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Abstract

In this paper, we investigate the number of Hamiltonian cycles of a gen-
eralized Petersen graph P (N, k) and prove that

Ψ
(
P (N, 3)

)
> N · αN ,

where Ψ
(
P (N, 3)

)
is the number of Hamiltonian cycles of P (N, 3) and αN

satisfies that for any ε > 0, there exists a positive integer M such that when
N > M ,(

(1− ε) (1− r3)

6r3 + 5r2 + 3

)(
1

r

)N+2

< αN <

(
(1 + ε)

(1− r3)

6r3 + 5r2 + 3

)(
1

r

)N+2

,
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where 1
r = max

{∣∣∣ 1rj ∣∣∣ : j = 1, 2, . . . , 6
}

and each rj is a root of equation

x6 + x5 + x3 − 1 = 0, r ≈ 0.782. This shows that Ψ
(
P (N, 3

)
is exponential

in N and also deduces that the number of 1-factors of P (N, 3) is exponential
in N .
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ber, 1-factor.
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1. Introduction

Graphs throughout this paper are simple, finite and connected. All undefined
terminology can be found in [4]. A Hamiltonian cycle (respectively, path) of G
is a cycle (respectively, path) which contains all the vertices of G. A graph is
Hamiltonian if it contains a Hamiltonian cycle. For convenience, we use Ψ(G)
to denote the number of Hamiltonian cycles in G. A matching in a graph G is
a set of pairwise nonadjacent edges. If M is a matching, then the two ends of
each edge in M are said to be matched under M , and each vertex incident with
an edge of M is said to be covered by M . Furthermore, if a matching covers
every vertex of graph G, then we say that it is a perfect matching. Sometimes,
a perfect matching is also called a 1-factor of graph G. A generalized Petersen
graph P (N, k) for N > 3 and 1 6 k < N

2 is a graph with vertex set V = {ui :
i = 1, 2, . . . , N} ∪ {vi : i = 1, 2, . . . , N}, and edge set E = {uiui+1, uivi, vivi+k :
i = 1, 2, . . . , N}, where subscripts are taken modulo N . Obviously, P (N, k) is
3-regular and Petersen graph is exactly P (5, 2). Then the induced subgraph
G[u1, u2, . . . , uN ] = u1u2 · · ·uNu1 is a cycle. We say that such cycle is an Outer
rim. Similarly, the cycles induced by G[v1, v2, . . . , vN ] are called Inner rims.

Watkins [14] first defined generalized Petersen graph and conjectured that
every P (N, k) other than P (5, 2) and P (5, 3) has a 1-factorization. Meanwhile,
Robertson [9] proved that P (N, 2) is non-Hamiltonian if and only if N ≡ 5
(mod 6). Sometimes, such non-Hamiltonian P (N, 2) can be called Robertson
graphs. In 1972, Bondy [3] independently proved Robertson’s result and further
showed that P (N, 3) is a Hamiltonian graph wherever N 6= 5. Finally, Watkins’s
1-factorization conjecture was solved by Castagna and Prins [5] in 1972. They
gave a positive answer to this problem. As a further research, they found that it
was very difficult to find non-Hamiltonian P (N, k) other than Robertson graphs,
and thus conjectured that Robertson graphs are the only non-Hamiltonian ex-
amples in generalized Petersen graph. Concerning this conjecture, Bannai [2]
proved that if N and k are relatively prime, then P (N, k) is Hamiltonian unless
N ≡ 5 (mod 6) and P (N, k) ∼= P (N, 2). The most important contribution to
the resolution of this conjecture is due to Brian Alspach. In [1], he proved that
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P (N, k) is Hamiltonian if and only if it is neither P (N, 2) ∼= P
(
N, N−1

2

)
, N ≡ 5

(mod 6), nor P
(
N, N2

)
, N ≡ 0 (mod 4) and N ≥ 8.

On the other hand, the problem of counting the number of Hamiltonian cy-
cles in a given graph also attracts many researchers’ attention. This problem can
be considered as an enumeration problem (Garey and Johnson [7]) or a count-
ing problem (Papadimitriou [8]). A series of relative researches have shown that
such enumeration problem is much more complicated. Historically, the prob-
lems involving the number of Hamiltonian cycles were mainly centered in cubic
graphs and 4-regular graphs. Even so, few of researches gave exact values for
such counting problems. A classic result of Smith [13] says that every edge of a
cubic graph is contained in a set of even number Hamiltonian cycles. Thus, ev-
ery 3-regular Hamiltonian graph contains a second (or more) Hamiltonian cycle.
Thomason [12] extended Simth’s result to all r-regular graphs where r is odd, and
further obtained lower bounds for the number of Hamiltonian cycles in 4-regular
graphs. For such counting problem on generalized Petersen graphs, one important
result was also obtained by Thomason [11] in 1982. He proved that P (6k + 3, 2)
has exactly 3 Hamiltonian cycles for k ≥ 0. Furthermore, Schwenk [10] gave the
exact number of Hamiltonian cycles in P (N, 2). Meanwhile, other scholars also
considered the problem of finding the number of Hamiltonian cycles in a random
graph (Cooper and Frieze [6]). In this paper, we show the following result.

Theorem 1. Let P (N, k) be a generalized Petersen graph. Then

Ψ(P (N, 3)) > N · αN ,

where αN satisfies that for any ε > 0, there exists a positive integer M such that
when N > M ,(

(1− ε) (1− r3)
6r3 + 5r2 + 3

)(1

r

)N+2

< αN <
(

(1 + ε)
(1− r3)

6r3 + 5r2 + 3

)(1

r

)N+2

,

where 1
r = max

{∣∣∣ 1rj ∣∣∣ : j = 1, 2, . . . , 6
}

and each rj is a root of equation x6 +x5 +

x3 − 1 = 0, r ≈ 0.782.

2. Proof of Theorem 1

Let V = {ui : i = 1, 2, . . . , N}∪{vi : i = 1, 2, . . . , N} be the vertex set of P (N, 3)
such that G[u1, u2, . . . , uN ] = u1u2 · · ·uNu1 is the Outer rim. Then we further
let gcd(a, b) denote the greatest common divisor of two positive integers a and b.
Observe that the Inner rims induced by G[v1, v2, . . . , vN ] consist of three cycles
of length N

3 if gcd(N, 3) 6= 1, and otherwise the Inner rim is exactly a cycle of
length N . Edge set {uivi : i = 1, 2, . . . , N} is called Spokes.
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Figure 1. A drawing of P (10, 3).

In order to count the number of Hamiltonian cycles of P (N, 3), we need
to study the construction of Hamiltonian cycles of P (N, 3). Before the next
discussion, we first introduce some new definitions. Let C be a Hamiltonian
cycle of P (N, 3). Then C intersects the Outer rim at some paths. And these
paths can be called Outer paths. Similarly, the Inner paths are defined as the
paths produced by the intersection of C and Inner rims. Hence a Hamiltonian
cycle may be seen as a combination of the following paths:

Outer paths, Spokes, Inner paths, . . . , Inner paths, Spokes.

That is, each Hamiltonian cycle determines the number of Outer paths and Inner
paths. Therefore, it also determines a combination type of Outer paths, Spokes
and Inner paths.

We consider an Outer path of a Hamiltonian cycle as below. Assume that
Pm = ui+1ui+2 · · ·ui+m is an Outer path. Then ui+1vi+1 and ui+mvi+m are the
two Spokes connecting Pm in this Hamiltonian cycle. Moreover, none of the
Spokes ui+2vi+2, ui+3vi+3, . . . , ui+m−1vi+m−1 appear on this Hamiltonian cycle.
Simultaneously, ui+1vi+1 and ui+mvi+m also connect Inner paths. Without loss of
generality, we assume that ui+1vi+1 connects the Inner path Pm1 and ui+mvi+m

connects the Inner path Pm2. According to the expanding direction of Pm1 and
Pm2, the Outer path can be divided into four types as follows.

(i) If Pm1 joins vi+1 to vi−2 and Pm2 joins vi+m to vi+m+3, then we say that the
Outer path Pm is with open leads, denoted by OPm.

(ii) If Pm1 joins vi+1 to vi+4 and Pm2 joins vi+m to vi+m−3, then we say that the
Outer path Pm is with crossed leads, denoted by CPm.

(iii) If Pm1 joins vi+1 to vi−2 and Pm2 joins vi+m to vi+m−3, then we say that
the Outer path Pm is with left leads, denoted by LPm.

(iv) If Pm1 joins vi+1 to vi+4 and Pm2 joins vi+m to vi+m+3, then we say that
the Outer path Pm is with right leads, denoted by RPm.
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The above four types of Outer paths are shown in Figure 2 as m = 3, while
it may not hold at the same time for other m.

u u u u u u u u u
u u u u u u u u u

OP3 u u u u u u u u u
u u u u u u u u u

CP3

u u u u u u u u u
u u u u u u u u u

RP3 u u u u u u u u u
u u u u u u u u u

LP3

Figure 2. Four types of Outer paths.

Lemma 2. Let Pm (m > 2) be an Outer path of a Hamiltonian cycle C in
P (N, 3). Then the existence of four types of Pm are as follows.

(i) OPm, CPm, LPm and RPm all exist for m = 2, 3,

(ii) only OP4 exists for m = 4,

(iii) only CPm exists for m > 5 and m ≡ 0 or 2 (mod 3),

(iv) none of OPm, CPm, LPm, RPm exists for m > 5 and m ≡ 1 (mod 3).

Proof. It is easy to show the case (i). To prove (ii), suppose that P4 = ui+1ui+2

ui+3ui+4. Obviously, ui+1vi+1 and ui+4vi+4 are the two Spokes connecting P4.
Then vi+1 can only be joined to vi−2 by the Inner path. And vi+4 can only be
joined to vi+7 by the Inner path. Otherwise, it forms a cycle ui+1ui+2ui+3ui+4vi+4

vi+1ui+1. Therefore, (ii) holds. For m > 5, let Pm = ui+1ui+2 · · ·ui+m. Then
ui+1vi+1 and ui+mvi+m are Spokes connecting Pm. Since the Hamiltonian cycle C
does not pass the edge ui+4vi+4, vi+4 is joined to vi+1 by an Inner path. Likewise,
vi+m joins with vi+m−3. Hence CPm appears only in two cases as below.

If m = 3k + 2, then let Pm = ui+1ui+2 · · ·ui+3k+2 and Pm is a CP3k+2. We
may extend CP3k+2 to

vi+3k+4vi+3k+1 · · · vi+1ui+1ui+2 · · ·ui+3k+2vi+3k+2vi+3k−1 · · · vi+2vi−1.

If m = 3k, then let Pm = ui+1ui+2 · · ·ui+3k and Pm is a CP3k. We may
extend CP3k to

vi+3k+1vi+3k−1 · · · vi+4vi+1ui+1ui+2 · · ·ui+3kvi+3kvi+3k−3 · · · vi+3vi.

For m = 3k+ 1, since vi+1 and vi+m join only with vi+4 and vi+m−3, respec-
tively, it forms a cycle ui+3k+1 · · ·ui+2ui+1vi+1vi+4 · · · vi+3k−2vi+3k+1ui+3k+1, a
contradiction. Therefore, CP3k+1 will not exist.
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Obviously, if the type of an Outer path in a Hamiltonian cycle is confirmed,
then its corresponding Inner path is also determined. By Lemma 2, the type of
Pm is determined if the value m (m > 4) is given. Namely, if the length of Pm

in a Hamiltonian cycle is given, then the corresponding Hamiltonian cycle is also
determined.

Let Pm = ui+1ui+2 · · ·ui+m and Pn = uj+1uj+2 · · ·uj+n be two Outer paths.
Then we say that Pm and Pn are adjacent, if ui+m+1 = uj+1. Here, we need to
notice that not any two types of Outer paths can be adjacent. Hence, we further
say that the types of Pm and Pn are compatible, if Pm and Pn are adjacent.

Lemma 3. OP3 is only compatible with CPm in P (N, 3). Furthermore, CPm is
compatible with OP3, RP2 or LP2 in P (N, 3).

Proof. We first consider the compatibility of OP3. Let OP3 = ui+1ui+2ui+3 and
Pm be the adjacent Outer path of P3. Without loss of generality, we assume that
Pm contains vertex ui+4. As a result, Pm = ui+4ui+5 · · ·ui+3+m. Then ui+4 only
joins with {ui+5, vi+4}, and vi+4 only joins with {vi+7, ui+4}. Moreover, vi+2

needs to join with vi+5 and vi+3 joins with vi+6. It implies that Pm is the type
of CPm when m ≤ 3. Furthermore, Lemma 2 shows that m 6= 4. Thus we only
consider the remaining case for m ≥ 5. Since vi+m does not joins with ui+m,
vi+m needs to join with vi+3+m. Hence, Pm is the type of CPm.

Now we study the compatibility of CPm. As m ≡ 2 (mod 3), suppose that
Pm = ui+1ui+2 · · ·ui+3k+1ui+3k+2 and the extension path of Pm is denoted as
follows: vi+3k+4vi+3k+1 · · · vi+1ui+1ui+2 · · ·ui+3k+2vi+3k+2vi+3k−1 · · · vi+2vi−1.

Let Pn denote the adjacent Outer path of Pm such that Pn contains ui+3k+3.
Since vi+3k+3 and vi+3k+5 join only with {vi+3k, ui+3k+3} and {vi+3k+8, ui+3k+5},
respectively, Pn is precisely the type of OP3 when n ≥ 3. If n = 2, then vi+3k+3

joins with vi+3k, and vi+3k+4 joins with vi+3k+1. Hence Pn is the type of LP2.
The case for Pn containing ui can be solved analogously. For the same reason as
above, Lemma 3 is also right for m ≡ 0 (mod 3).

u u u u u u u u u u r r r u u u u u u u u u u

u u u u u u u u u u r r r u u u u u u u u u u

ui+1

ui+2

ui+3

ui+4

vi+1

vi+2

vi+3

vi+4

ui+3k

ui+3k+1

ui+3k+2

vi+3k

vi+3k+1

vi+3k+2

Figure 3. OP3 and CPm are pairwise compatible.
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Lemma 3 implies that P (N, 3) contains a Hamilton cycle such that its Outer
paths consist of RP2, CPn1 , OP3, CPn2 , OP3, . . . , CPnk

, LP2 (shown in Figure
4).

u u u u u u u u u u u u u u u u u u u

u u u u u u u u u u u u u u u u u u u
r r r r r r

u1 u2 u3 u4 u5 u6 u7 uN−1 uN

v1 v2 v3 v4 v5 v6 v7

vN−1 vN

RP2 CPn1 OP3 CPn2 CPnk
LP2

Figure 4. A type of Hamilton cycle of P (N, 3).

Let αN be the number of Hamilton cycles on the above type with RP2 = u1u2.
Then the number of Hamiltonian cycles corresponding to P (N, 3) is N · αN .

When RP2 = u1u2, each Hamiltonian cycle in Figure 4 decides a partition of
Outer path of an Outer cycle uniquely. Conversely, each partition of Outer paths
also determines a Hamiltonian cycle uniquely. Hence the number of Hamiltonian
cycles equals to the number of partitions of Outer paths. Observe that each
partition of Outer paths is corresponded to an ordered partition of N−4 such that
its parts are n1, 3, n2, 3, . . . , nk−1, 3, nk, where ni ≡ 0 or 2 (mod 3) and ni > 2,
i = 1, 2, . . . , k. Thus each Hamiltonian cycle can be regarded as an ordered
partition, whose parts from left to right are: 2, n1, 3, n2, 3, . . . , nk−1, 3, nk, 2. Then
the number of partitions satisfying the above condition is αN , where αN is the
number of solutions in the following equation

2 + n1 + 3 + n2 + 3 + · · ·+ nk−1 + 3 + nk + 2 = N.(1)

Set xi = ni + 3, i = 1, 2, . . . , k. Then equation (1) can be translated into

x1 + x2 + · · ·+ xk = N − 1,(2)

where xi ≡ 0 or 2 (mod 3) and xi ≥ 5, i = 1, 2 . . . , k. Here we consider the case
for N > 6. The following lemma gives a recursive relation for αN .

Lemma 4. The number of partitions of N − 1 satisfies the condition of equa-
tion (2) having the following recursive relation

αN = αN−5 + αN−6 + αN−3,(3)

where α6 = α7 = α9 = α10 = α11 = 1, α8 = 0.
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Proof. According to the first part of the partition of N − 1, αN can be divided
into three cases. When the first part x1 = 5 in equation (2), it has αN−5 distinct
partitions. We continue to consider the second case for the first part x1 = 6 in
equation (2). Then it has αN−6 distinct partitions. Finally, we consider the third
case for the first part x1 > 6 in equation (2). Let y1 = x1−3, yi = xi, i = 2, . . . , k.
Then equation (2) is translated into

y1 + y2 + · · ·+ yk = N − 4,

where yi ≡ 0 or 2 (mod 3), yi > 5. Thus it has αN−3 distinct partitions.

By the recursive relation and the initial value of αN , we have

αN =

6∑
i=1

(
1

ri

)N+2 (1− r3i )

6r3i + 5r2i + 3
,

where rj(j = 1, 2, . . . , 6) is the root of the following equation

x6 + x5 + x3 − 1 = 0.

The asymptotic value of each rj is, respectively, r1 ≈ 0.782, r2 ≈ −1.538, r3,4 ≈
0.400± 0.963i, r5,6 ≈ −0.521± 0.702i, where i =

√
−1.

Since 1
r1

= max
{∣∣∣ 1rj ∣∣∣ : j = 1, 2, . . . , 6

}
, for any ε > 0, there exists a positive

integer M such that when N > M ,(
(1− ε) (1− r31)

6r31 + 5r21 + 3

)( 1

r1

)N+2

< αN <
(

(1 + ε)
(1− r31)

6r31 + 5r21 + 3

)( 1

r1

)N+2

.

Since 1
r1
> 1, αN increases exponentially. Hence the lower bound of Ψ(P (N, 3))

is also exponential.
Suppose that C is a Hamiltonian cycle of P (N, 3), then P (N, 3)−E(C) is a

1-factor of P (N, 3). This yields the following corollary.

Theorem 5. The number of 1-factors of a generalized Petersen graph P (N, 3)
is exponential.
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