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Abstract

Let G be a graph with vertex set V and no isolated vertices. A sub-
set S ⊆ V is a semipaired dominating set of G if every vertex in V \ S is
adjacent to a vertex in S and S can be partitioned into two element sub-
sets such that the vertices in each subset are at most distance two apart.
The semipaired domination number γpr2(G) is the minimum cardinality of a
semipaired dominating set of G. We show that if G is a connected graph G
of order n ≥ 3, then γpr2(G) ≤ 2

3
n, and we characterize the extremal graphs

achieving equality in the bound.
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1. Introduction

Paired domination was introduced in [6, 7] and a relaxed version of paired dom-
ination, called semipaired domination, was defined in [5]. Specifically, a set S
of vertices in a graph G is a dominating set of G if every vertex in V (G) \ S
is adjacent to a vertex in S. Further, the set S is a total dominating set of G
if every vertex of V (G) is adjacent to a vertex in S. A dominating set S is a
paired dominating set of G if the subgraph induced by S, denoted G[S], contains
a perfect matching. The domination number γ(G) is the minimum cardinality of
a dominating set of G and the paired domination number γpr(G) is the minimum
cardinality of a paired dominating set of G.

A relaxed form of total domination called semitotal domination was intro-
duced by Goddard, Henning and McPillan [2], and studied further in [9, 10, 11, 12]
and elsewhere. A set S of vertices in a graph G with no isolated vertices is a
semitotal dominating set of G if S is a dominating set of G and every vertex in
S is within distance 2 of another vertex of S.

We introduced a similar relaxation of paired domination in [5]. A set S of
vertices in a graph G with no isolated vertices is a semipaired dominating set,
abbreviated SPD-set, of G if S is a dominating set of G and every vertex in S is
paired with exactly one other vertex in S that is within distance 2 from it. In other
words, the vertices in the dominating set S can be partitioned into 2-sets such that
if {u, v} is a 2-set, then uv ∈ E(G) or the distance between u and v is 2. We say
that u and v are paired. We call such a pairing a semi-matching. The semipaired

domination number, denoted by γpr2(G), is the minimum cardinality of a SPD-set
of G. We call a semipaired dominating set of cardinality γpr2(G) a γpr2-set of G.
Note that both the paired domination number and the semipaired domination
number are even integers. For more thorough treatment of domination, see the
books [3, 4]. For a survey of paired domination, see [1].

1.1. Terminology and notation

For notation and graph theory terminology, we in general follow [13]. Specifically,
let G = (V,E) be a graph with vertex set V = V (G) of order n(G) = |V | and
edge set E = E(G) of size m(G) = |E|, and let v be a vertex in V . We denote
the degree of v in G by dG(v). The minimum degree among the vertices of G is
denoted by δ(G). The open neighborhood of v is the setNG(v) = {u ∈ V |uv ∈ E}
and the closed neighborhood of v is NG[v] = {v} ∪NG(v). For a set S ⊆ V , the
graph obtained from G by deleting the vertices in S and all edges incident with
S is denoted by G − S. If the graph G is clear from the context, we omit it in
the above expressions. For example, we write n, m, d(u), N(v) and N [v] rather
than n(G), m(G), dG(u), NG(v) and NG[v], respectively.

A leaf of G is a vertex of degree 1, while a support vertex of G is a vertex
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adjacent to a leaf. A strong support vertex is a support vertex with at least two
leaf-neighbors. A star is a tree with at most one vertex that is not a leaf. The
double star Sr,s is the tree with exactly two adjacent non-leaf vertices, one of
which is adjacent to r leaves and the other to s leaves. A cycle and path on n
vertices are denoted by Cn and Pn, respectively.

A rooted tree T distinguishes one vertex r called the root. For each vertex
v 6= r of T , the parent of v is the neighbor of v on the unique (r, v)-path, while
a child of v is any other neighbor of v. We denote all the children of a vertex v
by C(v). A descendant of v is a vertex u 6= v such that the unique (r, u)-path
contains v. Thus, every child of v is a descendant of v. We let D(v) denote the
set of descendants of v, and we define D[v] = D(v) ∪ {v}. The maximal subtree

at v is the subtree of T induced by D[v], and is denoted by Tv.

The distance between two vertices u and v in a connected graph G, denoted
by dG(u, v), is the length of a shortest (u, v)-path in G. The maximum distance
among all pairs of vertices of G is the diameter of G, denoted by diam(G). A
subset S of vertices in a graph G is a packing if the closed neighborhoods of
vertices in S are pairwise disjoint. An isolate-free graph is a graph with no
isolated vertex.

We use the standard notation [k] = {1, . . . , k}.

1.2. Special graphs and families

The corona G ◦ P1 of a graph G, also denoted cor(G) in the literature, is the
graph obtained from G by adding a pendant edge to each vertex of G. The 2-
corona G ◦ P2 of a graph G is the graph of order 3|V (G)| obtained from G by
attaching a path of length 2 to each vertex of G so that the resulting paths are
vertex-disjoint. The 2-corona K1,3 ◦P2 of a star K1,3 and the corona P3 ◦P1 of a
path P3 are illustrated in Figure 1(a) and 1(b), respectively, where the darkened
vertices represent a minimum semipaired dominating set. The graph illustrated
in Figure 1(c) that is obtained from a cycle C4 by attaching a path of length 2
to one of its vertices is called the stingray, or just SR for short.

(a) K1,3 ◦ P2 (b) P3 ◦ P1 (c) SR

Figure 1. Special graphs.
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1.3. Known results

Every paired dominating set of a graph G is a SPD-set and every SPD-set is a
dominating set. Hence, we have the following observation, where it is observed
in [7] that γpr(G) ≤ 2γ(G) for every graph G with no isolated vertices.

Observation 1. If G is an isolate-free graph, then γ(G) ≤ γpr2(G) ≤ γpr(G) ≤
2γ(G).

The following sharp upper bound on the paired-domination number of a
connected graph of order at least 3 was given in [7].

Theorem 2 [7]. If G is a connected graph of order n ≥ 3, then γpr(G) ≤ n − 1
with equality if and only if G is C3, C5 or a subdivided star.

If minimum degree is at least 2 and the order at least 6, then the upper bound
in Theorem 2 on the paired-domination number can be improved from one less
than its order to two-thirds its order.

Theorem 3 [7, 14]. If G is a connected graph of order n ≥ 6 and minimum

degree at least 2, then γpr(G) ≤ 2
3
n.

The graphs achieving equality in Theorem 3 are characterized in [8]. As
a consequence of this result, if G is a connected graph of order n ≥ 10 with
minimum degree at least 2, then γpr(G) ≤ 2

3
(n− 1), and this bound is tight.

1.4. Main results

Our aim in this paper is to show that the tight upper bound of n− 1 on γpr(G)
given in Theorem 2 can be significantly improved for the semipaired domination
number. More precisely, we prove that the upper bound of 2n/3 on γpr(G) given
in Theorem 3 holds for γpr2(G) if we relax the minimum degree two condition. A
proof of Theorem 4 is given in Section 2.

Theorem 4. If T is a tree of order n ≥ 3, then γpr2(G) ≤ 2
3
n, with equality if

and only if T is the corona, P3 ◦ P1, of a path P3 or T is the 2-corona of a tree.

More generally, we prove the following result. A proof of Theorem 5 is given
in Section 3.

Theorem 5. If G is a connected graph of order n ≥ 3, then γpr2(G) ≤ 2
3
n, with

equality if and only if one of the following hold.

(a) G is a cycle C3 or a cycle C6.

(b) G is the corona P3 ◦ P1 of a path P3.

(c) G is the corona C3 ◦ P1 of a cycle C3.

(d) G is the stingray SR.

(e) G is the 2-corona of a connected graph.
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2. Proof of Theorem 4

In this section, we prove Theorem 4. We first prove two preliminary lemmas.

Lemma 6. If T is a tree of order at least 2, then there exists a minimum SPD-set

of T that contains all the support vertices of T .

Proof. Let T be a tree of order at least 2, and let S be a minimum SPD-set of T
that contains as many support vertices of T as possible. Suppose, to the contrary,
that there is a support vertex v of T that does not belong to S. Let u be a leaf
neighbor of v. In order to dominate u, we note that u ∈ S. Let u′ be the vertex
of S that is paired with u. Since v /∈ S, we note that u′ is a neighbor of v distinct
from u. Replacing u in S with the vertex v, produces a minimum SPD-set, S′,
of T where v is paired with u′ and where all other pairings of vertices remain
the same as the original pairings in S. Since S′ is a minimum SPD-set of T that
contains more support vertices than does S, we contradict our choice of the set
S. Hence, every support vertex of T belongs to S.

We prove next that the semipaired domination number of the 2-corona of a
tree is exactly two-thirds its order.

Lemma 7. If T is the 2-corona of a tree and T has order n, then γpr2(T ) =
2
3
n.

Proof. Let T be the 2-corona of a tree T ′, and so T = T ′ ◦ P2. Let T ′ have
order n′, and so T has order n = 3n′. If n′ = 1, then T = P3, n = 3, and γpr2(T )
= 2 = 2n/3. If n′ = 2, then T ′ = P2, T = P6, n = 6, and γpr2(T ) = 4 = 2n/3.
Hence, we may assume that n′ ≥ 3, and so n ≥ 9. Let X be the set of support
vertices in T , and so |X| = n/3. We note that γ(T ) = |X| = n/3 and the set
X is the unique minimum dominating set of T . By Observation 1, γpr2(T ) ≤
2γ(T ) = 2|X| = 2n/3. We show next that γpr2(T ) ≥ 2n/3. By Lemma 6, there
exists a minimum SPD-set, S, of T that contains all the support vertices of T .
Thus, X ⊆ S. Since the set X is a packing in T , no two vertices of X are paired
together in S, implying that each vertex in X is paired with a vertex in V (T )\X.
Thus, γpr2(T ) = |S| ≥ 2|X| = 2n/3. Consequently, γpr2(T ) = 2n/3.

We are now in a position to prove Theorem 4. Recall its statement.

Theorem 4. If T is a tree of order n ≥ 3, then γpr2(G) ≤ 2
3
n, with equality if

and only if T is the corona, P3 ◦ P1, of a path P3 or T is the 2-corona of a tree.

Proof. We proceed by induction of the order n ≥ 3 of a tree T to prove that
γpr2(T ) ≤ 2n/3 and that if equality holds, then T = P3 ◦ P1 or T is the 2-corona
of a tree. If n = 3, then T = P3 and γpr2(T ) = 2 = 2n/3. Further in this case
we note that T = K1 ◦ P2 is the 2-corona of a trivial tree K1. This establishes
the base case. Suppose that n ≥ 4 and that for every tree T ′ of order n′, where
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3 ≤ n′ < n, γpr2(T
′) ≤ 2n′/3, and that if equality holds, then T ′ = P3 ◦ P1 or T ′

is the 2-corona of a tree. Let T be a tree of order n.

Suppose that T has a strong support vertex z. Let u and v be two leaf
neighbors of z, and consider the tree T ′ = T − v of order n′ = n − 1 ≥ 3.
By Lemma 6, there exists a minimum SPD-set, S′, of T ′ that contains all the
support vertices of T ′. In particular, the set S′ contains the support vertex z of
T ′, implying that S′ is a SPD-set of T . Applying our inductive hypothesis to the
tree T ′, we have γpr2(T ) ≤ |S′| = γpr2(T

′) ≤ 2n′/3 = 2(n− 1)/3 < 2n/3. Hence,
we may assume that T has no strong support vertex, for otherwise the desired
result holds. Thus, every support vertex of T has exactly one leaf neighbor. Since
T has order n ≥ 4 and T has no strong support vertex, we note that diam(T ) ≥ 3.
If diam(T ) = 3, then T is a path P4, and so n = 4 and γpr2(T ) = 2 < 2n/3.
Hence, diam(T ) ≥ 4. We proceed further with the following claim.

Claim 8. If diam(T ) = 4, then γpr2(T ) ≤
2
3
n, with equality if and only if T =

P3 ◦ P1.

Proof. Suppose that diam(T ) = 4. Since T has no strong support vertex, either
T is obtained from a star K1,k where k ≥ 2 by subdividing every edge of T exactly
once or T is obtained from a star K1,k+1 where k ≥ 2 by subdividing k edges of
T exactly once.

Suppose firstly that T is obtained from a starK1,k where k ≥ 2 by subdividing
every edge of T exactly once. In this case, n = 2k + 1. Let w denote the central
vertex of T and let v1, v2, . . . , vk denote the neighbors of w. If k ≥ 2 is even,
then the set N(w) is a SPD-set of T , with v2i−1 paired with v2i for i ∈

[

k
2

]

, and
so γpr2(T ) ≤ k = (n − 1)/2. If k ≥ 3 is odd, then the set N [w] is a SPD-set of
T , with v2i−1 paired with v2i for i ∈

[

k−1
2

]

and with w paired with vk, and so
γpr2(T ) ≤ k + 1 = (n+ 1)/2. In both cases, γpr2(T ) ≤ (n+ 1)/2 < 2n/3.

Suppose secondly that T is obtained from a star K1,k+1 where k ≥ 2 by
subdividing k edges of T exactly once. In this case, n = 2k+2. Once again, let w
denote the central vertex of T . Further, let x denote the leaf neighbor of w and
let v1, v2, . . . , vk denote the non-leaf neighbors of w. If k ≥ 3 is odd, then the set
N [w] \ {x} is a SPD-set of T , with v2i−1 paired with v2i for i ∈

[

k−1
2

]

and with
w paired with vk, and so γpr2(T ) ≤ k + 1 = n/2 < 2n/3. If k ≥ 4 is even, then
the set N [w] is a SPD-set of T , with v2i−1 paired with v2i for i ∈

[

k
2

]

and with w
paired with x, and so γpr2(T ) ≤ k+2 = n/2+1 ≤ 2n/3. If k ≥ 3, then n ≥ 8 and
γpr2(T ) ≤ n/2+1 < 2n/3. If k = 2, then T = P3 ◦P1 and γpr2(T ) = 4 = 2n/3.

By Claim 8, we may assume that diam(T ) ≥ 5, for otherwise the desired
result holds. This implies that n ≥ 6. If n = 6, then T = P6 is the 2-corona
of a tree P2. Hence, we may further assume that n ≥ 7. Let u and r be two
vertices at maximum distance apart in T . Necessarily, u and r are leaves and
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dT (u, v) = diam(T ). We now root the tree T at the vertex r. Let v be the parent
of u, w the parent of v, x the parent of w, y the parent of x, and z the parent of
y. If diam(T ) = 5, we note that r = z.

By our choice of u, every child of v is a leaf of T . Since T has no strong
support vertex, dT (v) = 2 and so NT (v) = {u,w}. Furthermore, every child
of w is either a leaf or a support vertex of degree 2, and w has at most one
leaf neighbor. We consider two cases depending on the degree of w in T . Let
T ′ = T − Tw and let T ′ have order n′. Recall that n ≥ 7. Since diam(T ) ≥ 5,
we note that {x, y, z} ⊆ V (T ′), and so n′ ≥ 3. With our earlier assumptions, we
prove next the following two claims.

Claim 9. If dT (w) = 2, then γpr2(T ) ≤
2
3
n, with equality if and only if T is the

2-corona of the tree.

Proof. Suppose that dT (w) = 2. In this case, n′ = n− 3 ≥ 4. By the inductive
hypothesis, γpr2(T

′) ≤ 2n′/3, and if equality holds, then T ′ = P3◦P1 or T
′ is the 2-

corona of a tree. Every γpr2-set of T
′ can be extended to a SPD-set of T by adding

to it the pair of vertices v and w, and so γpr2(T ) ≤ γpr2(T
′)+2 ≤ 2n′/3+2 = 2n/3.

Suppose that γpr2(T ) = 2n/3. Thus, we must have equality throughout the
above inequality chain. In particular, γpr2(T

′) = 2n′/3, and so T ′ = P3 ◦ P1 or
T ′ = H ′ ◦ P2 is the 2-corona of some tree H ′.

Suppose that T ′ = P3 ◦ P1, and so T ′ is the tree illustrated in Figure 1(b).
We note that n′ = 6 and n = 9. Let {a, b, c} be the set of support vertices of T ′,
and let a′, b′ and c′ be the leaf neighbors of a, b and c, respectively, where abc
is a path P3. By symmetry, we may assume renaming vertices of T ′ if necessary,
that x ∈ {a, a′, b, b′}. If x ∈ {a, a′}, then S = {b, c, v, x} is a SPD-set where v
and x are paired and b and c are paired. If x ∈ {b, b′}, then S = {a, c, v, x}
is a SPD-set where a and c are paired and v and x are paired. In both cases,
γpr2(T ) ≤ |S| = 4 < 2n/3, a contradiction.

Hence, T ′ = H ′◦P2 is the 2-corona of some treeH ′. Since n′ ≥ 4, we note that
n(H ′) ≥ 2. Let X ′ be the set of support vertices of T ′, and let S′ = X ′ ∪ V (H ′).
We note that S′ is a SPD-set of T ′ of size 2n′/3, and is therefore a γpr2-set of T

′. If
x is leaf in T ′, then noting that n(H ′) ≥ 2, the set (S′\{y, z})∪{x, v} is a SPD-set
of T , implying that γpr2(T ) ≤ |S′| = γpr2(T

′) < 2n/3, a contradiction. Suppose
that x is a support vertex in T ′. Since n(H ′) ≥ 2, we note that in this case the
vertex y is the neighbor of x that belongs to V (H ′). The set (S′ \ {y})∪ {v} is a
SPD-set of T , and so γpr2(T ) ≤ |S′| = γpr2(T

′) < 2n/3, a contradiction. Hence,
x ∈ V (H ′). Let H be the tree obtained from H ′ by adding to it the vertex w and
the edge wx. We note that H = T [V (H ′) ∪ {w}] and that T is the 2-corona of
the tree H; that is, T = H ◦ P2. Thus, if γpr2(T ) = 2n/3, then T is the 2-corona
of the tree. This completes the proof of Claim 9.
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Claim 10. If dT (w) ≥ 3, then γpr2(T ) <
2
3
n.

Proof. Suppose that dT (w) ≥ 3. We note that the maximal subtree, Tw, of T
at w is either obtained from a star K1,k where k ≥ 2 by subdividing every edge
of T exactly once or is obtained from a star K1,k+1 where k ≥ 2 by subdividing
k edges of T exactly once. Let nw = n(Tw). An identical proof as in the proof of
Claim 8 shows that either γpr2(Tw) <

2
3
nw or Tw = P3 ◦ P1 and γpr2(Tw) =

2
3
nw.

Every minimum SPD-set of T ′ can be extended to a SPD-set of T by adding to it
a minimum SPD-set of Tw, where the pairing of the vertices is preserved. Thus,

(1) γpr2(T ) ≤ γpr2(T
′) + γpr2(Tw) ≤

2

3
n′ +

2

3
nw =

2

3
n.

We show that γpr2(T ) < 2
3
n. Suppose, to the contrary, that γpr2(T ) =

2
3
n. Then we must have equality throughout the above inequality chain (1). In

particular, γpr2(T
′) = 2

3
n′, implying that T ′ = P3 ◦ P1 or T ′ = H ′ ◦ P2 is the

2-corona of some tree H ′, and γpr2(Tw) =
2
3
nw, implying that Tw = P3 ◦ P1. Let

v′ be the leaf neighbor of w in Tw, and let v1 and v2 be the two children of w
that are support vertices. We note that either v = v1 or v = v2. We can choose
the set Sw to consist of w and its three children, where w is paired with v′ and
where v1 and v2 are paired.

Suppose that T ′ = P3 ◦P1. Thus, n
′ = 6 and n = 12. If x is a leaf in T ′, then

the set (Sw \ {v′}) ∪ {x} can be extended to a SPD-set of T by adding to it the
two support vertices of T ′ that are not adjacent to x. If x is a support vertex of
T , then the set (Sw \ {v′})∪{x} can be extended to a SPD-set of T by adding to
it the two support vertices of T ′ different from x. In both cases, the vertices w
and x are paired and the two support vertices of T ′ different from x are paired.
Thus, γpr2(T ) ≤ 4 < 2

3
n, a contradiction.

Hence, T ′ = H ′ ◦ P2 is the 2-corona of some tree H ′. Let X ′ be the set of
support vertices of T ′, and let S′ = X ′ ∪ V (H ′). We note that S′ is a SPD-set
of T ′ of size 2n′/3, and is therefore a γpr2-set of T ′. Suppose that x is a leaf in
T ′. In this case, the set (S′ \ {z}) ∪ (Sw \ {v′}) is a SPD-set of T with w and
y paired and where all other pairings of vertices remain the same as the original
pairings. Suppose that x is a support vertex in T ′. We note that in this case, the
vertex y is the neighbor of x that belongs to H ′. The set (S′ \ {y}) ∪ (Sw \ {v′})
is a SPD-set of T with w and x paired and where all other pairings of vertices
remain the same as the original pairings. Suppose that x belongs to V (H ′). Let
x′′ be the neighbor of x in T ′ that does not belong to H ′. In this case, the set
(S′ \{x})∪(Sw \{v′}) is a SPD-set of T with w and x′′ paired and where all other
pairings of vertices remain the same as the original pairings. In all three cases,
γpr2(T ) ≤ |S′| + |Sw| − 2 = γpr2(T

′) + γpr2(Tw) − 2 = 2
3
n − 2, a contradiction.

Therefore, γpr2(T ) <
2
3
n, as claimed. This completes the proof of Claim 10.

The proof of Theorem 4 now follows from Claim 9 and Claim 10.
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3. Proof of Theorem 5

In this section, we prove Theorem 5. Recall its statement.

Theorem 5. If G is a connected graph of order n ≥ 3, then γpr2(G) ≤ 2
3
n, with

equality if and only if G ∈ {C3, C6, P3 ◦ P1, C3 ◦ P1} or G is the stingray SR or

G is the 2-corona of a connected graph.

Proof. Let G be a connected graph of order n ≥ 3 and let T be an arbitrary
spanning tree of G. Since deleting a cycle edge from a graph cannot decrease the
semipaired domination number, as an immediate consequence of Theorem 4, we
have that γpr2(G) ≤ γpr2(T ) ≤

2
3
n.

Suppose that γpr2(G) = 2
3
n. Thus, we must have equality throughout the

above inequality chain, implying that γpr2(G) = γpr2(T ) and γpr2(T ) = 2
3
n for

every spanning tree T of G. In particular, by Theorem 4, the spanning tree T is
either the corona P3 ◦ P1 or is the 2-corona of a tree. We proceed further with
the following claims.

Claim 11. If T = P3 ◦P1, then G = P3 ◦P1 or G = C3 ◦P1 or G is the stingray

SR.

Proof. Suppose that T = P3 ◦ P1. Let a, b and c be the three support vertices
of T , with leaf neighbors a′, b′ and c′, respectively, and where abc is a path P3.
If T = G, then G = P3 ◦ P1, as desired. Hence we may assume that T 6= G. Let
e ∈ E(G) \ E(T ). If e = ab′, let S = {a, c}. If e = ac′, let S = {a, b}. If e = ba′,
let S = {b, c}. If e = a′c′, let S = {a′, b}. In all cases, S is a SPD-set, and so
γpr2(G) = 2 < γpr2(T ), a contradiction. Hence, e /∈ {ab′, ac′, ba′}. By symmetry,
e /∈ {cb′, ca′, bc′}. Hence, e ∈ {ac, a′b′, b′c′}. Thus, E(G) \ E(T ) ⊆ {ac, a′b′, b′c′}.
If {a′b′, b′c′} ⊆ E(G), let D = {b, b′}. If {ac, a′b′} ⊆ E(G), let D = {a′, c}. If
{ac, b′c′} ⊆ E(G), let D = {a, b′}. In all three cases, D is a SPD-set, and so
γpr2(G) = 2 < γpr2(T ), a contradiction. Hence, E(G) \ E(T ) = {e}; that is, e is
the only edge in G that is not in T , implying that either e = ac, in which case
G = C3 ◦ P1, or e ∈ {a′b′, b′c′}, in which case G is the stingray SR.

By Claim 11, we may assume that T 6= P3 ◦ P1, for otherwise the desired
result holds. Hence, T is the 2-corona of a tree, say T ′. Let A be the set of
leaves of T , let B be the set of support vertices of T , and let C = V (T ′). Thus,
(A,B,C) is a partition of V (T ). We note that |C| = n(T ′).

Claim 12. If |C| = 1, then G = C3 or G = K1 ◦ P2.

Proof. If |C| = 1, then T = P3, and so G = P3, which is the 2-corona K1 ◦P2 of
K1, or G = C3.

Claim 13. If |C| = 2, then G = C6 or G is the stingray SR or G = P2 ◦ P2.
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Proof. Suppose that |C| = 2. In this case, T = P6. If T = G, then G = P2◦P2 is
the 2-corona of the graph P2, as desired. Hence we may assume that T 6= G. Let
e ∈ E(G) \ E(T ). Let T be the path v1v2 · · · v6. If e = v1v3 or e = v1v5,
let S = {v3, v5}. If e = v2v4 or e = v2v5 or e = v2v6, let S = {v2, v5}.
In all cases, S is a SPD-set, and so γpr2(G) = 2 < γpr2(T ), a contradiction.
Hence, e /∈ {v1v3, v1v5, v2v4, v2v5, v2v6}. By symmetry, e /∈ {v4v6, v3v5}. Hence,
e ∈ {v1v4, v1v6, v3v6}. Thus, E(G) \ E(T ) ⊆ {v1v4, v1v6, v3v6}. If {v1v4, v1v6} ⊆
E(G), letD = {v1, v4}. If {v1v4, v3v6} ⊆ E(G), letD = {v3, v4}. If {v1v6, v3v6} ⊆
E(G), let D = {v3, v6}. In all three cases, D is a SPD-set, and so γpr2(G) = 2 <
γpr2(T ), a contradiction. Hence, E(G) \ E(T ) = {e}; that is, e is the only edge
in G that is not in T . If e = v1v6, then G = C6, while if e = v1v4 or e = v3v6,
then G is the stingray SR.

By Claims 12 and 13, we may assume that |C| ≥ 3, for otherwise the desired
result holds. We show that every edge of G that is not in T joins two vertices of
C. We shall use the following notation. Let A = {a1, . . . , ar}, B = {b1, . . . , br},
and C = {c1, . . . , cr}, where r = n/3 and where aibici is a path in T for i ∈ [r].
Let MAB = {a1b1, . . . , arbr} and MBC = {b1c1, . . . , brcr}. For sets X and Y in
G, let [X,Y ] be the set of all edges between X and Y in G. Let S = B ∪ C. We
note that S with semi-matching M = {{bi, ci} | 1 ≤ i ≤ r} is a γpr2-set of T . In
particular, γpr2(T ) = |S| = 2

3
n.

Claim 14. The following hold in the graph G.

(a) The set A is independent.

(b) [A,B] = MAB.

(c) [A,C] = ∅.

(d) The set B is independent.

(e) [B,C] = MBC .

Proof. (a) Suppose that there is an edge e in G that joins two vertices of A.
Renaming vertices if necessary, we may assume that e = a1a2. Since |C| ≥ 3 and
T ′ = T [C] is a tree, the vertex c1 has a neighbor in T that belongs to C and
is different from c2 or the vertex c2 has a neighbor in T that belongs to C and
is different from c1 (for otherwise, T ′ = P2, a contradiction to our assumption
that n(T ′) = |C| ≥ 3). We may assume that c2 has a neighbor in T that belongs
to C and is different from c1. The set D = (S \ {b2, c1, c2}) ∪ {a2} with semi-
matching (M \ {{b1, c1}, {b2, c2}}) ∪ {{a2, b1}} is a SPD-set of G, implying that
γpr2(G) ≤ |D| = |S| − 2 = γpr2(T )− 2 = 2

3
n− 2, a contradiction. Hence, A is an

independent set in G.
(b) Suppose that there is an edge e in G that joins a vertex of A and a vertex

of B, but does not belong to the matching MAB. Renaming vertices if necessary,
we may assume that e = a1b2. In this case, the set D = (S \ {c1, c2}) with
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semi-matching (M \ {{b1, c1}, {b2, c2}}) ∪ {{b1, b2}} is a SPD-set of G, implying
that γpr2(G) < γpr2(T ), a contradiction. Hence, the only edges in [A,B] are the
edge in the matching MAB.

(c) Suppose that there is an edge e inG that joins a vertex of A and a vertex of
C. Suppose firstly that e = aici. Renaming vertices if necessary, we may assume
that e = a1c1. In this case, letting c2 be a neighbor of c1 in T that belongs to the
set C, the set D = (S \ {b1, c2}) with semi-matching (M \ {{b1, c1}, {b2, c2}}) ∪
{{b2, c1}} is a SPD-set of G, implying that γpr2(G) < γpr2(T ), a contradiction.
Suppose secondly that e = aicj where i 6= j. Renaming vertices if necessary, we
may assume that e = a1c2. If c1 has a neighbor in T that belongs to C and is
different from c2, then the set D = (S \ {b1, c1, c2}) ∪ {a1} with semi-matching
(M \ {{b1, c1}, {b2, c2}}) ∪ {{a1, b2}} is a SPD-set of G, implying that γpr2(G) <
γpr2(T ), a contradiction. Thus, c1 is adjacent in T to c2 but to no other vertex of
C. Since |C| ≥ 3 and T ′ = T [C] is a tree, the vertex c2 has a neighbor in T , say c3,
that belongs to C and is different from c1. Thus, the set D = (S \ {b1, c3}) with
semi-matching (M \ {{b1, c1}, {b2, c2}, {b3, c3}})∪{{b2, c1}, {b3, c2}} is a SPD-set
of G, implying that γpr2(G) < γpr2(T ), a contradiction. Hence, [A,C] = ∅.

(d) Suppose that there is an edge e in G that joins two vertices of B. Re-
naming vertices if necessary, we may assume that e = b1b2. In this case, the set
D = (S \ {c1, c2}) with semi-matching (M \ {{b1, c1}, {b2, c2}}) ∪ {{b1, b2}} is a
SPD-set of G, implying that γpr2(G) < γpr2(T ), a contradiction. Hence, the set
B is independent.

(e) Suppose that there is an edge e in G that joins a vertex of B and a vertex
of C, but does not belong to the matching MBC . Renaming vertices if necessary,
we may assume that e = b1c2. In this case, the set D = (S \ {c1, c2}) with semi-
matching (M \ {{b1, c1}, {b2, c2}}) ∪ {{b1, b2}} is a SPD-set of G, implying that
γpr2(G) < γpr2(T ), a contradiction. Hence, the only edges in [B,C] are the edge
in the matching MBC . This completes the proof of Claim 14.

By Claim 14, if there is an edge of G that does not belong to T , then such
an edge must join two vertices of C. This implies that G is the 2-corona of a
connected graph G′, where G′ = G[C]. This completes the proof of Theorem 5.

4. Closing Comments

The concept of a semipaired dominating set can be extended to the concept of a
distance paired dominating set in the natural way. For k ≥ 1, a set S of vertices
in a graph G with no isolated vertices is a k-distance paired dominating set of G if
S is a dominating set of G and every vertex in S is paired with exactly one other
vertex in S that is within distance k from it. The k-distance paired domination

number, denoted by γprk(G), is the minimum cardinality of a k-distance paired
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dominating set of G. We note that a 1-distance paired dominating set is a paired
dominating set, and so γpr1(G) = γpr(G).

If G is a connected graph of order n ≥ 3, then γpr1(G) ≤ n−1 (see Theorem 2)
and γpr2(G) ≤ 2

3
n (see Theorem 5), and these bounds are tight.

If G is the graph of order n = 3ℓ+ 1 obtained from a star K1,ℓ where ℓ ≥ 2
by subdividing every edge twice, then γpr3(G) = 2ℓ = 2

3
(n − 1). Thus since

γpr3(G) ≤ γpr2(G) ≤ 2
3
n, the upper bound of 2

3
n on γpr3(G) is asymptotically

best possible. One can in fact show using analogous proofs as in Theorems 4
and 5 that if G is a connected graph of order n ≥ 4, then γpr3(G) ≤ 2

3
(n − 1).

Since this is only a very small improvement on the 2
3
n upper bound, we omit the

details of the proof.
If k ≥ diam(G), then γprk(G) = γ(G) if γ(G) is even and γprk(G) = γ(G)+1

if γ(G) is odd. Thus in this case, γprk(G) ≤ γ(G)+ 1 ≤ 1
2
n+1, and the bound is

tight as may be seen by taking G to be the corona of a connected graph of odd
order. For 4 ≤ k ≤ diam(G)− 1 and G a connected graph of order n ≥ k+1, we
have yet to determine a sharp upper bound on γprk(G). It is quite possible that
γprk(G) ≤ 1

2
n+ 1 also holds in this case.
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