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Abstract

An incidence in a graph G is a pair (v, e) where v is a vertex of G and e
is an edge of G incident to v. Two incidences (v, e) and (u, f) are adjacent
if at least one of the following holds: (i) v = u, (ii) e = f , or (iii) edge vu is
from the set {e, f}. An incidence coloring of G is a coloring of its incidences
assigning distinct colors to adjacent incidences. The minimum number of
colors needed for incidence coloring of a graph is called the incidence chro-

matic number.
It was proved that at most ∆(G) + 5 colors are enough for an incidence

coloring of any planar graph G except for ∆(G) = 6, in which case at most
12 colors are needed. It is also known that every planar graph G with girth
at least 6 and ∆(G) ≥ 5 has incidence chromatic number at most ∆(G)+ 2.

In this paper we present some results on graphs regarding their maximum
degree and maximum average degree. We improve the bound for planar
graphs with ∆(G) = 6. We show that the incidence chromatic number is at
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most ∆(G) + 2 for any graph G with mad(G) < 3 and ∆(G) = 4, and for
any graph with mad(G) < 10

3
and ∆(G) ≥ 8.

Keywords: incidence coloring, incidence chromatic number, planar graph,
maximum average degree.

2010 Mathematics Subject Classification: 05C15.

1. Introduction

Incidence coloring was defined by Brualdi and Massey [2] as a tool to study strong
edge colorings of bipartite graphs. However, soon after its definition, the coloring
itself attracted the attention of several researchers from different points of view.

An incidence in a graph G is a pair (v, e) where v is a vertex of G and e is
an edge of G incident to v. Two incidences (v, e) and (u, f) are adjacent if at
least one of the following holds: (i) v = u, (ii) e = f , or (iii) edge vu is from
the set {e, f}. An incidence coloring of G is a coloring of its incidences assigning
distinct colors to adjacent incidences. The minimum number of colors needed
for incidence coloring of a graph is called the incidence chromatic number of G,
denoted by χi(G).

Brualdi and Massey [2] conjectured that χi(G) ≤ ∆(G) + 2 for any graph G,
where ∆(G) denotes the maximum degree of G. The conjecture was disproved
by Guiduli [3], who showed that Paley graphs with maximum degree ∆ have
incidence chromatic number at least ∆ + Ω

(

log∆
)

. However, for many of the
commonly considered graph classes the incidence chromatic number is bounded
by ∆+ c for some constant c, and several papers are devoted to the proof of this
type of result, including the following one.

Theorem 1 (Maydanskiy, 2005). Five colors suffice for an incidence coloring of

any subcubic graph.

In order to obtain upper bounds on the incidence chromatic number, in
many cases, stronger statements concerning incidence colorings with further local
constraints are proved, allowing to apply induction in a more efficient way.

An incidence coloring of a graph G using k colors is an incidence (k, p)-
coloring of G if for every vertex v of G, the number of colors used for coloring
the incidences of the form (u, uv) is at most p.

Hosseini Dolama, Sopena and Zhu [5] proved that every planar graph with
maximum degree ∆ admits an incidence (∆ + 7, 7)-coloring and, thus, has inci-
dence chromatic number at most ∆ + 7. This bound was further improved to
∆ + 4 for triangle-free planar graphs [6], to ∆ + 3 (respectively, ∆ + 2, ∆ + 1)
for planar graphs of girth at least 6 (respectively, 11, 16) [6]. The last result was
further improved to girth 14 [1].
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Some of these results were proved for more general graph classes, namely
graphs with bounded maximum average degree. The average degree of a graph
G is the mean value of the degrees of its vertices. The maximum average degree

mad(G) of a graph G is then defined as the maximum value of the average degrees
of its subgraphs. When G is a planar graph with girth g, it is folklore to establish
the inequality mad(G) < 2g

g−2
.

In [6] the authors proved the following result.

Theorem 2 (Hosseini Dolama, Sopena, 2005). Let G be a graph with mad(G) < 3
and ∆(G) ≥ 5. Then G admits a

(

∆(G) + 2, 2
)

-incidence coloring. Therefore,

χi(G) ≤ ∆(G) + 2.

In Section 2 we extend this result to mad(G) < 3 and ∆(G) ≥ 4 (Theorem
4). Moreover, we present another result for graphs with larger maximum average
degree (Theorem 5).

Recall that the star arboricity of an undirected graph G is the smallest num-
ber of star forests needed to cover G. Yang [8] observed the following: let G be
an undirected graph with star arboricity st(G), let s : E(G) → {1, . . . , st(G)} be
a mapping such that s−1(i) is a forest of stars for every i, 1 ≤ i ≤ st(G), and let λ
be a proper edge coloring of G. Now define the mapping f by f(u, uv) = s(uv) if v
is the center of a star in some forest s−1(i) (if some star is reduced to one edge, we
arbitrarily choose one of its end vertices as the center) and f(u, uv) = λ(uv) other-
wise. It is not difficult to check that f is indeed an incidence coloring of G. There-
fore, thanks to the classical result of Vizing, the relation χi(G) ≤ ∆(G) + st(G)
(respectively, χi(G) ≤ ∆(G)+ st(G)+1) holds for every graph of class 1 (respec-
tively, of class 2). (Recall that the chromatic index χ′(G) of any graph G is either
∆(G)—such graphs are said to be of class 1—or ∆(G) + 1—such graphs are said
to be of class 2.) The facts that planar graphs with ∆ ≥ 7 are class 1 [7] and
that the star arboricity of any planar graph is at most 5 [4] led to the following
result.

Theorem 3 (Yang, 2007). If G is a planar graph with ∆(G) 6= 6, then χi(G) ≤
∆(G) + 5. If ∆(G) = 6, then χi(G) ≤ ∆(G) + 6.

Yang [8] proposed the following question: Are ∆(G) + 5 colors enough for
graphs with maximum degree 6? We give a positive answer to this question (in
a stronger form) in Section 3.

2. Graphs with Bounded Maximum Average Degree

In this section we present two results: one of them extends Theorem 2, the other
one concerns graphs with larger maximum average degree.
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Theorem 4. Let G be a graph with mad(G) < 3 and ∆(G) ≥ 4. Then G admits

a (∆(G) + 2, 2)-incidence coloring. Therefore, χi(G) ≤ ∆(G) + 2.

Theorem 5. Let G be a graph with mad(G) < 10
3
and ∆(G) ≥ 8. Then G admits

a (∆(G) + 2, 2)-incidence coloring. Therefore, χi(G) ≤ ∆(G) + 2.

2.1. Reducible configurations

We first introduce some additional notation used in the proofs of both results.
We denote by degG(v) the degree of a vertex v in a graph G. By a k-vertex, a
k+-vertex and a k−-vertex, we mean a vertex of degree k, at least k and at most k,
respectively. A

(

k1, k2
)

-edge is an edge v1v2 such that for every i ∈ {1, 2}, vi is a
ki-vertex. More generally, a

(

k1, k2, . . . , kℓ
)

-path (respectively, a (k1, k2, . . . , kℓ)-
cycle), ℓ ≥ 3, is a path (respectively, a cycle) v1v2 · · · vℓ such that for every i,
1 ≤ i ≤ ℓ, vi is a ki-vertex.

Let c be a partial incidence coloring of a graph G. We say that a color a is
admissible for an (uncolored) incidence (v, e) in G if there is no incidence colored
by a adjacent to (v, e); otherwise the color a is forbidden. We denote F c(v, e) the
set of forbidden colors for the incidence (v, e).

Let v be a vertex of G. We set Iv :=
{

(v, uv) : uv ∈ E(G)
}

and Av :=
{

(u, uv) : uv ∈ E(G)
}

. If c is a partial incidence coloring of G, we necessarily
have c

(

Iv
)

∩ c
(

Av

)

= ∅ for each vertex v of G. Moreover, if c is a partial (k, 2)-
incidence coloring of G, then

∣

∣c(Av)
∣

∣ ≤ 2. By Ac(v) we will denote a set of exactly
two colors such that Ac(v) ⊇ c

(

Av

)

and Ac(v) ∩ c(Iv) = ∅.
We now prove a series of lemmas.

Lemma 6. Let G be a graph, v be a 1-vertex in G and k ≥ ∆(G)+2 be an integer.

If G− v admits a (k, 2)-incidence coloring, then G also admits a (k, 2)-incidence
coloring.

Proof. Let c be a (k, 2)-incidence coloring of G − v, and w denote the unique
neighbor of v in G. We will extend c to a (k, 2)-incidence coloring of G. Since
∣

∣F c(w,wv)
∣

∣ =
∣

∣c
(

Iw
)

∪c
(

Aw

)∣

∣ ≤ ∆(G)−1+2 = ∆(G)+1, there is an admissible
color a for (w,wv). We then set c(w,wv) = a and c(v, vw) = b for any color b in
Ac(w). Clearly, c is a (k, 2)-incidence coloring of G.

Lemma 7. Let G be a graph, k ≥ ∆(G)+2 be an integer, and uv be a
(

2, (k−3)−
)

-

edge in G. If G − uv admits a (k, 2)-incidence coloring, then G also admits a

(k, 2)-incidence coloring.

Proof. Let w be the other neighbor of u in G and c be a (k, 2)-incidence coloring
of G− e; e = uv. We extend c to a (k, 2)-incidence coloring of G in the following
way. We first uncolor (u, uw). We then set c(u, e) = a, for some color a ∈
Ac(v) − c(w, uw), and c(u, uw) = b for some color b ∈ Ac(w) − c(u, e). Finally,
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since
∣

∣F c(v, e)
∣

∣ =
∣

∣c
(

Iv
)

∪ c
(

Av) ∪
{

c
(

u, uw)
}∣

∣ ≤ (k − 4) + 2 + 1 = k − 1 < k,
there is an admissible color for (v, e), so that we can complete the coloring.

Lemma 8. Let G be a graph with no 1-vertices and k ≥ ∆(G) + 2 be an integer.

Let v be an s-vertex in G, s ≥ 3, adjacent to at most one 3+-vertex, and let ui,
1 ≤ i ≤ s− 1, denote the 2-neighbors of v. If the graph G−

{

vui, 1 ≤ i ≤ s− 1
}

admits a (k, 2)-incidence coloring, then G also admits a (k, 2)-incidence coloring.

Proof. Let ei = vui, fi = uiwi be the other edge incident to ui for every i,
1 ≤ i ≤ s − 1, and us be the last neighbor of v and es = vus. Let c be a (k, 2)-
incidence coloring of G −

{

ei, 1 ≤ i ≤ s − 1
}

. We extend c to a (k, 2)-incidence
coloring of G as follows.

We first uncolor (v, es) and all incidences
(

ui, fi
)

, 1 ≤ i ≤ s − 1. Let ai =
c
(

wi, fi
)

, 1 ≤ i ≤ s − 1. Since we have k colors and k ≥ ∆(G) + 2, there is a
color t not in

{

ai, 1 ≤ i ≤ s−1
}

; moreover, we can choose t such that t /∈ Ac
(

w1

)

.
We then set c

(

ui, uiv
)

= t, 1 ≤ i ≤ s− 1.

Next, for every i, 2 ≤ i ≤ s− 1, we set c
(

ui, fi
)

= ti with ti ∈ Ac
(

wi

)

− {t},
c
(

v, es
)

= ts with ts ∈ Ac
(

us
)

− {t}, and c
(

u1, f1
)

= t1 with t1 ∈ Ac
(

w1

)

−
{

t2
}

.

Now F c
(

v, ei
)

=
{

t, c
(

ui, fi
)

, c
(

us, es
)

, c
(

v, es
)}

. Therefore we have at least
k − 4 ≥ s − 2 admissible colors for every uncolored incidence. As c

(

u1, f1
)

6=
c
(

u2, f2
)

, we can choose at least s− 1 distinct colors bi such that bi /∈ F c
(

v, ei
)

,
and we set c

(

v, ei
)

= bi for every i, 1 ≤ i ≤ s− 1.

Lemma 9. Let G be a graph with ∆(G) ≥ 7, k ≥ ∆(G) + 2 be an integer, and

C = v1v2v3 be a (3, 3, 3)-cycle in G. If the graph G−
{

v1v2, v2v3, v3v1
}

admits a

(k, 2)-incidence coloring, then G also admits a (k, 2)-incidence coloring.

Proof. Let c be a (k, 2)-incidence coloring of G −
{

v1v2, v2v3, v3v1
}

. Let ui be
the neighbor of vi not included in C, 1 ≤ i ≤ 3. We extend c to a (k, 2)-incidence
coloring of G as follows. Let ai = c

(

ui, uivi
)

, bi = c
(

vi, viui
)

, 1 ≤ i ≤ 3. Since
k ≥ 9, there are three colors c1, c2, c3 /∈

{

ai, 1 ≤ i ≤ 3} ∪ {bi, 1 ≤ i ≤ 3
}

. We
then color the six incidences of C, cyclically, with colors c1, c2, c3, c1, c2, c3.

Lemma 10. Let G be a graph with ∆(G) ≥ 8, k ≥ ∆(G) + 2 be an integer, and

P = u1v1v2u2 be a
(

4−, 3, 3, 4−
)

-path in G. If the graph G −
{

u1v1, v1v2, v2u2
}

admits a (k, 2)-incidence coloring, then G also admits a (k, 2)-incidence coloring.

Proof. Let c be a (k, 2)-incidence coloring of G −
{

u1v1, v1v2, v2u2
}

and wi be
the third neighbor of vi, i = 1, 2. We will extend c to a (k, 2)-incidence coloring
of G.

We can assume that
{

c
(

wi, wivi
)

, c
(

vi, viwi

)}

6= Ac
(

ui
)

, i = 1, 2 (other-
wise we recolor

(

vi, viwi

)

using the other color from Ac
(

wi

)

). Thus we can set
c
(

vi, viui
)

= ti with ti ∈ Ac
(

ui
)

−
{

c
(

wi, wivi
)

, c
(

vi, viwi

)}

, i = 1, 2.
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We now consider three cases:

Case 1. c
(

w2, w2v2
)

/∈ c
(

Iv1
)

∪c
(

Av1

)

. We first set c
(

v1, v1v2
)

= c
(

w2, w2v2
)

.
Since k ≥ 10, there exists a color c1 /∈ c

(

Iu1

)

∪c
(

Au1

)

∪
{

c
(

v1, v1w1

)

, c
(

v2, v2w2

)

,
c
(

w2, w2v2
)

, c
(

v2, v2u2
)}

. We then set c
(

u1, u1v1
)

= c
(

v2, v2v1
)

= c1. Since the
incidence

(

u2, u2v2
)

is adjacent to at most nine other incidences, it can be colored.

Case 2. c
(

w1, w1v1
)

/∈ c
(

Iv2
)

∪c
(

Av2

)

. We proceed similarly as in the previous
case.

Case 3. c
(

w1, w1v1
)

∈ c
(

Iv2
)

∪ c
(

Av2

)

and c
(

w2, w2v2
)

∈ c
(

Iv1
)

∪ c
(

Av1

)

. We
will color the incidences

(

u1, u1v1
)

and
(

v2, v2v1
)

with a common color c1, and the
incidences

(

u2, u2v2
)

and
(

v1, v1v2
)

with a common color c2. Note that we have
at most nine forbidden colors for each of c1 and c2. If we can choose c1 6= c2, we
are done. If not, we necessarily have k = 10, the sets of forbidden colors for c1 and
c2 are the same, and both contain nine distinct colors. Since in this case we have
c
(

w1, w1v1
)

∈ c
(

Iv2
)

∪ c
(

Av2

)

and c
(

w1, w1v1
)

, c
(

v2, v2u2
)

, c
(

v2, v2w2

)

are differ-
ent (they are different forbidden colors for c2), we get c

(

w1, w1v1
)

= c
(

w2, w2v2
)

.
Without loss of generality, we may assume that c

(

w1, w1v1
)

= c
(

w2, w2v2
)

= 9,
c
(

v1, v1w1

)

= 8, c
(

v1, v1u1
)

= 7, c
(

v2, v2w2

)

= 6, and c
(

v2, v2u2
)

= 5 (see Figure
1). Then c

(

Iu2

)

∪ c
(

Au2

)

= {1, 2, 3, 4, 5} and c
(

Iu1

)

∪ c
(

Au1

)

= {1, 2, 3, 4, 7}.
We can replace c

(

v1, v1u1
)

with the other color from c
(

Au1

)

. Now, 7 is no more
forbidden for c2, so we have only eight forbidden colors for c2. Therefore, we can
now choose c1 6= c2 to obtain the desired coloring.

v1 v2

u1 u2

w1 w2

5

6

7

8

9 9

c1

c1c2

c2

Figure 1. A partial incidence coloring of a
(

4−, 3, 3, 4−
)

-path.

2.2. Discharging rules

2.2.1. Proof of Theorem 4

We prove Theorem 4 by contradiction. Let ∆0 ≥ 4 and G be a minimal counterex-
ample (with respect to the number of vertices) with mad(G) < 3, ∆(G) ≤ ∆0 and
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with no (∆0 + 2, 2)-incidence coloring. From Theorem 1 and Lemmas 6, 7 and 8
it follows that δ(G) ≥ 2, every 2-vertex in G is adjacent to two ∆0-vertices and
every 3+-vertex is adjacent to at least two 3+-vertices. Moreover, ∆0 = ∆(G).
We will reach a contradiction by using the discharging method.

We assign an initial charge ω(v) = degG(v) to each vertex v of G, and we use
the following discharging rule: each 4+-vertex gives 1

2
to each of its 2-neighbors.

We shall prove that the new charge ω′(v) of each vertex v of G is at least 3, which
contradicts our assumption mad(G) < 3 (since

∑

v∈G ω′(v) =
∑

v∈G ω(v)).
Let v be a vertex of G. We consider three cases, according to degG(v).

Case 1. degG(v) = 2. Every 2-vertex in G is adjacent to two ∆(G)-vertices.
Therefore, since ∆(G) ≥ 4, ω′(v) = 2 + 2× 1

2
= 3.

Case 2. degG(v) = 3. The discharging rule does not involve 3-vertices, thus
ω′(v) = ω(v) = 3.

Case 3. degG(v) = d ≥ 4. Since every d-vertex is adjacent to at most (d− 2)
2-vertices, ω′(v) ≥ d− 1

2
(d− 2) = d+2

2
≥ 3.

2.2.2. Proof of Theorem 5

We prove Theorem 5 by contradiction. Let ∆0 ≥ 8 and G be a minimal counterex-
ample (with respect to the number of vertices) with mad(G) < 10

3
, ∆(G) ≤ ∆0

and no
(

∆0 + 2, 2
)

-incidence coloring. From Lemmas 6, 7, 8, 9 and 10 it follows
that δ(G) ≥ 2, every 2-vertex in G is adjacent to two ∆0-vertices, every 3+-vertex
is adjacent to at least two 3+-vertices, G does not contain any 3-cycle only on
3-vertices as a subgraph and G contains no

(

4−, 3, 3, 4−
)

-path as a subgraph.
Let us define a cluster as a maximal connected subgraph of G induced on

3-vertices.
We will reach a contradiction by using the discharging method.
We assign an initial charge ω(v) = degG(v) to each vertex v of G, and we

use the following discharging rules:

(R1) Each ∆0-vertex gives 2
3
to each of its 2-neighbors.

(R2) Each 4-vertex gives 1
9
to each of its 3-neighbors.

(R3) Each 5+-vertex gives 2
9
to each of its 3-neighbors.

We shall prove that the new charge ω′(v) of each k-vertex v of G, k = 2 or
k ≥ 4, is at least 10

3
and that each cluster has average charge at least 10

3
too,

which contradicts our assumption mad(G) < 10
3
.

Let v be a vertex of G. We consider four cases, according to degG(v).

Case 1. degG(v) = 2. Every 2-vertex in G is adjacent to two ∆0-vertices.
Therefore, ω′(v) = 2 + 2× 2

3
= 10

3
by R1.
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Case 2. degG(v) = 4. Due to R2, we have ω′(v) ≥ 4− 4× 1
9
= 32

9
> 10

3
.

Case 3. degG(v) = d, with 5 ≤ d < ∆0. According to R3, vertex v sends a
charge at most 2

9
to each of its neighbors. Hence, ω′(v) ≥ d− 2

9
d = 7

9
d ≥ 35

9
> 10

3
.

Case 4. degG(v) = ∆0. Each ∆0-vertex sends 2
3
to each of its 2-neighbors and

at most 2
9
to its other neighbors. Moreover v is adjacent to at most

(

∆0 − 2
)

2-

vertices and, therefore, we have ω′(v) ≥ ∆0−
2
3

(

∆0−2
)

−2× 2
9
= 10

3
+ 3∆0−22

9
> 10

3
.

Finally, we consider a cluster K. The initial charge of K is 3|K|. We will
show that the final charge ω′(K) =

∑

v∈K ω′(v) is at least 10
3
|K|. As G contains

no (3, 3, 3)-cycle and no
(

4−, 3, 3, 4−
)

-path, we have only four possibilities for K.

• K is a single 3-vertex v. In this case ω′(K) = ω′(v) ≥ 3 + 3× 1
9
= 10

3
.

• K is a (3, 3)-edge. By Lemma 10, K is adjacent to at least two 5+-vertices
and we have ω′(K) ≥ 2× 3 + 2× 1

9
+ 2× 2

9
= 2× 10

3
.

• K is a (3, 3, 3)-path. Again by Lemma 10, K has at least four 5+-vertices
in its neighborhood and ω′(K) ≥ 3× 3 + 1× 1

9
+ 4× 2

9
= 3× 10

3
.

• K is a star on four 3-vertices. In this case each neighbor of K is a 5+-vertex
and ω′(K) = 4× 3 + 6× 2

9
= 4× 10

3
.

3. Graphs with Maximum Degree 6

Yang [8] proved that χi(G) ≤ ∆(G)+5 for every planar graph G with ∆(G) 6= 6,
using the relation between the incidence chromatic number, the star arboricity
and the chromatic index of a graph. For planar graphs with ∆(G) = 6 he only
proved χi(G) ≤ 12. We improve this bound and get the following result for a
more general class of graphs.

Figure 2. An Eulerian (multi)graph G′ with an additional (multi)edge.

Theorem 11. If G is a graph with ∆(G) ≤ 6 and with no 6-regular component

on an odd number of edges, then χi(G) ≤ 10.
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Proof. Let G be a graph with ∆(G) ≤ 6 which has no 6-regular component on
an odd number of edges. Without loss of generality we may assume that G is
connected, otherwise we consider each of its components separately. If G is an
Eulerian graph, then we color the edges of an Eulerian trail T alternately with red
and blue, starting at a vertex of degree less than 6 (if there exists one; otherwise
we start at an arbitrary vertex). The subgraphs R and B of G induced by the
sets of red and blue edges, respectively, are subcubic. Hence, by Theorem 1,
χi(R) ≤ 5 and χi(B) ≤ 5. Using two disjoint sets of colors for incidence coloring
of the subgraphs R and B, we obtain an incidence coloring of G with (at most)
10 colors.

If G is connected but not Eulerian, then we add edges joining pairs of vertices
of odd degree in G to obtain an Eulerian (multi)graph G′. Clearly, ∆(G′) ≤ 6.
We then assign colors red and blue alternately to edges of an Eulerian trail T
in G′. It is easily seen that the subgraphs R and B of G obtained as before are
subcubic, unless G′ is 6-regular and has an odd number of edges. We can avoid
this by starting a trail T at a vertex of degree less than 6 (if such a vertex exists)
or by some added (multi)edge (see Figure 2). Therefore, we can ensure that R
and B are subcubic. Again, using two disjoint sets of colors for incidence coloring
the subgraphs R and B, we obtain an incidence coloring of G′ (and of G) with
(at most) 10 colors. Therefore, χi(G) ≤ 10.

As a consequence of the previous theorem, we positively answer Yang’s ques-
tion about planar graphs with maximum degree 6, even improving the suggested
bound.

Corollary 12. Every planar graph G with ∆(G) = 6 satisfies χi(G) ≤ 10.
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