Discussiones Mathematicae Graph Theory 40 (2020) 279–295 doi:10.7151/dmgt.2138

NICHE HYPERGRAPHS OF PRODUCTS OF DIGRAPHS

MARTIN SONNTAG

Faculty of Mathematics and Computer Science TU Bergakademie Freiberg
Prüferstraße 1, D–09596 Freiberg, Germany
e-mail: sonntag@tu-freiberg.de

AND

HANNS-MARTIN TEICHERT

Institute of Mathematics University of Lübeck Ratzeburger Allee 160, D-23562 Lübeck, Germany

e-mail: teichert@math.uni-luebeck.de

Abstract

If D = (V, A) is a digraph, its niche hypergraph $N\mathcal{H}(D) = (V, \mathcal{E})$ has the edge set $\mathcal{E} = \{e \subseteq V \mid |e| \geq 2 \land \exists v \in V : e = N_D^-(v) \lor e = N_D^+(v)\}$. Niche hypergraphs generalize the well-known niche graphs and are closely related to competition hypergraphs as well as common enemy hypergraphs. For several products $D_1 \circ D_2$ of digraphs D_1 and D_2 , we investigate the relations between the niche hypergraphs of the factors D_1 , D_2 and the niche hypergraph of their product $D_1 \circ D_2$.

Keywords: niche hypergraph, product of digraphs, competition hypergraph.

2010 Mathematics Subject Classification: 05C65, 05C76, 05C20.

1. INTRODUCTION AND DEFINITIONS

All hypergraphs $\mathcal{H} = (V(\mathcal{H}), \mathcal{E}(\mathcal{H}))$, graphs G = (V(G), E(G)) and digraphs D = (V(D), A(D)) considered in the following may have isolates but no multiple edges. Moreover, in digraphs loops are forbidden. With $N_D^-(v)$, $N_D^+(v)$, $d_D^-(v)$ and $d_D^+(v)$ we denote the in-neighborhood, the out-neighborhood, the in-degree

and the out-degree of $v \in V(D)$, respectively. In standard terminology we follow Bang-Jensen and Gutin [1].

In 1968, Cohen [3] introduced the competition graph C(D) = (V, E(C(D)))of a digraph D = (V, A) representing a food web of an ecosystem. Here the vertices correspond to the species and different vertices v_1 , v_2 are connected by an edge if and only if they compete for a common prey w, i.e.,

$$E(C(D)) = \{\{v_1, v_2\} \mid v_1 \neq v_2 \land \exists w \in V : v_1 \in N_D^-(w) \land v_2 \in N_D^-(w)\}.$$

Surveys of the large literature around competition graphs (and its variants) can be found in [5,6,11]; for (a selection of) recent results see [4,7–10,12–17,21].

Meanwhile the following variants of C(D) have been investigated.

The common enemy graph CE(D) (cf. [11]) with the edge set

$$E(CE(D)) = \{\{v_1, v_2\} \mid v_1 \neq v_2 \land \exists w \in V : v_1 \in N_D^+(w) \land v_2 \in N_D^+(w)\}\}$$

the double competition graph or competition-common enemy graph DC(D) with the edge set $E(DC(D)) = E(C(D)) \cap E(CE(D))$ (cf. [18]), and the niche graph N(D) with $E(N(D)) = E(C(D)) \cup E(CE(D))$ (cf. [2]).

In 2004, the concept of competition hypergraphs was introduced by Sonntag and Teichert [19]. The *competition hypergraph* $C\mathcal{H}(D)$ of a digraph D = (V, A)has the vertex set V and the edge set

$$\mathcal{E}(C\mathcal{H}(D)) = \left\{ e \subseteq V \mid |e| \ge 2 \land \exists v \in V : e = N_D^-(v) \right\}.$$

As a second hypergraph generalization, recently Park and Sano [16] defined the double competition hypergraph $DC\mathcal{H}(D)$ of a digraph D = (V, A), which has the vertex set V and the edge set

$$\mathcal{E}(DC\mathcal{H}(D)) = \left\{ e \subseteq V \mid |e| \ge 2 \land \exists v_1, v_2 \in V : e = N_D^-(v_1) \cap N_D^+(v_2) \right\}.$$

Our paper [5] was a third step in this direction; there we considered the *niche* hypergraph $N\mathcal{H}(D)$ of a digraph D = (V, A), again with the vertex set V and the edge set

$$\mathcal{E}(N\mathcal{H}(D)) = \left\{ e \subseteq V \mid |e| \ge 2 \land \exists v \in V : e = N_D^-(v) \lor e = N_D^+(v) \right\}.$$

Note that $N\mathcal{H}(D) = N\mathcal{H}(\overleftarrow{D})$ holds for any digraph D, if \overleftarrow{D} denotes the digraph obtained from D by reversing all arcs.

In [5] we present results on several properties of niche hypergraphs and the so-called *niche number* \hat{n} of hypergraphs. In most of the investigations in [5] the generating digraph D of $N\mathcal{H}(D)$ is assumed to be acyclic.

For technical reasons, we define another hypergraph generalization. The common enemy hypergraph $CE\mathcal{H}(D)$ of a digraph D = (V, A) has the vertex set V and the edge set

$$\mathcal{E}(CE\mathcal{H}(D)) = \{ e \subseteq V \mid |e| \ge 2 \land \exists v \in V : e = N_D^+(v) \}.$$

In the hypergraphs $C\mathcal{H}(D)$, $CE\mathcal{H}(D)$ and $N\mathcal{H}(D)$ no loops are allowed. Therefore, by definition the in-neighborhoods and out-neighborhoods of cardinality 1 in the digraph D play no role in the corresponding hypergraphs. This loss of information proved to be disadvantageous in the investigation of competition hypergraphs of products of digraphs (cf. [20]). So, considering niche hypergraphs of products of digraphs, it seems to be consequent to allow loops in niche hypergraphs, too. Therefore, we define the *l*-competition hypergraph $C\mathcal{H}^{l}(D)$, the *l*-common enemy hypergraph $CE\mathcal{H}^{l}(D)$ and the *l*-niche hypergraph $N\mathcal{H}^{l}(D)$ (with loops) having the edge sets

$$\begin{aligned} \mathcal{E}(C\mathcal{H}^{l}(D)) &= \{ e \subseteq V \mid \exists v \in V : e = N_{D}^{-}(v) \neq \emptyset \}, \\ \mathcal{E}(CE\mathcal{H}^{l}(D)) &= \{ e \subseteq V \mid \exists v \in V : e = N_{D}^{+}(v) \neq \emptyset \} \quad \text{and} \\ \mathcal{E}(N\mathcal{H}^{l}(D)) &= \{ e \subseteq V \mid \exists v \in V : e = N_{D}^{-}(v) \neq \emptyset \lor e = N_{D}^{+}(v) \neq \emptyset \} \\ &= \mathcal{E}(C\mathcal{H}^{l}(D)) \cup \mathcal{E}(CE\mathcal{H}^{l}(D)). \end{aligned}$$

For the sake of brevity, in the following we often use the term (l)-competition hypergraph (sometimes in connection with the notation $C\mathcal{H}^{(l)}(D)$) for the competition hypergraph $C\mathcal{H}(D)$ as well as for the l-competition hypergraph $C\mathcal{H}^{l}(D)$, analogously for (l)-common enemy and (l)-niche hypergraphs with the notations $CE\mathcal{H}^{(l)}(D)$ and $N\mathcal{H}^{(l)}(D)$, respectively.

For five products $D_1 \circ D_2$ (Cartesian product $D_1 \times D_2$, Cartesian sum $D_1 + D_2$, normal product $D_1 * D_2$, lexicographic product $D_1 \cdot D_2$ and disjunction $D_1 \vee D_2$) of digraphs $D_1 = (V_1, A_1)$ and $D_2 = (V_2, A_2)$ we investigate the construction of the (l)-niche hypergraph $N\mathcal{H}^{(l)}(D_1 \circ D_2) = (V, \mathcal{E}_{\circ}^{(l)})$ from $N\mathcal{H}^{(l)}(D_1) = (V_1, \mathcal{E}_1^{(l)})$, $N\mathcal{H}^{(l)}(D_2) = (V_2, \mathcal{E}_2^{(l)})$ and vice versa.

The products considered here have always the vertex set $V := V_1 \times V_2$; using the notation $\widetilde{A} := \{((a, b), (a', b')) | a, a' \in V_1 \land b, b' \in V_2\}$ their arc sets are defined as follows:

$$\begin{aligned} A(D_1 \times D_2) &:= \left\{ ((a,b), (a',b')) \in A \mid (a,a') \in A_1 \land (b,b') \in A_2 \right\}, \\ A(D_1 + D_2) &:= \left\{ ((a,b), (a',b')) \in \widetilde{A} \mid ((a,a') \in A_1 \land b = b') \lor (a = a' \land (b,b') \in A_2) \right\}, \\ A(D_1 * D_2) &:= A(D_1 \times D_2) \cup A(D_1 + D_2), \\ A(D_1 \cdot D_2) &:= \left\{ ((a,b), (a',b')) \in \widetilde{A} \mid (a,a') \in A_1 \lor (a = a' \land (b,b') \in A_2) \right\}, \\ A(D_1 \lor D_2) &:= \left\{ ((a,b), (a',b')) \in \widetilde{A} \mid (a,a') \in A_1 \lor (b,b') \in A_2 \right\}. \end{aligned}$$

It follows immediately that $A(D_1 + D_2) \subseteq A(D_1 * D_2) \subseteq A(D_1 \cdot D_2) \subseteq A(D_1 \vee D_2)$ and $A(D_1 \times D_2) \subseteq A(D_1 * D_2)$. Except the lexicographic product all these products are commutative in the sense that $D_1 \circ D_2 \simeq D_2 \circ D_1$, where $o \in \{\times, +, *, \vee\}$.

Usually we number the vertices of D_1 and D_2 such that $V_1 = \{1, 2, ..., r\}$, $V_2 = \{1, 2, ..., s\}$ and arrange the vertices of $V = V_1 \times V_2$ according to the places of an (r, s)-matrix.

In analogy with the rows and the columns of the described (r, s)-matrix we call the set $Z_i = \{(i, j) | j \in V_2\}$ $(i \in V_1)$ and the set $S_j = \{(i, j) | i \in V_1\}$ $(j \in V_2)$ the *i*-th row and the *j*-th column of $D_1 \circ D_2$, respectively.

Then, for each $\circ \in \{+, *, \cdot, \vee\}$, the subdigraph $\langle S_j \rangle_{D_1 \circ D_2}$ of $D_1 \circ D_2$ induced by the vertices of a column S_j is isomorphic to D_1 , and, analogously, the subdigraph $\langle Z_i \rangle_{D_1 \circ D_2}$ of $D_1 \circ D_2$ induced by the vertices of a row Z_i is isomorphic to D_2 . Moreover, if an arc $a \in A(D_1 \circ D_2)$ consists only of vertices of one row Z_i $(i \in V_1)$, we refer to a as a *horizontal arc*. Analogously, an arc a containing only vertices of one column S_j $(j \in V_2)$ is called a *vertical arc*.

Considering (l)-niche hypergraphs, the question arises, whether or not $N\mathcal{H}^{(l)}(D_1 \circ D_2)$ can be obtained from $N\mathcal{H}^{(l)}(D_1)$ and $N\mathcal{H}^{(l)}(D_2)$ and vice versa.

As an instance for competition hypergraphs $C\mathcal{H}^{(l)}$, we cite two results from [20].

Theorem 1 [20]. The *l*-competition hypergraph $C\mathcal{H}^l(D_1 \times D_2) = (V, \mathcal{E}^l_{\times})$ of the Cartesian product can be obtained from the *l*-competition hypergraphs $C\mathcal{H}^l(D_1) = (V_1, \mathcal{E}^l_1)$ and $C\mathcal{H}^l(D_2) = (V_2, \mathcal{E}^l_2)$ of D_1 and $D_2 : \mathcal{E}^l_{\times} = \{e_1 \times e_2 \mid e_1 \in \mathcal{E}^l_1 \land e_2 \in \mathcal{E}^l_2\}.$

Theorem 2 [20]. The *l*-competition hypergraph $C\mathcal{H}^l(D_1 \vee D_2) = (V, \mathcal{E}^l_{\vee})$ of the disjunction can be obtained from the *l*-competition hypergraphs $C\mathcal{H}^l(D_1) = (V_1, \mathcal{E}^l_1)$ and $C\mathcal{H}^l(D_2) = (V_2, \mathcal{E}^l_2)$ of D_1 and D_2 , if for each of the following conditions is known whether it is true or not:

(a) $\exists v_2 \in V_2 : N_2^-(v_2) = \emptyset$ and (b) $\exists v_1 \in V_1 : N_1^-(v_1) = \emptyset$.

In general, $\mathcal{CH}^l(D_1 \vee D_2)$ cannot be obtained from $\mathcal{CH}^l(D_1)$ and $\mathcal{CH}^l(D_2)$ without the extra information on points (a) and (b).

Note that in some cases under certain conditions $D_1 \circ D_2$ and even D_1 and D_2 can be reconstructed from $C\mathcal{H}^{(l)}(D_1 \circ D_2)$. For niche hypergraphs such strong results are not expectable.

The main reason why the reconstruction of D_1 and D_2 from $N\mathcal{H}^{(l)}(D_1 \circ D_2)$ is much more difficult is the following. In general, for any hyperedge $e \in \mathcal{E}(N\mathcal{H}^{(l)}(D))$ it is not possible to see whether e is a set of predecessors $e = N_D^-(v)$ or a set of successors $e = N_D^+(v)$ of a certain vertex $v \in V(D)$.

It is interesting that, in general, for the same reason also the construction of $N\mathcal{H}(D_1 \circ D_2)$ from $N\mathcal{H}^l(D_1)$ and $N\mathcal{H}^l(D_2)$ is impossible.

2. Construction of $N\mathcal{H}^{(l)}(D_1 \circ D_2)$ from $N\mathcal{H}^{(l)}(D_1)$ and $N\mathcal{H}^{(l)}(D_2)$

The digraphs D = (V, A) and D' = (V, A') are (*l*)-niche equivalent if and only if D and D' have the same (*l*)-niche hypergraph, i.e., $N\mathcal{H}^{(l)}(D) = N\mathcal{H}^{(l)}(D')$.

Theorem 3. Let $D_1 = (V_1, A_1)$ and $D_2 = (V_2, A_2)$ be digraphs. In general, for $o \in \{\times, +, *, \cdot, \vee\}$, the niche hypergraph $N\mathcal{H}(D_1 \circ D_2) = (V, \mathcal{E}_o)$ of $D_1 \circ D_2$ cannot be obtained from the l-niche hypergraphs $N\mathcal{H}^l(D_1) = (V_1, \mathcal{E}_1^l)$ and $N\mathcal{H}^l(D_2) = (V_2, \mathcal{E}_2^l)$ of D_1 and D_2 .

Proof. It suffices to present digraphs $D_1 = (V_1, A_1)$, $D'_1 = (V_1, A'_1)$, $D_2 = (V_2, A_2)$ such that D_1 and D'_1 are *l*-niche equivalent, but the niche hypergraphs of $D_1 \circ D_2$ and $D'_1 \circ D_2$ are distinct, i.e., $N\mathcal{H}(D_1 \circ D_2) \neq N\mathcal{H}(D'_1 \circ D_2)$.

So let us consider the following digraphs and their niche hypergraphs: $D_1 = (V_1, A_1)$ with $V_1 = \{1, 2, 3, 4, 5\}$ and $A_1 = \{(1, 2), (3, 2), (4, 5), (2, 4)\},$ $D'_1 = (V_1, A'_1)$ with $A'_1 = \{(1, 2), (3, 2), (4, 5)\}$ and $D_2 = (V_2, A_2)$ with $V_2 = \{1, 2, 3\}$ and $A_2 = \{(1, 3), (2, 3)\}.$

Obviously, D_1 and D'_1 are *l*-niche equivalent, they have the *l*-niche hypergraph $N\mathcal{H}^l(D_1) = N\mathcal{H}^l(D'_1) = (V_1, \mathcal{E}^l_1)$, where $\mathcal{E}^l_1 = \{\{1, 3\}, \{2\}, \{4\}, \{5\}\}$.

In detail, looking at D_1 we have

$$\begin{aligned} \mathcal{E}_{1}^{l} &= \mathcal{E}\left(N\mathcal{H}^{l}(D_{1})\right) = \left\{\{1,3\} = N_{D_{1}}^{-}(2), \{2\} = N_{D_{1}}^{-}(4) = N_{D_{1}}^{+}(1) = N_{D_{1}}^{+}(3), \\ \left\{4\} = N_{D_{1}}^{-}(5) = N_{D_{1}}^{+}(2), \{5\} = N_{D_{1}}^{+}(4)\right\}; \end{aligned}$$

regarding D'_1 we get

$$\mathcal{E}_{1}^{l} = \mathcal{E}(N\mathcal{H}^{l}(D_{1}^{\prime})) = \{\{1,3\} = N_{D_{1}^{\prime}}^{-}(2), \{2\} = N_{D_{1}^{\prime}}^{+}(1) = N_{D_{1}^{\prime}}^{+}(3), \{4\} = N_{D_{1}^{\prime}}^{-}(5), \{5\} = N_{D_{1}^{\prime}}^{+}(4)\}.$$

Note that D_1 and D'_1 — despite having one and the same *l*-niche hypergraph — are significantly different in the sense that $D'_1 \neq D'_1$, $D_1 \not\simeq D'_1$, and, moreover, D_1 is connected but D'_1 consists of two components. Of course, using D_1 and D'_1 instead of D_1 and D'_1 could be an alternative approach for proving Theorem 3.

For the sake of completeness, we give the *l*-niche hypergraph $N\mathcal{H}^{l}(D_{2}) = (V_{2}, \mathcal{E}_{2}^{l})$, with $\mathcal{E}_{2}^{l} = \{\{1, 2\} = N_{D_{2}}^{-}(3), \{3\} = N_{D_{2}}^{+}(1) = N_{D_{2}}^{+}(2)\}.$

Now we compare the niche hypergraphs of the products $D_1 \circ D_2$ and $D'_1 \circ D_2$.

• Cartesian product $D_1^{(\prime)} \times D_2$.

Since the Cartesian product has not so many arcs and, consequently, its niche hypergraph $N\mathcal{H}\left(D_1^{(\prime)} \times D_2\right)$ includes only few hyperedges, we present the whole edge sets $\mathcal{E}\left(N\mathcal{H}\left(D_1^{(\prime)} \times D_2\right)\right)$ here (in case of the other four products the edge sets of $N\mathcal{H}\left(D_1^{(\prime)} \circ D_2\right)$ will be considerably larger, hence in these cases we will give up on writing down these sets completely).

$$\mathcal{E}(N\mathcal{H}(D_1 \times D_2)) = \left\{ \{(1,1), (1,2), (3,1), (3,2)\} = N_{D_1 \times D_2}^-((2,3)), \\ \{(2,1), (2,2)\} = N_{D_1 \times D_2}^-((4,3)), \\ \{(4,1), (4,2)\} = N_{D_1 \times D_2}^-((5,3)) \right\}$$

and

$$\begin{aligned} \mathcal{E}(N\mathcal{H}(D_1'\times D_2)) &= \big\{\{(1,1),(1,2),(3,1),(3,2)\} = N_{D_1'\times D_2}^-((2,3)),\\ \{(4,1),(4,2)\} &= N_{D_1'\times D_2}^-((5,3))\big\}. \end{aligned}$$

• Cartesian sum $D_1^{(\prime)} + D_2$, normal product $D_1^{(\prime)} * D_2$ and lexicographic product $D_1^{(\prime)} \cdot D_2$.

Since D_1 is connected, the Cartesian sum $D_1 + D_2$, the normal product $D_1 * D_2$ as well as the lexicographic product $D_1 \cdot D_2$ are connected, too. Considering the (disconnected) digraph D'_1 , obviously $D'_1 + D_2$, $D'_1 * D_2$ and $D'_1 \cdot D_2$ are disconnected. In detail, each of the products $D'_1 \circ D_2$ ($\circ \in \{+, *, \cdot\}$) consists of the two components $\langle Z_1 \cup Z_2 \cup Z_3 \rangle_{D'_1 \circ D_2}$ and $\langle Z_4 \cup Z_5 \rangle_{D'_1 \circ D_2}$.

Therefore, in the niche hypergraph $N\mathcal{H}(D'_1 \circ D_2)$ hyperedges containing vertices of both components cannot exist:

$$\forall e \in \mathcal{E}(N\mathcal{H}(D'_1 \circ D_2)) : e \cap (Z_1 \cup Z_2 \cup Z_3) = \emptyset \lor e \cap (Z_4 \cup Z_5) = \emptyset.$$

Consequently, to show $N\mathcal{H}(D_1 \circ D_2) \neq N\mathcal{H}(D'_1 \circ D_2)$, it suffices to find a hyperedge $e \in \mathcal{E}(N\mathcal{H}(D_1 \circ D_2))$ such that both $e \cap (Z_1 \cup Z_2 \cup Z_3)$ and $e \cap (Z_4 \cup Z_5)$ are nonempty.

For each of the three products $D_1 \circ D_2$ we will obtain such a hyperedge by considering the set of the predecessors of the vertex $(4,3) \in V(D_1 \circ D_2)$, i.e., $e = N_{D_1 \circ D_2}^-((4,3))$. Clearly, e results from $N_{D_1}^-(4) = \{2\}$ and $N_{D_2}^-(3) = \{1,2\}$.

For the Cartesian sum $D_1 + D_2$, we have

$$e = \left\{ (2,3), (4,1), (4,2) \right\} = N^{-}_{D_1 + D_2}((4,3)).$$

In case of the normal product $D_1 * D_2$, we obtain

$$e = \{(2,1), (2,2), (2,3), (4,1), (4,2)\} = N^{-}_{D_1 * D_2}((4,3)).$$

It it easy to see that in the lexicographic product $D_1 \cdot D_2$ the vertex (4,3) has the same predecessors as in the normal product, hence

$$e = N^{-}_{D_1 \cdot D_2}((4,3)) = N^{-}_{D_1 * D_2}((4,3)) = \{(2,1), (2,2), (2,3), (4,1), (4,2)\}.$$

• Disjunction $D_1^{(\prime)} \vee D_2$.

Now both $D_1 \vee D_2$ and $D'_1 \vee D_2$ are connected. Nevertheless, as in the previous cases, we consider the predecessors of the vertex (4,3) and get the hyperedge

$$e = N_{D_1 \vee D_2}^-((4,3))$$

= {(1,1), (1,2), (2,1), (2,2), (2,3), (3,1), (3,2), (4,1), (4,2), (5,1), (5,2)}
= S_1 \cup S_2 \cup \{(2,3)\} = S_1 \cup S_2 \cup Z_2 \in \mathcal{E}(N\mathcal{H}(D_1 \vee D_2)).

Note that $S_1 \cup S_2$ in e result from $N_{D_2}^-(3) = \{1, 2\}$ and Z_2 from $N_{D_1}^-(4) = \{2\}$. We search for this hyperedge e in $N\mathcal{H}(D'_1 \vee D_2)$.

Assume $e = N_{D'_1 \vee D_2}^+((i,j))$ or $e = N_{D'_1 \vee D_2}^{-1}((i,j))$. Since D'_1 and D_2 are loopless digraphs, we obtain $(i,j) \notin e$ and $(i,j) \in \{(1,3), (3,3), (4,3), (5,3)\}$, i.e., j = 3.

Let $e = N_{D'_1 \vee D_2}^+((i,3))$. Because of $N_{D_2}^+(3) = \emptyset$ and $S_1 \subseteq e$, all vertices of S_1 have to be successors of (i,3) in $D'_1 \vee D_2$ and $\{1,2,\ldots,5\} = N_{D'_1}^+(i)$, where $i \in \{1,2,\ldots,5\}$. This contradicts the fact that D'_1 is loopless.

Consequently, $e = N_{D'_1 \vee D_2}^-((i,3))$. Then, $S_1 \cup S_2 \subseteq e$ holds trivially. Owing to $(2,3) \in e$ we get $(2,3) \in N_{D'_1 \vee D_2}^-((i,3))$, i.e., $2 \in N_{D'_1}^-(i)$ with $i \in \{1, 2, ..., 5\}$. This contradicts $N_{D'_1}^+(2) = \emptyset$.

Hence, $e \notin \mathcal{E}(N\mathcal{H}(D'_1 \vee D_2))$, thus $D_1 \vee D_2$ and $D'_1 \vee D_2$ are not niche equivalent. Therefore, the niche hypergraph of the disjunction $D_1 \vee D_2$ cannot be constructed from the niche hypergraphs of D_1 and D_2 in general.

Using Theorems 1 and 2, for the Cartesian product and the disjunction some positive construction results can be derived. For this end we have to make use of $\mathcal{E}\left(N\mathcal{H}^{(l)}(D)\right) = \mathcal{E}\left(C\mathcal{H}^{(l)}(D)\right) \cup \mathcal{E}\left(C\mathcal{E}\mathcal{H}^{(l)}(D)\right)$ and $C\mathcal{E}\mathcal{H}^{(l)}(D) = C\mathcal{H}^{(l)}\left(\overleftarrow{D}\right)$.

Remark 4. The *l*-niche hypergraph $N\mathcal{H}^l(D_1 \times D_2)$ of the Cartesian product can be obtained from the *l*-competition hypergraphs $C\mathcal{H}^l(D_1)$, $C\mathcal{H}^l(D_2)$ and the *l*-common enemy hypergraphs $C\mathcal{EH}^l(D_1)$, $C\mathcal{EH}^l(D_2)$:

$$\mathcal{E}\left(N\mathcal{H}^{l}(D_{1}\times D_{2})\right) = \mathcal{E}\left(C\mathcal{H}^{l}(D_{1}\times D_{2})\right) \cup \mathcal{E}\left(C\mathcal{E}\mathcal{H}^{l}(D_{1}\times D_{2})\right)$$
$$= \left\{e_{1}\times e_{2} \mid e_{1}\in \mathcal{E}\left(C\mathcal{H}^{l}(D_{1})\right) \wedge e_{2}\in \mathcal{E}\left(C\mathcal{H}^{l}(D_{2})\right)\right\}$$
$$\cup \left\{e_{1}\times e_{2} \mid e_{1}\in \mathcal{E}(C\mathcal{E}\mathcal{H}^{l}(D_{1})) \wedge e_{2}\in \mathcal{E}(C\mathcal{E}\mathcal{H}^{l}(D_{2}))\right\}.$$

Remark 5. The *l*-niche hypergraph $N\mathcal{H}^l(D_1 \vee D_2)$ of the disjunction can be obtained from the *l*-competition hypergraphs $C\mathcal{H}^l(D_1)$, $C\mathcal{H}^l(D_2)$ and the *l*-common enemy hypergraphs $C\mathcal{EH}^l(D_1)$, $C\mathcal{EH}^l(D_2)$ provided that each of the following conditions is known to be true or false:

(a)
$$\exists v_2 \in V_2 : N_{D_2}^-(v_2) = \emptyset$$
 and (b) $\exists v_1 \in V_1 : N_{D_1}^-(v_1) = \emptyset$ and

(c) $\exists v_2 \in V_2 : N_{D_2}^+(v_2) = \emptyset$ and (d) $\exists v_1 \in V_1 : N_{D_1}^+(v_1) = \emptyset$.

In general, $N\mathcal{H}^l(D_1 \vee D_2)$ cannot be obtained from $C\mathcal{H}^l(D_1)$, $C\mathcal{H}^l(D_2)$, $CE\mathcal{H}^l(D_1)$ and $CE\mathcal{H}^l(D_2)$ without the extra information on points (a)–(d).

3. RECONSTRUCTION OF $N\mathcal{H}^{(l)}(D_1)$ AND $N\mathcal{H}^{(l)}(D_2)$ FROM $N\mathcal{H}^{(l)}(D_1 \circ D_2)$

In the following, for a set $e = \{\{i_1, j_1\}, \ldots, \{i_k, j_k\}\} \subseteq V_1 \times V_2$ we define $\pi_1(e) :=$

 $\{i_1, \ldots, i_k\}$ and $\pi_2(e) := \{j_1, \ldots, j_k\}$, respectively, i.e., π_i denotes the projection of vertices of $N\mathcal{H}^{(l)}(D_1 \circ D_2)$ onto their *i*-th components, for $i \in \{1, 2\}$.

Theorem 6 (Cartesian product $D_1 \times D_2$).

- (a) If $\mathcal{E}(N\mathcal{H}(D_1 \times D_2)) \neq \emptyset$, then $N\mathcal{H}(D_1)$ and $N\mathcal{H}(D_2)$ can be obtained from $N\mathcal{H}(D_1 \times D_2)$.
- (b) If $\mathcal{E}(N\mathcal{H}^l(D_1 \times D_2)) \neq \emptyset$, then $N\mathcal{H}^l(D_1)$ and $N\mathcal{H}^l(D_2)$ can be obtained from $N\mathcal{H}^l(D_1 \times D_2)$.

Proof. Note that $\mathcal{E}(N\mathcal{H}(D_1 \times D_2)) \neq \emptyset$ implies $A_1 \neq \emptyset \neq A_2$ and $\max(|A_1|, |A_2|) \geq 2$. Moreover, $\mathcal{E}(N\mathcal{H}^l(D_1 \times D_2)) \neq \emptyset$ is equivalent to $A_1 \neq \emptyset \neq A_2$ and, consequently, to $\mathcal{E}(N\mathcal{H}^l(D_1)) \neq \emptyset \neq \mathcal{E}(N\mathcal{H}^l(D_2))$.

(b) Let $e \in \mathcal{E}\left(N\mathcal{H}^l(D_1 \times D_2)\right)$. This is equivalent to $e \in \mathcal{E}\left(C\mathcal{H}^l(D_1 \times D_2)\right)$ or $e \in \mathcal{E}\left(C\mathcal{E}\mathcal{H}^l(D_1 \times D_2)\right)$, i.e., $e = N_{D_1 \times D_2}^-((i,j))$ or $e = N_{D_1 \times D_2}^+((i,j))$, with a certain $(i,j) \in V_1 \times V_2$.

This holds if and only if there is a vertex $(i, j) \in V_1 \times V_2$ such that

$$\pi_1(e) = N_{D_1}^-(i)$$
 and $\pi_2(e) = N_{D_2}^-(j)$ or $\pi_1(e) = N_{D_1}^+(i)$ and $\pi_2(e) = N_{D_2}^+(j)$,

which implies $\pi_1(e) \in \mathcal{E}(N\mathcal{H}^l(D_1))$ and $\pi_2(e) \in \mathcal{E}(N\mathcal{H}^l(D_2))$.

Clearly, this way we can get all hyperedges $e_1 \in \mathcal{E}(N\mathcal{H}^l(D_1))$ and $e_2 \in \mathcal{E}(N\mathcal{H}^l(D_2))$.

(a) An analog argumentation holds if we consider the niche hypergraphs $N\mathcal{H}$ instead of the *l*-niche hypergraphs $N\mathcal{H}^l$, since hyperedges $e \in \mathcal{E}\left(N\mathcal{H}^l(D_1 \times D_2)\right)$ of cardinality 1 can be omitted if we are interested only in hyperedges $e_i \in \mathcal{E}(N\mathcal{H}(D_i))$ (which have cardinality greater than 1), for i = 1, 2.

Theorem 7 (Cartesian sum $D_1 + D_2$).

- (a) $N\mathcal{H}(D_1)$ and $N\mathcal{H}(D_2)$ can be obtained from $N\mathcal{H}(D_1 + D_2)$.
- (b) $N\mathcal{H}^l(D_1)$ and $N\mathcal{H}^l(D_2)$ can be obtained from $N\mathcal{H}^l(D_1 + D_2)$, provided that one of the following conditions is true:
 - (1) $\mathcal{E}\left(N\mathcal{H}^l(D_1+D_2)\right) = \emptyset;$
 - (2) $\forall e \in \mathcal{E} \left(N \mathcal{H}^l(D_1 + D_2) \right) : |\pi_1(e)| = 1 \text{ and}$ $\exists e \in \mathcal{E} \left(N \mathcal{H}^l(D_1 + D_2) \right) : |\pi_2(e)| \ge 2;$
 - (3) $\forall e \in \mathcal{E} \left(N \mathcal{H}^l(D_1 + D_2) \right) : |\pi_2(e)| = 1 \text{ and}$ $\exists e \in \mathcal{E} \left(N \mathcal{H}^l(D_1 + D_2) \right) : |\pi_1(e)| \ge 2;$
 - (4) $\exists (i,j) \in V_1 \times V_2 \ \forall e \in \mathcal{E} \left(N\mathcal{H}^l(D_1 + D_2) \right) : (i,j) \notin e.$

Proof. (a) Let $e \in \mathcal{E}(N\mathcal{H}(D_1+D_2))$ and $(i,j) \in V_1 \times V_2$ with $e = N_{D_1+D_2}^-((i,j))$ or $e = N_{D_1+D_2}^+((i,j))$. Then $e = \{(i,j_1), \ldots, (i,j_k), (i_1,j), \ldots, (i_l,j)\}$, where i, i_1, \ldots, i_l and j, j_1, \ldots, j_k are pairwise distinct vertices in V_1 and V_2 , respectively.

To construct $\mathcal{E}(N\mathcal{H}(D_1))$, we need only those hyperedges $e \in \mathcal{E}(N\mathcal{H}(D_1 + D_2))$ which contain $l \geq 2$ vertices with one and the same second component:

$$\begin{aligned} \mathcal{E}(N\mathcal{H}(D_1)) &= \bigg\{ \pi_1(e) \setminus I \,|\, e \in \mathcal{E}(N\mathcal{H}(D_1 + D_2)) \land \\ e &= \{(i, j_1), \dots, (i, j_k), (i_1, j), \dots, (i_l, j)\} \land l \ge 2 \land \\ I &= \bigg\{ \begin{array}{c} \{i\}, \quad k \ge 1 \\ \emptyset, \quad k = 0 \end{array} \bigg\}. \end{aligned}$$

Analogously, we obtain $\mathcal{E}(N\mathcal{H}(D_2))$:

$$\mathcal{E}(N\mathcal{H}(D_2)) = \begin{cases} \pi_2(e) \setminus J \mid e \in \mathcal{E}(N\mathcal{H}(D_1 + D_2)) \land \\ e = \{(i, j_1), \dots, (i, j_k), (i_1, j), \dots, (i_l, j)\} \land k \ge 2 \land \\ J = \begin{cases} \{j\}, \quad l \ge 1 \\ \emptyset, \quad l = 0 \end{cases} \end{cases}.$$

(b) The proof of (1)–(3) is similar to the proof of (1)–(3) of Proposition 2 in [20].

Case (1): $\mathcal{E}\left(N\mathcal{H}^l(D_1+D_2)\right) = \emptyset$. Obviously, $A(D_1+D_2) = \emptyset = A(D_1) = A(D_2) = \mathcal{E}\left(N\mathcal{H}^l(D_1)\right) = \mathcal{E}\left(N\mathcal{H}^l(D_2)\right)$.

Case (2): $\forall e \in \mathcal{E}\left(N\mathcal{H}^l(D_1+D_2)\right)$: $|\pi_1(e)| = 1$ and $\exists e \in \mathcal{E}\left(N\mathcal{H}^l(D_1+D_2)\right)$: $|\pi_2(e)| \ge 2$.

Let $e \in \mathcal{E}(N\mathcal{H}^{l}(D_{1}+D_{2}))$ with $|\pi_{2}(e)| \geq 2$, i.e., $e = \{(i, j_{1}), \dots, (i, j_{k})\} = N_{D_{1}+D_{2}}^{-}((i, j))$ or $e = \{(i, j_{1}), \dots, (i, j_{k})\} = N_{D_{1}+D_{2}}^{+}((i, j))$ with $k \geq 2$ and suitable $i \in V_{1}, j \in V_{2}$ and $j_{1}, \dots, j_{k} \in V_{2}$.

We discuss only the situation $e = N_{D_1+D_2}^-((i,j))$, since $e = N_{D_1+D_2}^+((i,j))$ can be proved analogously.

Clearly, $N_{D_2}^-(j) = \{j_1, \ldots, j_k\} = \pi_2(e)$. The assumption that there are $i' \in V_1, l \ge 1$ and $i'_1, \ldots, i'_l \in V_1$ with $N_{D_1}^-(i') = \{i'_1, \ldots, i'_l\} \neq \emptyset$ would lead to $e' = N_{D_1+D_2}^-((i', j)) = \{(i'_1, j), \ldots, (i'_l, j), (i', j_1), \ldots, (i', j_k)\}$ with $|\pi_1(e')| \ge 2$, a contradiction.

Therefore, $\mathcal{E}(N\mathcal{H}^{l}(D_{1})) = \emptyset$ and $\mathcal{E}(N\mathcal{H}^{l}(D_{2})) = \{\pi_{2}(e) | e \in \mathcal{E}(N\mathcal{H}^{l}(D_{1}+D_{2}))\}.$

Case (3): $\forall \in \mathcal{E}\left(N\mathcal{H}^l(D_1+D_2)\right)$: $|\pi_2(e)| = 1$ and $\exists e \in \mathcal{E}\left(N\mathcal{H}^l(D_1+D_2)\right)$: $|\pi_1(e)| \ge 2$.

This can be treated in the same way as Case (2).

Case (4): $\exists (i, j) \in V_1 \times V_2 \ \forall e \in \mathcal{E} \left(N\mathcal{H}^l(D_1 + D_2) \right) : (i, j) \notin e$. Since for every $e \in \mathcal{E} \left(N\mathcal{H}^l(D_1 + D_2) \right)$ we have $(i, j) \notin e$, the vertex $i \in V_1$ is an isolate in

 $N\mathcal{H}^l(D_1)$ and in D_1 . For the same reason, $j \in V_2$ is an isolate in $N\mathcal{H}^l(D_2)$ and in D_2 . We discuss only the construction of $N\mathcal{H}^l(D_2)$, the rest follows analogously.

Since *i* is an isolate, in $D_1 + D_2$ there is no arc between the *i*-th row Z_i and any other row. Therefore, all arcs with an initial or a terminal vertex in Z_i result from arcs in D_2 and we have

$$\forall a \in A(D_1 + D_2) : V(a) \cap Z_i \neq \emptyset \Rightarrow V(a) \subseteq Z_i.$$

Hence, denoting by $\langle Z_i \rangle_{D_1+D_2}$ and by $\langle Z_i \rangle_{N\mathcal{H}^l(D_1+D_2)}$ the subdigraph of D_1+D_2 and the subhypergraph of $N\mathcal{H}^l(D_1+D_2)$ generated by the vertices of Z_i , respectively, we obtain

- $\langle Z_i \rangle_{D_1+D_2} \simeq D_2,$
- $\langle Z_i \rangle_{N\mathcal{H}^l(D_1+D_2)} \simeq N\mathcal{H}^l(D_2)$ and
- $\mathcal{E}(N\mathcal{H}^l(D_2)) = \{\pi_2(e) \mid e \in \mathcal{E}(N\mathcal{H}^l(D_1 + D_2)) \land e \subseteq Z_i\}.$

Note that, being interested in *l*-niche hypergraphs, loops $e = \{(i, j)\} \in \mathcal{E}(N\mathcal{H}^l(D_1 + D_2))$ could lead to the problem that $\{(i, j)\}$ can be a loop in $N\mathcal{H}^l(D_1 + D_2)$ either because of $\{i\} \in \mathcal{E}(N\mathcal{H}^l(D_1))$ and j is an isolate in D_2 or because of i is an isolate in D_1 and $\{j\} \in \mathcal{E}(N\mathcal{H}^l(D_2))$ — and without further information it cannot be decided which of theses cases occurs.

In comparison with Proposition 2(4) of our paper [20] we see that for the reconstruction of the *l*-competition graphs $C\mathcal{H}^l(D_1)$ and $C\mathcal{H}^l(D_2)$ from $C\mathcal{H}^l(D_1 + D_2)$ there is another sufficient condition, namely:

$$\exists e \in \mathcal{E}\left(C\mathcal{H}^l(D_1 + D_2)\right) : |\pi_1(e)| \ge 3 \land |\pi_2(e)| \ge 3.$$

Remark 8. In general, for niche hypergraphs an analogous condition to Proposition 2(4) in [20], i.e.,

$$(\alpha) \qquad \exists e \in \mathcal{E}\left(N\mathcal{H}^l(D_1 + D_2)\right) : |\pi_1(e)| \ge 3 \land |\pi_2(e)| \ge 3$$

is unsuited to ensure that $N\mathcal{H}^l(D_1)$ and $N\mathcal{H}^l(D_2)$ can be reconstructed from $N\mathcal{H}^l(D_1+D_2)$.

Proof. Without loss of generality, let $e = \{(i, j_1), \ldots, (i, j_k), (i_1, j), \ldots, (i_l, j)\}$ be a hyperedge in $N\mathcal{H}^l(D_1 + D_2)$ with $k \ge 2$ and $l \ge 2$.

There are two possibilities for the hyperedge e, namely $e = \begin{cases} N_{D_1+D_2}^-((i,j)) \\ N_{D_1+D_2}^+((i,j)) \end{cases}$

$$\pi_1(e) \setminus \{i\} = \{i_1, \dots, i_l\} = \begin{cases} N_{D_1}^-(i) \\ N_{D_1}^+(i) \end{cases}, \text{ and} \\ \pi_2(e) \setminus \{j\} = \{j_1, \dots, j_k\} = \begin{cases} N_{D_2}^-(j) \\ N_{D_2}^+(j) \end{cases}.$$

Then we have $e \in \mathcal{E}\left(C\mathcal{H}^{l}(D_{1}+D_{2})\right)$, which is equivalent to $e = N_{D_{1}+D_{2}}^{-}$ ((*i*, *j*)), or otherwise $e \in \mathcal{E}\left(CE\mathcal{H}^{l}(D_{1}+D_{2})\right)$, i.e., $e = N_{D_{1}+D_{2}}^{+}((i, j))$. In the first case it follows $\pi_{1}(e) \setminus \{i\} = N_{D_{1}}^{-}(i)$ and $\pi_{2}(e) \setminus \{j\} = N_{D_{2}}^{-}(j)$, in the second case $\pi_{1}(e) \setminus \{i\} = N_{D_{1}}^{+}(i)$ and $\pi_{2}(e) \setminus \{j\} = N_{D_{2}}^{+}(j)$ is valid.

In both cases we obtain $\pi_1(e) \setminus \{i\} \in \mathcal{E}(N\mathcal{H}^l(D_1))$ and $\pi_2(e) \setminus \{j\} \in \mathcal{E}(N\mathcal{H}^l(D_2))$ and both sets $\pi_1(e) \setminus \{i\}$ and $\pi_2(e) \setminus \{j\}$ are hyperedges in the corresponding competition hypergraph $C\mathcal{H}^l(D_\tau)$ ($\tau \in \{1,2\}$) or both are hyperedges in the common enemy hypergraph $C\mathcal{EH}^l(D_\tau)$ ($\tau \in \{1,2\}$).

Our argumentation is the following.

• The above implies that, in this sense, "competition hyperedges" $e \in \mathcal{E}(C\mathcal{H}^l(D_1 + D_2)) \subseteq \mathcal{E}(N\mathcal{H}^l(D_1 + D_2))$ include only information on "competition hyperedges" in $\mathcal{E}(C\mathcal{H}^l(D_1)) \subseteq \mathcal{E}(N\mathcal{H}^l(D_1))$ and $\mathcal{E}(C\mathcal{H}^l(D_2)) \subseteq \mathcal{E}(N\mathcal{H}^l(D_2))$, respectively. The same applies to "common enemy hyperedges" $e \in \mathcal{E}(CE\mathcal{H}^l(D_1 + D_2)) \subseteq \mathcal{E}(N\mathcal{H}^l(D_1 + D_2))$ and "common enemy hyperedges" in $\mathcal{E}(CE\mathcal{H}^l(D_1)) \subseteq \mathcal{E}(N\mathcal{H}^l(D_1))$ and $\mathcal{E}(CE\mathcal{H}^l(D_2)) \subseteq \mathcal{E}(N\mathcal{H}^l(D_1))$

• Below, we will describe the reconstruction of the hyperedges of $C\mathcal{H}^l(D_1)$ and $C\mathcal{H}^l(D_2)$ from $C\mathcal{H}^l(D_1 + D_2)$ according to Case 4 of the proof of Proposition 2 in [20]. We will see that in this reconstruction procedure the conditions $|\pi_1(e)| \geq 3$ and $|\pi_2(e)| \geq 3$ (for a certain hyperedge $e \in \mathcal{E}(C\mathcal{H}^l(D_1 + D_2))$) are essential. Obviously, an analog reconstruction procedure can be used to obtain $CE\mathcal{H}^l(D_1)$ and $CE\mathcal{H}^l(D_2)$ from $CE\mathcal{H}^l(D_1 + D_2)$, if there is a hyperedge $e \in \mathcal{E}(CE\mathcal{H}^l(D_1 + D_2))$ with $|\pi_1(e)| \geq 3$ and $|\pi_2(e)| \geq 3$. Clearly, the described reconstruction will fail if there is no such hyperedge e with the required properties.

• Now let D_1 and D_2 be digraphs fulfilling (α) . Note that, in general, for an arbitrarily chosen hyperedge e in $N\mathcal{H}^l(D_1+D_2)$ it cannot be found out whether e is a "competition hyperedge", i.e., $e \in \mathcal{E}(C\mathcal{H}^l(D_1+D_2))$, or a "common enemy hyperedge", i.e., $e \in \mathcal{E}(C\mathcal{H}^l(D_1+D_2))$.

• We additionally assume that in $N\mathcal{H}^l(D_1 + D_2)$ all hyperedges fulfilling (α) are edges of the competition hypergraph $C\mathcal{H}^l(D_1 + D_2)$ but not edges of the common enemy hypergraph $C\mathcal{EH}^l(D_1 + D_2)$. Then, clearly, the reconstruction method from Proposition 2 in [20] has to fail for hyperedges in $\mathcal{E}(C\mathcal{EH}^l(D_2)) \setminus \mathcal{E}(C\mathcal{H}^l(D_2)) \subseteq \mathcal{E}(N\mathcal{H}^l(D_2))$.

It remains to describe the reconstruction method from Case 4 of the proof of Proposition 2 in [20].

Under the assumptions given above, let $e \in \mathcal{E}\left(N\mathcal{H}^l(D_1+D_2)\right)$ be a hyperedge with (α) , i.e., $e \in \mathcal{E}\left(C\mathcal{H}^l(D_1+D_2)\right)$. Because of $|\pi_1(e)| \ge 3$ and $|\pi_2(e)| \ge 3$, there are vertices $i \in V_1$ and $j \in V_2$ with $k := |\{(i,j') \mid j' \in V_2\} \cap e| \ge 2$ and $l := |\{(i',j) \mid i' \in V_1\} \cap e| \ge 2$. Then $e = \{(i, j_1), \dots, (i, j_k), (i_1, j), \dots, (i_l, j)\} = N_{D_1+D_2}^-((i, j))$ and therefore $N_{D_1}^-(i) = \{i_1, \dots, i_l\} = \pi_1(e) \setminus \{i\}$ and $N_{D_2}^-(j) = \{j_1, \dots, j_k\} = \pi_2(e) \setminus \{j\}$. For each $x \in V_1$ let $e^x := \{(x, j_1), \dots, (x, j_k), (x_1, j), \dots, (x_{l_x}, j)\} \in \mathcal{E}(C\mathcal{H}^l(D_1))$

 $= \pi_1(e^x) \setminus \{x\}. \text{ This way we obtain } D_1 = (V_1, A_1) \text{ as well as } \mathcal{E}\left(C\mathcal{H}^l(D_1) + D_2\right) \\ = \left\{N_{D_1}(x) \setminus \{x\}. \text{ This way we obtain } D_1 = (V_1, A_1) \text{ as well as } \mathcal{E}\left(C\mathcal{H}^l(D_1)\right) = \left\{N_{D_1}^-(x) \mid x \in V_1 \land N_{D_1}^-(x) \neq \emptyset\right\}.$

Analogously, for each $y \in V_2$ let $e^y := \{(i_1, y), \dots, (i_l, y), (i, y_1), \dots, (i, y_{k_y})\} \in \mathcal{E}\left(C\mathcal{H}^l(D_1 + D_2)\right)$ with $k_y \ge 0$. Then $e^y = N_{D_1+D_2}^-((i, y))$ and $N_{D_2}^-(y) = \{y_1, \dots, y_{k_y}\} = \pi_2(e^y) \setminus \{y\}.$

Theorem 9 (Normal product $D_1 * D_2$).

- (a) $N\mathcal{H}(D_1)$ and $N\mathcal{H}(D_2)$ can be obtained from $N\mathcal{H}(D_1 * D_2)$.
- (b) If there is a hyperedge $e \in \mathcal{E}(N\mathcal{H}(D_1 * D_2))$ with $|\pi_1(e)| \ge 2$ and $|\pi_2(e)| \ge 2$, then $N\mathcal{H}^l(D_1)$ and $N\mathcal{H}^l(D_2)$ can be obtained from $N\mathcal{H}(D_1 * D_2)$.

Proof. (b) The existence of a hyperedge $e \in \mathcal{E}(N\mathcal{H}(D_1 * D_2))$ with $|\pi_1(e)| \ge 2$ and $|\pi_2(e)| \ge 2$ is equivalent to $A_1 \neq \emptyset \neq A_2$. Let

$$e = \{(i, j_1), \dots, (i, j_k), (i_1, j), \dots, (i_l, j), (i_1, j_1), (i_1, j_2), \dots, (i_1, j_k), \dots, (i_l, j_1), (i_l, j_2), \dots, (i_l, j_k)\} \\ \in \mathcal{E}(N\mathcal{H}(D_1 * D_2)) = \mathcal{E}(C\mathcal{H}(D_1 * D_2)) \cup \mathcal{E}(CE\mathcal{H}(D_1 * D_2)),$$

with $|\pi_1(e)| \ge 2$ and $|\pi_2(e)| \ge 2$.

We will follow the idea of the proof of Case 2 of Corollary 2 in our paper [20], where a similar result for competition hypergraphs was given.

But by contrast to Corollary 2 in [20], in the case of niche hypergraphs it is impossible to reconstruct the digraphs D_1 and D_2 themselves in general. The reason is the same as mentioned before for the Cartesian sum (see the proof of Remark 8). Although for a hyperedge $e \in \mathcal{E}(N\mathcal{H}(D_1 * D_2))$ we can find out the vertex (i, j) with $e = N_{D_1 * D_2}^-((i, j))$ or $e = N_{D_1 * D_2}^+((i, j))$, in general it will be impossible to determine whether e is the set of predecessors (e is a "competition hyperedge") or the set of successors (e is a "common enemy hyperedge") of the vertex (i, j) in $D_1 * D_2$.

Note that, in spite of the distinction of cases below, it is unnecessary to know for the actual hyperedge $e \in \mathcal{E}(N\mathcal{H}(D_1 * D_2))$ under investigation whether or not it is a "competition hyperedge" ($e \in \mathcal{E}(C\mathcal{H}(D_1 * D_2))$) or it is an "common enemy hyperedge" ($e \in \mathcal{E}(CE\mathcal{H}(D_1 * D_2))$). This will become clear by the remarks to Case (2) below.

Case (1): $e \in \mathcal{E}(C\mathcal{H}(D_1 * D_2))$. With some modifications of the proof of Case 2 of Corollary 2 in [20] we get the following.

(a) Because of $l = |\pi_1(e)| - 1 \ge 1$ and $k = |\pi_2(e)| - 1 \ge 1$, the vertices $i \in V_1$ and $j \in V_2$ with $N_{D_1*D_2}^-((i,j)) = e$ can be identified as the only vertices which occur exactly k and l times in $\pi_1(e)$ and $\pi_2(e)$, respectively. Moreover, $\pi_1(e) \setminus \{i\} = \{i_1, \ldots, i_l\} = N_{D_1}^-(i)$ and $\pi_2(e) \setminus \{j\} = \{j_1, \ldots, j_k\} = N_{D_2}^-(j)$.

(b) Obviously, for every $x \in V_1$ with $N_{D_1}^-(x) \neq \emptyset$ in $N_{D_1*D_2}^-((x,j))$ there are at least 3 vertices: $(x, j_1), (x', j), (x', j_1)$, where $x' \in N_{D_1}^-(x)$. Therefore $N_{D_1*D_2}^-((x,j)) \in \mathcal{E}(C\mathcal{H}(D_1*D_2)) \subseteq \mathcal{E}(N\mathcal{H}(D_1*D_2))$. Analogously, for each $y \in V_2$ with $N_{D_2}^-(y) \neq \emptyset$ we get $N_{D_1*D_2}^-((i,y)) \in \mathcal{E}(C\mathcal{H}(D_1*D_2)) \subseteq \mathcal{E}(N\mathcal{H}(D_1*D_2))$.

(c) Note that if $x \in V_1$ with $N_{D_1}^-(x) = \emptyset$, then $N_{D_1*D_2}^-((x,j)) = \{(x,j_1), \ldots, (x,j_k)\}$; i.e., $N_{D_1*D_2}^-((x,j)) \in \mathcal{E}(C\mathcal{H}(D_1*D_2)) \subseteq \mathcal{E}(N\mathcal{H}(D_1*D_2))$ if and only if $k \geq 2$. Analogously, for every $y \in V_2$ with $N_{D_2}^-(y) = \emptyset$ it follows $N_{D_1*D_2}^-((i,y)) \in \mathcal{E}(C\mathcal{H}(D_1*D_2)) \subseteq \mathcal{E}(N\mathcal{H}(D_1*D_2))$ if and only if $l \geq 2$.

Because of (b), for all vertices of D_1 and D_2 , respectively, with positive indegree we get their sets of predecessors applying the procedure described in (a) to all hyperedges $e \in \mathcal{E}(C\mathcal{H}(D_1 * D_2))$ with $|\pi_1(e)| \ge 2$ and $|\pi_2(e)| \ge 2$. (In general, for a vertex $v_1 \in V_1$ and $v_2 \in V_2$, respectively, with positive indegree, procedure (a) will produce its set of predecessors more than once.) Trivially, each vertex for which (a) does not provide a set of predecessors has indegree 0 (cf. (c)).

Thus we obtain the edge set $\mathcal{E}(C\mathcal{H}^l(D_1))$ and $\mathcal{E}(C\mathcal{H}^l(D_2))$ of the *l*-competition hypergraph $C\mathcal{H}^l(D_1)$ and $C\mathcal{H}^l(D_2)$, respectively.

Note that we did not need hyperedges $e \in \mathcal{E}\left(C\mathcal{H}^{l}(D_{1} * D_{2})\right) \setminus \mathcal{E}\left(C\mathcal{H}(D_{1} * D_{2})\right)$, i.e., hyperedges of cardinality 1.

Case (2): $e \in \mathcal{E}(CE\mathcal{H}(D_1 * D_2))$. Note that $C\mathcal{H}(D) = CE\mathcal{H}(\overleftarrow{D})$, for any digraph D. Applying the following substitutions to the proof of Case (1), word-for-word we obtain the verification of Case (2):

 $\begin{array}{rcl} C\mathcal{H} & \hookrightarrow & CE\mathcal{H}, \\ N^{-} & \hookrightarrow & N^{+}, \\ \mathrm{indegree} & \hookrightarrow & \mathrm{outdegree} & \mathrm{and} \\ \mathrm{predecessor} & \hookrightarrow & \mathrm{successor.} \end{array}$

(a) Because of (b) it suffices to consider the case when $A_1 = \emptyset$ or $A_2 = \emptyset$ holds. Replacing "+" by "*" in (1)–(3) of Theorem 7, we see that the occurrence of (1), (2) or (3) is equivalent to $A_1 = \emptyset$ or $A_2 = \emptyset$ and we can use an analog argumentation as in the corresponding part of the proof of Theorem 7. So using (2) we obtain $\mathcal{E}\left(N\mathcal{H}^l(D_2)\right) = \left\{\pi_2(e) \mid e \in \mathcal{E}(N\mathcal{H}^l(D_1 * D_2))\right\}$ and $\mathcal{E}\left(N\mathcal{H}(D_2)\right) = \left\{\pi_2(e) \mid e \in \mathcal{E}\left(N\mathcal{H}^l(D_1 * D_2)\right)\right\}$ and $\mathcal{E}\left(N\mathcal{H}(D_2)\right) = \left\{\pi_2(e) \mid e \in \mathcal{E}\left(N\mathcal{H}^l(D_1 * D_2)\right)\right\}$ respectively. Note that $A_1 = \emptyset$ or $A_2 = \emptyset$ implies $D_1 * D_2 = D_1 + D_2$. Therefore, the last part of the above proof in connection with Theorem 7 lead to the following consequence.

Corollary 10. $N\mathcal{H}^l(D_1)$ and $N\mathcal{H}^l(D_2)$ can be obtained from $N\mathcal{H}^l(D_1 * D_2)$, provided that one of the following conditions is true:

(1)
$$\mathcal{E}\left(N\mathcal{H}^{l}(D_{1}*D_{2})\right) = \emptyset;$$

(2) $\forall e \in \mathcal{E} \left(N \mathcal{H}^l(D_1 * D_2) \right) : |\pi_1(e)| = 1 \text{ and } \exists e \in \mathcal{E} \left(N \mathcal{H}^l(D_1 * D_2) \right) : |\pi_2(e)| \ge 2;$ (3) $\forall e \in \mathcal{E} \left(N \mathcal{H}^l(D_1 * D_2) \right) : |\pi_2(e)| = 1 \text{ and } \exists e \in \mathcal{E} \left(N \mathcal{H}^l(D_1 * D_2) \right) : |\pi_1(e)| \ge 2.$

Theorem 11 (Lexicographic product $D_1 \cdot D_2$).

(a) $N\mathcal{H}(D_1)$ and $N\mathcal{H}(D_2)$ can be obtained from $N\mathcal{H}(D_1 \cdot D_2)$.

(b) If $|V_2| \ge 2$, then $N\mathcal{H}^l(D_1)$ can be obtained from $N\mathcal{H}(D_1 \cdot D_2)$.

(c) $N\mathcal{H}^l(D_1)$ and $N\mathcal{H}^l(D_2)$ can be obtained from $N\mathcal{H}^l(D_1 \cdot D_2)$.

Proof. First we will show (c), i.e., $N\mathcal{H}^l(D_1)$ and $N\mathcal{H}^l(D_2)$ can be reconstructed from $N\mathcal{H}^l(D_1 \cdot D_2)$. Then we obtain (b) and (a) as follows:

Since for $|V_2| \ge 2$ every loop $e_1 = \{i\}$ in $N\mathcal{H}^l(D_1)$ leads to a non-loop e in $N\mathcal{H}^l(D_1 \cdot D_2)$ (containing at least all vertices of the row Z_i), we will see that we need no loops of $N\mathcal{H}^l(D_1 \cdot D_2)$ in order to obtain $N\mathcal{H}^l(D_1)$, this includes (b).

Analogously, it is obvious that non-loops e_i of $N\mathcal{H}^l(D_1)$ and $N\mathcal{H}^l(D_2)$, respectively, result in non-loops in $N\mathcal{H}^l(D_1 \cdot D_2)$. In our considerations it will become clear that for the reconstruction of $N\mathcal{H}(D_1)$ and $N\mathcal{H}(D_2)$ we do not need the loops in $N\mathcal{H}^l(D_1 \cdot D_2)$, so we get (a).

In order to prove (c), we consider a hyperedge $e \in \mathcal{E}\left(N\mathcal{H}^{l}(D_{1} \cdot D_{2})\right)$. Then there is a vertex $(i, j) \in V_{1} \times V_{2}$ such that $e = N_{D_{1} \cdot D_{2}}^{-}((i, j))$ or $e = N_{D_{1} \cdot D_{2}}^{+}((i, j))$. In order to simplify our depictions, we write down the considerations only for the case $e = N_{D_{1} \cdot D_{2}}^{-}((i, j)) \in \mathcal{E}\left(C\mathcal{H}^{l}(D_{1} \cdot D_{2})\right)$; the hyperedges $e = N_{D_{1} \cdot D_{2}}^{+}((i, j)) \in$ $\mathcal{E}\left(C\mathcal{E}\mathcal{H}^{l}(D_{1} \cdot D_{2})\right)$ can be treated analogously.

In $N\mathcal{H}^l(D_1 \cdot D_2)$ there are two possibilities for the hyperedge *e*.

Case 1. $\exists l \geq 1 \exists i_1, \ldots, i_l \in V_1$: $e = Z_{i_1} \cup \cdots \cup Z_{i_l}$. Without loss of generality let i_1, \ldots, i_l be pairwise distinct.

Hence, e is the union of the complete rows Z_{i_1}, \ldots, Z_{i_l} of $D_1 \cdot D_2$ and from the definition of $D_1 \cdot D_2$ it follows $i \notin \{i_1, \ldots, i_l\}, N_{D_1}^-(i) = \{i_1, \ldots, i_l\}$ and $N_{D_2}^-(j) = \emptyset$.

Therefore, Case 1 does not provide any hyperedges of $N\mathcal{H}^l(D_2)$ but with $\pi_1(e) = \{i_1, \ldots, i_l\} = N_{D_1}^-(i) \in \mathcal{E}(N\mathcal{H}^l(D_1))$ we obtain a hyperedge of $N\mathcal{H}^l(D_1)$.

Note that the vertex $i \in V_1$ is unknown if $l < |V_1| - 1$. Moreover, Case 1 occurs if and only if there exists a vertex $j \in V_2$ with $N_{D_2}^-(j) = \emptyset$.

 $Case \ 2. \ \exists l \ge 0 \ \exists i_1, \dots, i_l, i' \in V_1 \ \exists Z' \subset Z_{i'}: e = Z_{i_1} \cup \dots \cup Z_{i_l} \cup Z' \land Z' \neq \emptyset.$ We get $i = i' \in V_1 \setminus \{i_1, \dots, i_l\}$ as well as $N_{D_1}^-(i') = \{i_1, \dots, i_l\} = \pi_1(e) \setminus \{i'\} \in V_1$

 $\mathcal{E}(N\mathcal{H}^{l}(D_{1}))$ and $N_{D_{2}}^{-}(j) = \pi_{2}(e \cap Z') = \pi_{2}(Z') \in \mathcal{E}(N\mathcal{H}^{l}(D_{2}))$ with a certain $j \in V_{2}$. In general, if $|Z'| < |V_{2}| - 1$ holds, the vertex j cannot be determined.

Again, for any hyperedge $e \in \mathcal{E}(N\mathcal{H}^l(D_1 \cdot D_2))$ it cannot be found out whether e is a competition hyperedge (i.e., $e \in \mathcal{E}(C\mathcal{H}^l(D_1 \cdot D_2)))$ or e is a common enemy hyperedge (i.e., $e \in \mathcal{E}(CE\mathcal{H}^l(D_1 \cdot D_2)))$ in general. But for the reconstruction of $N\mathcal{H}^l(D_1)$ and $N\mathcal{H}^l(D_2)$ this plays no role, since the considerations of Case 1 and Case 2 are valid for competition hyperedges (i.e., sets of predecessors) as well as, analogously, for common enemy hyperedges (i.e., sets of successors).

Moreover, we remark that Cases 1 and 2 (together with their analogs for the common enemy hyperedges) provide all hyperedges of the (l)-niche hypergraphs $N\mathcal{H}^{(l)}(D_1)$ and $N\mathcal{H}^{(l)}(D_2)$.

Now we discuss the disjunction $D_1 \vee D_2$. The case $|V_1| = 1$ or $|V_2| = 1$ implies $D_1 \vee D_2 = D_1 \cdot D_2$. Therefore, because of Theorem 11 it suffices to investigate the case $|V_1|, |V_2| \ge 2$.

Theorem 12 (Disjunction $D_1 \vee D_2$). If $|V_1|, |V_2| \geq 2$, then $N\mathcal{H}^l(D_1)$ and $N\mathcal{H}^l(D_2)$ can be obtained from $N\mathcal{H}(D_1 \vee D_2)$.

Proof. Since both V_1 and V_2 contain at least two vertices, in $N\mathcal{H}^l(D_1 \vee D_2)$ there are no loops and $N\mathcal{H}^l(D_1 \vee D_2) = N\mathcal{H}(D_1 \vee D_2)$.

Moreover, for every hyperedge $e \in \mathcal{E}(N\mathcal{H}(D_1 \vee D_2))$ it holds

 $\exists l \ge 0 \exists i_1, \dots, i_l \in V_1 \exists k \ge 0 \exists j_1, \dots, j_k \in V_2 : e = Z_{i_1} \cup \dots \cup Z_{i_l} \cup S_{j_1} \cup \dots \cup S_{j_k}$ and, clearly, min(l, k) > 0.

By analogy with the proof of Theorem 11 let $(i, j) \in V_1 \times V_2$ be a vertex such that $e = N_{D_1 \vee D_2}^-((i, j))$ or $e = N_{D_1 \vee D_2}^+((i, j))$. Now we follow the idea of the proof of Proposition 2 in [20], subsection 3.5, and use the abbreviations $\mathcal{E}_1^l := \mathcal{E}\left(N\mathcal{H}^l(D_1)\right), \mathcal{E}_2^l := \mathcal{E}\left(N\mathcal{H}^l(D_2)\right)$ and $\mathcal{E}_{\vee} := \mathcal{E}(N\mathcal{H}(D_1 \vee D_2))$.

In case of $\mathcal{E}_{\vee} = \emptyset$ both \mathcal{E}_1^l and \mathcal{E}_2^l are empty, too.

So let $\mathcal{E}_{\vee} \neq \emptyset$. Additionally, for an arbitrary hyperedge $e \in \mathcal{E}_{\vee}$ we define $\pi_1^j(e) := \{i \mid (i,j) \in e\}$ (for $j \in \pi_2(e)$) and $\pi_2^i(e) := \{j \mid (i,j) \in e\}$ (for $i \in \pi_1(e)$). In $N\mathcal{H}(D_1 \vee D_2)$ we have three types of hyperedges:

 $\mathcal{A} := \{ e \in \mathcal{E}_{\vee} \mid \pi_1(e) \subset V_1 \}, \\ \mathcal{B} := \{ e \in \mathcal{E}_{\vee} \mid \pi_2(e) \subset V_2 \} \text{ and} \\ \mathcal{C} := \{ e \in \mathcal{E}_{\vee} \mid \pi_1(e) = V_1 \land \pi_2(e) = V_2 \}. \\ \text{We obtain}$

 $\mathcal{A} = \mathcal{C} = \emptyset \text{ if and only if } A_1 = \emptyset, \ \mathcal{E}_1^l = \emptyset \text{ and } \mathcal{E}_2^l = \{\pi_2(e) \mid e \in \mathcal{E}_{\vee}\}; \\ \mathcal{B} = \mathcal{C} = \emptyset \text{ if and only if } A_2 = \emptyset, \ \mathcal{E}_2 = \emptyset \text{ and } \mathcal{E}_1^l = \{\pi_1(e) \mid e \in \mathcal{E}_{\vee}\};$

 $\mathcal{C} \neq \emptyset$ if and only if $A_1 \neq \emptyset \neq A_2$.

It remains to investigate the case $\mathcal{C} \neq \emptyset$. Here we see that, to determine \mathcal{E}_1^l and \mathcal{E}_2^l , it suffices to make use of the hyperedges in \mathcal{C} :

$$\mathcal{E}_1^l = \left\{ \left\{ i \in V_1 \, | \, \pi_2^i(e) = V_2 \right\} \, | \, e \in \mathcal{C} \right\} \text{ and } \mathcal{E}_2^l = \left\{ \left\{ j \in V_2 \, | \, \pi_1^j(e) = V_1 \right\} \, | \, e \in \mathcal{C} \right\}.$$

(Note that in case $\mathcal{A} \neq \emptyset$ we have $\mathcal{E}_1^l = \{\pi_1(e) \mid e \in \mathcal{A}\}$ and, analogously, if $\mathcal{B} \neq \emptyset$ it follows $\mathcal{E}_2^l = \{\pi_2(e) \mid e \in \mathcal{B}\}$.)

Acknowledgements

The authors would like to thank the referees for their valuable suggestions and remarks.

References

- J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications (Springer, London, 2001).
- [2] C. Cable, K.F. Jones, J.R. Lundgren and S. Seager, *Niche graphs*, Discrete Appl. Math. 23 (1989) 231–241. doi:10.1016/0166-218X(89)90015-2
- [3] J.E. Cohen, Interval graphs and food webs: a finding and a problem, RAND Corp. Document 17696-PR (Santa Monica, CA, 1968).
- M. Cozzens, Food webs, competition graphs and habitat formation, Math. Model. Nat. Phenom. 6 (2011) 22–38. doi:10.1051/mmnp/20116602
- C. Garske, M. Sonntag and H.-M. Teichert, Niche hypergraphs, Discuss. Math. Graph Theory 36 (2016) 819–832. doi:10.7151/dmgt.1893
- S.-R. Kim, The competition number and its variants, in: Quo Vadis, Graph Theory?, Ed(s) J. Gimbel, J.W. Kennedy and L.V. Quintas (Ann. Discrete Math. 55, North Holland, Amsterdam, 1993). doi:10.1016/S0167-5060(08)70396-0
- S.-R. Kim, B. Park and Y. Sano, The competition number of the complement of a cycle, Discrete Appl. Math. 161 (2013) 1755–1760. doi:10.1016/j.dam.2011.10.034
- [8] S.-R. Kim, B. Park and Y. Sano, A generalization of Opsut's result on the competition numbers of line graphs, Discrete Appl. Math. 181 (2015) 152–159. doi:10.1016/j.dam.2014.10.014
- J. Kuhl, Transversals and competition numbers of complete multipartite graphs, Discrete Appl. Math. 161 (2013) 435–440. doi:10.1016/j.dam.2012.09.012
- B.-J. Li and G.J. Chang, Competition numbers of complete r-partite graphs, Discrete Appl. Math. 160 (2012) 2271–2276. doi:10.1016/j.dam.2012.05.005

- [11] J.R. Lundgren, Food webs, competition graphs, competition—common enemy graphs and niche graphs, in: Applications of Combinatorics and Graph Theory to the Biological and Social Sciences, Ed(s) F. Roberts (IMA 17, Springer, New York 1989) 221–243.
- [12] B.D. McKey, P. Schweitzer and P. Schweitzer, Competition numbers, quasi line graphs and holes, SIAM J. Discrete Math. 28 (2014) 77–91. doi:10.1137/110856277
- B. Park and Y. Sano, On the hypercompetition numbers of hypergraphs, Ars Combin. 100 (2011) 151–159.
- B. Park and Y. Sano, The competition numbers of ternary Hamming graphs, Appl. Math. Lett. 24 (2011) 1608–1613. doi:10.1016/j.aml.2011.04.012
- [15] B. Park and Y. Sano, The competition number of a generalized line graph is at most two, Discrete Math. Theor. Comput. Sci. 14 (2012) 1–10.
- J. Park and Y. Sano, The double competition hypergraph of a digraph, Discrete Appl. Math. 195 (2015) 110–113. doi:10.1016/j.dam.2014.04.001
- [17] Y. Sano, On hypercompetition numbers of hypergraphs with maximum degree of at most two, Discuss. Math. Graph Theory 35 (2015) 595–598. doi:10.7151/dmgt.1826
- [18] D.D. Scott, The competition-common enemy graph of a digraph, Discrete Appl. Math. 17 (1987) 269–280. doi:10.1016/0166-218X(87)90030-8
- M. Sonntag and H.-M. Teichert, Competition hypergraphs, Discrete Appl. Math. 143 (2004) 324–329. doi:10.1016/j.dam.2004.02.010
- [20] M. Sonntag and H.-M. Teichert, Competition hypergraphs of products of digraphs, Graphs Combin. 25 (2009) 611–624. doi:10.1007/s00373-005-0868-9
- [21] M. Sonntag and H.-M. Teichert, Products of digraphs and their competition graphs, Discuss. Math. Graph Theory 36 (2016) 43–58. doi:10.7151/dmgt.1851

Received 14 March 2017 Revised 13 March 2018 Accepted 13 March 2018