uui) | 1 ≤ i ≤ 4} ∪ {c(vvi) | 1 ≤ i ≤ 6} are forbidden for
uv, and the colors in {c(vvi) | 1 ≤ i ≤ 6} ∪ {c(vi) | 1 ≤ i ≤ 6} are forbidden for v.
Thus, |S1| = 17 − 8 = 9 > 8, |S2| = 17 − 10 = 7 > 6, |S3| = 17 − 12 = 5 > 4.
We associate that u, uv, v with the variables x1, x2, x3, respectively. Then we
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consider the following polynomial.

P (x1, x2, x3) = (x1 − x2)(x1 − x3)

(

x2 − x3)(x1 +
4
∑

l=1

c(uul) − x3 −
6
∑

k=1

c(vvk)

)

4
∏

i=1

(

x1 + x2 +
4
∑

l=1

c(uul) −W (ui)

)

6
∏

j=1

(

x2 + x3 +
6
∑

k=1

c(vvk) −W (vj)

)

.

We have cp
(

x61x
4
2x

4
3

)

= −25. According to Theorem 4, there exists xi ∈ Si,
(1 ≤ i ≤ 3) such that P (x1, x2, x3) 6= 0. We color u, uv, v correspondingly.
Finally, we can get an ltnsd-k-coloring of the graph G, a contradiction.

Claim 15. Every 6−-vertex is not adjacent to 6−-vertex in G.

Proof. Suppose to the contrary that there exists a 6−-vertex u adjacent to a
6−-vertex v. Without loss of generality, we assume that d(u) = 6, d(v) = 6,
N(u) = {v, u1, . . . , u5}, N(v) = {u, v1, . . . , v5}. Consider G′ = G − uv, then G′

admits an ltnsd-k-coloring c. Now we will recolor the vertices u, v and color the
edge uv. Let S1, S2, S3 be the sets of available colors for u, uv, v, respectively.
Notice that the colors in {c(uui) | 1 ≤ i ≤ 5} ∪ {c(ui) | 1 ≤ i ≤ 5} are forbidden
for u, the colors in {c(uui) | 1 ≤ i ≤ 5} ∪ {c(vvi) | 1 ≤ i ≤ 5} are forbidden for
uv, and the colors in {c(vvi) | 1 ≤ i ≤ 5} ∪ {c(vi) | 1 ≤ i ≤ 5} are forbidden for v.
Thus, |S1| = 17 − 10 = 7 > 6, |S2| = 17 − 10 = 7 > 6, |S3| = 17 − 10 = 7 > 6.
We associate that u, uv, v with the variables x1, x2, x3, respectively. Then we
consider the following polynomial.

P (x1, x2, x3) = (x1 − x2)(x1 − x3)(x2 − x3)

(

x1 +

5
∑

l=1

c(uul) − x3 −

5
∑

k=1

c(vvk)

)

5
∏

i=1

(

x1 + x2 +
5
∑

l=1

c(uul) −W (ui)

)

5
∏

j=1

(

x2 + x3 +
5
∑

k=1

c(vvk) −W (vj)

)

.

We have cp
(

x61x
4
2x

4
3

)

= −20. According to Theorem 4, there exists xi ∈ Si,
(1 ≤ i ≤ 3) such that P (x1, x2, x3) 6= 0. We color u, uv, v correspondingly.
Finally, we can get an ltnsd-k-coloring of the graph G, a contradiction.

Claim 16. Let d(v) = 13 and d6+(v) ≤ 6, then d3−(v) ≤ 5. Moreover, if d2−(v)
≥ 1, then d3−(v) ≤ 4.
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Proof. Suppose to the contrary that there exists a 13-vertex v adjacent to six
3−-vertices. Without loss of generality, assume that N(v) = {v1, v2, . . . , v13},
d(vi) = 3, (1 ≤ i ≤ 6) and d(vj) ≥ 6, (8 ≤ j ≤ 13). Consider G′ = G− {vvi | i =
1, 2, . . . , 6}, then G′ admits an ltnsd-k-coloring c. Now we will color the edges
vvi and recolor vertices vi, (1 ≤ i ≤ 6). Let Si, (1 ≤ i ≤ 6) be the sets of
available colors for vvi, (1 ≤ i ≤ 6), respectively. It is easy to obtain that
|Si| = 17 − 7 − 1 − 2 = 7 > 6, (1 ≤ i ≤ 6). We associate that vvi, (1 ≤ i ≤ 6)
with the variables xi, (1 ≤ i ≤ 6), respectively. Then we consider the following
polynomial.

P
(

x1, x2, x3, x4, x5, x6
)

=
∏

1≤i<j≤6

(xi−xj)
13
∏

k=8

(

6
∑

t=1

xt +
13
∑

l=7

c(vvl) + c(v) −W (vk)

)

.

We have cp
(

x61x
5
2x

4
3x

3
4x

2
5x

1
6

)

= 1. According to Theorem 4, there exists xi ∈
Si, (1 ≤ i ≤ 6) such that P (x1, x2, x3, x4, x5, x6) 6= 0. We color vvi, (1 ≤ i ≤ 6)
correspondingly. Finally, we can recolor vertices vi, (1 ≤ i ≤ 6) to get an ltnsd-
k-coloring of the graph G, a contradiction.

Moreover, if d(v1) = 2, d(vi) = 3, (2 ≤ i ≤ 5) and d(vj) ≥ 6, (8 ≤ j ≤ 13).
Consider G′ = G − {vvi | i = 1, 2, . . . , 5}, then G′ admits an ltnsd-k-coloring c.
Now we will color the edges vvi and recolor vertices vi, (1 ≤ i ≤ 5). Let Si,
(1 ≤ i ≤ 5) be the sets of available colors for vvi, (1 ≤ i ≤ 5), respectively. It is
easy to obtain that |S1| = 17 − 8 − 1 − 1 = 7 > 6, |Si| = 17 − 8 − 1 − 2 = 6 > 5,
(2 ≤ i ≤ 5). We associate that vvi, (1 ≤ i ≤ 5) with the variables xi, (1 ≤ i ≤ 5),
respectively. Then we consider the following polynomial.

P (x1, x2, x3, x4, x5) =
∏

1≤i<j≤5

(xi − xj)
13
∏

k=8

(

5
∑

t=1

xt +
13
∑

l=6

c(vvl) + c(v) −W (vk)

)

.

We have cp
(

x61x
4
2x

3
3x

2
4x

1
5

)

= −5. According to Theorem 4, there exists xi ∈
Si, (1 ≤ i ≤ 5) such that P (x1, x2, x3, x4, x5) 6= 0. We color vvi, (1 ≤ i ≤ 5)
correspondingly. Finally, we can recolor vertices vi, (1 ≤ i ≤ 5) to get an ltnsd-
k-coloring of the graph G, a contradiction.

Claim 17. Let d(v) = ∆(G) ≥ 14 and d6+(v) ≤ 6. If d2−(v) ≥ 1, then d3−(v)
≤ 5.

Proof. Let d(v) = d. Suppose to the contrary that there exists a d-vertex v
adjacent to six 3−-vertices. Without loss of generality, assume that N(v) =
{v1, v2, . . . , vd}, d(v1) = 2, d(vi) = 3, (2 ≤ i ≤ 6) and d(vj) ≥ 6, (d− 5 ≤ j ≤ d).
Consider G′ = G − {vvi | i = 1, 2, . . . , 6}, then G′ admits an ltnsd-k-coloring c.
Now we will color the edges vvi and recolor vertices vi, (1 ≤ i ≤ 6). Let Si,
(1 ≤ i ≤ 6) be the sets of available colors for vvi (1 ≤ i ≤ 6), respectively.
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It is easy to obtain that |S1| = (∆(G) + 3) − (∆(G) − 6) − 1 − 1 = 7 > 6,
|Si| = (∆(G) + 3) − (∆(G) − 6) − 1 − 2 = 6 > 5, (2 ≤ i ≤ 6). We associate that
vvi, (1 ≤ i ≤ 6) with the variables xi, (1 ≤ i ≤ 6), respectively. Then we consider
the following polynomial.

P (x1, x2, x3, x4, x5, x6) =
∏

1≤i<j≤6

(xi−xj)
d
∏

k=d−5

(

6
∑

t=1

xt +
d
∑

l=7

c(vvl) + c(v)−W (vk)

)

.

We have cp
(

x61x
5
2x

4
3x

3
4x

2
5x

1
6

)

= 1. According to Theorem 4, there exists xi ∈
Si, (1 ≤ i ≤ 6) such that P (x1, x2, x3, x4, x5, x6) 6= 0. We color vvi, (1 ≤ i ≤ 6)
correspondingly. Finally, we can recolor vertices vi, (1 ≤ i ≤ 6) to get an ltnsd-
k-coloring of the graph G, a contradiction.

3.2. Discharging process

Let T be the graph obtained by removing all 2−-vertices from the graph G and
T× be the associated plane graph of T . We have dT (v) = d(v) − d2−(v).

Corollary 18. For any vertex v with d(v) ≥ 7, it holds that dT (v) ≥ 7.

Proof. If 7 ≤ d(v) ≤ 10, we can easily get dT (v) ≥ 7 by Claim 14 and Corollaries
9–11. When d(v) > 10, we just consider the situation d6+(v) ≤ 6. By Claim 8,

dT (v) = d(v) − d2−(v) ≥ d(v) −
d
6+

(v)−1

∆(G)−d(v)+1 ≥ 11 − 5
14−11+1 ≥ 9.

We apply the discharging method on associated plane graph T× of T and
complete the proof by contradiction. Since T× is a plane graph, we have

∑

v∈V (T×)

(dT× (v) − 6) +
∑

f∈F (T×)

(2dT× (f) − 6)

=
∑

v∈V (T )

(dT (v) − 6) +
∑

v∈V (T×)\V (T )

(dT×(v) − 6) +
∑

f∈F (T×)

(2dT× (f) − 6)

=
∑

v∈V (T )

(d(v) − d2− (v) − 6) +
∑

v∈V (T×)\V (T )

(dT×(v) − 6) +
∑

f∈F (T×)

(2dT× (f) − 6)

= −12.

Now we define the initial charge function ch(x) of x ∈ V (T×) ∪ F (T×).
Let ch(v) = dT (v) − 6 = d(v) − d2−(v) − 6 if v ∈ V (T ), ch(v) = dT×(v) −
6 if v ∈ V (T×) \ V (T ) and ch(f) = 2dT×(f) − 6 if f ∈ F (T×). Then we
define suitable discharging rules to change the initial charge function ch(x) to
the final charge function ch′(x) on V (T×) ∪ F (T×) such that ch′(x) ≥ 0 for
all x ∈ V (T×) ∪ F (T×). Notice that our discharging rules only move charge
around and do not affect the sum. Thus we have 0 ≤

∑

x∈V (T×)∪F (T×) ch
′(x) =
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∑

x∈V (T×)∪F (T×) ch(x) = −12, a contradiction. Since for every vertex v ∈ V (T ),
ch(v) = dG(v) − d2−(v) − 6, in the discharging process, we use dG(v) instead of
dT (v). Similarly, for every vertex v ∈ V (T ), when check ch′(v) ≥ 0, we split the
proof into cases depending on the size of dG(v).

For v ∈ V (T×) and f ∈ F (T×), we define the discharging rules as follows.
Note that within all the degree of a real vertex shall refer to its degree in G and
the faces and their degrees correspond to the graph T×.

(R1): If the edge uv belongs to two 3-faces and d(v) = 3, then u sends 1 to v.

(R2): If the edge uv belongs to exactly one 3-face and d(v) = 3, then u sends 1
2

to v.

(R3): If the edge uv belongs to two 3-faces and d(v) = 4, then u sends 1
2 to v.

(R4): If the edge uv belongs to two 3-faces and d(v) = 5, then u sends 1
5 to v.

(R5): Every 4-face sends 1 to each incident real 5−-vertex in T×.

(R6): Every 5+-face sends 2 to each incident real 5−-vertex in T×.

(R7): Let v be a false vertex crossed by edge uw and xy in T×. If d(u) ≥ 7, then
u sends 1 to v. Moreover, if d(w) = 3, then u sends 3

2 to v.

By Corollary 18 and the discharging rules, we obtain the following facts easily.

Fact 1. For any f ∈ F (T×), f is incident with at most
⌊

d(f)
2

⌋

real 5−-vertices

in T×.

Fact 2. Each vertex v gives at most
d
3+

(v)
2 + 1 away.

Let f be a face of T×. Clearly, if d(f) = 3, then ch′(f) = ch(f) = 2d(f) − 6
= 0. If d(f) = 4, then ch′(f) ≥ ch(f) − 2 = 0 by Fact 1 and (R5). If d(f) ≥ 5,

then ch′(f) ≥ ch(f) −
⌊

d(f)
2

⌋

× 2 = 0 by Fact 1 and (R6).

We next check the final charge of the vertex v ∈ V (T×). Obviously, d(v) ≥ 3.
Recall that v has an initial weight of d(v) − d2−(v) − 6.

Suppose d(v) = 3. If v is incident with three 3-faces, then ch′(v) ≥ ch(v)+3 =
0 by (R1). If v is incident with two 3-faces, then ch′(v) ≥ ch(v)+1+ 1

2×2+1 = 0
by (R1), (R2), (R5) and (R6). If v is incident with one 3-face, then ch′(v) ≥
ch(v) + 1

2 × 2 + 1 × 2 = 0 by (R2), (R5) and (R6). Otherwise, v is incident with
three 4+-faces, then ch′(v) ≥ ch(v) + 1 × 3 = 0 by (R5) and (R6).

Suppose d(v) = 4 and v is a real vertex. We have d2−(v) = 0. If v is incident
with four 3-faces, then ch′(v) ≥ ch(v) + 1

2 × 4 = 0 by (R3). If v is incident with
three 3-faces, then ch′(v) ≥ ch(v) + 1

2 × 2 + 1 = 0 by (R3), (R5) and (R6). If v is
incident with at most two 3-faces, then ch′(v) ≥ ch(v) + 1 × 2 = 0 by (R5) and
(R6).

Suppose d(v) = 4 and v is a false vertex crossed by edge uw and xy. By
Claim 14 and 15, v is adjacent to at most two 6−-vertices.
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If d6−(v) = 2, without loss of generality, we assume that d(u) ≤ 6 and
d(x) ≤ 6. By Claim 15, if 4 ≤ d(u) ≤ 6 and 4 ≤ d(x) ≤ 6, then ux /∈ E(T ), v
gives no weight away by (R3) and (R4). By the same claim, v is also adjacent to
two 7+-vertices. So v receives at least 1 × 2 = 2 from its 7+-neighbors by (R7).
Thus, we have ch′(v) ≥ ch(v) + 2 = 0. If one of the vertices x, u is a 3-vertex,
without loss of generality, we assume that d(u) = 3. Then, by Claim 14, w is a
8+−vertex. v may receives 3

2 from vertex w and 1 from vertex y by (R7) and gives
at most 1

2 away by (R3) and (R4). Thus, we have ch′(v) ≥ ch(v) + 3
2 + 1− 1

2 = 0.
Otherwise, d(u) = d(x) = 3. By Claim 14, v receives at least 3

2 × 2 = 3 from its
8+-neighbors by (R7). And v gives at most 1

2 × 2 = 1 away by Lemma 3, Claim
15 and (R2). Thus, we have ch′(v) ≥ ch(v) + 3 − 1 = 0.

If d6−(v) = 1, without loss of generality, we assume that d(u) ≤ 6. Then v
is adjacent to three 7+-vertices. So v receives at least 1 × 3 = 3, and v gives at
most 1

2 away by Lemma 3 and (R2). Thus, we have ch′(v) ≥ ch(v) + 3 − 1
2 > 0.

If v is adjacent to four 7+-vertices, v receives at least 1 × 4 = 4 from its 7+-
neighbors by (R7) and gives no weight away. So we have ch′(v) ≥ ch(v)+1×4 > 0.

Suppose d(v) = 5. If v is not incident with any 4+-faces, then by (R4),
ch′(v) ≥ ch(v) + 1

5 × 5 = 0. Otherwise, if v is incident with at least one 4+-faces,
then by (R5) and (R6), ch′(v) ≥ ch(v) + 1 = 0.

Suppose d(v) = 6. v gives no weight away to any other vertex by the dis-
charging rules. So ch′(v) = ch(v) = 0.

Suppose d(v) = 7. v gives at most 1 to the false neighbor in T× by (R7),
then ch′(v) = ch(v) − 1 = 0.

Suppose d(v) = 8. By Corollary 9, ch′(v) = ch(v) − max
{

2, 32
}

≥ 0 by
(R1)–(R4) and (R7).

Suppose d(v) = 9. By Corollary 10, ch′(v) = ch(v) − max
{

3, 1 + 3
2

}

≥ 0 by
(R1)–(R4) and (R7).

Suppose d(v) = 10. By Corollary 11, ch′(v) = ch(v)−max
{

4, 2 + 3
2

}

≥ 0 by
(R1)–(R4) and (R7).

Next we check the final charge of the vertices with d(v) ≥ 11. Let w be a
false vertex crossed by edge uv and edge xy. According to the discharging rules,
if d(u) ≤ 5, then v gives at most d5−(v) + 1

2 away. Otherwise, v gives at most
d5−(v)+1 away. Therefore, for every vertex v with d6+(v) ≥ 7, ch′(v) ≥ 0. In the
following discussion, we only consider the vertex with d(v) ≥ 11 and d6+(v) ≤ 6.

Suppose d(v) = 11. By Claim 12, we have that d3−(v) ≤ 1. If d2−(v) = 0,
then d3(v) ≤ 1. We have ch′(v) = ch(v)−max

{

1 +d3(v) +
(⌊

11−1
2

⌋

− d3(v)
)

× 1
2 ,

3
2 +
⌊

11−1
2

⌋

× 1
2

}

= 5−max
{

7+d3(v)
2 , 4

}

> 0 by (R1)–(R4) and (R7). If d2−(v) = 1,

then d3(v) = 0. We have ch′(v) = ch(v) − 1 −
⌊

11−1
2

⌋

× 1
2 = 3 − 5

2 > 0 by (R3)
and (R7).

Suppose d(v) = 12. By Claim 13, we have that d3−(v) ≤ 2.
If d2−(v) = 0, then d3(v) ≤ 2. If d3(v) ≥ 1, we have ch′(v) = ch(v) −
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max
{

1+d3(v)+
(⌊

12−1
2

⌋

− d3(v)) × 1
2 ,

3
2 + (d3(v) − 1

)

+
(⌊

12−1
2

⌋

− (d3(v) − 1)
)

×
1
2

}

= 6 − 7+d3(v)
2 > 0 by (R1)–(R4) and (R7). If d3(v) = 0, then we have

ch′(v) = ch(v) − 1 −
⌊

12−1
2

⌋

× 1
2 > 0 by (R3) and (R7).

If d2−(v) ≥ 1 and d3(v) ≥ 1, we have ch′(v) = ch(v) − max
{

1 + d3(v) +
(⌊

12−d
2−

(v)−1
2

⌋

− d3(v)) × 1
2 ,

3
2 + (d3(v) − 1

)

+
(⌊

12−d
2−

(v)−1
2

⌋

− (d3(v) − 1)
)

×

1
2

}

≥
9−3d

3−
(v)+d3(v)
4 > 0 by (R1)–(R4) and (R7). Otherwise d3(v) = 0, then

d2−(v) ≤ 2. So ch′(v) = ch(v) − 1 −
⌊

12−d
2−

(v)−1
2

⌋

× 1
2 ≥

9−3d
2−

(v)
4 > 0 by

(R1)–(R4) and (R7).

Suppose d(v) = 13. By Claim 16, we have that d3−(v) ≤ 5. Moreover, if
d2−(v) ≥ 1, then d3−(v) ≤ 4.

If d2−(v) = 0, then d3(v) ≤ 5. If d3(v) ≥ 1, then we have ch′(v) = ch(v) −
max

{

1 + d3(v) +
(⌊

13−1
2

⌋

− d3(v)) × 1
2 ,

3
2 + (d3(v) − 1) +

(⌊

13−1
2

⌋

− (d3(v) − 1
))

×1
2

}

= 3 − d3(v)
2 > 0 by (R1)–(R4) and (R7). If d3(v) = 0, then we have

ch′(v) = ch(v) − 1 −
⌊

13−1
2

⌋

× 1
2 > 0 by (R3) and (R7).

If d2−(v) ≥ 1, then d3−(v) ≤ 4. If d3(v) ≥ 1, we have ch′(v) = ch(v) −

max
{

1+d3(v)+
(⌊

13−d
2−

(v)−1
2

⌋

− d3(v)
)

× 1
2 ,

3
2 +(d3(v)−1)+

(⌊

13−d
2−

(v)−1
2

⌋

−

(d3(v) − 1)
)

× 1
2

}

≥ 3 −
3d

3−
(v)

4 + d3(v)
4 > 0 by (R1)–(R4) and (R7). Otherwise

d3(v) = 0, then d2−(v) ≤ 4. So ch′(v) = ch(v) − 1 −
⌊

13−1−d
2−

(v)
2

⌋

× 1
2 ≥

3 −
3d

2−
(v)

4 ≥ 0 by (R1)–(R4) and (R7).

Suppose d(v) = ∆(G) ≥ 14. If d2−(v) = 0, then by Fact 2, we have ch′(v) =

ch(v) −
d
3+

(v)
2 − 1 ≥ 0 by (R1)–(R4) and (R7).

If d2−(v) ≥ 1, then by Claim 17, d3−(v) ≤ 5. If d3(v) ≥ 1, then we have

ch′(v) = ch(v)−max
{

1 + d3(v) +
(⌊

14−d
2−

(v)−1
2

⌋

− d3(v)
)

× 1
2 ,

3
2 + (d3(v)− 1)+

(⌊

14−d
2−

(v)−1
2

⌋

− (d3(v) − 1)
)

× 1
2

}

≥
15−3d

3−
(v)+d3(v)
4 > 0 by (R1)-(R4) and

(R7). Otherwise d3(v) = 0, then d2−(v) ≤ 5. So ch′(v) = ch(v) − d2−(v) − 1 −
⌊

14−1−d
2−

(v)
2

⌋

× 1
2 ≥

15−3d
2−

(v)
4 ≥ 0 by (R1)–(R4) and (R7).

This completes the proof.

4. Remark

By the definition of IC-planar graphs, we know that every planar graphs are
special IC-planar graphs. In [13], the authors proved that ch′′Σ(G) ≤ max{∆(G)+
3, 16}. So we can easily obtain the following question.

Question 1. Is it true that ch′′Σ(G) ≤ ∆(G) + 3 for IC-planar graphs with

∆ = 13?
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Appendix A

%% The m. f i l e o f Matlab to compute the c o e f f i c i e n t s .
% INPUT
func t i on c o e f f i c e n t s ( )
syms x1 x2 x3 x4 x5 x6 x7 % Var iab l e s used in the f o l l ow i n g .

% Claim 3 .7 %To c a l c u l a t e the c o e f f i c i e n t o f x1ˆ6x2ˆ4x3ˆ4
P=(x1−x2 )∗ ( x2−x3 )∗ ( x1−x3 )ˆ2∗ ( x1+x2 )ˆ4∗ ( x2+x3 ) ˆ 6 ; % The polynomial
cp1=d i f f ( d i f f ( d i f f (P, x1 , 6 ) , x2 , 4 ) , x3 , 4 ) / f a c t o r i a l (6 )/ f a c t o r i a l ( 4 )

/ f a c t o r i a l ( 4 )

% Claim 3 .8
P=(x1−x2 )∗ ( x2−x3 )∗ ( x1−x3 )ˆ2∗ ( x1+x2 )ˆ5∗ ( x2+x3 ) ˆ 5 ;
cp2=d i f f ( d i f f ( d i f f (P, x1 , 6 ) , x2 , 4 ) , x3 , 4 ) / f a c t o r i a l (6 )/ f a c t o r i a l ( 4 )

/ f a c t o r i a l ( 4 )

% Claim 3 .9
P=(x1−x2 )∗ ( x1−x3 )∗ ( x1−x4 )∗ ( x1−x5 )∗ ( x1−x6 )∗ ( x2−x3 )∗ ( x2−x4 )∗ ( x2−x5 )

∗( x2−x6 )∗ ( x3−x4 )∗ ( x3−x5 )∗ ( x3−x6 ) , . . . , ∗ ( x4−x5 )∗ ( x4−x6 )∗ ( x5−x6 )
∗( x1+x2+x3+x4+x5+x6 ) ˆ6 ;

cp3=d i f f ( d i f f ( d i f f ( d i f f ( d i f f ( d i f f (P, x1 , 6 ) , x2 , 5 ) , x3 , 4 ) , x4 , 3 ) , x5 , 2 ) ,
x6 , 1 ) / f a c t o r i a l (6 )/ f a c t o r i a l (5 )/ f a c t o r i a l (4 )/ f a c t o r i a l ( 3 )
/ f a c t o r i a l (2 )/ f a c t o r i a l ( 1 )

P=(x1−x2 )∗ ( x1−x3 )∗ ( x1−x4 )∗ ( x1−x5 )∗ ( x2−x3 )∗ ( x2−x4 )∗ ( x2−x5 )∗ ( x3−x4 )
∗( x3−x5 )∗ ( x4−x5 )∗ ( x1+x2+x3+x4+x5+x6 ) ˆ6 ;

cp4=d i f f ( d i f f ( d i f f ( d i f f ( d i f f (P, x1 , 6 ) , x2 , 4 ) , x3 , 3 ) , x4 , 2 ) , x5 , 1 )
/ f a c t o r i a l (6 )/ f a c t o r i a l (4 )/ f a c t o r i a l (3 )/ f a c t o r i a l ( 2 )
/ f a c t o r i a l ( 1 )

% Claim 3 .10
P=(x1−x2 )∗ ( x1−x3 )∗ ( x1−x4 )∗ ( x1−x5 )∗ ( x1−x6 )∗ ( x2−x3 )∗ ( x2−x4 )∗ ( x2−x5 )

∗( x2−x6 )∗ ( x3−x4 )∗ ( x3−x5 )∗ ( x3−x6 ) . . . , ∗ ( x4−x5 )∗ ( x4−x6 )∗ ( x5−x6 )
∗( x1+x2+x3+x4+x5+x6 ) ˆ6 ;

cp5=d i f f ( d i f f ( d i f f ( d i f f ( d i f f ( d i f f (P, x1 , 6 ) , x2 , 5 ) , x3 , 4 ) , x4 , 3 ) , x5 , 2 ) ,
x6 , 1 ) / f a c t o r i a l (6 )/ f a c t o r i a l (5 )/ f a c t o r i a l (4 )/ f a c t o r i a l ( 3 )
/ f a c t o r i a l (2 )/ f a c t o r i a l ( 1 )
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