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Abstract

Let G be a graph with vertex set V' and no isolated vertices. A sub-
set S C V is a semipaired dominating set of G if every vertex in V' \ S is
adjacent to a vertex in S and S can be partitioned into two element sub-
sets such that the vertices in each subset are at most distance two apart.
The semipaired domination number 7,,2(G) is the minimum cardinality of a
semipaired dominating set of G. We show that if G is a connected graph G
of order n > 3, then V2 (G) < %n, and we characterize the extremal graphs
achieving equality in the bound.
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1. INTRODUCTION

Paired domination was introduced in [6, 7] and a relaxed version of paired dom-
ination, called semipaired domination, was defined in [5]. Specifically, a set S
of vertices in a graph G is a dominating set of G if every vertex in V(G) \ S
is adjacent to a vertex in S. Further, the set S is a total dominating set of G
if every vertex of V(G) is adjacent to a vertex in S. A dominating set S is a
paired dominating set of G if the subgraph induced by S, denoted G[S], contains
a perfect matching. The domination number ~(G) is the minimum cardinality of
a dominating set of G and the paired domination number yp(G) is the minimum
cardinality of a paired dominating set of G.

A relaxed form of total domination called semitotal domination was intro-
duced by Goddard, Henning and McPillan [2], and studied further in [9, 10, 11, 12]
and elsewhere. A set S of vertices in a graph G with no isolated vertices is a
semitotal dominating set of G if S is a dominating set of G and every vertex in
S is within distance 2 of another vertex of S.

We introduced a similar relaxation of paired domination in [5]. A set S of
vertices in a graph G with no isolated vertices is a semipaired dominating set,
abbreviated SPD-set, of G if S is a dominating set of G and every vertex in S is
paired with exactly one other vertex in S that is within distance 2 from it. In other
words, the vertices in the dominating set S can be partitioned into 2-sets such that
if {u, v} is a 2-set, then uwv € E(G) or the distance between u and v is 2. We say
that u and v are paired. We call such a pairing a semi-matching. The semipaired
domination number, denoted by vpr2(G), is the minimum cardinality of a SPD-set
of G. We call a semipaired dominating set of cardinality vypr2(G) a Ypr2-set of G.
Note that both the paired domination number and the semipaired domination
number are even integers. For more thorough treatment of domination, see the
books [3, 4]. For a survey of paired domination, see [1].

1.1. Terminology and notation

For notation and graph theory terminology, we in general follow [13]. Specifically,
let G = (V,E) be a graph with vertex set V' = V(G) of order n(G) = |V| and
edge set £ = E(G) of size m(G) = |E|, and let v be a vertex in V. We denote
the degree of v in G by dg(v). The minimum degree among the vertices of G is
denoted by 6(G). The open neighborhood of v is the set Ng(v) = {u € V |uv € E}
and the closed neighborhood of v is Ng[v] = {v} U N¢g(v). For a set S C V, the
graph obtained from G by deleting the vertices in S and all edges incident with
S is denoted by G — S. If the graph G is clear from the context, we omit it in
the above expressions. For example, we write n, m, d(u), N(v) and N[v] rather
than n(G), m(G), dg(u), Ng(v) and Ng|v], respectively.

A leaf of G is a vertex of degree 1, while a support vertex of G is a vertex
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adjacent to a leaf. A strong support vertex is a support vertex with at least two
leaf-neighbors. A star is a tree with at most one vertex that is not a leaf. The
double star S, s is the tree with exactly two adjacent non-leaf vertices, one of
which is adjacent to r leaves and the other to s leaves. A cycle and path on n
vertices are denoted by C,, and P,, respectively.

A rooted tree T distinguishes one vertex r called the root. For each vertex
v # r of T, the parent of v is the neighbor of v on the unique (r,v)-path, while
a child of v is any other neighbor of v. We denote all the children of a vertex v
by C(v). A descendant of v is a vertex u # v such that the unique (r,u)-path
contains v. Thus, every child of v is a descendant of v. We let D(v) denote the
set of descendants of v, and we define D[v] = D(v) U {v}. The mazimal subtree
at v is the subtree of T' induced by D[v], and is denoted by T,,.

The distance between two vertices v and v in a connected graph G, denoted
by dg(u,v), is the length of a shortest (u,v)-path in G. The maximum distance
among all pairs of vertices of G is the diameter of G, denoted by diam(G). A
subset S of vertices in a graph G is a packing if the closed neighborhoods of
vertices in S are pairwise disjoint. An isolate-free graph is a graph with no
isolated vertex.

We use the standard notation [k] = {1,...,k}.

1.2. Special graphs and families

The corona G o P; of a graph G, also denoted cor(G) in the literature, is the
graph obtained from G by adding a pendant edge to each vertex of G. The 2-
corona G o Py of a graph G is the graph of order 3|V (G)| obtained from G by
attaching a path of length 2 to each vertex of G so that the resulting paths are
vertex-disjoint. The 2-corona K30 P of a star K7 3 and the corona P30 P; of a
path Ps are illustrated in Figure 1(a) and 1(b), respectively, where the darkened
vertices represent a minimum semipaired dominating set. The graph illustrated
in Figure 1(c) that is obtained from a cycle Cy by attaching a path of length 2
to one of its vertices is called the stingray, or just SR for short.

[T

(a) K130 P, (b) Pso P (¢) SR

Figure 1. Special graphs.
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1.3. Known results

Every paired dominating set of a graph G is a SPD-set and every SPD-set is a
dominating set. Hence, we have the following observation, where it is observed
in [7] that v, (G) < 27(G) for every graph G with no isolated vertices.

Observation 1. If G is an isolate-free graph, then v(G) < Yp2(G) < Ypr(G) <
2v(G).

The following sharp upper bound on the paired-domination number of a
connected graph of order at least 3 was given in [7].

Theorem 2 [7]. If G is a connected graph of order n > 3, then vp(G) <n —1
with equality if and only if G is C3, Cs or a subdivided star.

If minimum degree is at least 2 and the order at least 6, then the upper bound
in Theorem 2 on the paired-domination number can be improved from one less
than its order to two-thirds its order.

Theorem 3 [7, 14]. If G is a connected graph of order n > 6 and minimum
degree at least 2, then v (G) < 2n.

The graphs achieving equality in Theorem 3 are characterized in [8]. As
a consequence of this result, if G is a connected graph of order n > 10 with
2

minimum degree at least 2, then v,,(G) < 5(n — 1), and this bound is tight.

1.4. Main results

Our aim in this paper is to show that the tight upper bound of n — 1 on v (G)
given in Theorem 2 can be significantly improved for the semipaired domination
number. More precisely, we prove that the upper bound of 2n/3 on 7, (G) given
in Theorem 3 holds for yp,2(G) if we relax the minimum degree two condition. A
proof of Theorem 4 is given in Section 2.

Theorem 4. If T is a tree of order n > 3, then yp2(G) < %n, with equality if
and only if T is the corona, P3o Py, of a path P3 or T is the 2-corona of a tree.

More generally, we prove the following result. A proof of Theorem 5 is given
in Section 3.

Theorem 5. If G is a connected graph of order n > 3, then vpr2(G) < %n, with
equality if and only if one of the following hold.

(a) G is a cycle C3 or a cycle Cg.

(b) G is the corona P3o Py of a path Ps.

(¢) G is the corona Cso0 Py of a cycle Cs.

(d) G is the stingray SR.

(e)

e) G is the 2-corona of a connected graph.
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2. PROOF OF THEOREM 4

In this section, we prove Theorem 4. We first prove two preliminary lemmas.

Lemma 6. IfT is a tree of order at least 2, then there exists a minimum SPD-set
of T that contains all the support vertices of T.

Proof. Let T be a tree of order at least 2, and let S be a minimum SPD-set of T'
that contains as many support vertices of T" as possible. Suppose, to the contrary,
that there is a support vertex v of T that does not belong to S. Let u be a leaf
neighbor of v. In order to dominate u, we note that u € S. Let u’ be the vertex
of S that is paired with u. Since v ¢ S, we note that ' is a neighbor of v distinct
from u. Replacing u in S with the vertex v, produces a minimum SPD-set, S,
of T where v is paired with u' and where all other pairings of vertices remain
the same as the original pairings in S. Since S’ is a minimum SPD-set of T' that
contains more support vertices than does S, we contradict our choice of the set
S. Hence, every support vertex of T' belongs to S. [

We prove next that the semipaired domination number of the 2-corona of a
tree is exactly two-thirds its order.

Lemma 7. If T is the 2-corona of a tree and T has order n, then vpea(T) = %n

Proof. Let T be the 2-corona of a tree T”, and so T' = T’ o P,. Let T" have
order n/, and so T has order n = 3n’. If n’ =1, then T'= P3, n = 3, and ypr2(7T)
=2=2n/3. It n/ =2, then T" = P», T = Fs, n = 6, and yp2(T) = 4 = 2n/3.
Hence, we may assume that n’ > 3, and so n > 9. Let X be the set of support
vertices in 7', and so |X| = n/3. We note that v(T') = |X| = n/3 and the set
X is the unique minimum dominating set of 7. By Observation 1, yp2(T) <
29(T) = 2|X| = 2n/3. We show next that ypr2(7) > 2n/3. By Lemma 6, there
exists a minimum SPD-set, S, of T that contains all the support vertices of T
Thus, X C S. Since the set X is a packing in 7', no two vertices of X are paired
together in S, implying that each vertex in X is paired with a vertex in V(T")\ X.
Thus, ypr2(T') = |S| > 2|X| = 2n/3. Consequently, vpr2(T) = 2n/3. |

We are now in a position to prove Theorem 4. Recall its statement.

Theorem 4. If T is a tree of order n > 3, then vp2(G) < %n, with equality if
and only if T is the corona, P3o Py, of a path P3 or T is the 2-corona of a tree.

Proof. We proceed by induction of the order n > 3 of a tree T to prove that
Ypr2(T') < 2n/3 and that if equality holds, then 7' = P3 o P; or T' is the 2-corona
of a tree. If n = 3, then T' = P3 and ~2(T) = 2 = 2n/3. Further in this case
we note that T = Kj o Py is the 2-corona of a trivial tree K. This establishes
the base case. Suppose that n > 4 and that for every tree T’ of order n’, where
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3<n <n, ypr2(T") < 2n'/3, and that if equality holds, then 77 = Py o P, or T”
is the 2-corona of a tree. Let T" be a tree of order n.

Suppose that T has a strong support vertex z. Let u and v be two leaf
neighbors of z, and consider the tree 7" = T — v of order ' = n —1 > 3.
By Lemma 6, there exists a minimum SPD-set, S’, of T” that contains all the
support vertices of T'. In particular, the set S’ contains the support vertex z of
T’, implying that S’ is a SPD-set of T. Applying our inductive hypothesis to the
tree 7", we have yp2(T) < |5 = ypr2(T") < 2n'/3 = 2(n —1)/3 < 2n/3. Hence,
we may assume that 7" has no strong support vertex, for otherwise the desired
result holds. Thus, every support vertex of T has exactly one leaf neighbor. Since
T has order n > 4 and T has no strong support vertex, we note that diam(7") > 3.
If diam(7") = 3, then T is a path Py, and so n = 4 and vyp2(T) = 2 < 2n/3.
Hence, diam(7) > 4. We proceed further with the following claim.

Claim 8. If diam(T") = 4, then vp2(T) < %n, with equality if and only if T =
P3 o} P1 .

Proof. Suppose that diam(7") = 4. Since T has no strong support vertex, either
T is obtained from a star K ;, where £ > 2 by subdividing every edge of T" exactly
once or 7' is obtained from a star K ;41 where k > 2 by subdividing k edges of
T exactly once.

Suppose firstly that 1" is obtained from a star K j, where k > 2 by subdividing
every edge of T exactly once. In this case, n = 2k 4+ 1. Let w denote the central
vertex of 1" and let vy, vs,...,v; denote the neighbors of w. If kK > 2 is even,
then the set N(w) is a SPD-set of T', with vg;_1 paired with wvy; for i € [%], and
s0 Ypr2(T) < k = (n—1)/2. If k > 3 is odd, then the set N[w] is a SPD-set of
T, with vog;_1 paired with vg; for i € [%] and with w paired with v, and so
Yor2(T) < k+1=(n+1)/2. In both cases, vpr2(T) < (n+1)/2 < 2n/3.

Suppose secondly that 7' is obtained from a star Kj i1 where £ > 2 by
subdividing k edges of T  exactly once. In this case, n = 2k+2. Once again, let w
denote the central vertex of T'. Further, let x denote the leaf neighbor of w and
let vy, v9,...,vr denote the non-leaf neighbors of w. If £ > 3 is odd, then the set
N[w] \ {z} is a SPD-set of T, with vo;_1 paired with v, for i € [£5!] and with
w paired with vg, and so Ypr2(T) < k+1=n/2 < 2n/3. If kK > 4 is even, then
the set N[w] is a SPD-set of T', with vy;_; paired with ve; for i € [g] and with w
paired with z, and so Y2 (T) < k+2=n/24+1 < 2n/3. If k > 3, then n > 8 and
Yor2(T) <n/2+1 < 2n/3. If k =2, then T = P30 P, and vp2(T) =4 =2n/3.

By Claim 8, we may assume that diam(7") > 5, for otherwise the desired
result holds. This implies that n > 6. If n = 6, then T' = Fy is the 2-corona
of a tree P,. Hence, we may further assume that n > 7. Let v and r be two
vertices at maximum distance apart in 7. Necessarily, © and r are leaves and
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dr(u,v) = diam(7"). We now root the tree T" at the vertex r. Let v be the parent
of u, w the parent of v, x the parent of w, y the parent of x, and z the parent of
y. If diam(7") = 5, we note that r = z.

By our choice of u, every child of v is a leaf of 1. Since T has no strong
support vertex, dp(v) = 2 and so Np(v) = {u,w}. Furthermore, every child
of w is either a leaf or a support vertex of degree 2, and w has at most one
leaf neighbor. We consider two cases depending on the degree of w in T'. Let
T' =T — T, and let T' have order n’. Recall that n > 7. Since diam(T") > 5,
we note that {z,y,z} C V(T”), and so n’ > 3. With our earlier assumptions, we
prove next the following two claims.

Claim 9. If dp(w) = 2, then ype2(T) < %n, with equality if and only if T is the
2-corona of the tree.

Proof. Suppose that dr(w) = 2. In this case, n’ = n — 3 > 4. By the inductive
hypothesis, ypr2(T") < 2n’/3, and if equality holds, then 7" = P3oP; or T” is the 2-
corona of a tree. Every ypro-set of 7" can be extended to a SPD-set of T' by adding
to it the pair of vertices v and w, and s0 Ypr2(T") < Ypr2(T")+2 < 2n//3+2 = 2n/3.
Suppose that yp2(T) = 2n/3. Thus, we must have equality throughout the
above inequality chain. In particular, yp2(7") = 2n’/3, and so T = Py o P; or
T' = H' o P, is the 2-corona of some tree H'.

Suppose that 77 = P3 o Py, and so T” is the tree illustrated in Figure 1(b).
We note that n’ =6 and n = 9. Let {a, b, ¢} be the set of support vertices of 7",
and let a’, b’ and ¢ be the leaf neighbors of a, b and ¢, respectively, where abc
is a path P3. By symmetry, we may assume renaming vertices of T” if necessary,
that « € {a,d’,b,V'}. If € {a,d’}, then S = {b,c,v,x} is a SPD-set where v
and x are paired and b and c¢ are paired. If x € {b,b'}, then S = {a,c,v,x}
is a SPD-set where a and ¢ are paired and v and x are paired. In both cases,
Yor2(T) < |S| =4 < 2n/3, a contradiction.

Hence, T' = H'oP, is the 2-corona of some tree H'. Since n’ > 4, we note that
n(H') > 2. Let X’ be the set of support vertices of 7', and let S’ = X' UV (H').
We note that S’ is a SPD-set of T of size 2n’/3, and is therefore a vpro-set of T”. If
x is leaf in T”, then noting that n(H') > 2, the set (S"\{y, z})U{z, v} is a SPD-set
of T', implying that vpr2(T) < S| = ypr2(T”) < 2n/3, a contradiction. Suppose
that = is a support vertex in 7”. Since n(H') > 2, we note that in this case the
vertex y is the neighbor of = that belongs to V(H'). The set (S’ \ {y})U{v} is a
SPD-set of T, and s0 Ypr2(T) < |S'] = ypr2(T”) < 2n/3, a contradiction. Hence,
x € V(H'). Let H be the tree obtained from H' by adding to it the vertex w and
the edge wz. We note that H = T[V(H') U{w}] and that T is the 2-corona of
the tree H; that is, ' = H o P,. Thus, if y,2(T") = 2n/3, then T is the 2-corona
of the tree. This completes the proof of Claim 9. 0
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Claim 10. If dp(w) > 3, then yp2(T) < 3n.

Proof. Suppose that dr(w) > 3. We note that the maximal subtree, T, of T
at w is either obtained from a star K where k > 2 by subdividing every edge
of T exactly once or is obtained from a star K ;41 where & > 2 by subdividing
k edges of T exactly once. Let n,, = n(Ty). An identical proof as in the proof of
Claim 8 shows that either vypr2(Ty) < %nw or Ty = Py o Py and o (Thy) = %nw.
Every minimum SPD-set of 77 can be extended to a SPD-set of T' by adding to it
a minimum SPD-set of T;,, where the pairing of the vertices is preserved. Thus,

2 2 2
(1) Yor2(T) < ype2(T") 4 Ypr2(Tow) < gn/ + 3w = 3"

We show that vp2(T) < %n Suppose, to the contrary, that vp.2(T) =
%n. Then we must have equality throughout the above inequality chain (1). In
particular, ypr2(T") = %n’, implying that 77 = Py o Py or T" = H' o P, is the
2-corona of some tree H', and vp2(Toy) = %nw, implying that T, = P3 o P;. Let
v’ be the leaf neighbor of w in T, and let v; and vy be the two children of w
that are support vertices. We note that either v = v; or v = v3. We can choose
the set S, to consist of w and its three children, where w is paired with v" and
where v and vo are paired.

Suppose that 7" = P3o P;. Thus, n’ = 6 and n = 12. If x is a leaf in 7", then
the set (S, \ {v'}) U{z} can be extended to a SPD-set of T by adding to it the
two support vertices of T” that are not adjacent to x. If z is a support vertex of
T, then the set (Sy, \ {v'})U{z} can be extended to a SPD-set of T by adding to
it the two support vertices of T” different from z. In both cases, the vertices w
and z are paired and the two support vertices of T" different from x are paired.
Thus, Ypr2(T) <4 < %n, a contradiction.

Hence, T" = H' o P, is the 2-corona of some tree H'. Let X' be the set of
support vertices of 7", and let 8" = X' UV (H’). We note that S’ is a SPD-set
of T" of size 2n'/3, and is therefore a ypo-set of T'. Suppose that z is a leaf in
T'. In this case, the set (S'\ {2}) U (Sy \ {v'}) is a SPD-set of T" with w and
y paired and where all other pairings of vertices remain the same as the original
pairings. Suppose that x is a support vertex in 77. We note that in this case, the
vertex y is the neighbor of x that belongs to H'. The set (S"\ {y}) U (Sy \ {v'})
is a SPD-set of T' with w and x paired and where all other pairings of vertices
remain the same as the original pairings. Suppose that x belongs to V(H’). Let
z” be the neighbor of z in 7" that does not belong to H’'. In this case, the set
(S"\{z})U(Sw\{v'}) is a SPD-set of T' with w and z” paired and where all other
pairings of vertices remain the same as the original pairings. In all three cases,
Yor2(T) < 8] + [Sw| — 2 = Ypr2(T") + Ypr2(Tw) — 2 = 2n — 2, a contradiction.
Therefore, vpr2(T') < %n, as claimed. This completes the proof of Claim 10.

The proof of Theorem 4 now follows from Claim 9 and Claim 10. [
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3. PROOF OF THEOREM 5

In this section, we prove Theorem 5. Recall its statement.

Theorem 5. If G is a connected graph of order n > 3, then vp2(G) < %n, with
equality if and only if G € {C3,Cq, P30 P,C30 P1} or G is the stingray SR or

G is the 2-corona of a connected graph.

Proof. Let G be a connected graph of order n > 3 and let T' be an arbitrary
spanning tree of G. Since deleting a cycle edge from a graph cannot decrease the
semipaired domination number, as an immediate consequence of Theorem 4, we
have that Ypr2(G) < Ypr2(T) < 2n.

Suppose that yp2(G) = %n Thus, we must have equality throughout the
above inequality chain, implying that yp2(G) = Ypr2(T') and Ypr2(T) = %n for
every spanning tree T of GG. In particular, by Theorem 4, the spanning tree T is
either the corona Ps o P; or is the 2-corona of a tree. We proceed further with
the following claims.

Claim 11. IfT = P30 Py, then G = P30 P, or G = C30 Py or G is the stingray
SR.

Proof. Suppose that T'= P30 P;. Let a, b and ¢ be the three support vertices
of T, with leaf neighbors a’, b’ and ¢/, respectively, and where abc is a path Ps.
If T =G, then G = P3 o Py, as desired. Hence we may assume that T # G. Let
e€ E(G)\E(T). fe=al, let S ={a,c}. If e =acd, let S = {a,b}. If e = bd,
let S ={b,c}. Ife=dd,let S ={a, b} Inallcases, S is a SPD-set, and so
Yor2(G) = 2 < yp2(T), a contradiction. Hence, e ¢ {ab/,ac’,ba’}. By symmetry,
e ¢ {cb,ca’,bc’}. Hence, e € {ac,ad'/,b'd'}. Thus, E(G) \ E(T) C {ac,a't',V'c'}.
If {V, UV} C E(G), let D = {b,b'}. If {ac,d'V'} C E(G), let D = {d/,c}. If
{ac,b/d} C E(G), let D = {a,b'}. In all three cases, D is a SPD-set, and so
Yor2(G) = 2 < Ypr2(T), a contradiction. Hence, E(G) \ E(T) = {e}; that is, e is
the only edge in G that is not in 7', implying that either e = ac, in which case
G =C50 Py, or e € {d'V/, b/}, in which case G is the stingray SR. 0

By Claim 11, we may assume that T" # P3 o P;, for otherwise the desired
result holds. Hence, T is the 2-corona of a tree, say T'. Let A be the set of
leaves of T', let B be the set of support vertices of T, and let C' = V(T"). Thus,
(A, B,C) is a partition of V(T'). We note that |C| = n(T").

Claim 12. If |C| =1, then G =C5 or G = Kj o P,.

Proof. 1f |C| =1, then T' = P3, and so G = P3, which is the 2-corona Kj o Py of
Ky, or G = (5. 0

Claim 13. If |C| =2, then G = Cg or G is the stingray SR or G = Py o P.
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Proof. Suppose that |C| = 2. In this case, T'= Ps. If T'= G, then G = P,o Py is
the 2-corona of the graph P», as desired. Hence we may assume that T'# G. Let
e € E(G)\ E(T). Let T be the path vivy---vs. If e = vivg or e = vyvs,
let S = {vs,v5}. If e = wovy or e = wous or e = waug, let S = {v9,v5}.
In all cases, S is a SPD-set, and so yp2(G) = 2 < Ype2(T), a contradiction.
Hence, e ¢ {viv3, v1v5, vov4, Vov5, Vv }. By symmetry, e ¢ {vqvg,v3v5}. Hence,
e € {vivy, v1vg,v306}. Thus, E(G) \ E(T) C {vivg, v1vg, v3vg}. If {v1vg,v106} C
E(G),let D = {v1,va}. If {v1v4,v306} C E(G), let D = {vs,va}. If {v1v6,v306} C
E(G), let D = {vs,v6}. In all three cases, D is a SPD-set, and s0 ypr2(G) = 2 <
Yor2(T'), a contradiction. Hence, E(G) \ E(T') = {e}; that is, e is the only edge
in G that is not in T'. If e = vyvg, then G = Cf, while if e = viv4 or e = wv3vg,
then G is the stingray SR. 0O

By Claims 12 and 13, we may assume that |C| > 3, for otherwise the desired
result holds. We show that every edge of G that is not in 7" joins two vertices of
C. We shall use the following notation. Let A = {a1,...,a,}, B = {b1,...,b},
and C = {c1,...,¢}, where r = n/3 and where a;b;c; is a path in T for i € [r].
Let Map = {aib1,...,a;b,} and Mpc = {bic1,...,byc,}. For sets X and Y in
G, let [X,Y] be the set of all edges between X and Y in G. Let S = BUC. We
note that S with semi-matching M = {{b;,¢;} |1 <i < r} is a ypre-set of T. In
particular, vpr2(T) = | S| = 2n.

Claim 14. The following hold in the graph G.
(a) The set A is independent.

(b) [A7 B] = Map.

(c) [A,C] = 0.

(d) The set B is independent.

(e)

[S] [B,C] = MBC-

Proof. (a) Suppose that there is an edge e in G that joins two vertices of A.
Renaming vertices if necessary, we may assume that e = ajay. Since |C| > 3 and
T' = T[C] is a tree, the vertex ¢; has a neighbor in T that belongs to C' and
is different from co or the vertex co has a neighbor in 7" that belongs to C' and
is different from ¢; (for otherwise, 7" = P», a contradiction to our assumption
that n(7") = |C| > 3). We may assume that ¢y has a neighbor in 7" that belongs
to C' and is different from c¢;. The set D = (S \ {b2,c1,c2}) U {az} with semi-
matching (M \ {{b1,c1},{b2,c2}}) U {{az,b1}} is a SPD-set of G, implying that
Yor2(G) < |D| = |S| = 2 = yp2(T) — 2 = 2n — 2, a contradiction. Hence, 4 is an
independent set in G.

(b) Suppose that there is an edge e in G that joins a vertex of A and a vertex
of B, but does not belong to the matching M4p. Renaming vertices if necessary,
we may assume that e = ajby. In this case, the set D = (S \ {c1,c2}) with
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semi-matching (M \ {{b1,c1},{b2,c2}}) U {{b1,b2}} is a SPD-set of G, implying
that vpr2(G) < Ypr2(T), a contradiction. Hence, the only edges in [A, B] are the
edge in the matching M p.

(c) Suppose that there is an edge e in G that joins a vertex of A and a vertex of
C'. Suppose firstly that e = a;c;. Renaming vertices if necessary, we may assume
that e = ajcy. In this case, letting co be a neighbor of ¢; in 7" that belongs to the
set C, the set D = (S \ {b1,c2}) with semi-matching (M \ {{b1,c1}, {b2,c2}}) U
{{b2,c1}} is a SPD-set of G, implying that vpr2(G) < ypr2(T), a contradiction.
Suppose secondly that e = a;c; where ¢ # j. Renaming vertices if necessary, we
may assume that e = ajco. If ¢1 has a neighbor in T that belongs to C and is
different from cy, then the set D = (S \ {b1,c1,c2}) U {a1} with semi-matching
(M N\ A{{b1,c1},{b2,c2}}) U{{a1,ba}} is a SPD-set of G, implying that y2(G) <
Ypr2(T'), a contradiction. Thus, ¢ is adjacent in T" to ¢z but to no other vertex of
C. Since |C| > 3 and T = T[C] is a tree, the vertex co has a neighbor in T, say cs,
that belongs to C' and is different from ¢;. Thus, the set D = (S'\ {b1, c3}) with
semi-matching (M \ {{b1,c1},{b2, ca}, {bs,c3}}) U{{ba, 1}, {b3,c2}} is a SPD-set
of G, implying that yp2(G) < Ypr2(T), a contradiction. Hence, [A, C] = 0.

(d) Suppose that there is an edge e in G that joins two vertices of B. Re-
naming vertices if necessary, we may assume that e = b1bs. In this case, the set
D = (S\ {c1,c2}) with semi-matching (M \ {{b1,c1},{b2,c2}}) U {{b1,b2}} is a
SPD-set of G, implying that vpr2(G) < Ypr2(T'), a contradiction. Hence, the set
B is independent.

(e) Suppose that there is an edge e in G that joins a vertex of B and a vertex
of C', but does not belong to the matching Mpc. Renaming vertices if necessary,
we may assume that e = bjcp. In this case, the set D = (S'\ {c1, c2}) with semi-
matching (M \ {{b1,c1},{b2,ca}}) U {{b1,b2}} is a SPD-set of G, implying that
Yor2(G) < Ypr2(T), a contradiction. Hence, the only edges in [B, C] are the edge
in the matching Mpc. This completes the proof of Claim 14. O

By Claim 14, if there is an edge of G that does not belong to T', then such
an edge must join two vertices of C. This implies that G is the 2-corona of a
connected graph G’, where G’ = G[C]. This completes the proof of Theorem 5. m

4. CLOSING COMMENTS

The concept of a semipaired dominating set can be extended to the concept of a
distance paired dominating set in the natural way. For k > 1, a set .S of vertices
in a graph G with no isolated vertices is a k-distance paired dominating set of G if
S is a dominating set of G and every vertex in S is paired with exactly one other
vertex in S that is within distance k from it. The k-distance paired domination
number, denoted by Ypk(G), is the minimum cardinality of a k-distance paired
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dominating set of G. We note that a 1-distance paired dominating set is a paired
dominating set, and s0 Ypr1(G) = Ypr(G).

If G is a connected graph of order n > 3, then ;1 (G) < n—1 (see Theorem 2)
and Ypr2(G) < 2n (see Theorem 5), and these bounds are tight.

If G is the graph of order n = 3¢ 4 1 obtained from a star K, where ¢ > 2
by subdividing every edge twice, then y,3(G) = 20 = %(n — 1). Thus since
Yor3(G) < Ypr2(G) < 2n, the upper bound of 2n on yp3(G) is asymptotically
best possible. One can in fact show using analogous proofs as in Theorems 4
and 5 that if G is a connected graph of order n > 4, then v,3(G) < %(n —1).
Since this is only a very small improvement on the %n upper bound, we omit the
details of the proof.

If k > diam(G), then v,k (G) = v(G) if v(G) is even and v (G) = 7(G) + 1
if 7(G) is odd. Thus in this case, yp(G) < ¥(G) +1 < $n+1, and the bound is
tight as may be seen by taking G to be the corona of a connected graph of odd
order. For 4 < k < diam(G) — 1 and G a connected graph of order n > k+ 1, we
have yet to determine a sharp upper bound on 7,k (G). It is quite possible that
York(G) < $n + 1 also holds in this case.
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