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Abstract

If D = (V,A) is a digraph, its niche hypergraph NH(D) = (V, E) has
the edge set E = {e ⊆ V | |e| ≥ 2 ∧ ∃ v ∈ V : e = N−

D
(v) ∨ e = N+

D
(v)}.

Niche hypergraphs generalize the well-known niche graphs and are closely
related to competition hypergraphs as well as common enemy hypergraphs.
For several products D1 ◦ D2 of digraphs D1 and D2, we investigate the
relations between the niche hypergraphs of the factors D1, D2 and the niche
hypergraph of their product D1 ◦D2.

Keywords: niche hypergraph, product of digraphs, competition hyper-
graph.
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1. Introduction and Definitions

All hypergraphs H = (V (H), E(H)), graphs G = (V (G), E(G)) and digraphs
D = (V (D), A(D)) considered in the following may have isolates but no multiple
edges. Moreover, in digraphs loops are forbidden. With N−

D (v), N+
D (v), d−D(v)

and d+D(v) we denote the in-neighborhood, the out-neighborhood, the in-degree
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and the out-degree of v ∈ V (D), respectively. In standard terminology we follow
Bang-Jensen and Gutin [1].

In 1968, Cohen [3] introduced the competition graph C(D) =
(
V,E(C(D))

)

of a digraph D = (V,A) representing a food web of an ecosystem. Here the
vertices correspond to the species and different vertices v1, v2 are connected by
an edge if and only if they compete for a common prey w, i.e.,

E
(
C(D)

)
=

{
{v1, v2} | v1 6= v2 ∧ ∃w ∈ V : v1 ∈ N−

D (w) ∧ v2 ∈ N−

D (w)
}
.

Surveys of the large literature around competition graphs (and its variants) can
be found in [5, 6, 11]; for (a selection of) recent results see [4, 7–10,12–17,21].

Meanwhile the following variants of C(D) have been investigated.

The common enemy graph CE(D) (cf. [11]) with the edge set

E
(
CE(D)

)
=

{
{v1, v2} | v1 6= v2 ∧ ∃ w ∈ V : v1 ∈ N+

D (w) ∧ v2 ∈ N+
D (w)

}
,

the double competition graph or competition-common enemy graph DC(D) with
the edge set E(DC(D)) = E(C(D)) ∩ E(CE(D)) (cf. [18]), and the niche graph

N(D) with E
(
N(D)

)
= E

(
C(D)

)
∪ E

(
CE(D)

)
(cf. [2]).

In 2004, the concept of competition hypergraphs was introduced by Sonntag
and Teichert [19]. The competition hypergraph CH(D) of a digraph D = (V,A)
has the vertex set V and the edge set

E
(
CH(D)

)
=

{
e ⊆ V | |e| ≥ 2 ∧ ∃ v ∈ V : e = N−

D (v)
}
.

As a second hypergraph generalization, recently Park and Sano [16] defined the
double competition hypergraph DCH(D) of a digraph D = (V,A), which has the
vertex set V and the edge set

E
(
DCH(D)

)
=

{
e ⊆ V | |e| ≥ 2 ∧ ∃ v1, v2 ∈ V : e = N−

D (v1) ∩N+
D (v2)

}
.

Our paper [5] was a third step in this direction; there we considered the niche
hypergraph NH(D) of a digraph D = (V,A), again with the vertex set V and the
edge set

E
(
NH(D)

)
=

{
e ⊆ V | |e| ≥ 2 ∧ ∃ v ∈ V : e = N−

D (v) ∨ e = N+
D (v)

}
.

Note that NH(D) = NH
(←−
D
)

holds for any digraph D, if
←−
D denotes the

digraph obtained from D by reversing all arcs.

In [5] we present results on several properties of niche hypergraphs and the
so-called niche number n̂ of hypergraphs. In most of the investigations in [5] the
generating digraph D of NH(D) is assumed to be acyclic.
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For technical reasons, we define another hypergraph generalization. The
common enemy hypergraph CEH(D) of a digraph D = (V,A) has the vertex set
V and the edge set

E
(
CEH(D)

)
=

{
e ⊆ V | |e| ≥ 2 ∧ ∃ v ∈ V : e = N+

D (v)
}
.

In the hypergraphs CH(D), CEH(D) and NH(D) no loops are allowed.
Therefore, by definition the in-neighborhoods and out-neighborhoods of cardi-
nality 1 in the digraph D play no role in the corresponding hypergraphs. This
loss of information proved to be disadvantageous in the investigation of com-
petition hypergraphs of products of digraphs (cf. [20]). So, considering niche
hypergraphs of products of digraphs, it seems to be consequent to allow loops
in niche hypergraphs, too. Therefore, we define the l-competition hypergraph

CHl(D), the l-common enemy hypergraph CEHl(D) and the l-niche hypergraph

NHl(D) (with loops) having the edge sets

E
(
CHl(D)

)
= {e ⊆ V | ∃ v ∈ V : e = N−

D (v) 6= ∅},

E
(
CEHl(D)

)
=

{
e ⊆ V | ∃ v ∈ V : e = N+

D (v) 6= ∅
}

and

E
(
NHl(D)

)
=

{
e ⊆ V | ∃ v ∈ V : e = N−

D (v) 6= ∅ ∨ e = N+
D (v) 6= ∅

}

= E
(
CHl(D)

)
∪ E

(
CEHl(D)

)
.

For the sake of brevity, in the following we often use the term (l)-competition

hypergraph (sometimes in connection with the notation CH(l)(D)) for the compe-
tition hypergraph CH(D) as well as for the l-competition hypergraph CHl(D),
analogously for (l)-common enemy and (l)-niche hypergraphs with the notations
CEH(l)(D) and NH(l)(D), respectively.

For five productsD1◦D2 (Cartesian productD1×D2, Cartesian sumD1+D2,
normal product D1 ∗D2, lexicographic product D1 ·D2 and disjunction D1∨D2) of
digraphs D1 = (V1, A1) and D2 = (V2, A2) we investigate the construction of the

(l)-niche hypergraph NH(l)
(
D1 ◦D2

)
=

(
V, E

(l)
◦

)
from NH(l)

(
D1

)
=

(
V1, E

(l)
1

)
,

NH(l)
(
D2

)
=

(
V2, E

(l)
2

)
and vice versa.

The products considered here have always the vertex set V := V1×V2; using
the notation Ã := {((a, b), (a′, b′)) | a, a′ ∈ V1 ∧ b, b′ ∈ V2} their arc sets are
defined as follows:

A
(
D1 ×D2

)
:=

{
((a, b), (a′, b′)) ∈ Ã | (a, a′) ∈ A1 ∧ (b, b′) ∈ A2

}
,

A
(
D1+D2

)
:=

{
((a, b), (a′, b′)) ∈ Ã | ((a, a′) ∈ A1∧b = b′)∨(a = a′∧(b, b′) ∈ A2)

}
,

A
(
D1 ∗D2

)
:= A

(
D1 ×D2

)
∪A

(
D1 +D2

)
,

A
(
D1 ·D2

)
:=

{
((a, b), (a′, b′)) ∈ Ã | (a, a′) ∈ A1 ∨ (a = a′ ∧ (b, b′) ∈ A2)

}
,

A
(
D1 ∨D2

)
:=

{
((a, b), (a′, b′)) ∈ Ã | (a, a′) ∈ A1 ∨ (b, b′) ∈ A2

}
.
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It follows immediately that A
(
D1 + D2

)
⊆ A

(
D1 ∗ D2

)
⊆ A

(
D1 · D2

)
⊆

A
(
D1 ∨D2

)
and A

(
D1 ×D2

)
⊆ A

(
D1 ∗D2

)
. Except the lexicographic product

all these products are commutative in the sense that D1 ◦D2 ≃ D2 ◦D1, where
◦ ∈ {×,+, ∗,∨}.

Usually we number the vertices of D1 and D2 such that V1 = {1, 2, . . . , r},
V2 = {1, 2, . . . , s} and arrange the vertices of V = V1×V2 according to the places
of an (r, s)-matrix.

In analogy with the rows and the columns of the described (r, s)-matrix we
call the set Zi = {(i, j) | j ∈ V2} (i ∈ V1) and the set Sj = {(i, j) | i ∈ V1} (j ∈ V2)
the i-th row and the j-th column of D1 ◦D2, respectively.

Then, for each ◦ ∈ {+, ∗, ·,∨}, the subdigraph 〈Sj〉D1◦D2
of D1 ◦D2 induced

by the vertices of a column Sj is isomorphic to D1, and, analogously, the subdi-
graph 〈Zi〉D1◦D2

of D1 ◦D2 induced by the vertices of a row Zi is isomorphic to

D2. Moreover, if an arc a ∈ A
(
D1 ◦D2

)
consists only of vertices of one row Zi

(i ∈ V1), we refer to a as a horizontal arc. Analogously, an arc a containing only
vertices of one column Sj (j ∈ V2) is called a vertical arc.

Considering (l)-niche hypergraphs, the question arises, whether or not
NH(l)

(
D1 ◦D2

)
can be obtained from NH(l)(D1) and NH(l)(D2) and vice versa.

As an instance for competition hypergraphs CH(l), we cite two results from
[20].

Theorem 1 [20]. The l-competition hypergraph CHl(D1 ×D2) =
(
V, E l×

)
of the

Cartesian product can be obtained from the l-competition hypergraphs CHl(D1) =(
V1, E

l
1

)
and CHl(D2)=

(
V2, E

l
2

)
of D1 and D2 : E

l
× =

{
e1 × e2 | e1 ∈ E

l
1 ∧ e2 ∈ E

l
2

}
.

Theorem 2 [20]. The l-competition hypergraph CHl(D1 ∨ D2) =
(
V, E l∨

)
of

the disjunction can be obtained from the l-competition hypergraphs CHl(D1) =(
V1, E

l
1

)
and CHl(D2) =

(
V2, E

l
2

)
of D1 and D2, if for each of the following con-

ditions is known whether it is true or not:

(a) ∃ v2 ∈ V2 : N
−

2 (v2) = ∅ and (b) ∃ v1 ∈ V1 : N
−

1 (v1) = ∅.

In general, CHl(D1∨D2) cannot be obtained from CHl(D1) and CH
l(D2) without

the extra information on points (a) and (b).

Note that in some cases under certain conditions D1 ◦D2 and even D1 and
D2 can be reconstructed from CH(l)(D1◦D2). For niche hypergraphs such strong
results are not expectable.

The main reason why the reconstruction of D1 and D2 from NH(l)(D1 ◦
D2) is much more difficult is the following. In general, for any hyperedge e ∈
E
(
NH(l)(D)

)
it is not possible to see whether e is a set of predecessors e = N−

D (v)
or a set of successors e = N+

D (v) of a certain vertex v ∈ V (D).
It is interesting that, in general, for the same reason also the construction of

NH(D1 ◦D2) from NHl(D1) and NHl(D2) is impossible.
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2. Construction of NH(l)(D1 ◦D2) from NH(l)(D1) and NH(l)(D2)

The digraphs D = (V,A) and D′ = (V,A′) are (l)-niche equivalent if and only if
D and D′ have the same (l)-niche hypergraph, i.e., NH(l)(D) = NH(l)(D′).

Theorem 3. Let D1 = (V1, A1) and D2 = (V2, A2) be digraphs. In general, for

◦ ∈ {×,+, ∗, ·,∨}, the niche hypergraph NH(D1 ◦D2) = (V, E◦) of D1 ◦D2 cannot

be obtained from the l-niche hypergraphs NHl(D1) =
(
V1, E

l
1

)
and NHl(D2) =(

V2, E
l
2

)
of D1 and D2.

Proof. It suffices to present digraphs D1 = (V1, A1), D′
1 =

(
V1, A

′
1

)
, D2 =(

V2, A2

)
such that D1 and D′

1 are l-niche equivalent, but the niche hypergraphs
of D1 ◦D2 and D′

1 ◦D2 are distinct, i.e., NH (D1 ◦D2) 6= NH
(
D′

1 ◦D2

)
.

So let us consider the following digraphs and their niche hypergraphs:

D1 =
(
V1, A1

)
with V1 = {1, 2, 3, 4, 5} and A1 =

{
(1, 2), (3, 2), (4, 5), (2, 4)

}
,

D′
1 =

(
V1, A

′
1

)
with A′

1 =
{
(1, 2), (3, 2), (4, 5)

}
and

D2 = (V2, A2) with V2 = {1, 2, 3} and A2 =
{
(1, 3), (2, 3)

}
.

Obviously, D1 and D′
1 are l-niche equivalent, they have the l-niche hyper-

graph NHl(D1) = NHl(D′
1) =

(
V1, E

l
1

)
, where E l1 =

{
{1, 3}, {2}, {4}, {5}

}
.

In detail, looking at D1 we have

E l1 = E
(
NHl(D1)

)
=

{
{1, 3} = N−

D1
(2), {2} = N−

D1
(4) = N+

D1
(1) = N+

D1
(3),

{4} = N−

D1
(5) = N+

D1
(2), {5} = N+

D1
(4)

}
;

regarding D′
1 we get

E l1 = E
(
NHl(D′

1)
)
=

{
{1, 3} = N−

D′

1

(2), {2} = N+
D′

1

(1) = N+
D′

1

(3), {4} = N−

D′

1

(5),

{5} = N+
D′

1

(4)
}
.

Note that D1 and D′
1 — despite having one and the same l-niche hypergraph

— are significantly different in the sense that D′
1 6=
←−
D1, D1 6≃ D′

1, and, moreover,

D1 is connected but D′
1 consists of two components. Of course, using D1 and

←−
D1

instead of D1 and D′
1 could be an alternative approach for proving Theorem 3.

For the sake of completeness, we give the l-niche hypergraph NHl(D2) =(
V2, E

l
2

)
, with E l2 =

{
{1, 2} = N−

D2
(3), {3} = N+

D2
(1) = N+

D2
(2)

}
.

Now we compare the niche hypergraphs of the products D1 ◦D2 and D′
1 ◦D2.

• Cartesian product D
(
1
′) ×D2.

Since the Cartesian product has not so many arcs and, consequently, its niche

hypergraph NH
(
D

(
1
′) ×D2

)
includes only few hyperedges, we present the whole

edge sets E
(
NH

(
D

(
1
′) ×D2

))
here (in case of the other four products the edge

sets of NH
(
D

(
1
′) ◦D2

)
will be considerably larger, hence in these cases we will

give up on writing down these sets completely).
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E(NH(D1 ×D2)) =
{
{(1, 1), (1, 2), (3, 1), (3, 2)} = N−

D1×D2
((2, 3)),

{(2, 1), (2, 2)} = N−

D1×D2
((4, 3)),

{(4, 1), (4, 2)} = N−

D1×D2
((5, 3))

}

and
E(NH(D′

1 ×D2)) =
{
{(1, 1), (1, 2), (3, 1), (3, 2)} = N−

D′

1
×D2

((2, 3)),

{(4, 1), (4, 2)} = N−

D′

1
×D2

((5, 3))
}
.

• Cartesian sum D
(
1
′) +D2, normal product D

(
1
′) ∗D2 and lexicographic product

D
(
1
′) ·D2.

Since D1 is connected, the Cartesian sum D1 +D2, the normal product D1 ∗D2

as well as the lexicographic product D1 · D2 are connected, too. Considering
the (disconnected) digraph D′

1, obviously D′
1 + D2, D′

1 ∗ D2 and D′
1 · D2 are

disconnected. In detail, each of the products D′
1 ◦ D2 (◦ ∈ {+, ∗, ·}) consists of

the two components 〈Z1 ∪ Z2 ∪ Z3〉D′

1
◦D2

and 〈Z4 ∪ Z5〉D′

1
◦D2

.
Therefore, in the niche hypergraph NH(D′

1 ◦D2) hyperedges containing ver-
tices of both components cannot exist:

∀e ∈ E(NH(D′
1 ◦D2)) : e ∩ (Z1 ∪ Z2 ∪ Z3) = ∅ ∨ e ∩ (Z4 ∪ Z5) = ∅.

Consequently, to show NH(D1 ◦D2) 6= NH
(
D′

1 ◦D2

)
, it suffices to find a hyper-

edge e ∈ E
(
NH(D1 ◦D2)

)
such that both e ∩

(
Z1 ∪ Z2 ∪ Z3

)
and e ∩

(
Z4 ∪ Z5

)

are nonempty.
For each of the three products D1 ◦D2 we will obtain such a hyperedge by

considering the set of the predecessors of the vertex (4, 3) ∈ V
(
D1 ◦ D2

)
, i.e.,

e = N−

D1◦D2
((4, 3)). Clearly, e results from N−

D1
(4) = {2} and N−

D2
(3) = {1, 2}.

For the Cartesian sum D1 +D2, we have

e =
{
(2, 3), (4, 1), (4, 2)

}
= N−

D1+D2
((4, 3)).

In case of the normal product D1 ∗D2, we obtain

e =
{
(2, 1), (2, 2), (2, 3), (4, 1), (4, 2)

}
= N−

D1∗D2
((4, 3)).

It it easy to see that in the lexicographic product D1 · D2 the vertex (4, 3)
has the same predecessors as in the normal product, hence

e = N−

D1·D2
((4, 3)) = N−

D1∗D2
((4, 3)) =

{
(2, 1), (2, 2), (2, 3), (4, 1), (4, 2)

}
.

• Disjunction D
(
1
′) ∨D2.

Now both D1 ∨D2 and D′
1 ∨D2 are connected. Nevertheless, as in the previous

cases, we consider the predecessors of the vertex (4, 3) and get the hyperedge

e = N−

D1∨D2
((4, 3))

=
{
(1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (4, 1), (4, 2), (5, 1), (5, 2)

}

= S1 ∪ S2 ∪ {(2, 3)} = S1 ∪ S2 ∪ Z2 ∈ E(NH(D1 ∨D2)).
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Note that S1 ∪ S2 in e result from N−

D2
(3) = {1, 2} and Z2 from N−

D1
(4) = {2}.

We search for this hyperedge e in NH(D′
1 ∨D2).

Assume e = N+
D′

1
∨D2

((i, j)) or e = N−

D′

1
∨D2

((i, j)). Since D′
1 and D2 are

loopless digraphs, we obtain (i, j) /∈ e and (i, j) ∈
{
(1, 3), (3, 3), (4, 3), (5, 3)

}
, i.e.,

j = 3.
Let e = N+

D′

1
∨D2

((i, 3)). Because of N+
D2

(3) = ∅ and S1 ⊆ e, all vertices of

S1 have to be successors of (i, 3) in D′
1 ∨ D2 and {1, 2, . . . , 5} = N+

D′

1

(i), where

i ∈ {1, 2, . . . , 5}. This contradicts the fact that D′
1 is loopless.

Consequently, e = N−

D′

1
∨D2

((i, 3)). Then, S1 ∪ S2 ⊆ e holds trivially. Owing

to (2, 3) ∈ e we get (2, 3) ∈ N−

D′

1
∨D2

((i, 3)), i.e., 2 ∈ N−

D′

1

(i) with i ∈ {1, 2, . . . , 5}.

This contradicts N+
D′

1

(2) = ∅.

Hence, e /∈ E(NH(D′
1 ∨ D2)), thus D1 ∨ D2 and D′

1 ∨ D2 are not niche
equivalent. Therefore, the niche hypergraph of the disjunction D1 ∨ D2 cannot
be constructed from the niche hypergraphs of D1 and D2 in general.

Using Theorems 1 and 2, for the Cartesian product and the disjunction some
positive construction results can be derived. For this end we have to make use of

E
(
NH(l)(D)

)
= E

(
CH(l)(D)

)
∪ E

(
CEH(l)(D)

)
and CEH(l)(D) = CH(l)

(←−
D
)
.

Remark 4. The l-niche hypergraph NHl(D1 × D2) of the Cartesian product
can be obtained from the l-competition hypergraphs CHl(D1), CH

l(D2) and the
l-common enemy hypergraphs CEHl(D1), CEHl(D2):

E
(
NHl(D1 ×D2)

)
= E

(
CHl(D1 ×D2)

)
∪ E

(
CEHl(D1 ×D2)

)

=
{
e1 × e2 | e1 ∈ E

(
CHl(D1)

)
∧ e2 ∈ E

(
CHl(D2)

)}

∪
{
e1 × e2 | e1 ∈ E(CEHl(D1)) ∧ e2 ∈ E(CEHl(D2))

}
.

Remark 5. The l-niche hypergraph NHl
(
D1∨D2

)
of the disjunction can be ob-

tained from the l-competition hypergraphs CHl(D1), CH
l(D2) and the l-common

enemy hypergraphs CEHl(D1), CEHl(D2) provided that each of the following
conditions is known to be true or false:

(a) ∃ v2 ∈ V2 : N
−

D2
(v2) = ∅ and (b) ∃ v1 ∈ V1 : N

−

D1
(v1) = ∅ and

(c) ∃ v2 ∈ V2 : N
+
D2

(v2) = ∅ and (d) ∃ v1 ∈ V1 : N
+
D1

(v1) = ∅.

In general, NHl
(
D1 ∨ D2

)
cannot be obtained from CHl(D1), CHl(D2),

CEHl(D1) and CEHl(D2) without the extra information on points (a)–(d).

3. Reconstruction of NH(l)(D1) and NH(l)(D2) from NH(l)(D1 ◦D2)

In the following, for a set e =
{
{i1, j1}, . . . , {ik, jk}

}
⊆ V1×V2 we define π1(e) :=
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{i1, . . . , ik} and π2(e) := {j1, . . . , jk}, respectively, i.e., πi denotes the projection
of vertices of NH(l)(D1 ◦D2) onto their i-th components, for i ∈ {1, 2}.

Theorem 6 (Cartesian product D1 ×D2).

(a) If E
(
NH

(
D1 ×D2

))
6= ∅, then NH(D1) and NH(D2) can be obtained from

NH
(
D1 ×D2

)
.

(b) If E(NHl(D1×D2)) 6= ∅, then NHl(D1) and NHl(D2) can be obtained from

NHl(D1 ×D2).

Proof. Note that E
(
NH

(
D1 ×D2

))
6= ∅ implies A1 6= ∅ 6= A2 and max

(
|A1|,

|A2|
)
≥ 2. Moreover, E

(
NHl

(
D1 ×D2

))
6= ∅ is equivalent to A1 6= ∅ 6= A2 and,

consequently, to E
(
NHl(D1)

)
6= ∅ 6= E

(
NHl(D2)

)
.

(b) Let e ∈ E
(
NHl(D1 ×D2)

)
. This is equivalent to e ∈ E

(
CHl(D1 ×D2)

)

or e ∈ E
(
CEHl(D1 ×D2)

)
, i.e., e = N−

D1×D2
((i, j)) or e = N+

D1×D2
((i, j)), with

a certain (i, j) ∈ V1 × V2.

This holds if and only if there is a vertex (i, j) ∈ V1 × V2 such that

π1(e) = N−

D1
(i) and π2(e) = N−

D2
(j) or π1(e) = N+

D1
(i) and π2(e) = N+

D2
(j),

which implies π1(e) ∈ E
(
NHl(D1)

)
and π2(e) ∈ E

(
NHl(D2)

)
.

Clearly, this way we can get all hyperedges e1 ∈ E
(
NHl(D1)

)
and e2 ∈

E
(
NHl(D2)

)
.

(a) An analog argumentation holds if we consider the niche hypergraphs NH
instead of the l-niche hypergraphs NHl, since hyperedges e ∈ E

(
NHl(D1 ×D2)

)

of cardinality 1 can be omitted if we are interested only in hyperedges ei ∈
E(NH(Di)) (which have cardinality greater than 1), for i = 1, 2.

Theorem 7 (Cartesian sum D1 +D2).

(a) NH(D1) and NH(D2) can be obtained from NH(D1 +D2).

(b) NHl(D1) and NHl(D2) can be obtained from NHl(D1 +D2), provided that

one of the following conditions is true:

(1) E
(
NHl(D1 +D2)

)
= ∅;

(2) ∀ e ∈ E
(
NHl(D1 +D2)

)
: |π1(e)| = 1 and

∃ e ∈ E
(
NHl(D1 +D2)

)
: |π2(e)| ≥ 2;

(3) ∀ e ∈ E
(
NHl(D1 +D2)

)
: |π2(e)| = 1 and

∃ e ∈ E
(
NHl(D1 +D2)

)
: |π1(e)| ≥ 2;

(4) ∃ (i, j) ∈ V1 × V2 ∀ e ∈ E
(
NHl(D1 +D2)

)
: (i, j) /∈ e.

Proof. (a) Let e ∈ E(NH(D1+D2)) and (i, j) ∈ V1×V2 with e = N−

D1+D2
((i, j))

or e = N+
D1+D2

((i, j)). Then e = {(i, j1), . . . , (i, jk), (i1, j), . . . , (il, j)}, where i, i1,
. . . , il and j, j1, . . . , jk are pairwise distinct vertices in V1 and V2, respectively.
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To construct E(NH(D1)), we need only those hyperedges e ∈ E(NH(D1 +
D2)) which contain l ≥ 2 vertices with one and the same second component:

E(NH(D1)) =

{
π1(e) \ I | e ∈ E(NH(D1 +D2))∧

e = {(i, j1), . . . , (i, jk), (i1, j), . . . , (il, j)} ∧ l ≥ 2∧

I =

{
{i}, k ≥ 1
∅ , k = 0

}
.

Analogously, we obtain E(NH(D2)):

E(NH(D2)) =

{
π2(e) \ J | e ∈ E(NH(D1 +D2)) ∧

e = {(i, j1), . . . , (i, jk), (i1, j), . . . , (il, j)} ∧ k ≥ 2∧

J =

{
{j}, l ≥ 1
∅ , l = 0

}
.

(b) The proof of (1)–(3) is similar to the proof of (1)–(3) of Proposition 2
in [20].

Case (1): E
(
NHl(D1 +D2)

)
= ∅. Obviously, A(D1 +D2) = ∅ = A(D1) =

A(D2) = E
(
NHl(D1)

)
= E

(
NHl(D2)

)
.

Case (2): ∀ e∈ E
(
NHl(D1 +D2)

)
: |π1(e)| = 1 and ∃ e ∈ E

(
NHl(D1 +D2)

)
:

|π2(e)| ≥ 2.
Let e ∈ E

(
NHl(D1 +D2)

)
with |π2(e)| ≥ 2, i.e., e = {(i, j1), . . . , (i, jk)} =

N−

D1+D2
((i, j)) or e = {(i, j1), . . . , (i, jk)} = N+

D1+D2
((i, j)) with k ≥ 2 and suit-

able i ∈ V1, j ∈ V2 and j1, . . . , jk ∈ V2.
We discuss only the situation e = N−

D1+D2
((i, j)), since e = N+

D1+D2
((i, j))

can be proved analogously.
Clearly, N−

D2
(j) = {j1, . . . , jk} = π2(e). The assumption that there are

i′ ∈ V1, l ≥ 1 and i′1, . . . , i
′
l ∈ V1 with N−

D1
(i′) = {i′1, . . . , i

′
l} 6= ∅ would lead to

e′ = N−

D1+D2
((i′, j)) = {(i′1, j), . . . , (i

′
l, j), (i

′, j1), . . . , (i
′, jk)} with |π1(e

′)| ≥ 2, a
contradiction.

Therefore, E
(
NHl(D1)

)
= ∅ and E

(
NHl(D2)

)
=

{
π2(e) | e ∈ E

(
NHl(D1+

D2)
)}

.

Case (3): ∀ ∈ E
(
NHl(D1 +D2)

)
: |π2(e)| = 1 and ∃ e∈ E

(
NHl(D1 +D2)

)
:

|π1(e)| ≥ 2.

This can be treated in the same way as Case (2).

Case (4): ∃ (i, j) ∈ V1 × V2 ∀e ∈ E
(
NHl(D1 +D2)

)
: (i, j) /∈ e. Since for

every e ∈ E
(
NHl(D1 +D2)

)
we have (i, j) /∈ e, the vertex i ∈ V1 is an isolate in
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NHl(D1) and in D1. For the same reason, j ∈ V2 is an isolate in NHl(D2) and in
D2. We discuss only the construction of NHl(D2), the rest follows analogously.

Since i is an isolate, in D1 +D2 there is no arc between the i-th row Zi and
any other row. Therefore, all arcs with an initial or a terminal vertex in Zi result
from arcs in D2 and we have

∀a ∈ A(D1 +D2) : V (a) ∩ Zi 6= ∅ ⇒ V (a) ⊆ Zi.

Hence, denoting by 〈Zi〉D1+D2
and by 〈Zi〉NHl(D1+D2) the subdigraph of D1+

D2 and the subhypergraph of NHl(D1 + D2) generated by the vertices of Zi,
respectively, we obtain

• 〈Zi〉D1+D2
≃ D2,

• 〈Zi〉NHl(D1+D2) ≃ NHl(D2) and

• E
(
NHl(D2)

)
=

{
π2(e) | e ∈ E

(
NHl(D1 +D2)

)
∧ e ⊆ Zi

}
.

Note that, being interested in l-niche hypergraphs, loops e = {(i, j)} ∈
E
(
NHl(D1 +D2)

)
could lead to the problem that {(i, j)} can be a loop in

NHl(D1 +D2) either because of {i} ∈ E
(
NHl(D1)

)
and j is an isolate in D2 or

because of i is an isolate in D1 and {j} ∈ E
(
NHl(D2)

)
— and without further

information it cannot be decided which of theses cases occurs.

In comparison with Proposition 2(4) of our paper [20] we see that for the re-
construction of the l-competition graphs CHl(D1) and CHl(D2) from CHl(D1+
D2) there is another sufficient condition, namely:

∃ e ∈ E
(
CHl(D1 +D2)

)
: |π1(e)| ≥ 3 ∧ |π2(e)| ≥ 3.

Remark 8. In general, for niche hypergraphs an analogous condition to Propo-
sition 2(4) in [20], i.e.,

(α) ∃ e ∈ E
(
NHl(D1 +D2)

)
: |π1(e)| ≥ 3 ∧ |π2(e)| ≥ 3

is unsuited to ensure that NHl(D1) and NHl(D2) can be reconstructed from
NHl(D1 +D2).

Proof. Without loss of generality, let e = {(i, j1), . . . , (i, jk), (i1, j), . . . , (il, j)}
be a hyperedge in NHl(D1 +D2) with k ≥ 2 and l ≥ 2.

There are two possibilities for the hyperedge e, namely e =

{
N−

D1+D2
((i, j))

N+
D1+D2

((i, j))
,

i.e.,

π1(e) \ {i} = {i1, . . . , il} =

{
N−

D1
(i)

N+
D1

(i)
, and

π2(e) \ {j} = {j1, . . . , jk} =

{
N−

D2
(j)

N+
D2

(j)
.
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Then we have e ∈ E
(
CHl(D1 +D2)

)
, which is equivalent to e = N−

D1+D2

((i, j)), or otherwise e ∈ E
(
CEHl(D1 +D2)

)
, i.e., e = N+

D1+D2
((i, j)). In the

first case it follows π1(e) \ {i} = N−

D1
(i) and π2(e) \ {j} = N−

D2
(j), in the second

case π1(e) \ {i} = N+
D1

(i) and π2(e) \ {j} = N+
D2

(j) is valid.

In both cases we obtain π1(e) \ {i} ∈ E
(
NHl(D1)

)
and π2(e) \ {j} ∈

E
(
NHl(D2)

)
and both sets π1(e) \ {i} and π2(e) \ {j} are hyperedges in the

corresponding competition hypergraph CHl(Dτ ) (τ ∈ {1, 2}) or both are hyper-
edges in the common enemy hypergraph CEHl(Dτ ) (τ ∈ {1, 2}).

Our argumentation is the following.

• The above implies that, in this sense, ”competition hyperedges” e ∈ E
(
CHl(D1

+D2)
)
⊆ E

(
NHl(D1 +D2)

)
include only information on ”competition hyper-

edges” in E
(
CHl(D1)

)
⊆ E

(
NHl(D1)

)
and E

(
CHl(D2)

)
⊆ E

(
NHl(D2)

)
, re-

spectively. The same applies to ”common enemy hyperedges” e ∈ E
(
CEHl(D1+

D2)
)
⊆ E

(
NHl(D1 +D2)

)
and ”common enemy hyperedges” in E

(
CEHl(D1)

)

⊆ E
(
NHl(D1)

)
and E

(
CEHl(D2)

)
⊆ E

(
NHl(D2)

)
.

• Below, we will describe the reconstruction of the hyperedges of CHl(D1) and
CHl(D2) from CHl(D1 +D2) according to Case 4 of the proof of Proposition 2
in [20]. We will see that in this reconstruction procedure the conditions |π1(e)| ≥ 3
and |π2(e)| ≥ 3 (for a certain hyperedge e ∈ E(CHl(D1+D2))) are essential. Ob-
viously, an analog reconstruction procedure can be used to obtain CEHl(D1) and
CEHl(D2) from CEHl(D1+D2), if there is a hyperedge e ∈ E

(
CEHl(D1 +D2)

)

with |π1(e)| ≥ 3 and |π2(e)| ≥ 3. Clearly, the described reconstruction will fail if
there is no such hyperedge e with the required properties.

• Now let D1 and D2 be digraphs fulfilling (α). Note that, in general, for an
arbitrarily chosen hyperedge e in NHl(D1+D2) it cannot be found out whether e
is a ”competition hyperedge”, i.e., e ∈ E

(
CHl(D1 +D2)

)
, or a ”common enemy

hyperedge”, i.e., e ∈ E
(
CEHl(D1 +D2)

)
.

• We additionally assume that in NHl(D1 + D2) all hyperedges fulfilling (α)
are edges of the competition hypergraph CHl(D1 + D2) but not edges of the
common enemy hypergraph CEHl(D1 + D2). Then, clearly, the reconstruction
method from Proposition 2 in [20] has to fail for hyperedges in E

(
CEHl(D2)

)
\

E
(
CHl(D2)

)
⊆ E

(
NHl(D2)

)
.

It remains to describe the reconstruction method from Case 4 of the proof of
Proposition 2 in [20].

Under the assumptions given above, let e ∈ E
(
NHl(D1 +D2)

)
be a hyper-

edge with (α), i.e., e ∈ E
(
CHl(D1 +D2)

)
. Because of |π1(e)| ≥ 3 and |π2(e)| ≥ 3,

there are vertices i ∈ V1 and j ∈ V2 with k := |{(i, j′) | j′ ∈ V2} ∩ e | ≥ 2 and
l := |{(i′, j) | i′ ∈ V1} ∩ e| ≥ 2.
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Then e = {(i, j1), . . . , (i, jk), (i1, j), . . . , (il, j)} = N−

D1+D2
((i, j)) and there-

fore N−

D1
(i) = {i1, . . . , il} = π1(e) \ {i} and N−

D2
(j) = {j1, . . . , jk} = π2(e) \ {j}.

For each x ∈ V1 let e
x :={(x, j1), . . . , (x, jk), (x1, j), . . . , (xlx , j)} ∈ E

(
CHl(D1

+D2)
)
with lx ≥ 0. Obviously, ex = N−

D1+D2
((x, j)) and N−

D1
(x) = {x1, . . . , xlx}

= π1(e
x) \ {x}. This way we obtain D1 = (V1, A1) as well as E

(
CHl(D1)

)
={

N−

D1
(x) |x ∈ V1 ∧N−

D1
(x) 6= ∅

}
.

Analogously, for each y ∈ V2 let e
y := {(i1, y), . . . , (il, y), (i, y1), . . . , (i, yky)} ∈

E
(
CHl(D1 +D2)

)
with ky ≥ 0. Then ey = N−

D1+D2
((i, y)) and N−

D2
(y) = {y1,

. . . , yky} = π2(e
y) \ {y}.

Theorem 9 (Normal product D1 ∗D2).

(a) NH(D1) and NH(D2) can be obtained from NH(D1 ∗D2).

(b) If there is a hyperedge e ∈ E(NH(D1 ∗D2)) with |π1(e)| ≥ 2 and |π2(e)| ≥ 2,
then NHl(D1) and NHl(D2) can be obtained from NH(D1 ∗D2).

Proof. (b) The existence of a hyperedge e ∈ E(NH(D1 ∗D2)) with |π1(e)| ≥ 2
and |π2(e)| ≥ 2 is equivalent to A1 6= ∅ 6= A2. Let

e =
{
(i, j1), . . . , (i, jk), (i1, j), . . . , (il, j), (i1, j1), (i1, j2), . . . , (i1, jk), . . . , (il, j1),

(il, j2), . . . , (il, jk)
}

∈ E(NH(D1 ∗D2)) = E(CH(D1 ∗D2)) ∪ E(CEH(D1 ∗D2)),

with |π1(e)| ≥ 2 and |π2(e)| ≥ 2.

We will follow the idea of the proof of Case 2 of Corollary 2 in our paper [20],
where a similar result for competition hypergraphs was given.

But by contrast to Corollary 2 in [20], in the case of niche hypergraphs it
is impossible to reconstruct the digraphs D1 and D2 themselves in general. The
reason is the same as mentioned before for the Cartesian sum (see the proof of
Remark 8). Although for a hyperedge e ∈ E(NH(D1 ∗D2)) we can find out the
vertex (i, j) with e = N−

D1∗D2
((i, j)) or e = N+

D1∗D2
((i, j)), in general it will be

impossible to determine whether e is the set of predecessors (e is a ”competition
hyperedge”) or the set of successors (e is a ”common enemy hyperedge”) of the
vertex (i, j) in D1 ∗D2.

Note that, in spite of the distinction of cases below, it is unnecessary to know
for the actual hyperedge e ∈ E(NH(D1 ∗D2)) under investigation whether or not
it is a ”competition hyperedge” (e ∈ E(CH(D1∗D2))) or it is an ”common enemy
hyperedge” (e ∈ E(CEH(D1 ∗ D2))). This will become clear by the remarks to
Case (2) below.

Case (1): e ∈ E(CH(D1 ∗D2)). With some modifications of the proof of Case
2 of Corollary 2 in [20] we get the following.
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(a) Because of l = |π1(e)| − 1 ≥ 1 and k = |π2(e)| − 1 ≥ 1, the vertices
i ∈ V1 and j ∈ V2 with N−

D1∗D2
((i, j)) = e can be identified as the only vertices

which occur exactly k and l times in π1(e) and π2(e), respectively. Moreover,
π1(e) \ {i} = {i1, . . . , il} = N−

D1
(i) and π2(e) \ {j} = {j1, . . . , jk} = N−

D2
(j).

(b) Obviously, for every x ∈ V1 with N−

D1
(x) 6= ∅ in N−

D1∗D2
((x, j)) there

are at least 3 vertices: (x, j1), (x
′, j), (x′, j1), where x′ ∈ N−

D1
(x). Therefore

N−

D1∗D2
((x, j)) ∈ E(CH(D1 ∗D2)) ⊆ E(NH(D1 ∗D2)). Analogously, for each y ∈

V2 with N−

D2
(y) 6= ∅ we get N−

D1∗D2
((i, y)) ∈ E(CH(D1 ∗D2)) ⊆ E(NH(D1 ∗D2)).

(c) Note that if x ∈ V1 with N−

D1
(x) = ∅, then N−

D1∗D2
((x, j)) = {(x, j1), . . . ,

(x, jk)}; i.e., N
−

D1∗D2
((x, j)) ∈ E(CH(D1 ∗D2)) ⊆ E(NH(D1 ∗D2)) if and only if

k ≥ 2. Analogously, for every y ∈ V2 with N−

D2
(y) = ∅ it follows N−

D1∗D2
((i, y)) ∈

E(CH(D1 ∗D2)) ⊆ E(NH(D1 ∗D2)) if and only if l ≥ 2.

Because of (b), for all vertices of D1 and D2, respectively, with positive indegree
we get their sets of predecessors applying the procedure described in (a) to all
hyperedges e ∈ E(CH(D1 ∗ D2)) with |π1(e)| ≥ 2 and |π2(e)| ≥ 2. (In general,
for a vertex v1 ∈ V1 and v2 ∈ V2, respectively, with positive indegree, procedure
(a) will produce its set of predecessors more than once.) Trivially, each vertex
for which (a) does not provide a set of predecessors has indegree 0 (cf. (c)).

Thus we obtain the edge set E
(
CHl(D1)

)
and E

(
CHl(D2)

)
of the l-competi-

tion hypergraph CHl(D1) and CHl(D2), respectively.

Note that we did not need hyperedges e ∈ E
(
CHl(D1 ∗D2)

)
\ E

(
CH(D1∗

D2)
)
, i.e., hyperedges of cardinality 1.

Case (2): e ∈ E (CEH(D1 ∗D2)) . Note that CH(D) = CEH
(←−
D
)
, for any

digraph D. Applying the following substitutions to the proof of Case (1), word-
for-word we obtain the verification of Case (2):

CH →֒ CEH,

N− →֒ N+,

indegree →֒ outdegree and

predecessor →֒ successor.

(a) Because of (b) it suffices to consider the case when A1 = ∅ or A2 = ∅
holds. Replacing ”+” by ”∗” in (1)–(3) of Theorem 7, we see that the occurrence
of (1), (2) or (3) is equivalent to A1 = ∅ or A2 = ∅ and we can use an analog
argumentation as in the corresponding part of the proof of Theorem 7. So using
(2) we obtain E

(
NHl(D2)

)
=

{
π2(e) | e ∈ E(NH

l(D1 ∗D2))
}
and E (NH(D2)) ={

π2(e) | e ∈ E
(
NHl(D1 ∗D2)

)
∧ |π2(e)| ≥ 2

}
, respectively.
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Note that A1 = ∅ or A2 = ∅ implies D1 ∗ D2 = D1 + D2. Therefore, the
last part of the above proof in connection with Theorem 7 lead to the following
consequence.

Corollary 10. NHl(D1) and NHl(D2) can be obtained from NHl(D1 ∗ D2),
provided that one of the following conditions is true:

(1) E
(
NHl(D1 ∗D2)

)
= ∅;

(2) ∀ e∈ E
(
NHl(D1 ∗D2)

)
: |π1(e)| = 1 and ∃ e∈ E

(
NHl(D1 ∗D2)

)
: |π2(e)| ≥ 2;

(3) ∀ e∈ E
(
NHl(D1 ∗D2)

)
: |π2(e)| = 1 and ∃ e∈ E

(
NHl(D1 ∗D2)

)
: |π1(e)| ≥ 2.

Theorem 11 (Lexicographic product D1 ·D2).

(a) NH(D1) and NH(D2) can be obtained from NH(D1 ·D2).

(b) If |V2| ≥ 2, then NHl(D1) can be obtained from NH(D1 ·D2).

(c) NHl(D1) and NHl(D2) can be obtained from NHl(D1 ·D2).

Proof. First we will show (c), i.e., NHl(D1) and NHl(D2) can be reconstructed
from NHl(D1 ·D2). Then we obtain (b) and (a) as follows:

Since for |V2| ≥ 2 every loop e1 = {i} in NHl(D1) leads to a non-loop e in
NHl(D1 ·D2) (containing at least all vertices of the row Zi), we will see that we
need no loops of NHl(D1 ·D2) in order to obtain NHl(D1), this includes (b).

Analogously, it is obvious that non-loops ei of NH
l(D1) and NHl(D2), re-

spectively, result in non-loops in NHl(D1 · D2). In our considerations it will
become clear that for the reconstruction of NH(D1) and NH(D2) we do not
need the loops in NHl(D1 ·D2), so we get (a).

In order to prove (c), we consider a hyperedge e ∈ E
(
NHl(D1 ·D2)

)
. Then

there is a vertex (i, j) ∈ V1×V2 such that e = N−

D1·D2
((i, j)) or e = N+

D1·D2
((i, j)).

In order to simplify our depictions, we write down the considerations only for the
case e = N−

D1·D2
((i, j)) ∈ E

(
CHl(D1 ·D2)

)
; the hyperedges e = N+

D1·D2
((i, j)) ∈

E
(
CEHl(D1 ·D2)

)
can be treated analogously.

In NHl(D1 ·D2) there are two possibilities for the hyperedge e.

Case 1. ∃ l ≥ 1 ∃ i1, . . . , il ∈ V1 : e = Zi1∪· · ·∪Zil . Without loss of generality
let i1, . . . , il be pairwise distinct.

Hence, e is the union of the complete rows Zi1 , . . . , Zil of D1 ·D2 and from
the definition of D1 · D2 it follows i /∈ {i1, . . . , il}, N−

D1
(i) = {i1, . . . , il} and

N−

D2
(j) = ∅.

Therefore, Case 1 does not provide any hyperedges of NHl(D2) but with
π1(e) = {i1, . . . , il} = N−

D1
(i) ∈ E

(
NHl(D1)

)
we obtain a hyperedge of NHl(D1).

Note that the vertex i ∈ V1 is unknown if l < |V1| − 1. Moreover, Case 1
occurs if and only if there exists a vertex j ∈ V2 with N−

D2
(j) = ∅.

Case 2. ∃ l ≥ 0 ∃ i1, . . . , il, i
′ ∈ V1 ∃Z

′ ⊂ Zi′ : e = Zi1 ∪· · ·∪Zil ∪Z
′∧Z ′ 6= ∅.

We get i = i′ ∈ V1 \ {i1, . . . , il} as well as N
−

D1
(i′) = {i1, . . . , il} = π1(e) \ {i

′} ∈
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E
(
NHl(D1)

)
and N−

D2
(j) = π2(e ∩ Z ′) = π2(Z

′) ∈ E
(
NHl(D2)

)
with a certain

j ∈ V2. In general, if |Z ′| < |V2| − 1 holds, the vertex j cannot be determined.

Again, for any hyperedge e ∈ E(NHl(D1·D2)) it cannot be found out whether
e is a competition hyperedge (i.e., e ∈ E(CHl(D1 ·D2))) or e is a common enemy

hyperedge (i.e., e ∈ E(CEHl(D1 ·D2))) in general. But for the reconstruction of
NHl(D1) and NHl(D2) this plays no role, since the considerations of Case 1 and
Case 2 are valid for competition hyperedges (i.e., sets of predecessors) as well as,
analogously, for common enemy hyperedges (i.e., sets of successors).

Moreover, we remark that Cases 1 and 2 (together with their analogs for the
common enemy hyperedges) provide all hyperedges of the (l)-niche hypergraphs
NH(l)(D1) and NH(l)(D2).

Now we discuss the disjunction D1∨D2. The case |V1| = 1 or |V2| = 1 implies
D1 ∨D2 = D1 · D2. Therefore, because of Theorem 11 it suffices to investigate
the case |V1|, |V2| ≥ 2.

Theorem 12 (Disjunction D1 ∨ D2). If |V1|, |V2| ≥ 2, then NHl(D1) and

NHl(D2) can be obtained from NH(D1 ∨D2).

Proof. Since both V1 and V2 contain at least two vertices, in NHl(D1 ∨ D2)
there are no loops and NHl(D1 ∨D2) = NH(D1 ∨D2).

Moreover, for every hyperedge e ∈ E(NH(D1 ∨D2)) it holds

∃ l ≥ 0 ∃ i1, . . . , il ∈ V1 ∃ k ≥ 0 ∃ j1, . . . , jk ∈ V2 : e = Zi1 ∪ · · ·∪Zil ∪Sj1 ∪ · · ·∪Sjk

and, clearly, min(l, k) > 0.

By analogy with the proof of Theorem 11 let (i, j) ∈ V1 × V2 be a vertex
such that e = N−

D1∨D2
((i, j)) or e = N+

D1∨D2
((i, j)). Now we follow the idea

of the proof of Proposition 2 in [20], subsection 3.5, and use the abbreviations
E l1 := E

(
NHl(D1)

)
, E l2 := E

(
NHl(D2)

)
and E∨ := E(NH(D1 ∨D2)).

In case of E∨ = ∅ both E l1 and E l2 are empty, too.

So let E∨ 6= ∅. Additionally, for an arbitrary hyperedge e ∈ E∨ we define
πj
1(e) := {i | (i, j) ∈ e} (for j ∈ π2(e)) and πi

2(e) := {j | (i, j) ∈ e} (for i ∈ π1(e)).

In NH(D1 ∨D2) we have three types of hyperedges:

A := {e ∈ E∨ |π1(e) ⊂ V1},
B := {e ∈ E∨ |π2(e) ⊂ V2} and
C := {e ∈ E∨ |π1(e) = V1 ∧ π2(e) = V2}.

We obtain

A = C = ∅ if and only if A1 = ∅, E
l
1 = ∅ and E

l
2 = {π2(e) | e ∈ E∨};

B = C = ∅ if and only if A2 = ∅, E2 = ∅ and E
l
1 = {π1(e) | e ∈ E∨};

C 6= ∅ if and only if A1 6= ∅ 6= A2.

It remains to investigate the case C 6= ∅. Here we see that, to determine E l1
and E l2, it suffices to make use of the hyperedges in C:
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E l1 =
{
{i ∈ V1 |π

i
2(e) = V2} | e ∈ C

}
and E l2 =

{
{j ∈ V2 |π

j
1(e) = V1} | e ∈ C

}
.

(Note that in case A 6= ∅ we have E l1 = {π1(e) | e ∈ A} and, analogously, if
B 6= ∅ it follows E l2 = {π2(e) | e ∈ B}.)
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