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Abstract

For a given graph G=(V,E), a Roman {2}-dominating function f : V (G)
→ {0, 1, 2} has the property that for every vertex u with f(u) = 0, either u is
adjacent to a vertex assigned 2 under f , or is adjacent to at least two vertices
assigned 1 under f . The Roman {2}-domination number of G, γ{R2}(G),
is the minimum of

∑
u∈V (G) f(u) over all such functions. In this paper, we

initiate the study of the problem of finding Roman {2}-bondage number of
G. The Roman {2}-bondage number of G, b{R2}, is defined as the cardinality
of a smallest edge set E′ ⊆ E for which γ{R2}(G−E′) > γ{R2}(G). We first
demonstrate complexity status of the problem by proving that the problem
is NP-Hard. Then, we derive useful parametric as well as fixed upper bounds
on the Roman {2}-bondage number of G. Specifically, it is known that the
Roman bondage number of every planar graph does not exceed 15 (see [S.
Akbari, M. Khatirinejad and S. Qajar, A note on the Roman bondage number

of planar graphs, Graphs Combin. 29 (2013) 327–331]). We show that same
bound will be preserved while computing the Roman {2}-bondage number
of such graphs. The paper is then concluded by computing exact value of
the parameter for some classes of graphs.
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1. Introduction

Given a simple undirected graph G = (V,E) with vertex set V = V (G) and edge
set E = E(G). For a vertex v ∈ V , define NG(v), the open neighbor of v, as the
set of all vertices adjacent to v. The closed neighbor of v, NG[v], is then defined
by NG[v] = NG(v)∪ {v}. The degree of v, denoted by degG(v), is simply defined
as the cardinality of NG(v). The minimum and maximum degree of G are also
denoted by δG and ∆G, respectively. Recall that a leaf in G is a vertex of degree
one and a support vertex is the one adjacent to a leaf.

In this work, we consider a class of labeling functions over G, namely Roman
{2}-dominating functions, as recently defined and studied in [4]. Accordingly, a
function f : V → {0, 1, 2}, is called a Roman {2}-dominating function (R2DF)
over G if it assigns labels to vertices in a way any vertex with label 0 is adjacent
to a vertex with label 2 or at least two vertices with label 1. For an R2DF f

and a label i, let Vi(f) be the set of all vertices v ∈ V with f(v) = i where
i ∈ {0, 1, 2}. If no ambiguity occurs, we simply drop the argument and write
Vi. The partition (V0, V1, V2) uniquely determines f and we could equivalently
write f = (V0, V1, V2). The weight of an R2DF f , w(f), is defined as

∑
v∈V f(v).

The minimum possible weight of an R2DF over G is called the Roman {2}-
dominating number of G and is denoted by γ{R2}(G). A γ{R2}(G)-function f

is an R2DF over G with w(f) = γ{R2}(G). We define the Roman {2}-bondage
number of G, b{R2}(G), as the cardinality of a smallest edge set E′ ⊂ E for
which γ{R2}

(
G−E′

)
> γ{R2}(G). Note that, b{R2}(G) is only defined for a graph

with ∆ ≥ 2, as otherwise removing any set of edges will not increase the Roman
{2}-dominating number. In the following, again if no ambiguity occurs, we drop
argument G and simply write γ{R2} and b{R2} instead of γ{R2}(G) and b{R2}(G),
respectively.

Figure 1. The graph G.

As an example, consider the graph G = (V,E) illustrated in Figure 1 (orig-
inally introduced in [4]). For this graph, γ{R2}(G) = 9 as mentioned by [4].
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However, removing the edge e = {s, t} will increase the Roman {2}-domination
number to γ{R2}(G − e) = 10 where an optimal R2DF of G − e would set
V1 =

{
c1, b, x, c3, c5, r, t, v, z, u

}
, V2 = ∅, V0 = V \ V1. As a result, b{R2}(G) = 1.

In a special case where an R2DF is restricted to support a vertex of label 0
only with an adjacent vertex of label 2, the labeling function is called a Roman

dominating function (RDF) over G. Thereby, Roman dominating number and
Roman bondage number of G are accordingly defined. Research community has
been attracted to this special case much earlier than the more general case con-
sidered in this paper. For more information on the Roman dominating functions,
the interested reader is referred to [3, 5, 9] and [2, 6, 10]. Several interesting
works on bondage numbers could also be found in [11, 12].

Defining the Roman {2}-bondage number of a graph is simply motivated by
the existing definition of Roman {2}-domination number of the graph. We are
indeed interested to know how the Roman {2}-domination number increases in
the given graph. To answer the question, we define and study the Roman {2}-
bondage number as a similar measure, namely the Roman bondage number, was
successfully studied before (see [10]). Roman {2}-bondage number is in fact a
network vulnerability parameter. Finding the Roman {2}-domination number of
a graph could be interpreted as a new network protection strategy as it is dis-
cussed in [4]. Accordingly, the Roman {2}-bondage number could be considered
as a parameter measuring vulnerability of such defense strategy.

To the best of our knowledge, the Roman {2}-bondage number of a graph
has not previously been considered or even defined in the literature. In this
work, we first consider computational complexity of the problem and show that
the problem is NP-Hard. Then, we prove a class of parametric as well as fixed
upper bounds on the Roman {2}-bondage number. Specifically, we show that
an existing bound on the Roman bondage number of planar graphs is preserved
while computing the Roman {2}-bondage number of such graphs. The paper is
then concluded by computing exact value of the Roman {2}-bondage number for
some classes of graphs.

2. Computational Complexity

In this section, we show that finding the Roman {2}-bondage number of a graph
is NP-Hard. Given a positive integer h and a graph G, the decision version of the
problem is then to ask: Is b{R2}(G) ≤ h? We show that 3-Satisfiability (3-SAT),
a well-known NP-Complete problem (see [7]), is polynomial time reducible to
the decision version of finding Roman {2}-bondage number of the graph, thereby
proving it NP-hardness. Henceforth, we adapt required terminology mainly taken
from [8] and [2].
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Let U be the set of Boolean variables U =
{
u1, u2, . . . , un

}
each of which

can take values ”true” or ”false”. A term over U , is simply a variable ui or its
negation ūi. A clause is a disjunction of distinct terms. A clause of length l is the
one consisting of exactly l terms. A truth assignment t for U is an assignment
of the value ”true” or ”false” to each ui. Note that, such a function t implicitly
gives ūi the opposite truth value of ui. A truth assignment t satisfies a clause,
if, under the rules of Boolean logic, its truth values causes the clause to evaluate
to ”true”. Now, given a set C of clauses over a given set of variables U where
each clause is of length 3, the 3-SAT problem asks: Does there exists a truth
assignment t satisfying all the clauses in C?

Theorem 1. Given a graph G. The problem of finding b{R2}(G) is NP-Hard.

Proof. Given an instance (U,C), of 3-SAT where U =
{
u1, u2, . . . , un

}
is the set

of Boolean variables and C =
{
C1, C2, . . . , Cm

}
is the set of clauses each of length

3. In the following, we construct a graph G, in such a way that b{R2}(G) ≤ 1 if
and only if C is satisfiable.

For each i = 1, 2, . . . , n, add the sub-graph Hi = (Vi, Ei) to G where

• Vi =
{
ui, ūi, xi, yi, pi, qi

}
,

• Ei =
{
pixi, xiui, uiūi, ūiyi, yiqi, qiui, piūi

}
.

For each j = 1, 2, . . . ,m, consider the clause Cj =
{
a1j , a

2
j , a

3
j

}
and add a vertex cj

together with the edges
{
cja

1
j , cja

2
j , cja

3
j

}
to G. Finally, add a vertex s together

with the edges
{
sc1, sc2, . . . , scm

}
to G. An example of G is depicted in Figure

2. To prove the theorem, we state the following claims. Note that, throughout
this proof, we apply i and j only to index over the variables in U and the clauses
in C, respectively.

Claim 2. We have γ{R2}(G) ≥ 3n + 1. In the case if γ{R2}(G) = 3n + 1, then
any γ{R2}-function f on G would set

(a) for each i, let f
(
Hi

)
=

∑
v∈Vi

f(v), then f
(
Hi

)
= 3 and at most one of

f
(
ui
)
and f

(
ūi
)
gets equal to one,

(b) for each j, f
(
cj
)
= 0,

(c) f(s) = 1.

Proof. Let f be a γ{R2}-function of G. We need to show that for each i, f
(
Hi

)
≥

3. It is only needed to consider all possible cases in which f
(
ui
)
+ f

(
ūi
)
≤ 2.

In case, f
(
ui
)
= f

(
ūi
)
= 0 or f

(
ui
)
= f

(
ūi
)
= 1, a simple inspection shows

that f
(
Hi

)
= 4 ≥ 3. In case, f

(
ui
)
≥ 1 and f

(
ūi
)
= 0, both pi and yi should

receive non-zero label. As a result f
(
Hi

)
≥ 3. Similarly, in case f

(
ui
)
= 0 and

f
(
ūi
)
≥ 1, both qi and xi should receive non-zero labels and we have f

(
Hi

)
≥ 3.
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Figure 2. Graph G constructed over an instance (U,C) of 3-SAT with variable set U ={
u1, u2, . . . , un

}
and clause set C =

{
C1, C2, . . . , Cm

}
.

In the case γ{R2}(G) = 3n + 1, we get f
(
Hi

)
= 3 for each i, as otherwise

f(G) =
∑

i f
(
Hi

)
+ f

(
N [s]

)
≥ (3n + 1) + 1. This in turn implies that for each

i, only f
(
ui
)
= 1 or f

(
ūi
)
= 1 as otherwise f

(
Hi

)
= 4. Other than that, any

R2DF of G would set f
(
N [s]

)
≥ 1. The only possible way to get f

(
N [s]

)
= 1 is

to set f(s) = 1 and f
(
cj
)
= 0 for each j.

Claim 3. γ{R2}(G) = 3n+ 1 if and only if C is satisfiable.

Proof. First, let us assume that γ{R2}(G) = 3n + 1. By Claim 2, there exists
a γ{R2}-function f of G where, for each i, at most one of f

(
ui
)
and f

(
ūi
)
gets

equal to one.

Define the truth assignment

t(ui) =

{
true if f

(
ui
)
= 1 and f

(
ūi
)
= 0,

false if f
(
ui
)
= 0 and f

(
ūi
)
= 1,

i = 1, 2, . . . , n,

since f(s) = 1 and for any j, f
(
cj
)
= 0, there should be an index i where ci is

adjacent to ui if f
(
ui
)
= 1, or where cj is adjacent to ūi if f

(
ūi
)
= 1. In both

cases, as the term itself belongs to Cj , the clause is satisfiable.

Now, let us assume that C is satisfiable. Then, it is not hard to build an
R2DF f of G with f(G) = 3n+ 1. To that end, let t be a truth assignment that
satisfies C. Define f as follows,

• if t
(
ui
)
= true, set f

(
ui
)
= f

(
yi
)
= f

(
pi
)
= 1, f

(
ūi
)
= f

(
xi
)
= f

(
qi
)
= 0,
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• if t
(
ui
)
= false, set f

(
ui
)
= f

(
yi
)
= f

(
pi
)
= 0, f

(
ūi
)
= f

(
xi
)
= f

(
qi
)
= 1,

also set f(s) = 1 and f
(
cj
)
= 0 for each j. Clearly f(G) = 3n + 1. Since t is

a satisfying truth assignment for C, for each j = 1, . . . ,m, at least one of the
literals in Cj is true under the assignment t. By the construction of G it follows
that the corresponding vertex cj is adjacent to at least one vertex, without loss
of generality, say ui, with f

(
ui
)
= 1. As cj is also adjacent to s, f is an R2DF

function of G.

Claim 4. For any edge e ∈ E(G), we have γ{R2}(G− e) ≤ 3n+ 2.

Proof. Let f be a γ{R2}-function of G. Even after removing an edge e, it is not
hard to reconstruct an R2DF of G− e using f as follows.

The case where e belongs to an Hi for some i. Any such edge has exactly
one endpoint with zero label. Then after removing the edge one could increase
the zero label to one and recover to an R2DF of G− e with weight 3n+ 2.

The case where e is incident to a cj for some j. Here, after removing the
edge one could increase the label of cj to one and again recover to an R2DF of
G− e with weight 3n+ 2.

Claim 5. γ{R2}(G) = 3n+ 1 if and only if b{R2}(G) = 1.

Proof. First, let us assume that γ{R2}(G) = 3n+ 1 and e = x1p1. To prove the
result by contradiction, suppose that γ{R2}(G) = γ{R2}(G − e). Then, a γ{R2}-
function, f ′ on G − e is also a γ{R2}-function of G and according to Claim 2,
f ′(cj) = 0 for any j and f ′(H1 − e) = 3. This is indeed a contradiction as any
R2DF of H1 − e has weight more than or equal to 4.

Conversely, let us assume that b{R2}(G) = 1. By Claim 2, γ{R2}(G) ≥ 3n+1.
Now let e be an edge whose removal will increase the Roman {2}-dominating
number, i.e. γ{R2}(G) < γ{R2}(G− e). By Claim 4, γ{R2}(G− e) ≤ 3n+ 2. As a
result

3n+ 1 ≤ γ{R2}(G) < γ{R2}(G− e) ≤ 3n+ 2

and we have γ{R2}(G) = 3n+ 1.

Claims 3 and 5 demonstrate that for the constructed graph G, b{R2}(G) = 1
if and only if there exist a truth assignment for U that satisfies all the clauses in
C. This ends the proof of Theorem 1.

3. Upper Bounds

Theorem 6. Given a graph G and a path xyz of length 2 in G, then

(1) b{R2}(G) ≤ degG(x) + degG(y) + degG(z)− 2−
∣∣NG(x) ∩NG(z)

∣∣.
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If x and z are adjacent, then

(2) b{R2}(G) ≤ degG(x) + degG(y) + degG(z)− 3− |NG(x) ∩NG(z)|.

Proof. Consider the subgraph H of G obtained by removing all edges incident
to x, y and z with the exception of the edges between z and N(x) ∩ N(z). Let
f =

(
V0, V1, V2

)
be a γ{R2}-function of H. As a result x gets isolated in H and

x ∈ V1. Without loss of generality, one could assume that y ∈ V0 ∪ V1. Now
consider the following possible cases.

If y ∈ V0, then z ∈ V2 and one could simply decrease f(z) to 1 and still have
an R2DF over G, like

(
V0, V1 ∪ {z}, V2 \ {z}

)
of strictly less weight. Note also

that, in this case, any vertex p ∈ N(x) ∩N(z) with f(p) = 0 will have neighbors
x and z in G both labeled 1.

If y ∈ V1 and z ∈ V0, then there exists a vertex p ∈ N(x) ∩ N(z), p 6= y

with f(p) ≥ 1. Now decreasing f(x) to 0 will result in
(
V0 ∪ {x}, V1 \ {x}, V2

)
,

an R2DF over G of strictly less cost.

If y ∈ V1 and z ∈ V1, then decreasing f(y) to 0 yields
(
V0∪{y}, V1 \ {y}, V2

)
,

again an R2DF over G of strictly less cost.

Note that the inequalities (1) and (2) hold with equality if G = P3 and
G = C3, respectively. With the aim of the above theorem we could prove the
following important result on planar graphs. First, we mention a simple lemma.

Lemma 7 [1]. Every planar graph with minimum degree 5 contains an edge xy

with deg(x) = 5 and deg(y) ∈ {5, 6}.

Theorem 8. For every planar graph G with ∆G ≥ 2, b{R2}(G) ≤ 15.

Recall that this bound is also attained for the Roman bondage number of
planar graphs (see [1]). One could apply Theorem 6, as an essential tool, to
obtain the same bound on the Roman {2}-bondage number of planar graphs.
Details are as follows.

Proof. First, note that ∆G ≥ 2 as otherwise the Roman {2}-bondage number
could not be defined. As a result there exists a vertex u of degG(u) ≥ 2. Now,
if ∆G ≤ 5, one could simply pick u and two vertices say p, q ∈ NG(u), p 6= q and
apply Theorem 6 to get b{R2}(G) ≤ degG(p) + degG(u) + degG(q)− 2−

∣∣NG(p)∩
NG(q)

∣∣ = 5 + 5 + 5 − 2 − 1 = 12. In the following we will assume that G is a
planar graph of ∆G ≥ 6.

Define V ∗ =
{
v ∈ V (G) : degG(v) ≤ 5

}
and let G∗ = G − V ∗. As G∗ is a

planar graph, we have δG∗ ≤ 5. Let v be a vertex of G∗ with degree δG∗ , and
consider the following cases.



262 A. Moradi, D.A. Mojdeh and O. Sharifi

Case 1. v has at least three neighbors, say v1, v2 and v3, in V ∗. Let A be the
set of all edges incident to the three neighbors, and consider the graph obtained
by deleting the edge set A from G, namely G− A. As v1, v2 and v3 are isolated
in G − A, any optimal R2DF function f of G − A would set f

(
v1
)
= f

(
v2
)
=

f
(
v3
)
= 1. Now the labeling function defined as g

(
v1
)
= g

(
v2
)
= g

(
v3
)
= 0,

g(v) = 2 and g(p) = f(p) for every p ∈ V (G) \
{
v, v1, v2, v3

}
, is clearly an R2DF

of G of strictly less weight. Then γ{R2}(G−A) < γ{R2}(G) and as A has at most
15 edges, b{R2}(G) ≤ 15.

Case 2. Let v has two neighbors v1, v2 ∈ V ∗. Then, applying Theorem 6 on
the path v1vv2 in G would imply that b{R2}(G) ≤ degG(v1)+degG(v)+degG(v2)−
2− |NG(v1) ∩NG(v2)| ≤ 5 + 7 + 5− 2− 1 = 14.

Observation 1. Before discussing the last possible case, observe that if a vertex
u out of V ∗ with degG∗(u) ≤ 6 has two neighbors u1, u2 ∈ V ∗, then degG(u) ≤ 8
and applying Theorem 6 on the path u1uu2 in G would imply that b{R2}(G) ≤ 15.
Therefore, in the following we may assume that any vertex u out of V ∗ with
degG∗(u) ≤ 6 has at most one neighbor in V ∗. Accordingly, a vertex of degree 5
in G∗, has exactly one neighbor in V ∗ as otherwise, it belongs to V ∗. Now, we
have all the necessary tools to come into the last case, below.

Case 3. Let v has at most one neighbor in V ∗. In this case δG∗ = 5 as any
vertex of degree less than or equal to 4 does belong to V ∗. Now, G∗ met the
condition of Lemma 7, according to which there exists an edge xy ∈ E(G∗) with
degG∗(x) = 5 and degG∗(y) ≤ 6. As we have seen in Observation 1, x has exactly
one neighbor, say v1, in V ∗ and so degG(x) = 6. Similarly vertex y has at most
one neighbor in V ∗ and so degG(y) ≤ 7. Applying Theorem 6 on the path v1xy,
we have b{R2}(G) ≤ degG

(
v1
)
+ degG(x) + degG(y) − 2 −

∣∣NG(v1) ∩ NG(y)
∣∣ ≤

5 + 6 + 7− 2− 1 = 15.

It remains open to show that the bound in Theorem 8 is sharp or not as it
is still in question in the case of bounding the Roman bondage of planar graphs
(see [1]). Akbari et al. in [1] constructed infinitely many planar graphs with
Roman bondage number equal to 7 thereby conjecturing that the bound is at
most 7 on planar graphs. In our case, one could take the same way and state
a similar conjecture as a message of the following discussion (where we use the
same terminology as used in [1]).

Given a graph G of order n, let Ĝ be the graph of order 3n obtained from G

by attaching a vertex of C3 to each vertex of G (as depicted in Figure 3). Let us
call the attached vertex as the center of C3. Then, we have the following result.

Lemma 9. For a given graph G of order n,

(a) γ{R2}

(
Ĝ
)
= 2n,

(b) b{R2}

(
Ĝ
)
= δG + 2.
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Figure 3. The graph Ĝ.

Proof. To prove part (a), first observe that giving Label 2 to every vertex of G
yields an R2DF of Ĝ of weight 2n and we get γ{R2}

(
Ĝ
)
≤ 2n. On the other hand,

any R2DF of Ĝ, say f , would set f
(
C3

)
≥ 2 resulting in γ{R2}

(
Ĝ
)
≥ 2n.

To prove part (b), first let u be a vertex of minimum degree δG. Also let Eu

be the set of all edges incident to u in Ĝ. Clearly
∣∣Eu

∣∣ = δG+2. The graph Ĝ−Eu

is the union of Ĝ− u, P2 and one isolated vertex. So by part (a), γ{R2}

(
Ĝ−Eu

)
=

2(n−1)+2+1 = 2n+1 > γ{R2}

(
Ĝ
)
resulting in b{R2}

(
Ĝ
)
≤ δG+2. To prove the

other side, i.e., b{R2}

(
Ĝ
)
≥ δG + 2, we show that removing any set of cardinality

δG+1, say E, will not change the Roman {2}-dominating number. If an attached
C3 remained unchanged in Ĝ−E we call it safe, otherwise, it is called wounded.
Now, consider the following two cases.

Case 1. The center of each wounded C3 is adjacent (in G) to the center of
at least one safe C3 in Ĝ − E. In this case, giving label 2 to the center of every
safe C3 and label 1 to the two non-center vertices of every wounded C3 and label
0 to any other vertex will resulted in an R2DF of Ĝ− E of weight 2n.

Case 2. There exists a wounded C3 whose center, say v, is not adjacent (in
G) to the center of any safe C3 in Ĝ− E. In this case, as v is a wounded center
and |E| = δG + 1, we conclude that

∣∣E ∩ NG(v)
∣∣ ≤ δG. Then, degG(v) ≤ δG as

a result v is a vertex of minimum degree in G, i.e., degG(v) = δG. This in turn
implies that every wounded C3 is exactly a P3. Now, for any wounded C3, give
label 2 to the middle vertex of the corresponding P3. Also give label 2 to the
center of any safe C3 and label 0 to any other vertex. This defines an R2DF of
Ĝ− E of weight 2n.

Corollary 10. There exists infinitely many planar graphs with Roman {2}-
bondage number equal to 7.

Proof. Applying Lemma 9 to any planar graph G of δG = 5 (like a icosahedron
graph) will prove the result.
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Conjecture 11. The Roman {2}-bondage number of every planar graph is at

most 7.

Lemma 12. Given a graph G with a support vertex v of degG(v) ≥ 3. If neighbors
of v are all leaf, save one, then b{R2}(G) ≤ 2.

Proof. Let v1, v2, v3, . . . be neighbors of v where v1 is the non-leaf one. In
case degG(v) = 3, one could simply apply Theorem 6 on the path v2vv3 to
obtain the result. Otherwise, when degG(v) ≥ 4, one could increase the Ro-
man {2}-dominating number of G by removing the edge v2v. To see this, let
f =

(
V0, V1, V2

)
be a γ{R2}-function of G − v2v. As v2 is an isolated vertex,

v2 ∈ V1. Furthermore, without loss of generality, one would assume v ∈ V2 as v is
adjacent to at least two leaf vertices in G− v2v. Now, introduce g =

(
V0 ∪ {v2},

V1 \ {v2}, V2

)
as a Roman {2}-dominating function of G. Clearly w(g) < w(f)

and the result follows.

Theorem 13. For any tree T , with at least three vertices, we have b{R2}(T ) ≤ 2.

Proof. If T contains a support vertex satisfying the condition stated in Lemma
12, the result clearly follows. Let us assume any support vertex of T either is
of degree two or has at least two non-leaf neighbors. Now, consider a longest
path of T , say P = v1v2 · · · vk. By the assumption, we get degT (v2) = 2, as
otherwise, P could not be a longest path. If degT (v3) ≤ 2, one could apply
Theorem 6 to the path v1v2v3 and conclude that b{R2}(T ) ≤ 2. In the case where
degT (v3) ≥ 3, removing

{
v2v3, v3v4

}
is always enough to strictly increase the

Roman {2}-dominating number. To see this, define H = T −
{
v2v3, v3v4

}
and

let f =
(
V0, V1, V2

)
be a γ{R2}-function of H. We have the following cases.

Case 1. v3 ∈ V1 ∪ V2. It is not hard to see that the labeling function
g =

((
V0\{v1, v2}

)
∪v2,

(
V1\{v1, v2}

)
∪v1, V2

)
is an R2DF of T with w(g) < w(f).

Case 2. v3 ∈ V0 and there exists u ∈ NH(v3) with f(u) = 2. Here, if u is
a leaf, one could simply swap labels of u and v3. This way, f remains a γ{R2}-
function of H and the proof reduces to Case 1. Otherwise, u is a support vertex
of degree two. Let the only leaf vertex adjacent to u be denoted as w. Then, one
could set f(u) = 0 and f(w) = f(v3) = 1, thereby reducing to case 1.

Case 3. v3 ∈ V0 and there exists u1, u2 ∈ NH(v3) with f(u1) = f(u2) = 1.
Here, if both u1 and u2 are leaf vertices, one could set f(u1) = f(u2) = 0 and
f(v3) = 2, and reduce to Case 1. Otherwise, let us suppose u1 is a support vertex
of degree two and u3 is the leaf vertex adjacent to it. It follows that f(u3) = 1.
Now, swapping labels of v3 and u1, the labeling remains a γ{R2}-function of H
and we reduce to Case 1.

Theorem 14. For any unicyclic graph G, we have b{R2}(G) ≤ 3.
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Proof. Removing an edge on the unique cycle of G, produces a tree. Thereby,
Theorem 13 shows the result.

Lemma 15. For a connected graph G of order n ≥ 3, we have γ{R2}(G) = 2 if

and only if ∆G = n− 1 or G has two non-adjacent vertices of degree n− 2.

Proof. Let us first assume that γ{R2}(G) = 2. Knowing that any γ{R2}-function
f =

(
V0, V1, V2

)
would set f

(
V1

)
= 2, f

(
V2

)
= 0 or f

(
V1

)
= 0, f

(
V2

)
= 2. In

either case, the result follows. The other side of the result is also immediate.

Theorem 16. For a graph G of order n ≥ 3 with exactly k vertices of degree

n− 1 and l non-adjacent pair vertices of degree n− 2 where n > k + 2l, we have

b{R2}(G) ≤





⌊
k
2

⌋
+

⌊
⌊ k

2
⌋+l

2

⌋
, both k and

⌊
k
2

⌋
+ l are even,

⌊
k
2

⌋
+

⌊
⌊ k

2
⌋+l

2

⌋
+ 1, otherwise.

Proof. Lemma 15 simply shows that γ{R2}(G) = 2. In the following, we try to
find least number of edges whose removal leaves neither a vertex of degree n− 1
nor a non-adjacent vertex pair of degree n − 2. Put all vertices of degree n − 1
in a set, say K and all of the non-adjacent vertex pairs of degree n− 2 in a set,
say L. Observe that any two different pairs {u, v}, {u′, v′} ∈ L are disjoint i.e.
{u, v} ∩ {u′, v′} = ∅.

Let us assume both k and
⌊
k
2

⌋
+l are even. It is not hard to see that, removing

any
⌊
k
2

⌋
independent edges whose endpoints are in K leaves no vertex of degree

n − 1 but increases the number of non-adjacent vertex pairs of degree n − 2 to⌊
k
2

⌋
+ l. Now, for a given pair {u, v}, {u′, v′} ∈ T , remove an edge with one

endpoint in {u, v} and the other endpoint in {u′, v′}. This way, both pairs {u, v}

and {u′, v′} leave L out. As
⌊
k
2

⌋
+ l is even, after removing

⌊⌊
k

2

⌋
+l

2

⌋
number of

such edges, T gets empty and Lemma 15 gives b{R2}(G) ≤
⌊
k
2

⌋
+

⌊
⌊ k

2
⌋+l

2

⌋
.

Otherwise, three cases could occur. In case k is even but
⌊
k
2

⌋
+ l is odd,

the same
⌊
k
2

⌋
number of independent edges with both endpoints in K could be

removed to reduce K to empty set. However this, in turn, increases size of L

to
⌊
k
2

⌋
+ l which is odd. Here removing

⌊
⌊ k

2
⌋+l

2

⌋
number of the edges between

non-adjacent pairs of L, as described above, reduces size of L to one where L

still contains a non-adjacent vertex pair {u, v} both of degree n − 1. Here one
extra edge with an endpoint in {u, v} should be removed to make L empty.

Thereby proving b{R2}(G) ≤
⌊
k
2

⌋
+

⌊
⌊ k

2
⌋+l

2

⌋
+ 1. Other two cases occur when k
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is an odd number. Here again, the same
⌊
k
2

⌋
number of independent edges with

both endpoints in K could be removed to reduce |K| to one and at the same
time increases |L| to

⌊
k
2

⌋
+ l. In case,

⌊
k
2

⌋
+ l is even, one would remove the

same

⌊
⌊ k

2
⌋+l

2

⌋
number of the edges between non-adjacent pairs of L, as described

above, reducing |L| to zero and then any edge incident to the last vertex in K.

Thereby proving b{R2}(G) ≤
⌊
k
2

⌋
+

⌊
⌊ k

2
⌋+l

2

⌋
+ 1. In case

⌊
k
2

⌋
+ l is even, after

removing
⌊
k
2

⌋
+

⌊
⌊ k

2
⌋+l

2

⌋
edges as above, both |K| and |L| reduce to one. Here an

extra edge with one endpoint in K and the other endpoint in the only remained
non-adjacent pair of L could be removed to reduce both |K| and |L| to zero.

Thereby proving b{R2}(G) ≤
⌊
k
2

⌋
+

⌊
⌊ k

2
⌋+l

2

⌋
+ 1.

4. Exact Bounds

Lemma 17 [4]. For the classes of paths Pn, and cycles Cn, we have

γ{R2}(Pn) =

⌈
n+ 1

2

⌉
, γ{R2}(Cn) =

⌈n
2

⌉
.

Theorem 18. For n ≥ 3, we have b{R2}(Pn) = 1.

Proof. Let us denote Pn as v1v2v3 · · · vn. Removing v2v3 leaves two components
v1v2 and Pn−2. Now, any γ{R2}-function f on Pn−v1v2 would set f({v1, v2}) = 2.
Thereby, Lemma 17 implies that

γ{R2} (Pn − v1v2) = 2 +

⌈
n− 1

2

⌉
≥

⌈
n+ 1

2

⌉
+ 1 = γ{R2}(Pn) + 1

Theorem 19. For n ≥ 3, we have

b{R2}(Cn) =

{
1 n is even,

2 n is odd.

Proof. Let us denote Cn as v1v2 · · · vnv1. Removing vnv1 leaves a path Pn. For
an even n, Lemma 17 shows that

γ{R2}(Cn − vnv1) =

⌈
n+ 1

2

⌉
>

⌈n
2

⌉
= γ{R2}(Cn).
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However, for an odd n,
⌈
n+1

2

⌉
=

⌈
n
2

⌉
and removing an edge is not enough. Now

let us remove the extra edge v1v2 and makes v1 isolated. Lemma 17 gives

γ{R2}(Cn − vnv1 − v1v2) = 1 +
⌈n
2

⌉
>

⌈n
2

⌉
= γ{R2}(Cn).

Theorem 20. For a wheel Wn, with n ≥ 4, we have

b{R2}(Wn) =

{
2 n = 4, 5,
1 n ≥ 6.

Proof. Let v1, v2, . . . , vn be vertices of Wn. We mention that γ{R2}(Wn) = 2.
Let also assume that v1 is a vertex of maximum degree. For n = 4, 5, simple
inspections prove the result. For n ≥ 6, remove v1v2 and let f be a Roman
{2}-dominating function of Wn − v1v2. The following two cases could occur.

In case f(v2) ≥ 1, there exists at least two vertices of Wn, not incident to
v2 in Wn − v1v2, implying f

(
Wn − v1v2

)
≥ 3. In case f

(
v2
)
= 0, there exists a

vertex, say v, other than v1, with f(v) ≥ 1 and we reduce to previous case.

Theorem 21. For a complete bipartite graph Kp,q with p ≥ 4, q ≥ 5, we have

b{R2}

(
Kp,q

)
= min{p, q}.

Proof. Without loss of generality suppose min{p, q} = p ≤ q. Label the vertices
in the first part as i1, . . . , ip, and the vertices in the second part as j1, . . . , jq.
This way, the edge set of Kp,q would be E =

{
isjt : s = 1, . . . , p, t = 1, . . . , q}. A

simple inspection shows that γ{R2}

(
Kp,q

)
= 4. Removing all the edges incident to

j1 makes the vertex isolated and increases the Roman {2}-domination number to
5. Then b{R2}

(
Kp,q

)
≤ p. Other than that, removing a subset of edges, |S|, with

|S| ≤ p− 1, leaves two (unaffected) vertices, say is and jt with deg
(
is
)
= q and

deg
(
jt
)
= p. Now simply giving label 2 to these vertices will provide a Roman

{2}-dominating function of weight 4 and then b{R2}

(
Kp,q

)
≥ p.

Acknowledgement

We would like to thank the referees for their careful review of our manuscript
and some helpful suggestions.

References

[1] S. Akbari, M. Khatirinejad and S. Qajar, A note on the Roman bondage number of

planar graphs , Graphs Combin. 29 (2013) 327–331.
doi:10.1007/s00373-011-1129-8

http://dx.doi.org/10.1007/s00373-011-1129-8


268 A. Moradi, D.A. Mojdeh and O. Sharifi

[2] A. Bahremandpour, F.-T. Hu, S.M. Sheikholeslami and J.-M. Xu, On the Roman

bondage number of a graph, Discrete Math. Algorithms Appl. 5 (2013) #1350001.
doi:10.1142/S1793830913500018

[3] E.W. Chambers, B. Kinnersley, N. Prince and D.B. West, Extremal problems for

Roman domination, SIAM J. Discrete Math. 23 (2009) 1575–1586.
doi:10.1137/070699688

[4] M. Chellali, T.W. Haynes, S.T. Hedetniemi and A.A. McRae, Roman {2}-
domination, Discrete Appl. Math. 204 (2016) 22–28.
doi:10.1016/j.dam.2015.11.013

[5] E.J. Cockayne, P.M. Dreyer Jr., S.M. Hedetniemi and S.T. Hedetniemi, Roman

domination in graphs , Discrete Math. 278 (2004) 11–22.
doi:10.1016/j.disc.2003.06.004

[6] J.F. Fink, M.S. Jacobson, L.F. Kinch and J. Roberts, The bondage number of a

graph, Discrete Math. 86 (1990) 47–57.
doi:10.1016/0012-365X(90)90348-L

[7] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness (W.H. Freeman, 1979).

[8] J. Kleinberg and E. Tardos, Algorithm Design (Pearson Education, India, 2006).

[9] P. Roushini Leely Pushpam and T.N.M. Malini Mai, Weak roman domination in

graphs , Discuss. Math. Graph Theory 31 (2011) 115–128.
doi:10.7151/dmgt.1532

[10] N. Jafari Rad and L. Volkmann, Roman bondage in graphs , Discuss. Math. Graph
Theory 31 (2011) 763–773.
doi:10.7151/dmgt.1578

[11] M. Krzywkowski, 2-bondage in graphs , Int. J. Comput. Math. 90 (2013) 1358–1365.
doi:10.1080/00207160.2012.752817

[12] T. Turaci, On the average lower bondage number of a graph, RAIRO Oper. Res. 50
(2016) 1003–1012.
doi:10.1051/ro/2015062

Received 21 July 2017
Revised 19 February 2018
Accepted 12 March 2018

Powered by TCPDF (www.tcpdf.org)

http://dx.doi.org/10.1142/S1793830913500018
http://dx.doi.org/10.1137/070699688
http://dx.doi.org/10.1016/j.dam.2015.11.013
http://dx.doi.org/10.1016/j.disc.2003.06.004
http://dx.doi.org/10.1016/0012-365X\(90\)90348-L
http://dx.doi.org/10.7151/dmgt.1532
http://dx.doi.org/10.7151/dmgt.1578
http://dx.doi.org/10.1080/00207160.2012.752817
http://dx.doi.org/10.1051/ro/2015062
http://www.tcpdf.org

