NICHE HYPERGRAPHS OF PRODUCTS OF DIGRAPHS

Martin Sonntag
Faculty of Mathematics and Computer Science
TU Bergakademie Freiberg
Prüferstraße 1, D-09596 Freiberg, Germany
e-mail: sonntag@tu-freiberg.de
AND
Hanns-Martin Teichert
Institute of Mathematics
University of Lübeck
Ratzeburger Allee 160, D-23562 Lübeck, Germany
e-mail: teichert@math.uni-luebeck.de

Abstract

If $D=(V, A)$ is a digraph, its niche hypergraph $N \mathcal{H}(D)=(V, \mathcal{E})$ has the edge set $\mathcal{E}=\left\{e \subseteq V| | e \mid \geq 2 \wedge \exists v \in V: e=N_{D}^{-}(v) \vee e=N_{D}^{+}(v)\right\}$. Niche hypergraphs generalize the well-known niche graphs and are closely related to competition hypergraphs as well as common enemy hypergraphs. For several products $D_{1} \circ D_{2}$ of digraphs D_{1} and D_{2}, we investigate the relations between the niche hypergraphs of the factors D_{1}, D_{2} and the niche hypergraph of their product $D_{1} \circ D_{2}$.

Keywords: niche hypergraph, product of digraphs, competition hypergraph.
2010 Mathematics Subject Classification: 05C65, 05C76, 05C20.

1. Introduction and Definitions

All hypergraphs $\mathcal{H}=(V(\mathcal{H}), \mathcal{E}(\mathcal{H}))$, graphs $G=(V(G), E(G))$ and digraphs $D=(V(D), A(D))$ considered in the following may have isolates but no multiple edges. Moreover, in digraphs loops are forbidden. With $N_{D}^{-}(v), N_{D}^{+}(v), d_{D}^{-}(v)$ and $d_{D}^{+}(v)$ we denote the in-neighborhood, the out-neighborhood, the in-degree
and the out-degree of $v \in V(D)$, respectively. In standard terminology we follow Bang-Jensen and Gutin [1].

In 1968, Cohen [3] introduced the competition graph $C(D)=(V, E(C(D)))$ of a digraph $D=(V, A)$ representing a food web of an ecosystem. Here the vertices correspond to the species and different vertices v_{1}, v_{2} are connected by an edge if and only if they compete for a common prey w, i.e.,

$$
E(C(D))=\left\{\left\{v_{1}, v_{2}\right\} \mid v_{1} \neq v_{2} \wedge \exists w \in V: v_{1} \in N_{D}^{-}(w) \wedge v_{2} \in N_{D}^{-}(w)\right\}
$$

Surveys of the large literature around competition graphs (and its variants) can be found in [5,6,11]; for (a selection of) recent results see [4, $7-10,12-17,21]$.

Meanwhile the following variants of $C(D)$ have been investigated.
The common enemy graph $C E(D)$ (cf. [11]) with the edge set

$$
E(C E(D))=\left\{\left\{v_{1}, v_{2}\right\} \mid v_{1} \neq v_{2} \wedge \exists w \in V: v_{1} \in N_{D}^{+}(w) \wedge v_{2} \in N_{D}^{+}(w)\right\}
$$

the double competition graph or competition-common enemy graph $D C(D)$ with the edge set $E(D C(D))=E(C(D)) \cap E(C E(D))$ (cf. [18]), and the niche graph $N(D)$ with $E(N(D))=E(C(D)) \cup E(C E(D))($ cf. [2]).

In 2004, the concept of competition hypergraphs was introduced by Sonntag and Teichert [19]. The competition hypergraph $C \mathcal{H}(D)$ of a digraph $D=(V, A)$ has the vertex set V and the edge set

$$
\mathcal{E}(C \mathcal{H}(D))=\left\{e \subseteq V| | e \mid \geq 2 \wedge \exists v \in V: e=N_{D}^{-}(v)\right\} .
$$

As a second hypergraph generalization, recently Park and Sano [16] defined the double competition hypergraph $\operatorname{DCH}(D)$ of a digraph $D=(V, A)$, which has the vertex set V and the edge set

$$
\mathcal{E}(D C \mathcal{H}(D))=\left\{e \subseteq V| | e \mid \geq 2 \wedge \exists v_{1}, v_{2} \in V: e=N_{D}^{-}\left(v_{1}\right) \cap N_{D}^{+}\left(v_{2}\right)\right\} .
$$

Our paper [5] was a third step in this direction; there we considered the niche hypergraph $N \mathcal{H}(D)$ of a digraph $D=(V, A)$, again with the vertex set V and the edge set

$$
\mathcal{E}(N \mathcal{H}(D))=\left\{e \subseteq V| | e \mid \geq 2 \wedge \exists v \in V: e=N_{D}^{-}(v) \vee e=N_{D}^{+}(v)\right\}
$$

Note that $N \mathcal{H}(D)=N \mathcal{H}(\overleftarrow{D})$ holds for any digraph D, if \overleftarrow{D} denotes the digraph obtained from D by reversing all arcs.

In [5] we present results on several properties of niche hypergraphs and the so-called niche number \hat{n} of hypergraphs. In most of the investigations in [5] the generating digraph D of $N \mathcal{H}(D)$ is assumed to be acyclic.

For technical reasons, we define another hypergraph generalization. The common enemy hypergraph $C E \mathcal{H}(D)$ of a digraph $D=(V, A)$ has the vertex set V and the edge set

$$
\mathcal{E}(C E \mathcal{H}(D))=\left\{e \subseteq V| | e \mid \geq 2 \wedge \exists v \in V: e=N_{D}^{+}(v)\right\}
$$

In the hypergraphs $C \mathcal{H}(D), C E \mathcal{H}(D)$ and $N \mathcal{H}(D)$ no loops are allowed. Therefore, by definition the in-neighborhoods and out-neighborhoods of cardinality 1 in the digraph D play no role in the corresponding hypergraphs. This loss of information proved to be disadvantageous in the investigation of competition hypergraphs of products of digraphs (cf. [20]). So, considering niche hypergraphs of products of digraphs, it seems to be consequent to allow loops in niche hypergraphs, too. Therefore, we define the l-competition hypergraph $C \mathcal{H}^{l}(D)$, the l-common enemy hypergraph $C E \mathcal{H}^{l}(D)$ and the l-niche hypergraph $N \mathcal{H}^{l}(D)$ (with loops) having the edge sets

$$
\begin{aligned}
\mathcal{E}\left(C \mathcal{H}^{l}(D)\right) & =\left\{e \subseteq V \mid \exists v \in V: e=N_{D}^{-}(v) \neq \emptyset\right\} \\
\mathcal{E}\left(C E \mathcal{H}^{l}(D)\right) & =\left\{e \subseteq V \mid \exists v \in V: e=N_{D}^{+}(v) \neq \emptyset\right\} \quad \text { and } \\
\mathcal{E}\left(N \mathcal{H}^{l}(D)\right) & =\left\{e \subseteq V \mid \exists v \in V: e=N_{D}^{-}(v) \neq \emptyset \vee e=N_{D}^{+}(v) \neq \emptyset\right\} \\
& =\mathcal{E}\left(C \mathcal{H}^{l}(D)\right) \cup \mathcal{E}\left(C E \mathcal{H}^{l}(D)\right)
\end{aligned}
$$

For the sake of brevity, in the following we often use the term (l)-competition hypergraph (sometimes in connection with the notation $C \mathcal{H}^{(l)}(D)$) for the competition hypergraph $C \mathcal{H}(D)$ as well as for the l-competition hypergraph $C \mathcal{H}^{l}(D)$, analogously for (l)-common enemy and (l)-niche hypergraphs with the notations $C E \mathcal{H}^{(l)}(D)$ and $N \mathcal{H}^{(l)}(D)$, respectively.

For five products $D_{1} \circ D_{2}$ (Cartesian product $D_{1} \times D_{2}$, Cartesian sum $D_{1}+D_{2}$, normal product $D_{1} * D_{2}$, lexicographic product $D_{1} \cdot D_{2}$ and disjunction $D_{1} \vee D_{2}$) of digraphs $D_{1}=\left(V_{1}, A_{1}\right)$ and $D_{2}=\left(V_{2}, A_{2}\right)$ we investigate the construction of the (l)-niche hypergraph $N \mathcal{H}^{(l)}\left(D_{1} \circ D_{2}\right)=\left(V, \mathcal{E}_{o}^{(l)}\right)$ from $N \mathcal{H}^{(l)}\left(D_{1}\right)=\left(V_{1}, \mathcal{E}_{1}^{(l)}\right)$, $N \mathcal{H}^{(l)}\left(D_{2}\right)=\left(V_{2}, \mathcal{E}_{2}^{(l)}\right)$ and vice versa.

The products considered here have always the vertex set $V:=V_{1} \times V_{2}$; using the notation $\widetilde{A}:=\left\{\left((a, b),\left(a^{\prime}, b^{\prime}\right)\right) \mid a, a^{\prime} \in V_{1} \wedge b, b^{\prime} \in V_{2}\right\}$ their arc sets are defined as follows:
$A\left(D_{1} \times D_{2}\right):=\left\{\left((a, b),\left(a^{\prime}, b^{\prime}\right)\right) \in \widetilde{A} \mid\left(a, a^{\prime}\right) \in A_{1} \wedge\left(b, b^{\prime}\right) \in A_{2}\right\}$,
$A\left(D_{1}+D_{2}\right):=\left\{\left((a, b),\left(a^{\prime}, b^{\prime}\right)\right) \in \widetilde{A} \mid\left(\left(a, a^{\prime}\right) \in A_{1} \wedge b=b^{\prime}\right) \vee\left(a=a^{\prime} \wedge\left(b, b^{\prime}\right) \in A_{2}\right)\right\}$,
$A\left(D_{1} * D_{2}\right):=A\left(D_{1} \times D_{2}\right) \cup A\left(D_{1}+D_{2}\right)$,
$A\left(D_{1} \cdot D_{2}\right):=\left\{\left((a, b),\left(a^{\prime}, b^{\prime}\right)\right) \in \widetilde{A} \mid\left(a, a^{\prime}\right) \in A_{1} \vee\left(a=a^{\prime} \wedge\left(b, b^{\prime}\right) \in A_{2}\right)\right\}$,
$A\left(D_{1} \vee D_{2}\right):=\left\{\left((a, b),\left(a^{\prime}, b^{\prime}\right)\right) \in \widetilde{A} \mid\left(a, a^{\prime}\right) \in A_{1} \vee\left(b, b^{\prime}\right) \in A_{2}\right\}$.

It follows immediately that $A\left(D_{1}+D_{2}\right) \subseteq A\left(D_{1} * D_{2}\right) \subseteq A\left(D_{1} \cdot D_{2}\right) \subseteq$ $A\left(D_{1} \vee D_{2}\right)$ and $A\left(D_{1} \times D_{2}\right) \subseteq A\left(D_{1} * D_{2}\right)$. Except the lexicographic product all these products are commutative in the sense that $D_{1} \circ D_{2} \simeq D_{2} \circ D_{1}$, where $\circ \in\{x,+, *, v\}$.

Usually we number the vertices of D_{1} and D_{2} such that $V_{1}=\{1,2, \ldots, r\}$, $V_{2}=\{1,2, \ldots, s\}$ and arrange the vertices of $V=V_{1} \times V_{2}$ according to the places of an (r, s)-matrix.

In analogy with the rows and the columns of the described (r, s)-matrix we call the set $Z_{i}=\left\{(i, j) \mid j \in V_{2}\right\}\left(i \in V_{1}\right)$ and the set $S_{j}=\left\{(i, j) \mid i \in V_{1}\right\}\left(j \in V_{2}\right)$ the i-th row and the j-th column of $D_{1} \circ D_{2}$, respectively.

Then, for each $\circ \in\{+, *, \cdot, \vee\}$, the subdigraph $\left\langle S_{j}\right\rangle_{D_{1} \circ D_{2}}$ of $D_{1} \circ D_{2}$ induced by the vertices of a column S_{j} is isomorphic to D_{1}, and, analogously, the subdigraph $\left\langle Z_{i}\right\rangle_{D_{1} \circ D_{2}}$ of $D_{1} \circ D_{2}$ induced by the vertices of a row Z_{i} is isomorphic to D_{2}. Moreover, if an arc $a \in A\left(D_{1} \circ D_{2}\right)$ consists only of vertices of one row Z_{i} ($i \in V_{1}$), we refer to a as a horizontal arc. Analogously, an arc a containing only vertices of one column $S_{j}\left(j \in V_{2}\right)$ is called a vertical arc.

Considering (l)-niche hypergraphs, the question arises, whether or not $N \mathcal{H}^{(l)}\left(D_{1} \circ D_{2}\right)$ can be obtained from $N \mathcal{H}^{(l)}\left(D_{1}\right)$ and $N \mathcal{H}^{(l)}\left(D_{2}\right)$ and vice versa.

As an instance for competition hypergraphs $C \mathcal{H}^{(l)}$, we cite two results from [20].
Theorem 1 [20]. The l-competition hypergraph $\mathcal{C H}^{l}\left(D_{1} \times D_{2}\right)=\left(V, \mathcal{E}_{\times}^{l}\right)$ of the Cartesian product can be obtained from the l-competition hypergraphs $\mathcal{C H}{ }^{l}\left(D_{1}\right)=$ $\left(V_{1}, \mathcal{E}_{1}^{l}\right)$ and $\mathcal{C} \mathcal{H}^{l}\left(D_{2}\right)=\left(V_{2}, \mathcal{E}_{2}^{l}\right)$ of D_{1} and $D_{2}: \mathcal{E}_{\times}^{l}=\left\{e_{1} \times e_{2} \mid e_{1} \in \mathcal{E}_{1}^{l} \wedge e_{2} \in \mathcal{E}_{2}^{l}\right\}$.
Theorem 2 [20]. The l-competition hypergraph $\mathcal{C H}^{l}\left(D_{1} \vee D_{2}\right)=\left(V, \mathcal{E}_{\vee}^{l}\right)$ of the disjunction can be obtained from the l-competition hypergraphs $\mathcal{C H}^{l}\left(D_{1}\right)=$ $\left(V_{1}, \mathcal{E}_{1}^{l}\right)$ and $\mathcal{C H}^{l}\left(D_{2}\right)=\left(V_{2}, \mathcal{E}_{2}^{l}\right)$ of D_{1} and D_{2}, if for each of the following conditions is known whether it is true or not:
(a) $\exists v_{2} \in V_{2}: N_{2}^{-}\left(v_{2}\right)=\emptyset$ and
(b) $\exists v_{1} \in V_{1}: N_{1}^{-}\left(v_{1}\right)=\emptyset$.

In general, $\mathcal{C H}^{l}\left(D_{1} \vee D_{2}\right)$ cannot be obtained from $\mathcal{C H}^{l}\left(D_{1}\right)$ and $\mathcal{C H}^{l}\left(D_{2}\right)$ without the extra information on points (a) and (b).

Note that in some cases under certain conditions $D_{1} \circ D_{2}$ and even D_{1} and D_{2} can be reconstructed from $C \mathcal{H}^{(l)}\left(D_{1} \circ D_{2}\right)$. For niche hypergraphs such strong results are not expectable.

The main reason why the reconstruction of D_{1} and D_{2} from $N \mathcal{H}^{(l)}\left(D_{1} \circ\right.$ D_{2}) is much more difficult is the following. In general, for any hyperedge $e \in$ $\mathcal{E}\left(N \mathcal{H}^{(l)}(D)\right)$ it is not possible to see whether e is a set of predecessors $e=N_{D}^{-}(v)$ or a set of successors $e=N_{D}^{+}(v)$ of a certain vertex $v \in V(D)$.

It is interesting that, in general, for the same reason also the construction of $N \mathcal{H}\left(D_{1} \circ D_{2}\right)$ from $N \mathcal{H}^{l}\left(D_{1}\right)$ and $N \mathcal{H}^{l}\left(D_{2}\right)$ is impossible.
2. Construction of $N \mathcal{H}^{(l)}\left(D_{1} \circ D_{2}\right)$ from $N \mathcal{H}^{(l)}\left(D_{1}\right)$ and $N \mathcal{H}^{(l)}\left(D_{2}\right)$

The digraphs $D=(V, A)$ and $D^{\prime}=\left(V, A^{\prime}\right)$ are (l)-niche equivalent if and only if D and D^{\prime} have the same (l)-niche hypergraph, i.e., $N \mathcal{H}^{(l)}(D)=N \mathcal{H}^{(l)}\left(D^{\prime}\right)$.

Theorem 3. Let $D_{1}=\left(V_{1}, A_{1}\right)$ and $D_{2}=\left(V_{2}, A_{2}\right)$ be digraphs. In general, for $\circ \in\{\times,+, *, \cdot, \vee\}$, the niche hypergraph $N \mathcal{H}\left(D_{1} \circ D_{2}\right)=\left(V, \mathcal{E}_{\circ}\right)$ of $D_{1} \circ D_{2}$ cannot be obtained from the l-niche hypergraphs $N \mathcal{H}^{l}\left(D_{1}\right)=\left(V_{1}, \mathcal{E}_{1}^{l}\right)$ and $N \mathcal{H}^{l}\left(D_{2}\right)=$ $\left(V_{2}, \mathcal{E}_{2}^{l}\right)$ of D_{1} and D_{2}.

Proof. It suffices to present digraphs $D_{1}=\left(V_{1}, A_{1}\right), D_{1}^{\prime}=\left(V_{1}, A_{1}^{\prime}\right), D_{2}=$ $\left(V_{2}, A_{2}\right)$ such that D_{1} and D_{1}^{\prime} are l-niche equivalent, but the niche hypergraphs of $D_{1} \circ D_{2}$ and $D_{1}^{\prime} \circ D_{2}$ are distinct, i.e., $N \mathcal{H}\left(D_{1} \circ D_{2}\right) \neq N \mathcal{H}\left(D_{1}^{\prime} \circ D_{2}\right)$.

So let us consider the following digraphs and their niche hypergraphs:
$D_{1}=\left(V_{1}, A_{1}\right)$ with $V_{1}=\{1,2,3,4,5\}$ and $A_{1}=\{(1,2),(3,2),(4,5),(2,4)\}$,
$D_{1}^{\prime}=\left(V_{1}, A_{1}^{\prime}\right)$ with $A_{1}^{\prime}=\{(1,2),(3,2),(4,5)\}$ and
$D_{2}=\left(V_{2}, A_{2}\right)$ with $V_{2}=\{1,2,3\}$ and $A_{2}=\{(1,3),(2,3)\}$.
Obviously, D_{1} and D_{1}^{\prime} are l-niche equivalent, they have the l-niche hypergraph $N \mathcal{H}^{l}\left(D_{1}\right)=N \mathcal{H}^{l}\left(D_{1}^{\prime}\right)=\left(V_{1}, \mathcal{E}_{1}^{l}\right)$, where $\mathcal{E}_{1}^{l}=\{\{1,3\},\{2\},\{4\},\{5\}\}$.

In detail, looking at D_{1} we have

$$
\begin{gathered}
\mathcal{E}_{1}^{l}=\mathcal{E}\left(N \mathcal{H}^{l}\left(D_{1}\right)\right)=\left\{\{1,3\}=N_{D_{1}}^{-}(2),\{2\}=N_{D_{1}}^{-}(4)=N_{D_{1}}^{+}(1)=N_{D_{1}}^{+}(3),\right. \\
\\
\left.\{4\}=N_{D_{1}}^{-}(5)=N_{D_{1}}^{+}(2),\{5\}=N_{D_{1}}^{+}(4)\right\} ;
\end{gathered}
$$

regarding D_{1}^{\prime} we get

$$
\begin{aligned}
& \mathcal{E}_{1}^{l}=\mathcal{E}\left(N \mathcal{H}^{l}\left(D_{1}^{\prime}\right)\right)=\left\{\{1,3\}=N_{D_{1}^{\prime}}^{-}(2),\{2\}=N_{D_{1}^{\prime}}^{+}(1)=N_{D_{1}^{\prime}}^{+}(3),\{4\}=N_{D_{1}^{\prime}}^{-}(5),\right. \\
&\left.\{5\}=N_{D_{1}^{\prime}}^{\prime}(4)\right\} .
\end{aligned}
$$

Note that D_{1} and D_{1}^{\prime} - despite having one and the same l-niche hypergraph - are significantly different in the sense that $D_{1}^{\prime} \neq \overleftarrow{D_{1}}, D_{1} \not \not D_{1}^{\prime}$, and, moreover, D_{1} is connected but D_{1}^{\prime} consists of two components. Of course, using D_{1} and $\overleftarrow{D_{1}}$ instead of D_{1} and D_{1}^{\prime} could be an alternative approach for proving Theorem 3.

For the sake of completeness, we give the l-niche hypergraph $N \mathcal{H}^{l}\left(D_{2}\right)=$ $\left(V_{2}, \mathcal{E}_{2}^{l}\right)$, with $\mathcal{E}_{2}^{l}=\left\{\{1,2\}=N_{D_{2}}^{-}(3),\{3\}=N_{D_{2}}^{+}(1)=N_{D_{2}}^{+}(2)\right\}$.

Now we compare the niche hypergraphs of the products $D_{1} \circ D_{2}$ and $D_{1}^{\prime} \circ D_{2}$.

- Cartesian product $D_{1}^{(\prime)} \times D_{2}$.

Since the Cartesian product has not so many arcs and, consequently, its niche hypergraph $N \mathcal{H}\left(D_{1}^{(1)} \times D_{2}\right)$ includes only few hyperedges, we present the whole edge sets $\mathcal{E}\left(N \mathcal{H}\left(D_{1}^{(\prime)} \times D_{2}\right)\right)$ here (in case of the other four products the edge sets of $N \mathcal{H}\left(D_{1}^{(1)} \circ D_{2}\right)$ will be considerably larger, hence in these cases we will give up on writing down these sets completely).

$$
\begin{aligned}
\mathcal{E}\left(N \mathcal{H}\left(D_{1} \times D_{2}\right)\right)=\{ & \{(1,1),(1,2),(3,1),(3,2)\}=N_{D_{1} \times D_{2}}^{-}((2,3)), \\
& \{(2,1),(2,2)\}=N_{D_{1} \times D_{2}}^{-}((4,3)), \\
& \left.\{(4,1),(4,2)\}=N_{D_{1} \times D_{2}}^{-}((5,3))\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\mathcal{E}\left(N \mathcal{H}\left(D_{1}^{\prime} \times D_{2}\right)\right)=\{ & \{(1,1),(1,2),(3,1),(3,2)\}=N_{D_{1}^{\prime} \times D_{2}}^{-}((2,3)), \\
& \left.\{(4,1),(4,2)\}=N_{D_{1}^{\prime} \times D_{2}}^{-}((5,3))\right\} .
\end{aligned}
$$

- Cartesian sum $D_{1}^{(\prime)}+D_{2}$, normal product $D_{1}^{(\prime)} * D_{2}$ and lexicographic product $D_{1}^{(1)} \cdot D_{2}$.
Since D_{1} is connected, the Cartesian sum $D_{1}+D_{2}$, the normal product $D_{1} * D_{2}$ as well as the lexicographic product $D_{1} \cdot D_{2}$ are connected, too. Considering the (disconnected) digraph D_{1}^{\prime}, obviously $D_{1}^{\prime}+D_{2}, D_{1}^{\prime} * D_{2}$ and $D_{1}^{\prime} \cdot D_{2}$ are disconnected. In detail, each of the products $D_{1}^{\prime} \circ D_{2}(\circ \in\{+, *, \cdot\})$ consists of the two components $\left\langle Z_{1} \cup Z_{2} \cup Z_{3}\right\rangle_{D_{1}^{\prime} \circ D_{2}}$ and $\left\langle Z_{4} \cup Z_{5}\right\rangle_{D_{1}^{\prime} \circ D_{2}}$.

Therefore, in the niche hypergraph $N \mathcal{H}\left(D_{1}^{\prime} \circ D_{2}\right)$ hyperedges containing vertices of both components cannot exist:

$$
\forall e \in \mathcal{E}\left(N \mathcal{H}\left(D_{1}^{\prime} \circ D_{2}\right)\right): e \cap\left(Z_{1} \cup Z_{2} \cup Z_{3}\right)=\emptyset \vee e \cap\left(Z_{4} \cup Z_{5}\right)=\emptyset
$$

Consequently, to show $N \mathcal{H}\left(D_{1} \circ D_{2}\right) \neq N \mathcal{H}\left(D_{1}^{\prime} \circ D_{2}\right)$, it suffices to find a hyperedge $e \in \mathcal{E}\left(N \mathcal{H}\left(D_{1} \circ D_{2}\right)\right)$ such that both $e \cap\left(Z_{1} \cup Z_{2} \cup Z_{3}\right)$ and $e \cap\left(Z_{4} \cup Z_{5}\right)$ are nonempty.

For each of the three products $D_{1} \circ D_{2}$ we will obtain such a hyperedge by considering the set of the predecessors of the vertex $(4,3) \in V\left(D_{1} \circ D_{2}\right)$, i.e., $e=N_{D_{1} \circ D_{2}}^{-}((4,3))$. Clearly, e results from $N_{D_{1}}^{-}(4)=\{2\}$ and $N_{D_{2}}^{-}(3)=\{1,2\}$.

For the Cartesian sum $D_{1}+D_{2}$, we have

$$
e=\{(2,3),(4,1),(4,2)\}=N_{D_{1}+D_{2}}^{-}((4,3))
$$

In case of the normal product $D_{1} * D_{2}$, we obtain

$$
e=\{(2,1),(2,2),(2,3),(4,1),(4,2)\}=N_{D_{1} * D_{2}}^{-}((4,3))
$$

It it easy to see that in the lexicographic product $D_{1} \cdot D_{2}$ the vertex $(4,3)$ has the same predecessors as in the normal product, hence

$$
e=N_{D_{1} \cdot D_{2}}^{-}((4,3))=N_{D_{1} * D_{2}}^{-}((4,3))=\{(2,1),(2,2),(2,3),(4,1),(4,2)\} .
$$

- Disjunction $D_{1}^{(\prime)} \vee D_{2}$.

Now both $D_{1} \vee D_{2}$ and $D_{1}^{\prime} \vee D_{2}$ are connected. Nevertheless, as in the previous cases, we consider the predecessors of the vertex $(4,3)$ and get the hyperedge

$$
\begin{aligned}
e & =N_{D_{1} \vee D_{2}}^{-}((4,3)) \\
& =\{(1,1),(1,2),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1),(4,2),(5,1),(5,2)\} \\
& =S_{1} \cup S_{2} \cup\{(2,3)\}=S_{1} \cup S_{2} \cup Z_{2} \in \mathcal{E}\left(N \mathcal{H}\left(D_{1} \vee D_{2}\right)\right) .
\end{aligned}
$$

Note that $S_{1} \cup S_{2}$ in e result from $N_{D_{2}}^{-}(3)=\{1,2\}$ and Z_{2} from $N_{D_{1}}^{-}(4)=\{2\}$.
We search for this hyperedge e in $N \mathcal{H}\left(D_{1}^{\prime} \vee D_{2}\right)$.
Assume $e=N_{D_{1}^{\prime} \vee D_{2}}^{+}((i, j))$ or $e=N_{D_{1}^{\prime} \vee D_{2}}^{-}((i, j))$. Since D_{1}^{\prime} and D_{2} are loopless digraphs, we obtain $(i, j) \notin e$ and $(i, j) \in\{(1,3),(3,3),(4,3),(5,3)\}$, i.e., $j=3$.

Let $e=N_{D_{1}^{\prime} \vee D_{2}}^{+}((i, 3))$. Because of $N_{D_{2}}^{+}(3)=\emptyset$ and $S_{1} \subseteq e$, all vertices of S_{1} have to be successors of $(i, 3)$ in $D_{1}^{\prime} \vee D_{2}$ and $\{1,2, \ldots, 5\}=N_{D_{1}^{\prime}}^{+}(i)$, where $i \in\{1,2, \ldots, 5\}$. This contradicts the fact that D_{1}^{\prime} is loopless.

Consequently, $e=N_{D_{1}^{\prime} \vee D_{2}}^{-}((i, 3))$. Then, $S_{1} \cup S_{2} \subseteq e$ holds trivially. Owing to $(2,3) \in e$ we get $(2,3) \in N_{D_{1}^{\prime} \vee D_{2}}^{-}((i, 3))$, i.e., $2 \in N_{D_{1}^{\prime}}^{-}(i)$ with $i \in\{1,2, \ldots, 5\}$. This contradicts $N_{D_{1}^{\prime}}^{+}(2)=\emptyset$.

Hence, $e \notin \mathcal{E}\left(N \mathcal{H}\left(D_{1}^{\prime} \vee D_{2}\right)\right)$, thus $D_{1} \vee D_{2}$ and $D_{1}^{\prime} \vee D_{2}$ are not niche equivalent. Therefore, the niche hypergraph of the disjunction $D_{1} \vee D_{2}$ cannot be constructed from the niche hypergraphs of D_{1} and D_{2} in general.

Using Theorems 1 and 2, for the Cartesian product and the disjunction some positive construction results can be derived. For this end we have to make use of $\mathcal{E}\left(N \mathcal{H}^{(l)}(D)\right)=\mathcal{E}\left(C \mathcal{H}^{(l)}(D)\right) \cup \mathcal{E}\left(C E \mathcal{H}^{(l)}(D)\right)$ and $C E \mathcal{H}^{(l)}(D)=C \mathcal{H}^{(l)}(\overleftarrow{D})$.
Remark 4. The l-niche hypergraph $N \mathcal{H}^{l}\left(D_{1} \times D_{2}\right)$ of the Cartesian product can be obtained from the l-competition hypergraphs $C \mathcal{H}^{l}\left(D_{1}\right), C \mathcal{H}^{l}\left(D_{2}\right)$ and the l-common enemy hypergraphs $C E \mathcal{H}^{l}\left(D_{1}\right), C E \mathcal{H}^{l}\left(D_{2}\right)$:

$$
\begin{aligned}
\mathcal{E}\left(N \mathcal{H}^{l}\left(D_{1} \times D_{2}\right)\right) & =\mathcal{E}\left(C \mathcal{H}^{l}\left(D_{1} \times D_{2}\right)\right) \cup \mathcal{E}\left(C E \mathcal{H}^{l}\left(D_{1} \times D_{2}\right)\right) \\
& =\left\{e_{1} \times e_{2} \mid e_{1} \in \mathcal{E}\left(C \mathcal{H}^{l}\left(D_{1}\right)\right) \wedge e_{2} \in \mathcal{E}\left(C \mathcal{H}^{l}\left(D_{2}\right)\right)\right\} \\
& \cup\left\{e_{1} \times e_{2} \mid e_{1} \in \mathcal{E}\left(C E \mathcal{H}^{l}\left(D_{1}\right)\right) \wedge e_{2} \in \mathcal{E}\left(C E \mathcal{H}^{l}\left(D_{2}\right)\right)\right\} .
\end{aligned}
$$

Remark 5. The l-niche hypergraph $N \mathcal{H}^{l}\left(D_{1} \vee D_{2}\right)$ of the disjunction can be obtained from the l-competition hypergraphs $C \mathcal{H}^{l}\left(D_{1}\right), C \mathcal{H}^{l}\left(D_{2}\right)$ and the l-common enemy hypergraphs $C E \mathcal{H}^{l}\left(D_{1}\right), C E \mathcal{H}^{l}\left(D_{2}\right)$ provided that each of the following conditions is known to be true or false:
(a) $\exists v_{2} \in V_{2}: N_{D_{2}}^{-}\left(v_{2}\right)=\emptyset$ and (b) $\exists v_{1} \in V_{1}: N_{D_{1}}^{-}\left(v_{1}\right)=\emptyset$ and
(c) $\exists v_{2} \in V_{2}: N_{D_{2}}^{+}\left(v_{2}\right)=\emptyset$ and (d) $\exists v_{1} \in V_{1}: N_{D_{1}}^{+}\left(v_{1}\right)=\emptyset$.

In general, $N \mathcal{H}^{l}\left(D_{1} \vee D_{2}\right)$ cannot be obtained from $C \mathcal{H}^{l}\left(D_{1}\right), C \mathcal{H}^{l}\left(D_{2}\right)$, $C E \mathcal{H}^{l}\left(D_{1}\right)$ and $C E \mathcal{H}^{l}\left(D_{2}\right)$ without the extra information on points (a)-(d).

3. Reconstruction of $N \mathcal{H}^{(l)}\left(D_{1}\right)$ and $N \mathcal{H}^{(l)}\left(D_{2}\right)$ from $N \mathcal{H}^{(l)}\left(D_{1} \circ D_{2}\right)$

In the following, for a set $e=\left\{\left\{i_{1}, j_{1}\right\}, \ldots,\left\{i_{k}, j_{k}\right\}\right\} \subseteq V_{1} \times V_{2}$ we define $\pi_{1}(e):=$
$\left\{i_{1}, \ldots, i_{k}\right\}$ and $\pi_{2}(e):=\left\{j_{1}, \ldots, j_{k}\right\}$, respectively, i.e., π_{i} denotes the projection of vertices of $N \mathcal{H}^{(l)}\left(D_{1} \circ D_{2}\right)$ onto their i-th components, for $i \in\{1,2\}$.

Theorem 6 (Cartesian product $D_{1} \times D_{2}$).
(a) If $\mathcal{E}\left(N \mathcal{H}\left(D_{1} \times D_{2}\right)\right) \neq \emptyset$, then $N \mathcal{H}\left(D_{1}\right)$ and $N \mathcal{H}\left(D_{2}\right)$ can be obtained from $N \mathcal{H}\left(D_{1} \times D_{2}\right)$.
(b) If $\mathcal{E}\left(N \mathcal{H}^{l}\left(D_{1} \times D_{2}\right)\right) \neq \emptyset$, then $N \mathcal{H}^{l}\left(D_{1}\right)$ and $N \mathcal{H}^{l}\left(D_{2}\right)$ can be obtained from $N \mathcal{H}^{l}\left(D_{1} \times D_{2}\right)$.

Proof. Note that $\mathcal{E}\left(N \mathcal{H}\left(D_{1} \times D_{2}\right)\right) \neq \emptyset$ implies $A_{1} \neq \emptyset \neq A_{2}$ and $\max \left(\left|A_{1}\right|\right.$, $\left.\left|A_{2}\right|\right) \geq 2$. Moreover, $\mathcal{E}\left(N \mathcal{H}^{l}\left(D_{1} \times D_{2}\right)\right) \neq \emptyset$ is equivalent to $A_{1} \neq \emptyset \neq A_{2}$ and, consequently, to $\mathcal{E}\left(N \mathcal{H}^{l}\left(D_{1}\right)\right) \neq \emptyset \neq \mathcal{E}\left(N \mathcal{H}^{l}\left(D_{2}\right)\right)$.
(b) Let $e \in \mathcal{E}\left(N \mathcal{H}^{l}\left(D_{1} \times D_{2}\right)\right)$. This is equivalent to $e \in \mathcal{E}\left(C \mathcal{H}^{l}\left(D_{1} \times D_{2}\right)\right)$ or $e \in \mathcal{E}\left(C E \mathcal{H}^{l}\left(D_{1} \times D_{2}\right)\right)$, i.e., $e=N_{D_{1} \times D_{2}}^{-}((i, j))$ or $e=N_{D_{1} \times D_{2}}^{+}((i, j))$, with a certain $(i, j) \in V_{1} \times V_{2}$.

This holds if and only if there is a vertex $(i, j) \in V_{1} \times V_{2}$ such that

$$
\pi_{1}(e)=N_{D_{1}}^{-}(i) \text { and } \pi_{2}(e)=N_{D_{2}}^{-}(j) \text { or } \pi_{1}(e)=N_{D_{1}}^{+}(i) \text { and } \pi_{2}(e)=N_{D_{2}}^{+}(j),
$$

which implies $\pi_{1}(e) \in \mathcal{E}\left(N \mathcal{H}^{l}\left(D_{1}\right)\right)$ and $\pi_{2}(e) \in \mathcal{E}\left(N \mathcal{H}^{l}\left(D_{2}\right)\right)$.
Clearly, this way we can get all hyperedges $e_{1} \in \mathcal{E}\left(N \mathcal{H}^{l}\left(D_{1}\right)\right)$ and $e_{2} \in$ $\mathcal{E}\left(N \mathcal{H}^{l}\left(D_{2}\right)\right)$.
(a) An analog argumentation holds if we consider the niche hypergraphs $N \mathcal{H}$ instead of the l-niche hypergraphs $N \mathcal{H}^{l}$, since hyperedges $e \in \mathcal{E}\left(N \mathcal{H}^{l}\left(D_{1} \times D_{2}\right)\right)$ of cardinality 1 can be omitted if we are interested only in hyperedges $e_{i} \in$ $\mathcal{E}\left(N \mathcal{H}\left(D_{i}\right)\right)$ (which have cardinality greater than 1), for $i=1,2$.

Theorem 7 (Cartesian sum $D_{1}+D_{2}$).
(a) $N \mathcal{H}\left(D_{1}\right)$ and $N \mathcal{H}\left(D_{2}\right)$ can be obtained from $N \mathcal{H}\left(D_{1}+D_{2}\right)$.
(b) $N \mathcal{H}^{l}\left(D_{1}\right)$ and $N \mathcal{H}^{l}\left(D_{2}\right)$ can be obtained from $N \mathcal{H}^{l}\left(D_{1}+D_{2}\right)$, provided that one of the following conditions is true:
(1) $\mathcal{E}\left(N \mathcal{H}^{l}\left(D_{1}+D_{2}\right)\right)=\emptyset$;
(2) $\forall e \in \mathcal{E}\left(N \mathcal{H}^{l}\left(D_{1}+D_{2}\right)\right):\left|\pi_{1}(e)\right|=1$ and $\exists e \in \mathcal{E}\left(N \mathcal{H}^{l}\left(D_{1}+D_{2}\right)\right):\left|\pi_{2}(e)\right| \geq 2 ;$
(3) $\forall e \in \mathcal{E}\left(N \mathcal{H}^{l}\left(D_{1}+D_{2}\right)\right):\left|\pi_{2}(e)\right|=1$ and $\exists e \in \mathcal{E}\left(N \mathcal{H}^{l}\left(D_{1}+D_{2}\right)\right):\left|\pi_{1}(e)\right| \geq 2 ;$
(4) $\exists(i, j) \in V_{1} \times V_{2} \forall e \in \mathcal{E}\left(N \mathcal{H}^{l}\left(D_{1}+D_{2}\right)\right):(i, j) \notin e$.

Proof. (a) Let $e \in \mathcal{E}\left(N \mathcal{H}\left(D_{1}+D_{2}\right)\right)$ and $(i, j) \in V_{1} \times V_{2}$ with $e=N_{D_{1}+D_{2}}^{-}((i, j))$ or $e=N_{D_{1}+D_{2}}^{+}((i, j))$. Then $e=\left\{\left(i, j_{1}\right), \ldots,\left(i, j_{k}\right),\left(i_{1}, j\right), \ldots,\left(i_{l}, j\right)\right\}$, where i, i_{1}, \ldots, i_{l} and j, j_{1}, \ldots, j_{k} are pairwise distinct vertices in V_{1} and V_{2}, respectively.

To construct $\mathcal{E}\left(N \mathcal{H}\left(D_{1}\right)\right)$, we need only those hyperedges $e \in \mathcal{E}\left(N \mathcal{H}\left(D_{1}+\right.\right.$ $\left.D_{2}\right)$) which contain $l \geq 2$ vertices with one and the same second component:

$$
\begin{aligned}
\mathcal{E}\left(N \mathcal{H}\left(D_{1}\right)\right)=\{ & \pi_{1}(e) \backslash I \mid e \in \mathcal{E}\left(N \mathcal{H}\left(D_{1}+D_{2}\right)\right) \wedge \\
& e=\left\{\left(i, j_{1}\right), \ldots,\left(i, j_{k}\right),\left(i_{1}, j\right), \ldots,\left(i_{l}, j\right)\right\} \wedge l \geq 2 \wedge \\
& I=\left\{\begin{array}{cc}
\{i\}, & k \geq 1 \\
\emptyset, & k=0
\end{array}\right\} .
\end{aligned}
$$

Analogously, we obtain $\mathcal{E}\left(N \mathcal{H}\left(D_{2}\right)\right)$:

$$
\begin{aligned}
\mathcal{E}\left(N \mathcal{H}\left(D_{2}\right)\right)= & \left\{\pi_{2}(e) \backslash J \mid e \in \mathcal{E}\left(N \mathcal{H}\left(D_{1}+D_{2}\right)\right) \wedge\right. \\
& e=\left\{\left(i, j_{1}\right), \ldots,\left(i, j_{k}\right),\left(i_{1}, j\right), \ldots,\left(i_{l}, j\right)\right\} \wedge k \geq 2 \wedge \\
& J=\left\{\begin{array}{cc}
\{j\}, & l \geq 1 \\
\emptyset, & l=0
\end{array}\right\} .
\end{aligned}
$$

(b) The proof of (1)-(3) is similar to the proof of (1)-(3) of Proposition 2 in [20].

Case (1): $\mathcal{E}\left(N \mathcal{H}^{l}\left(D_{1}+D_{2}\right)\right)=\emptyset$. Obviously, $A\left(D_{1}+D_{2}\right)=\emptyset=A\left(D_{1}\right)=$ $A\left(D_{2}\right)=\mathcal{E}\left(N \mathcal{H}^{l}\left(D_{1}\right)\right)=\mathcal{E}\left(N \mathcal{H}^{l}\left(D_{2}\right)\right)$.

Case (2): $\forall e \in \mathcal{E}\left(N \mathcal{H}^{l}\left(D_{1}+D_{2}\right)\right):\left|\pi_{1}(e)\right|=1$ and $\exists e \in \mathcal{E}\left(N \mathcal{H}^{l}\left(D_{1}+D_{2}\right)\right):$ $\left|\pi_{2}(e)\right| \geq 2$.

Let $e \in \mathcal{E}\left(N \mathcal{H}^{l}\left(D_{1}+D_{2}\right)\right)$ with $\left|\pi_{2}(e)\right| \geq 2$, i.e., $e=\left\{\left(i, j_{1}\right), \ldots,\left(i, j_{k}\right)\right\}=$ $N_{D_{1}+D_{2}}^{-}((i, j))$ or $e=\left\{\left(i, j_{1}\right), \ldots,\left(i, j_{k}\right)\right\}=N_{D_{1}+D_{2}}^{+}((i, j))$ with $k \geq 2$ and suitable $i \in V_{1}, j \in V_{2}$ and $j_{1}, \ldots, j_{k} \in V_{2}$.

We discuss only the situation $e=N_{D_{1}+D_{2}}^{-}((i, j))$, since $e=N_{D_{1}+D_{2}}^{+}((i, j))$ can be proved analogously.

Clearly, $N_{D_{2}}^{-}(j)=\left\{j_{1}, \ldots, j_{k}\right\}=\pi_{2}(e)$. The assumption that there are $i^{\prime} \in V_{1}, l \geq 1$ and $i_{1}^{\prime}, \ldots, i_{l}^{\prime} \in V_{1}$ with $N_{D_{1}}^{-}\left(i^{\prime}\right)=\left\{i_{1}^{\prime}, \ldots, i_{l}^{\prime}\right\} \neq \emptyset$ would lead to $e^{\prime}=N_{D_{1}+D_{2}}^{-}\left(\left(i^{\prime}, j\right)\right)=\left\{\left(i_{1}^{\prime}, j\right), \ldots,\left(i_{l}^{\prime}, j\right),\left(i^{\prime}, j_{1}\right), \ldots,\left(i^{\prime}, j_{k}\right)\right\}$ with $\left|\pi_{1}\left(e^{\prime}\right)\right| \geq 2$, a contradiction.

Therefore, $\mathcal{E}\left(N \mathcal{H}^{l}\left(D_{1}\right)\right)=\emptyset$ and $\mathcal{E}\left(N \mathcal{H}^{l}\left(D_{2}\right)\right)=\left\{\pi_{2}(e) \mid e \in \mathcal{E}\left(N \mathcal{H}^{l}\left(D_{1}+\right.\right.\right.$ $\left.D_{2}\right)$) .

Case (3): $\forall \in \mathcal{E}\left(N \mathcal{H}^{l}\left(D_{1}+D_{2}\right)\right):\left|\pi_{2}(e)\right|=1$ and $\exists e \in \mathcal{E}\left(N \mathcal{H}^{l}\left(D_{1}+D_{2}\right)\right):$ $\left|\pi_{1}(e)\right| \geq 2$.

This can be treated in the same way as Case (2).
Case (4): $\exists(i, j) \in V_{1} \times V_{2} \forall e \in \mathcal{E}\left(N \mathcal{H}^{l}\left(D_{1}+D_{2}\right)\right):(i, j) \notin e$. Since for every $e \in \mathcal{E}\left(N \mathcal{H}^{l}\left(D_{1}+D_{2}\right)\right)$ we have $(i, j) \notin e$, the vertex $i \in V_{1}$ is an isolate in
$N \mathcal{H}^{l}\left(D_{1}\right)$ and in D_{1}. For the same reason, $j \in V_{2}$ is an isolate in $N \mathcal{H}^{l}\left(D_{2}\right)$ and in D_{2}. We discuss only the construction of $N \mathcal{H}^{l}\left(D_{2}\right)$, the rest follows analogously.

Since i is an isolate, in $D_{1}+D_{2}$ there is no arc between the i-th row Z_{i} and any other row. Therefore, all arcs with an initial or a terminal vertex in Z_{i} result from arcs in D_{2} and we have

$$
\forall a \in A\left(D_{1}+D_{2}\right): V(a) \cap Z_{i} \neq \emptyset \Rightarrow V(a) \subseteq Z_{i} .
$$

Hence, denoting by $\left\langle Z_{i}\right\rangle_{D_{1}+D_{2}}$ and by $\left\langle Z_{i}\right\rangle_{N \mathcal{H}^{l}\left(D_{1}+D_{2}\right)}$ the subdigraph of $D_{1}+$ D_{2} and the subhypergraph of $N \mathcal{H}^{l}\left(D_{1}+D_{2}\right)$ generated by the vertices of Z_{i}, respectively, we obtain

- $\left\langle Z_{i}\right\rangle_{D_{1}+D_{2}} \simeq D_{2}$,
- $\left\langle Z_{i}\right\rangle_{N \mathcal{H}^{l}\left(D_{1}+D_{2}\right)} \simeq N \mathcal{H}^{l}\left(D_{2}\right)$ and
- $\mathcal{E}\left(N \mathcal{H}^{l}\left(D_{2}\right)\right)=\left\{\pi_{2}(e) \mid e \in \mathcal{E}\left(N \mathcal{H}^{l}\left(D_{1}+D_{2}\right)\right) \wedge e \subseteq Z_{i}\right\}$.

Note that, being interested in l-niche hypergraphs, loops $e=\{(i, j)\} \in$ $\mathcal{E}\left(N \mathcal{H}^{l}\left(D_{1}+D_{2}\right)\right)$ could lead to the problem that $\{(i, j)\}$ can be a loop in $N \mathcal{H}^{l}\left(D_{1}+D_{2}\right)$ either because of $\{i\} \in \mathcal{E}\left(N \mathcal{H}^{l}\left(D_{1}\right)\right)$ and j is an isolate in D_{2} or because of i is an isolate in D_{1} and $\{j\} \in \mathcal{E}\left(N \mathcal{H}^{l}\left(D_{2}\right)\right)$ - and without further information it cannot be decided which of theses cases occurs.

In comparison with Proposition 2(4) of our paper [20] we see that for the reconstruction of the l-competition graphs $C \mathcal{H}^{l}\left(D_{1}\right)$ and $C \mathcal{H}^{l}\left(D_{2}\right)$ from $C \mathcal{H}^{l}\left(D_{1}+\right.$ D_{2}) there is another sufficient condition, namely:

$$
\exists e \in \mathcal{E}\left(C \mathcal{H}^{l}\left(D_{1}+D_{2}\right)\right):\left|\pi_{1}(e)\right| \geq 3 \wedge\left|\pi_{2}(e)\right| \geq 3
$$

Remark 8. In general, for niche hypergraphs an analogous condition to Proposition 2(4) in [20], i.e.,

$$
\exists e \in \mathcal{E}\left(N \mathcal{H}^{l}\left(D_{1}+D_{2}\right)\right):\left|\pi_{1}(e)\right| \geq 3 \wedge\left|\pi_{2}(e)\right| \geq 3
$$

is unsuited to ensure that $N \mathcal{H}^{l}\left(D_{1}\right)$ and $N \mathcal{H}^{l}\left(D_{2}\right)$ can be reconstructed from $N \mathcal{H}^{l}\left(D_{1}+D_{2}\right)$.

Proof. Without loss of generality, let $e=\left\{\left(i, j_{1}\right), \ldots,\left(i, j_{k}\right),\left(i_{1}, j\right), \ldots,\left(i_{l}, j\right)\right\}$ be a hyperedge in $N \mathcal{H}^{l}\left(D_{1}+D_{2}\right)$ with $k \geq 2$ and $l \geq 2$.
There are two possibilities for the hyperedge e, namely $e=\left\{\begin{array}{l}N_{D_{1}+D_{2}}^{-}((i, j)) \\ N_{D_{1}+D_{2}}^{+}((i, j))\end{array}\right.$, i.e.,

$$
\begin{gathered}
\pi_{1}(e) \backslash\{i\}=\left\{i_{1}, \ldots, i_{l}\right\}=\left\{\begin{array}{c}
N_{D_{1}}^{-}(i) \\
N_{D_{1}}^{+}(i)
\end{array},\right. \text { and } \\
\pi_{2}(e) \backslash\{j\}=\left\{j_{1}, \ldots, j_{k}\right\}=\left\{\begin{array}{l}
N_{D_{2}}^{-}(j) \\
N_{D_{2}}^{+}(j)
\end{array}\right.
\end{gathered}
$$

Then we have $e \in \mathcal{E}\left(C \mathcal{H}^{l}\left(D_{1}+D_{2}\right)\right)$, which is equivalent to $e=N_{D_{1}+D_{2}}^{-}$ $((i, j))$, or otherwise $e \in \mathcal{E}\left(C E \mathcal{H}^{l}\left(D_{1}+D_{2}\right)\right)$, i.e., $e=N_{D_{1}+D_{2}}^{+}((i, j))$. In the first case it follows $\pi_{1}(e) \backslash\{i\}=N_{D_{1}}^{-}(i)$ and $\pi_{2}(e) \backslash\{j\}=N_{D_{2}}^{-}(j)$, in the second case $\pi_{1}(e) \backslash\{i\}=N_{D_{1}}^{+}(i)$ and $\pi_{2}(e) \backslash\{j\}=N_{D_{2}}^{+}(j)$ is valid.

In both cases we obtain $\pi_{1}(e) \backslash\{i\} \in \mathcal{E}\left(N \mathcal{H}^{l}\left(D_{1}\right)\right)$ and $\pi_{2}(e) \backslash\{j\} \in$ $\mathcal{E}\left(N \mathcal{H}^{l}\left(D_{2}\right)\right)$ and both sets $\pi_{1}(e) \backslash\{i\}$ and $\pi_{2}(e) \backslash\{j\}$ are hyperedges in the corresponding competition hypergraph $C \mathcal{H}^{l}\left(D_{\tau}\right)(\tau \in\{1,2\})$ or both are hyperedges in the common enemy hypergraph $C E \mathcal{H}^{l}\left(D_{\tau}\right)(\tau \in\{1,2\})$.

Our argumentation is the following.

- The above implies that, in this sense, "competition hyperedges" $e \in \mathcal{E}\left(C \mathcal{H}^{l}\left(D_{1}\right.\right.$ $\left.\left.+D_{2}\right)\right) \subseteq \mathcal{E}\left(N \mathcal{H}^{l}\left(D_{1}+D_{2}\right)\right)$ include only information on "competition hyperedges" in $\mathcal{E}\left(C \mathcal{H}^{l}\left(D_{1}\right)\right) \subseteq \mathcal{E}\left(N \mathcal{H}^{l}\left(D_{1}\right)\right)$ and $\mathcal{E}\left(C \mathcal{H}^{l}\left(D_{2}\right)\right) \subseteq \mathcal{E}\left(N \mathcal{H}^{l}\left(D_{2}\right)\right)$, respectively. The same applies to "common enemy hyperedges" $e \in \mathcal{E}\left(C E \mathcal{H}^{l}\left(D_{1}+\right.\right.$ $\left.\left.D_{2}\right)\right) \subseteq \mathcal{E}\left(N \mathcal{H}^{l}\left(D_{1}+D_{2}\right)\right)$ and "common enemy hyperedges" in $\mathcal{E}\left(C E \mathcal{H}^{l}\left(D_{1}\right)\right)$ $\subseteq \mathcal{E}\left(N \mathcal{H}^{l}\left(D_{1}\right)\right)$ and $\mathcal{E}\left(C E \mathcal{H}^{l}\left(D_{2}\right)\right) \subseteq \mathcal{E}\left(N \mathcal{H}^{l}\left(D_{2}\right)\right)$.
- Below, we will describe the reconstruction of the hyperedges of $C \mathcal{H}^{l}\left(D_{1}\right)$ and $C \mathcal{H}^{l}\left(D_{2}\right)$ from $C \mathcal{H}^{l}\left(D_{1}+D_{2}\right)$ according to Case 4 of the proof of Proposition 2 in [20]. We will see that in this reconstruction procedure the conditions $\left|\pi_{1}(e)\right| \geq 3$ and $\left|\pi_{2}(e)\right| \geq 3$ (for a certain hyperedge $e \in \mathcal{E}\left(C \mathcal{H}^{l}\left(D_{1}+D_{2}\right)\right)$) are essential. Obviously, an analog reconstruction procedure can be used to obtain $C E \mathcal{H}^{l}\left(D_{1}\right)$ and $C E \mathcal{H}^{l}\left(D_{2}\right)$ from $C E \mathcal{H}^{l}\left(D_{1}+D_{2}\right)$, if there is a hyperedge $e \in \mathcal{E}\left(C E \mathcal{H}^{l}\left(D_{1}+D_{2}\right)\right)$ with $\left|\pi_{1}(e)\right| \geq 3$ and $\left|\pi_{2}(e)\right| \geq 3$. Clearly, the described reconstruction will fail if there is no such hyperedge e with the required properties.
- Now let D_{1} and D_{2} be digraphs fulfilling (α). Note that, in general, for an arbitrarily chosen hyperedge e in $N \mathcal{H}^{l}\left(D_{1}+D_{2}\right)$ it cannot be found out whether e is a "competition hyperedge", i.e., $e \in \mathcal{E}\left(C \mathcal{H}^{l}\left(D_{1}+D_{2}\right)\right)$, or a "common enemy hyperedge", i.e., $e \in \mathcal{E}\left(\operatorname{CEH}^{l}\left(D_{1}+D_{2}\right)\right)$.
- We additionally assume that in $N \mathcal{H}^{l}\left(D_{1}+D_{2}\right)$ all hyperedges fulfilling (α) are edges of the competition hypergraph $C \mathcal{H}^{l}\left(D_{1}+D_{2}\right)$ but not edges of the common enemy hypergraph $C E \mathcal{H}^{l}\left(D_{1}+D_{2}\right)$. Then, clearly, the reconstruction method from Proposition 2 in [20] has to fail for hyperedges in $\mathcal{E}\left(\operatorname{CEH}^{l}\left(D_{2}\right)\right) \backslash$ $\mathcal{E}\left(C \mathcal{H}^{l}\left(D_{2}\right)\right) \subseteq \mathcal{E}\left(N \mathcal{H}^{l}\left(D_{2}\right)\right)$.

It remains to describe the reconstruction method from Case 4 of the proof of Proposition 2 in [20].

Under the assumptions given above, let $e \in \mathcal{E}\left(N \mathcal{H}^{l}\left(D_{1}+D_{2}\right)\right)$ be a hyperedge with (α), i.e., $e \in \mathcal{E}\left(C \mathcal{H}^{l}\left(D_{1}+D_{2}\right)\right)$. Because of $\left|\pi_{1}(e)\right| \geq 3$ and $\left|\pi_{2}(e)\right| \geq 3$, there are vertices $i \in V_{1}$ and $j \in V_{2}$ with $k:=\left|\left\{\left(i, j^{\prime}\right) \mid j^{\prime} \in V_{2}\right\} \cap e\right| \geq 2$ and $l:=\left|\left\{\left(i^{\prime}, j\right) \mid i^{\prime} \in V_{1}\right\} \cap e\right| \geq 2$.

Then $e=\left\{\left(i, j_{1}\right), \ldots,\left(i, j_{k}\right),\left(i_{1}, j\right), \ldots,\left(i_{l}, j\right)\right\}=N_{D_{1}+D_{2}}^{-}((i, j))$ and therefore $N_{D_{1}}^{-}(i)=\left\{i_{1}, \ldots, i_{l}\right\}=\pi_{1}(e) \backslash\{i\}$ and $N_{D_{2}}^{-}(j)=\left\{j_{1}, \ldots, j_{k}\right\}=\pi_{2}(e) \backslash\{j\}$.

For each $x \in V_{1}$ let $e^{x}:=\left\{\left(x, j_{1}\right), \ldots,\left(x, j_{k}\right),\left(x_{1}, j\right), \ldots,\left(x_{l_{x}}, j\right)\right\} \in \mathcal{E}\left(C \mathcal{H}^{l}\left(D_{1}\right.\right.$ $\left.+D_{2}\right)$) with $l_{x} \geq 0$. Obviously, $e^{x}=N_{D_{1}+D_{2}}^{-}((x, j))$ and $N_{D_{1}}^{-}(x)=\left\{x_{1}, \ldots, x_{l_{x}}\right\}$ $=\pi_{1}\left(e^{x}\right) \backslash\{x\}$. This way we obtain $D_{1}=\left(V_{1}, A_{1}\right)$ as well as $\mathcal{E}\left(C \mathcal{H}^{l}\left(D_{1}\right)\right)=$ $\left\{N_{D_{1}}^{-}(x) \mid x \in V_{1} \wedge N_{D_{1}}^{-}(x) \neq \emptyset\right\}$.

Analogously, for each $y \in V_{2}$ let $e^{y}:=\left\{\left(i_{1}, y\right), \ldots,\left(i_{l}, y\right),\left(i, y_{1}\right), \ldots,\left(i, y_{k_{y}}\right)\right\} \in$ $\mathcal{E}\left(C \mathcal{H}^{l}\left(D_{1}+D_{2}\right)\right)$ with $k_{y} \geq 0$. Then $e^{y}=N_{D_{1}+D_{2}}^{-}((i, y))$ and $N_{D_{2}}^{-}(y)=\left\{y_{1}\right.$, $\left.\ldots, y_{k_{y}}\right\}=\pi_{2}\left(e^{y}\right) \backslash\{y\}$.

Theorem 9 (Normal product $D_{1} * D_{2}$).
(a) $N \mathcal{H}\left(D_{1}\right)$ and $N \mathcal{H}\left(D_{2}\right)$ can be obtained from $N \mathcal{H}\left(D_{1} * D_{2}\right)$.
(b) If there is a hyperedge $e \in \mathcal{E}\left(N \mathcal{H}\left(D_{1} * D_{2}\right)\right)$ with $\left|\pi_{1}(e)\right| \geq 2$ and $\left|\pi_{2}(e)\right| \geq 2$, then $N \mathcal{H}^{l}\left(D_{1}\right)$ and $N \mathcal{H}^{l}\left(D_{2}\right)$ can be obtained from $N \mathcal{H}\left(D_{1} * D_{2}\right)$.

Proof. (b) The existence of a hyperedge $e \in \mathcal{E}\left(N \mathcal{H}\left(D_{1} * D_{2}\right)\right)$ with $\left|\pi_{1}(e)\right| \geq 2$ and $\left|\pi_{2}(e)\right| \geq 2$ is equivalent to $A_{1} \neq \emptyset \neq A_{2}$. Let

$$
\begin{aligned}
& e=\left\{\left(i, j_{1}\right), \ldots,\left(i, j_{k}\right),\left(i_{1}, j\right), \ldots,\left(i_{l}, j\right),\left(i_{1}, j_{1}\right),\left(i_{1}, j_{2}\right), \ldots,\left(i_{1}, j_{k}\right), \ldots,\left(i_{l}, j_{1}\right),\right. \\
&\left.\left(i_{l}, j_{2}\right), \ldots,\left(i_{l}, j_{k}\right)\right\} \\
& \in \mathcal{E}\left(N \mathcal{H}\left(D_{1} * D_{2}\right)\right)=\mathcal{E}\left(C \mathcal{H}\left(D_{1} * D_{2}\right)\right) \cup \mathcal{E}\left(C E \mathcal{H}\left(D_{1} * D_{2}\right)\right),
\end{aligned}
$$

with $\left|\pi_{1}(e)\right| \geq 2$ and $\left|\pi_{2}(e)\right| \geq 2$.
We will follow the idea of the proof of Case 2 of Corollary 2 in our paper [20], where a similar result for competition hypergraphs was given.

But by contrast to Corollary 2 in [20], in the case of niche hypergraphs it is impossible to reconstruct the digraphs D_{1} and D_{2} themselves in general. The reason is the same as mentioned before for the Cartesian sum (see the proof of Remark 8). Although for a hyperedge $e \in \mathcal{E}\left(N \mathcal{H}\left(D_{1} * D_{2}\right)\right)$ we can find out the vertex (i, j) with $\left.e=N_{D_{1} * D_{2}}^{-}(i, j)\right)$ or $e=N_{D_{1} * D_{2}}^{+}((i, j))$, in general it will be impossible to determine whether e is the set of predecessors (e is a "competition hyperedge") or the set of successors (e is a "common enemy hyperedge") of the vertex (i, j) in $D_{1} * D_{2}$.

Note that, in spite of the distinction of cases below, it is unnecessary to know for the actual hyperedge $e \in \mathcal{E}\left(N \mathcal{H}\left(D_{1} * D_{2}\right)\right)$ under investigation whether or not it is a "competition hyperedge" $\left(e \in \mathcal{E}\left(C \mathcal{H}\left(D_{1} * D_{2}\right)\right)\right)$ or it is an "common enemy hyperedge" $\left(e \in \mathcal{E}\left(C E \mathcal{H}\left(D_{1} * D_{2}\right)\right)\right)$. This will become clear by the remarks to Case (2) below.

Case (1): $e \in \mathcal{E}\left(C \mathcal{H}\left(D_{1} * D_{2}\right)\right)$. With some modifications of the proof of Case 2 of Corollary 2 in [20] we get the following.
(a) Because of $l=\left|\pi_{1}(e)\right|-1 \geq 1$ and $k=\left|\pi_{2}(e)\right|-1 \geq 1$, the vertices $i \in V_{1}$ and $j \in V_{2}$ with $N_{D_{1} * D_{2}}^{-}((i, j))=e$ can be identified as the only vertices which occur exactly k and l times in $\pi_{1}(e)$ and $\pi_{2}(e)$, respectively. Moreover, $\pi_{1}(e) \backslash\{i\}=\left\{i_{1}, \ldots, i_{l}\right\}=N_{D_{1}}^{-}(i)$ and $\pi_{2}(e) \backslash\{j\}=\left\{j_{1}, \ldots, j_{k}\right\}=N_{D_{2}}^{-}(j)$.
(b) Obviously, for every $x \in V_{1}$ with $N_{D_{1}}^{-}(x) \neq \emptyset$ in $N_{D_{1 * D_{2}}}^{-}((x, j))$ there are at least 3 vertices: $\left(x, j_{1}\right),\left(x^{\prime}, j\right),\left(x^{\prime}, j_{1}\right)$, where $x^{\prime} \in N_{D_{1}}^{-}(x)$. Therefore $N_{D_{1} * D_{2}}^{-}((x, j)) \in \mathcal{E}\left(C \mathcal{H}\left(D_{1} * D_{2}\right)\right) \subseteq \mathcal{E}\left(N \mathcal{H}\left(D_{1} * D_{2}\right)\right)$. Analogously, for each $y \in$ V_{2} with $N_{D_{2}}^{-}(y) \neq \emptyset$ we get $N_{D_{1} * D_{2}}^{-}((i, y)) \in \mathcal{E}\left(C \mathcal{H}\left(D_{1} * D_{2}\right)\right) \subseteq \mathcal{E}\left(N \mathcal{H}\left(D_{1} * D_{2}\right)\right)$.
(c) Note that if $x \in V_{1}$ with $N_{D_{1}}^{-}(x)=\emptyset$, then $N_{D_{1} * D_{2}}^{-}((x, j))=\left\{\left(x, j_{1}\right), \ldots\right.$, $\left.\left(x, j_{k}\right)\right\}$; i.e., $N_{D_{1} * D_{2}}^{-}((x, j)) \in \mathcal{E}\left(C \mathcal{H}\left(D_{1} * D_{2}\right)\right) \subseteq \mathcal{E}\left(N \mathcal{H}\left(D_{1} * D_{2}\right)\right)$ if and only if $k \geq 2$. Analogously, for every $y \in V_{2}$ with $N_{D_{2}}^{-}(y)=\emptyset$ it follows $N_{D_{1} * D_{2}}^{-}((i, y)) \in$ $\mathcal{E}\left(C \mathcal{H}\left(D_{1} * D_{2}\right)\right) \subseteq \mathcal{E}\left(N \mathcal{H}\left(D_{1} * D_{2}\right)\right)$ if and only if $l \geq 2$.

Because of (b), for all vertices of D_{1} and D_{2}, respectively, with positive indegree we get their sets of predecessors applying the procedure described in (a) to all hyperedges $e \in \mathcal{E}\left(C \mathcal{H}\left(D_{1} * D_{2}\right)\right)$ with $\left|\pi_{1}(e)\right| \geq 2$ and $\left|\pi_{2}(e)\right| \geq 2$. (In general, for a vertex $v_{1} \in V_{1}$ and $v_{2} \in V_{2}$, respectively, with positive indegree, procedure (a) will produce its set of predecessors more than once.) Trivially, each vertex for which (a) does not provide a set of predecessors has indegree 0 (cf. (c)).

Thus we obtain the edge set $\mathcal{E}\left(C \mathcal{H}^{l}\left(D_{1}\right)\right)$ and $\mathcal{E}\left(C \mathcal{H}^{l}\left(D_{2}\right)\right)$ of the l-competition hypergraph $C \mathcal{H}^{l}\left(D_{1}\right)$ and $C \mathcal{H}^{l}\left(D_{2}\right)$, respectively.

Note that we did not need hyperedges $e \in \mathcal{E}\left(C \mathcal{H}^{l}\left(D_{1} * D_{2}\right)\right) \backslash \mathcal{E}\left(C \mathcal{H}\left(D_{1} *\right.\right.$ $\left.D_{2}\right)$), i.e., hyperedges of cardinality 1 .

Case (2): $e \in \mathcal{E}\left(C E \mathcal{H}\left(D_{1} * D_{2}\right)\right)$. Note that $C \mathcal{H}(D)=C E \mathcal{H}(\overleftarrow{D})$, for any digraph D. Applying the following substitutions to the proof of Case (1), word-for-word we obtain the verification of Case (2):

$$
\begin{array}{lll}
C \mathcal{H} & \hookrightarrow C E H & \\
N^{-} & \hookrightarrow & N^{+}, \\
\text {indegree } & \hookrightarrow & \text { outdegree }
\end{array} \quad \text { and } \quad \text { predecessor } \begin{array}{ll}
\hookrightarrow & \text { successor. }
\end{array}
$$

(a) Because of (b) it suffices to consider the case when $A_{1}=\emptyset$ or $A_{2}=\emptyset$ holds. Replacing " + " by "*" in (1)-(3) of Theorem 7, we see that the occurrence of (1), (2) or (3) is equivalent to $A_{1}=\emptyset$ or $A_{2}=\emptyset$ and we can use an analog argumentation as in the corresponding part of the proof of Theorem 7. So using (2) we obtain $\mathcal{E}\left(N \mathcal{H}^{l}\left(D_{2}\right)\right)=\left\{\pi_{2}(e) \mid e \in \mathcal{E}\left(N \mathcal{H}^{l}\left(D_{1} * D_{2}\right)\right)\right\}$ and $\mathcal{E}\left(N \mathcal{H}\left(D_{2}\right)\right)=$ $\left\{\pi_{2}(e)\left|e \in \mathcal{E}\left(N \mathcal{H}^{l}\left(D_{1} * D_{2}\right)\right) \wedge\right| \pi_{2}(e) \mid \geq 2\right\}$, respectively.

Note that $A_{1}=\emptyset$ or $A_{2}=\emptyset$ implies $D_{1} * D_{2}=D_{1}+D_{2}$. Therefore, the last part of the above proof in connection with Theorem 7 lead to the following consequence.
Corollary 10. $N \mathcal{H}^{l}\left(D_{1}\right)$ and $N \mathcal{H}^{l}\left(D_{2}\right)$ can be obtained from $N \mathcal{H}^{l}\left(D_{1} * D_{2}\right)$, provided that one of the following conditions is true:
(1) $\mathcal{E}\left(N \mathcal{H}^{l}\left(D_{1} * D_{2}\right)\right)=\emptyset$;
(2) $\forall e \in \mathcal{E}\left(N \mathcal{H}^{l}\left(D_{1} * D_{2}\right)\right):\left|\pi_{1}(e)\right|=1$ and $\exists e \in \mathcal{E}\left(N \mathcal{H}^{l}\left(D_{1} * D_{2}\right)\right):\left|\pi_{2}(e)\right| \geq 2$;
(3) $\forall e \in \mathcal{E}\left(N \mathcal{H}^{l}\left(D_{1} * D_{2}\right)\right):\left|\pi_{2}(e)\right|=1$ and $\exists e \in \mathcal{E}\left(N \mathcal{H}^{l}\left(D_{1} * D_{2}\right)\right):\left|\pi_{1}(e)\right| \geq 2$.

Theorem 11 (Lexicographic product $D_{1} \cdot D_{2}$).
(a) $N \mathcal{H}\left(D_{1}\right)$ and $N \mathcal{H}\left(D_{2}\right)$ can be obtained from $N \mathcal{H}\left(D_{1} \cdot D_{2}\right)$.
(b) If $\left|V_{2}\right| \geq 2$, then $N \mathcal{H}^{l}\left(D_{1}\right)$ can be obtained from $N \mathcal{H}\left(D_{1} \cdot D_{2}\right)$.
(c) $N \mathcal{H}^{l}\left(D_{1}\right)$ and $N \mathcal{H}^{l}\left(D_{2}\right)$ can be obtained from $N \mathcal{H}^{l}\left(D_{1} \cdot D_{2}\right)$.

Proof. First we will show (c), i.e., $N \mathcal{H}^{l}\left(D_{1}\right)$ and $N \mathcal{H}^{l}\left(D_{2}\right)$ can be reconstructed from $N \mathcal{H}^{l}\left(D_{1} \cdot D_{2}\right)$. Then we obtain (b) and (a) as follows:

Since for $\left|V_{2}\right| \geq 2$ every loop $e_{1}=\{i\}$ in $N \mathcal{H}^{l}\left(D_{1}\right)$ leads to a non-loop e in $N \mathcal{H}^{l}\left(D_{1} \cdot D_{2}\right)$ (containing at least all vertices of the row $\left.Z_{i}\right)$, we will see that we need no loops of $N \mathcal{H}^{l}\left(D_{1} \cdot D_{2}\right)$ in order to obtain $N \mathcal{H}^{l}\left(D_{1}\right)$, this includes (b).

Analogously, it is obvious that non-loops e_{i} of $N \mathcal{H}^{l}\left(D_{1}\right)$ and $N \mathcal{H}^{l}\left(D_{2}\right)$, respectively, result in non-loops in $N \mathcal{H}^{l}\left(D_{1} \cdot D_{2}\right)$. In our considerations it will become clear that for the reconstruction of $N \mathcal{H}\left(D_{1}\right)$ and $N \mathcal{H}\left(D_{2}\right)$ we do not need the loops in $N \mathcal{H}^{l}\left(D_{1} \cdot D_{2}\right)$, so we get (a).

In order to prove (c), we consider a hyperedge $e \in \mathcal{E}\left(N \mathcal{H}^{l}\left(D_{1} \cdot D_{2}\right)\right)$. Then there is a vertex $(i, j) \in V_{1} \times V_{2}$ such that $e=N_{D_{1} \cdot D_{2}}^{-}((i, j))$ or $e=N_{D_{1} \cdot D_{2}}^{+}((i, j))$. In order to simplify our depictions, we write down the considerations only for the case $e=N_{D_{1} \cdot D_{2}}^{-}((i, j)) \in \mathcal{E}\left(C \mathcal{H}^{l}\left(D_{1} \cdot D_{2}\right)\right)$; the hyperedges $e=N_{D_{1} \cdot D_{2}}^{+}((i, j)) \in$ $\mathcal{E}\left(\operatorname{CEH}^{l}\left(D_{1} \cdot D_{2}\right)\right)$ can be treated analogously.

In $N \mathcal{H}^{l}\left(D_{1} \cdot D_{2}\right)$ there are two possibilities for the hyperedge e.
Case 1. $\exists l \geq 1 \exists i_{1}, \ldots, i_{l} \in V_{1}: e=Z_{i_{1}} \cup \cdots \cup Z_{i_{l}}$. Without loss of generality let i_{1}, \ldots, i_{l} be pairwise distinct.

Hence, e is the union of the complete rows $Z_{i_{1}}, \ldots, Z_{i_{l}}$ of $D_{1} \cdot D_{2}$ and from the definition of $D_{1} \cdot D_{2}$ it follows $i \notin\left\{i_{1}, \ldots, i_{l}\right\}, N_{D_{1}}^{-}(i)=\left\{i_{1}, \ldots, i_{l}\right\}$ and $N_{D_{2}}^{-}(j)=\emptyset$.

Therefore, Case 1 does not provide any hyperedges of $N \mathcal{H}^{l}\left(D_{2}\right)$ but with $\pi_{1}(e)=\left\{i_{1}, \ldots, i_{l}\right\}=N_{D_{1}}^{-}(i) \in \mathcal{E}\left(N \mathcal{H}^{l}\left(D_{1}\right)\right)$ we obtain a hyperedge of $N \mathcal{H}^{l}\left(D_{1}\right)$.

Note that the vertex $i \in V_{1}$ is unknown if $l<\left|V_{1}\right|-1$. Moreover, Case 1 occurs if and only if there exists a vertex $j \in V_{2}$ with $N_{D_{2}}^{-}(j)=\emptyset$.

Case 2. $\exists l \geq 0 \exists i_{1}, \ldots, i_{l}, i^{\prime} \in V_{1} \exists Z^{\prime} \subset Z_{i^{\prime}}: e=Z_{i_{1}} \cup \cdots \cup Z_{i_{l}} \cup Z^{\prime} \wedge Z^{\prime} \neq \emptyset$. We get $i=i^{\prime} \in V_{1} \backslash\left\{i_{1}, \ldots, i_{l}\right\}$ as well as $N_{D_{1}}^{-}\left(i^{\prime}\right)=\left\{i_{1}, \ldots, i_{l}\right\}=\pi_{1}(e) \backslash\left\{i^{\prime}\right\} \in$
$\mathcal{E}\left(N \mathcal{H}^{l}\left(D_{1}\right)\right)$ and $N_{D_{2}}^{-}(j)=\pi_{2}\left(e \cap Z^{\prime}\right)=\pi_{2}\left(Z^{\prime}\right) \in \mathcal{E}\left(N \mathcal{H}^{l}\left(D_{2}\right)\right)$ with a certain $j \in V_{2}$. In general, if $\left|Z^{\prime}\right|<\left|V_{2}\right|-1$ holds, the vertex j cannot be determined.

Again, for any hyperedge $e \in \mathcal{E}\left(N \mathcal{H}^{l}\left(D_{1} \cdot D_{2}\right)\right)$ it cannot be found out whether e is a competition hyperedge (i.e., $e \in \mathcal{E}\left(C \mathcal{H}^{l}\left(D_{1} \cdot D_{2}\right)\right)$) or e is a common enemy hyperedge (i.e., $e \in \mathcal{E}\left(C E \mathcal{H}^{l}\left(D_{1} \cdot D_{2}\right)\right)$) in general. But for the reconstruction of $N \mathcal{H}^{l}\left(D_{1}\right)$ and $N \mathcal{H}^{l}\left(D_{2}\right)$ this plays no role, since the considerations of Case 1 and Case 2 are valid for competition hyperedges (i.e., sets of predecessors) as well as, analogously, for common enemy hyperedges (i.e., sets of successors).

Moreover, we remark that Cases 1 and 2 (together with their analogs for the common enemy hyperedges) provide all hyperedges of the (l)-niche hypergraphs $N \mathcal{H}^{(l)}\left(D_{1}\right)$ and $N \mathcal{H}^{(l)}\left(D_{2}\right)$.

Now we discuss the disjunction $D_{1} \vee D_{2}$. The case $\left|V_{1}\right|=1$ or $\left|V_{2}\right|=1$ implies $D_{1} \vee D_{2}=D_{1} \cdot D_{2}$. Therefore, because of Theorem 11 it suffices to investigate the case $\left|V_{1}\right|,\left|V_{2}\right| \geq 2$.

Theorem 12 (Disjunction $\left.D_{1} \vee D_{2}\right)$. If $\left|V_{1}\right|,\left|V_{2}\right| \geq 2$, then $N \mathcal{H}^{l}\left(D_{1}\right)$ and $N \mathcal{H}^{l}\left(D_{2}\right)$ can be obtained from $N \mathcal{H}\left(D_{1} \vee D_{2}\right)$.

Proof. Since both V_{1} and V_{2} contain at least two vertices, in $N \mathcal{H}^{l}\left(D_{1} \vee D_{2}\right)$ there are no loops and $N \mathcal{H}^{l}\left(D_{1} \vee D_{2}\right)=N \mathcal{H}\left(D_{1} \vee D_{2}\right)$.

Moreover, for every hyperedge $e \in \mathcal{E}\left(N \mathcal{H}\left(D_{1} \vee D_{2}\right)\right)$ it holds
$\exists l \geq 0 \exists i_{1}, \ldots, i_{l} \in V_{1} \exists k \geq 0 \exists j_{1}, \ldots, j_{k} \in V_{2}: e=Z_{i_{1}} \cup \cdots \cup Z_{i_{l}} \cup S_{j_{1}} \cup \cdots \cup S_{j_{k}}$ and, clearly, $\min (l, k)>0$.

By analogy with the proof of Theorem 11 let $(i, j) \in V_{1} \times V_{2}$ be a vertex such that $e=N_{D_{1} \vee D_{2}}^{-}((i, j))$ or $e=N_{D_{1} \vee D_{2}}^{+}((i, j))$. Now we follow the idea of the proof of Proposition 2 in [20], subsection 3.5, and use the abbreviations $\mathcal{E}_{1}^{l}:=\mathcal{E}\left(N \mathcal{H}^{l}\left(D_{1}\right)\right), \mathcal{E}_{2}^{l}:=\mathcal{E}\left(N \mathcal{H}^{l}\left(D_{2}\right)\right)$ and $\mathcal{E}_{\vee}:=\mathcal{E}\left(N \mathcal{H}\left(D_{1} \vee D_{2}\right)\right)$.

In case of $\mathcal{E}_{V}=\emptyset$ both \mathcal{E}_{1}^{l} and \mathcal{E}_{2}^{l} are empty, too.
So let $\mathcal{E}_{\vee} \neq \emptyset$. Additionally, for an arbitrary hyperedge $e \in \mathcal{E}_{\vee}$ we define $\pi_{1}^{j}(e):=\{i \mid(i, j) \in e\}\left(\right.$ for $\left.j \in \pi_{2}(e)\right)$ and $\pi_{2}^{i}(e):=\{j \mid(i, j) \in e\}\left(\right.$ for $\left.i \in \pi_{1}(e)\right)$.

In $N \mathcal{H}\left(D_{1} \vee D_{2}\right)$ we have three types of hyperedges:
$\mathcal{A}:=\left\{e \in \mathcal{E}_{V} \mid \pi_{1}(e) \subset V_{1}\right\}$,
$\mathcal{B}:=\left\{e \in \mathcal{E}_{V} \mid \pi_{2}(e) \subset V_{2}\right\}$ and
$\mathcal{C}:=\left\{e \in \mathcal{E}_{\bigvee} \mid \pi_{1}(e)=V_{1} \wedge \pi_{2}(e)=V_{2}\right\}$.
We obtain
$\mathcal{A}=\mathcal{C}=\emptyset$ if and only if $A_{1}=\emptyset, \mathcal{E}_{1}^{l}=\emptyset$ and $\mathcal{E}_{2}^{l}=\left\{\pi_{2}(e) \mid e \in \mathcal{E}_{V}\right\} ;$
$\mathcal{B}=\mathcal{C}=\emptyset$ if and only if $A_{2}=\emptyset, \mathcal{E}_{2}=\emptyset$ and $\mathcal{E}_{1}^{l}=\left\{\pi_{1}(e) \mid e \in \mathcal{E}_{\vee}\right\} ;$
$\mathcal{C} \neq \emptyset$ if and only if $A_{1} \neq \emptyset \neq A_{2}$.
It remains to investigate the case $\mathcal{C} \neq \emptyset$. Here we see that, to determine \mathcal{E}_{1}^{l} and \mathcal{E}_{2}^{l}, it suffices to make use of the hyperedges in \mathcal{C} :

$$
\mathcal{E}_{1}^{l}=\left\{\left\{i \in V_{1} \mid \pi_{2}^{i}(e)=V_{2}\right\} \mid e \in \mathcal{C}\right\} \text { and } \mathcal{E}_{2}^{l}=\left\{\left\{j \in V_{2} \mid \pi_{1}^{j}(e)=V_{1}\right\} \mid e \in \mathcal{C}\right\}
$$

(Note that in case $\mathcal{A} \neq \emptyset$ we have $\mathcal{E}_{1}^{l}=\left\{\pi_{1}(e) \mid e \in \mathcal{A}\right\}$ and, analogously, if $\mathcal{B} \neq \emptyset$ it follows $\mathcal{E}_{2}^{l}=\left\{\pi_{2}(e) \mid e \in \mathcal{B}\right\}$.)

Acknowledgements

The authors would like to thank the referees for their valuable suggestions and remarks.

References

[1] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications (Springer, London, 2001).
[2] C. Cable, K.F. Jones, J.R. Lundgren and S. Seager, Niche graphs, Discrete Appl. Math. 23 (1989) 231-241. doi:10.1016/0166-218X(89)90015-2
[3] J.E. Cohen, Interval graphs and food webs: a finding and a problem, RAND Corp. Document 17696-PR (Santa Monica, CA, 1968).
[4] M. Cozzens, Food webs, competition graphs and habitat formation, Math. Model. Nat. Phenom. 6 (2011) 22-38. doi: $10.1051 / \mathrm{mmnp} / 20116602$
[5] C. Garske, M. Sonntag and H.-M. Teichert, Niche hypergraphs, Discuss. Math. Graph Theory 36 (2016) 819-832.
doi:10.7151/dmgt. 1893
[6] S.-R. Kim, The competition number and its variants, in: Quo Vadis, Graph Theory?, Ed(s) J. Gimbel, J.W. Kennedy and L.V. Quintas (Ann. Discrete Math. 55, North Holland, Amsterdam, 1993). doi:10.1016/S0167-5060(08)70396-0
[7] S.-R. Kim, B. Park and Y. Sano, The competition number of the complement of a cycle, Discrete Appl. Math. 161 (2013) 1755-1760.
doi:10.1016/j.dam.2011.10.034
[8] S.-R. Kim, B. Park and Y. Sano, A generalization of Opsut's result on the competition numbers of line graphs, Discrete Appl. Math. 181 (2015) 152-159. doi:10.1016/j.dam.2014.10.014
[9] J. Kuhl, Transversals and competition numbers of complete multipartite graphs, Discrete Appl. Math. 161 (2013) 435-440. doi:10.1016/j.dam.2012.09.012
[10] B.-J. Li and G.J. Chang, Competition numbers of complete r-partite graphs, Discrete Appl. Math. 160 (2012) 2271-2276.
doi:10.1016/j.dam.2012.05.005
[11] J.R. Lundgren, Food webs, competition graphs, competition-common enemy graphs and niche graphs, in: Applications of Combinatorics and Graph Theory to the Biological and Social Sciences, Ed(s) F. Roberts (IMA 17, Springer, New York 1989) 221-243.
[12] B.D. McKey, P. Schweitzer and P. Schweitzer, Competition numbers, quasi line graphs and holes, SIAM J. Discrete Math. 28 (2014) 77-91. doi:10.1137/110856277
[13] B. Park and Y. Sano, On the hypercompetition numbers of hypergraphs, Ars Combin. 100 (2011) 151-159.
[14] B. Park and Y. Sano, The competition numbers of ternary Hamming graphs, Appl. Math. Lett. 24 (2011) 1608-1613. doi:10.1016/j.aml.2011.04.012
[15] B. Park and Y. Sano, The competition number of a generalized line graph is at most two, Discrete Math. Theor. Comput. Sci. 14 (2012) 1-10.
[16] J. Park and Y. Sano, The double competition hypergraph of a digraph, Discrete Appl. Math. 195 (2015) 110-113. doi:10.1016/j.dam.2014.04.001
[17] Y. Sano, On hypercompetition numbers of hypergraphs with maximum degree of at most two, Discuss. Math. Graph Theory 35 (2015) 595-598. doi:10.7151/dmgt. 1826
[18] D.D. Scott, The competition-common enemy graph of a digraph, Discrete Appl. Math. 17 (1987) 269-280. doi:10.1016/0166-218X(87)90030-8
[19] M. Sonntag and H.-M. Teichert, Competition hypergraphs, Discrete Appl. Math. 143 (2004) 324-329.
doi:10.1016/j.dam.2004.02.010
[20] M. Sonntag and H.-M. Teichert, Competition hypergraphs of products of digraphs, Graphs Combin. 25 (2009) 611-624.
doi:10.1007/s00373-005-0868-9
[21] M. Sonntag and H.-M. Teichert, Products of digraphs and their competition graphs, Discuss. Math. Graph Theory 36 (2016) 43-58. doi:10.7151/dmgt. 1851

