
Discussiones Mathematicae
Graph Theory 40 (2020) 733–754
doi:10.7151/dmgt.2136

TOTAL FORCING SETS AND ZERO FORCING
SETS IN TREES

Randy Davila1,2

and

Michael A. Henning1

1Department of Pure and Applied Mathematics
University of Johannesburg

Auckland Park 2006, South Africa

2Department of Mathematics and Statistics
University of Houston–Downtown

Houston, TX 77002, USA

e-mail: davilar@uhd.edu
mahenning@uj.ac.za

Abstract

A dynamic coloring of the vertices of a graph G starts with an initial
subset S of colored vertices, with all remaining vertices being non-colored.
At each discrete time interval, a colored vertex with exactly one non-colored
neighbor forces this non-colored neighbor to be colored. The initial set S is
called a forcing set of G if, by iteratively applying the forcing process, every
vertex in G becomes colored. If the initial set S has the added property
that it induces a subgraph of G without isolated vertices, then S is called
a total forcing set in G. The minimum cardinality of a total forcing set
in G is its total forcing number, denoted Ft(G). We prove that if T is
a tree of order n ≥ 3 with maximum degree ∆ and with n1 leaves, then
n1 ≤ Ft(T ) ≤ 1

∆ ((∆ − 1)n + 1). In both lower and upper bounds, we
characterize the infinite family of trees achieving equality. Further we show
that Ft(T ) ≥ F (T ) + 1, and we characterize the extremal trees for which
equality holds.
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1. Introduction

A dynamic coloring of the vertices in a graph is a coloring of the vertex set which
may change, or propagate, throughout the vertices during discrete time intervals.
Of the dynamic colorings, the notion of forcing sets (zero forcing sets), and the
associated graph invariant known as the forcing number (zero forcing number),
are arguably the most prominent, see for example [1, 3, 7, 11, 14, 15, 12, 22].
In the study of minimum forcing sets in graphs, it is natural to consider the
initial structure of such sets. In particular, if a forcing set induces an isolate-free
subgraph, then the set in question is called a total forcing set.

More formally, let G be a graph with vertex set V = V (G) and edge set
E = E(G). The forcing process is defined in [10] as follows: Let S ⊆ V be a set
of initially “colored” vertices, all other vertices are said to be “non-colored”. A
vertex contained in S is said to be S-colored, while a vertex not in S is said to be
S-uncolored. At each time step, if a colored vertex has exactly one non-colored
neighbor, then this colored vertex forces its non-colored neighbor to become col-
ored. If v is such a colored vertex, we say that v is a forcing vertex. We say
that S is a zero forcing set, if by iteratively applying the forcing process, all of
V becomes colored. We call such a set S, an S-forcing set. In addition, if S is
an S-forcing set in G and v is a S-colored vertex that forces a new vertex to be
colored, then v is an S-forcing vertex. The zero forcing number of a graph G, de-
noted F (G) (also denoted Z(G) in the literature), is the cardinality of a smallest
forcing set in G. For notational simplicity, throughout the paper we simply refer
to a zero forcing set as a forcing set, and the zero forcing number as the forcing
number.

One of the most fundamental domination-type graph parameters is the total
domination number which in general behaves very differently from the ordinary
domination number and is heavily studied in the literature (see [18]). The fol-
lowing observation is well-known (see, for example, [16]), where γ, γt and γc
denote the domination, total domination and connected domination numbers,
respectively.

Observation 1. For every connected graph G on at least two vertices,

γ(G) ≤ γt(G) ≤ γc(G).

Analogously, we study the concept of a total forcing set in a graph which is a
fundamental forcing-type parameter. In doing so, we show that the total forcing
number and the zero forcing number in general, behave very differently.

If S is a forcing set of a graph G that induces a connected subgraph, then S
is a connected forcing set. The cardinality of a smallest connected forcing set in G
is its connected forcing number, denoted Fc(G). If S is a forcing set that induces
a graph without isolated vertices, then S is a total forcing set, abbreviated as a
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TF-set of G. The total forcing number of G, written Ft(G), is the cardinality of
a minimum TF-set in G. The concept of a total forcing set was first introduced
and studied by Davila in [8], and is further studied, for example, by the authors
in [10]. Since every connected forcing set is a TF-set, and every TF-set is a
forcing set, the total forcing number is squeezed between the forcing number and
the connected forcing number.

Observation 2. For every connected graph G on at least two vertices,

F (T ) ≤ Ft(G) ≤ Fc(G).

Thus the total forcing number provides an upper bound on the well-studied
forcing number and a lower bound on the connected forcing number. We highlight
that the total forcing number is also intimately related to the power domination
number, denoted γP (G), which was introduced in [17] and is now very well studied
in the literature; a rough estimate says that it occurs in more than 50 papers to
date. The following theorem illustrates this fundamental relationship.

Theorem 3 [10]. If G is a graph without isolated vertices, then γP (G) ≤ 1
2Ft(G).

In particular, whenever a TF-set is known, one may construct a power dom-
inating set on half the vertices in the TF-set. Thus, total forcing in graphs is
directly applicable to the power dominating set problem. The motivation behind
the power dominating set problem is the placement of power monitoring units
(PMU’s) in electrical grids such that the number of PMU’s (PMU’s are expen-
sive) used is minimized (precisely γP (G)). However, one can imagine a scenario
where the maintenance and repair of said PMU’s is time consuming, or that dis-
tance between PMU’s incurs some additional cost. Thus, it may be beneficial to
minimize the number of PMU’s used along with minimizing distance from one
PMU to another. This concept is related to total forcing (or connected forcing),
since one can imagine each colored vertex in a TF-set as a PMU, and so, all
vertices will be monitored, and every PMU is connected with another PMU.

In this paper, we study total forcing sets in trees. In particular, we study
trees with smallest possible total forcing number, as well as trees with largest
possible forcing number. The following results, first observed in [10], will prove
helpful when proving our main results.

Observation 4 [10]. If G is an isolate-free graph of order n ≥ 3, then Ft(G) ≤
n− 1, with equality if and only if G = Kn or G = K1,n−1.

Observation 5 [10]. Every TF-set in an isolate-free graph contains every strong
support vertex of the graph and all except possibly one leaf neighbor of each strong
support vertex.
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2. Definitions and Notations

For notation and graph terminology, we will typically follow [18]. Throughout this
paper, all graphs will be considered undirected, simple and finite. Specifically, let
G be a graph with vertex set V (G) and edge set E(G), and of order n = |V (G|
and size m = |E(G)|. If the graph G is clear from the context, we simply write
V and E rather than V (G) and E(G), and we write G = (V,E). A non-trivial
graph is a graph with at least two vertices.

Two vertices v and w are adjacent, or neighbors, in G if vw ∈ E. The open
neighborhood of a vertex v ∈ V , is the set of neighbors of v, denoted NG(v),
whereas its closed neighborhood is NG[v] = NG(v)∪{v}. The open neighborhood
of S ⊆ V is the set of all neighbors of vertices in S, denoted NG(S), whereas the
closed neighborhood of S is NG[S] = NG(S) ∪ S. We denote the degree of a
vertex v in a graph G by dG(v), or simply by d(v) if the graph G is clear from the
context. Thus, dG(v) =

∣∣NG(v)
∣∣. The minimum and maximum degree among

the vertices of G is denoted by δ = δ(G) and ∆ = ∆(G), respectively. For a set
of vertices S ⊆ V , the subgraph induced by S is denoted by G[S]. The subgraph
obtained from G by deleting all vertices in S and all edges incident with vertices
in S is denoted by G− S. If S = {v}, we simply write G− v rather than G− S.

A leaf is a vertex of degree 1, while its neighbor is a support vertex. A strong
support vertex is a vertex with at least two leaf neighbors. A star is a non-trivial
tree with at most one vertex that is not a leaf. Thus, a star is the tree K1,k

for some k ≥ 1. For r, s ≥ 1, a double star S(r, s) is the tree with exactly two
vertices that are not leaves, one of which has r leaf neighbors and the other s leaf
neighbors. We will denote a path on n vertices by Pn. We define a pendant edge
of a graph to be an edge incident with a vertex of degree 1.

The distance between two vertices v and w in G is the length of a shortest
(v, w)-path in G, and is denoted by dG(v, w). If no (v, w)-path exists in G, then
we define dG(v, w) =∞. The maximum distance among all pairs of vertices of G
is the diameter of G, denoted by diam(G). The eccentricity of a vertex v in G is
the maximum distance of a vertex from v in G. A vertex of minimum eccentricity
is called a central vertex of G. In particular, the central vertex of a star of order
at least 3 is the vertex that is not a leaf, while a double star contains two central
vertices, namely the two vertices that are not leaves.

A rooted tree T distinguishes one vertex r called the root. For each vertex
v 6= r of T , the parent of v is the neighbor of v on the unique (r, v)-path, while a
child of v is any other neighbor of v. The set of children of v is denoted by C(v).
A descendant of v is a vertex u 6= v such that the unique (r, u)-path contains v,
while an ancestor of v is a vertex u 6= v that belongs to the (r, v)-path in T . In
particular, every child of v is a descendant of v while the parent of v is an ancestor
of v. The grandparent of v is the ancestor of v at distance 2 from v. A grandchild
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of v is the descendant of v at distance 2 from v. We let D(v) denote the set of
descendants of v, and we define D[v] = D(v) ∪ {v}. The maximal subtree at v is
the subtree of T induced by D[v], and is denoted by Tv.

We use the standard notation [k] = {1, . . . , k}.

3. Main Results

Computing the forcing, total forcing and connected forcing number for a general
graph is NP -hard [5, 7, 10, 22]. Hence it is of interest to determine computation-
ally efficient lower and upper bounds on the forcing-type parameters. Recently,
the authors established the following upper bound on the total forcing number of
a graph with minimum degree at least two in terms of the order and maximum
degree of the graph.

Theorem 6 [10]. If G is a connected graph of order n ≥ 3 with minimum degree
at least 2 and with maximum degree ∆, then

Ft(G) ≤
(

∆

∆ + 1

)
n,

with equality if and only if G ∼= Kn.

In this paper, we study the total forcing number of a tree. We have four
immediate aims. First to prove that the upper bound established in Theorem 6
also holds for the class of trees. Secondly, to establish a much stronger upper
bound on the total forcing number of a tree in terms of its order and maximum
degree, and to characterize the extremal trees. Thirdly, to establish a lower
bound on the total forcing number of a tree in terms of the number of leaves in
the tree, and once again to characterize the extremal trees. Fourthly, to show
that the total forcing number of a tree is strictly larger than its forcing number.
More precisely, we shall prove the following four results, where T∆, F , and H are
families of trees we construct in Sections 4 and 5.

Theorem 7. If T is a tree of order n ≥ 3 with maximum degree ∆, then

Ft(T ) ≤
(

∆

∆ + 1

)
n,

with equality if and only if T ∼= K1,∆.

Theorem 8. If T is a tree of order n ≥ 3 with maximum degree ∆, then

Ft(T ) ≤ (∆− 1)n+ 1

∆
,

with equality if and only if T ∈ T∆.
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Theorem 9. If T is a non-trivial tree with n1 leaves, then Ft(T ) ≥ n1, with
equality if and only if T ∈ F .

Theorem 10. If T is a non-trivial tree, then Ft(T ) ≥ F (T ) + 1, with equality if
and only if T ∈ H.

We remark that the proof techniques and strategies to obtain the bounds
(and characterizations) in Theorem 7 and Theorem 8 are very different from
those in [9, 10] used to obtain the bound in Theorem 6. Indeed, the bound in
Theorem 6 relies heavily on the minimum degree at least two restriction on the
graph G, while the bounds in Theorem 7 and Theorem 8 are heavily reliant on
the structure of a tree. As observed earlier, the result of Theorem 8 for the
class of trees is a much stronger result than the bound of Theorem 6 for general
graphs. We remark further that the result of Theorem 8 and Theorem 9 establish
very easily computable upper and lower bounds, respectively, on the total forcing
number of a tree.

4. Upper Bounds on Total Forcing in Trees

In this section, we present a proof of Theorem 8, which establishes an upper
bound on the total forcing number of a tree in terms of its order and maximum
degree, and characterize the extremal trees. For this purpose, we define a family
T∆ of trees as follows.

(a)

v1

(b)

v1 v2

(c)

v1 v2 v3

Figure 1. The three trees in the family T3.

The family T∆. Let T∆ be the family of all trees T with maximum degree ∆
whose vertex set V (T ) can be partitioned into sets

(
V1, . . . , Vk

)
such that the

following holds, where Ti = T
[
Vi
]

for i ∈ [k].

• T1
∼= K1,∆, and if k ≥ 2, then Ti ∼= K1,∆−1 for i ∈ [k] \ {1}.

• For i ∈ [k], the central vertex vi of the star Ti is a strong support vertex of
degree ∆ in the tree T .

• The set
{
v1, . . . , vk

}
is an independent set in T .
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We call the trees T1, . . . , Tk the underlying subtrees of the tree T . We note
that T2 consists only of the path P3; that is, T2 =

{
P3

}
. The family T3 consists

of the three trees shown in Figure 1(a), 1(b) and 1(c).

We first establish useful properties of trees in the family T∆.

Lemma 11. If T is a tree of order n that belongs to the family T∆, then the
following holds.

(a) Ft(T ) = 1
∆

(
(∆− 1)n+ 1

)
.

(b) The set consisting of all vertices of T , except for exactly one leaf neighbor in
T of the central vertex of each underlying subtree of T is a minimum TF-set
of T .

Proof. Let T ∈ T∆ be a tree of order n with maximum degree ∆. We proceed
by induction on the number, k, of underlying subtrees of the tree T . If k = 1,
then T ∼= K1,∆ and by Observation 4, Ft(T ) = ∆ =

(
(∆−1)n+1

)
/∆ noting that

here n = ∆ + 1. Further, property (b) is immediate in this case. This establishes
the base case. Let k ≥ 2 and assume that if T ′ is a tree of order n′ in the family
T∆ with k′ underlying subtrees, where k′ < k, then Ft

(
T ′
)

= 1
∆

(
(∆− 1)n′ + 1

)
.

Let T be a tree of order n in the family T∆ with k underlying subtrees given
by T1, T2, . . . , Tk, where T1

∼= K1,∆ and Ti ∼= K1,∆−1 for i ∈ [k] \ {1}. Recall that
Vi = V (Ti) for i ∈ [k]. We note that n = k∆ + 1. Let S consist of all vertices
of T , except for exactly one leaf neighbor of the central vertex of each subtree
of T . Further, let Si = S ∩ Vi for i ∈ [k]. Thus, |S1| = ∆ and |Si| = ∆ − 1 for
i ∈ [k] \ {1}. The set S is a TF-set, and so

Ft(T ) ≤ |S| =
k∑

i=1

|Si| = ∆ +
k∑

i=2

(∆− 1)

= k(∆− 1) + 1 = 1
∆

(
(∆− 1)n+ 1

)
.

If Ft(T ) = 1
∆

(
(∆−1)n+1

)
, then we must have equality throughout the above

inequality chain, implying that Ft(T ) = |S| and hence that S is a minimum TF-
set of T . Therefore, if property (a) holds, then property (b) holds. Hence, it
suffices for us to prove property (a).

Let T ∗ be the graph of order k whose vertices correspond to the k subtrees
of T , and where we add an edge between two vertices of T ∗ if the corresponding
subtrees of T are joined by an edge in T . Since T is a tree, so too is T ∗. Since
k ≥ 2, at least one leaf of T ∗ corresponds to an underlying subtree Ti for some
i ≥ 2. Among the subtrees T2, . . . , Tk, there exists a subtree, Tk say, which is
joined by an edge to only one other subtree, Tj say, where the central vertex vk of
Tk is adjacent to a leaf, x say, of Tj where j ∈ [k− 1]. By definition of the family
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T∆, the set of central vertices of the k underlying subtrees form an independent
set in T , implying that x 6= vj .

Let T ′ be the tree of order n′ obtained from T by deleting the vertices in
V (Tk). We note that T ′ ∈ T∆ with underlying subtrees T1, . . . , Tk−1. Further,
n′ = n−∆. Applying the inductive hypothesis to the tree T ′, Ft

(
T ′
)

= 1
∆

(
(∆−

1)n′ + 1
)
. Let X be a minimum TF-set in T . By Observation 5, the set X

contains the vertex vk and all except possibly one leaf neighbor of vk. If the
set X contains all leaf neighbors of vk, then by the minimality of the set X, we
note that x /∈ X. However, in this case, we can simply remove exactly one leaf
neighbor of vk from X and add the vertex x to the set X to produce a new
minimum TF-set in T . Thus, we may choose the set X to contain all except
exactly one leaf neighbor of vk. Let X ′ be the restriction of X to V

(
T ′
)
; that is,

X ′ = X ∩ V
(
T ′
)
. Since X is a TF-set of T , the set X ′ is a TF-set of T ′. Thus,

Ft

(
T ′
)
≤
∣∣X ′∣∣ = |X| − (∆− 1) = Ft(T )−∆ + 1, implying that

Ft(T ) ≥ Ft

(
T ′
)

+ ∆− 1 = 1
∆

(
(∆− 1)n′ + 1

)
+ ∆− 1

= 1
∆

(
(∆− 1)(n−∆) + 1

)
+ ∆− 1 = 1

∆

(
(∆− 1)n+ 1

)
.

As observed earlier, Ft(T ) ≤ 1
∆

(
(∆ − 1)n + 1

)
. Consequently, Ft(T ) =

1
∆

(
(∆− 1)n+ 1

)
.

With the aid of Lemma 11, we next prove Theorem 8.

Proof of Theorem 8. We proceed by induction on the order n ≥ 3 of a tree T
with maximum degree ∆. If n = 3, then T ∼= P3 ∈ T2, ∆ = 2 and Ft(T ) = 2 =(
(∆−1)n+1

)
/∆. This establishes the base case. Let n ≥ 4 and assume that if T ′

is a tree of order n′ and maximum degree ∆′, where 3 ≤ n′ < n and ∆′ ≤ ∆, then
Ft

(
T ′
)
≤
(
(∆′ − 1)n′ + 1

)
/∆′, with equality if and only if T ′ ∈ T∆′ . If ∆′ < ∆,

then, by monotonicity, we note that
(
(∆′ − 1)n′ + 1

)
/∆′ <

(
(∆ − 1)n′ + 1

)
/∆.

Let T be a tree of order n and maximum degree ∆. We note that ∆ ≥ 2. Recall
that n ≥ 4.

If ∆ = 2, then T ∼= Pn and Ft(T ) = 2 < (n + 1)/2 =
(
(∆ − 1)n + 1

)
/∆.

If diam(T ) = 2 and ∆ ≥ 3, then T is a star. In this case, ∆ = n − 1 and
T ∼= K1,∆ ∈ T∆. By Observation 4, Ft(T ) = ∆ =

(
(∆ − 1)n + 1

)
/∆. Hence,

we may assume that ∆ ≥ 3 and diam(T ) ≥ 3, for otherwise the desired result
follows.

Suppose that diam(T ) = 3, and so T ∼= S(r, s) is a double star, where
1 ≤ r ≤ s. Let u and v be the two vertices of T that are not leaves, where u has
r leaf neighbors and v has s leaf neighbors. Since T has maximum degree ∆, we
note that s = ∆− 1, and so n = r+ s+ 2 = r+ ∆ + 1. Let u′ and v′ be arbitrary
leaf neighbors of u and v, respectively. The set V (T ) \

{
u′, v

}
is a TF-set of T ,

implying that Ft(T ) ≤ r + s = r + ∆− 1. Moreover, since ∆ ≥ r + 1,
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(∆− 1)n+ 1

∆
>

(∆− 1)n

∆
=

1

∆

(
(∆− 1)(r + ∆ + 1)

)
= r + ∆− 1 +

1

∆
(∆− r − 1) ≥ r + ∆− 1 ≥ Ft(T ).

Hence, we may assume that diam(T ) ≥ 4, for otherwise the desired result
holds. Let u and r be two vertices at maximum distance apart in T . Necessarily,
u and r are leaves and d(u, r) = diam(T ). We now root the tree T at the vertex
r. Let v be the parent of u, w the parent of v, x be the parent of w, and y the
parent of x. We note that if diam(T ) = 4, then y = r; otherwise, y 6= r.

Let dT (v) = `, where we note that ` ≤ ∆. Let T ′ be the tree obtained from
T by deleting v and its children; that is, T ′ = T − V

(
Tv
)

where recall that Tv
denotes the maximal subtree of T at v induced by D[v]. Let T ′ have order n′,
and so n′ = n − dT (v) = n − `. Since diam(T ) ≥ 4, we note that n′ ≥ 3.
Applying the inductive hypothesis to the tree T ′, Ft

(
T ′
)
≤
(
(∆′−1)n′+1

)
/∆′ ≤(

(∆ − 1)n′ + 1
)
/∆. Further, if Ft

(
T ′
)

=
(
(∆ − 1)n′ + 1

)
/∆, then ∆′ = ∆ and

T ′ ∈ T∆. Let S′ be a minimum TF-set in T ′, and so |S′| = Ft

(
T ′
)
. We note that

every child of v is a leaf. Let S be the set obtained from S′ by adding to it v and
all children of v different from u; that is, S = S′ ∪

(
D[v] \ {u}

)
. The set S is a

TF-set of T , implying that

Ft(T ) ≤ |S| = |S′|+ `− 1 = Ft

(
T ′
)

+ `− 1

≤ 1
∆

(
(∆− 1)n′ + 1

)
+ `− 1 = 1

∆

(
(∆− 1)(n− `) + 1

)
+ `− 1

= 1
∆

(
(∆− 1)n+ 1

)
+ 1

∆(`−∆) ≤ 1
∆

(
(∆− 1)n+ 1

)
,

which establishes the desired upper bound of the theorem. Suppose that

Ft(T ) = 1
∆

(
(∆− 1)n+ 1

)
(and still ∆ ≥ 3 and diam(T ) ≥ 4). Then, we must have equality throughout the
above inequality chain, implying that Ft

(
T ′
)

= 1
∆

(
(∆−1)n′+1

)
and dT (v) = ` =

∆. By the inductive hypothesis, T ′ ∈ T∆. If the parent w of v in T is a central
vertex of one of the underlying trees of T ′, then it would have degree ∆ + 1 in
T , a contradiction. Hence, w is a leaf in one of the underlying trees of T ′ ∈ T∆.
Let T1, . . . , Tk denote the underlying trees of T ′, and let vi be the central vertex
of the tree Ti for i ∈ [k]. Further, let w belong to the subtree Tj , where j ∈ [k].
As observed earlier, w is a leaf of the underlying tree Tj of T ′.

Since T ′ ∈ T∆, we note that T1
∼= K1,∆, and if k ≥ 2, then Ti ∼= K1,∆−1

for i ∈ [k] \ {1}. Further, for i ∈ [k], the central vertex vi of the star Ti is a
strong support vertex of degree ∆ in the tree T ′, and the set

{
v1, . . . , vk

}
is an

independent set in T ′.
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Suppose that the central vertex vj of Tj is not a strong support vertex in T .
Since vj is a strong support vertex in T ′, this implies that vj has precisely two
leaf neighbors in T ′, one of which is necessarily the vertex w. Thus, w is a leaf in
T ′ but has degree 2 in T , with v and x as its neighbors. This in turn implies that
for i ∈ [k] \ {j}, every leaf neighbor of the vertex vi in T ′ is also a leaf neighbor
of vi in T , and so the vertex vi is a strong support vertex of degree ∆ in the tree
T . For i ∈ [k], let v′i be a leaf neighbor of vi in the tree T . We note that v′j is the

unique leaf neighbor of vj in T . Let L =
⋃k

i=1

{
v′i
}

.
We now consider the set S = V (T ) \

(
L ∪ {u, x}

)
. We note that the vertex

v and all its neighbors different from u belong to S. Thus, playing the vertex v
in the first step of the forcing process starting with the initial set S of colored
vertices, the vertex v forces its leaf neighbor u to be colored. In the second step
of the forcing process, we play the vertex w which forces the vertex x = vj to be
colored. At this stage of the forcing process, we note that all vertices of V (T ) are
colored, except for the k leaves v′1, . . . , v

′
k. Since

{
v1, . . . , vk

}
is an independent

set in T , we now simply play each of the vertices v1, . . . , vk in turn in the forcing
process, thereby forcing the leaves v′1, . . . , v

′
k to be colored. In this way, we color

all of V (T ) starting with the initial set S. Further, since T [S] contains no isolated
vertex, the set S is therefore a TF-set. We note that S contains all, except for
k + 1, vertices of V

(
T ′
)
. By Lemma 11(b), Ft

(
T ′
)

= n′ − k, implying that∣∣S ∩ V (T ′)∣∣ = n′ − (k + 1) < Ft

(
T ′
)
. Thus,

Ft(T ) ≤ |S| =
∣∣S ∩ V (T ′)∣∣+ ∆− 1 < Ft

(
T ′
)

+ ∆− 1

= 1
∆

(
(∆− 1)n′ + 1

)
+ ∆− 1 = 1

∆

(
(∆− 1)(n−∆) + 1

)
+ ∆− 1

= 1
∆

(
(∆− 1)n+ 1

)
,

a contradiction. Hence, the central vertex vj of Tj is a strong support vertex in
T . We now let Tk+1 = Tv, where as defined earlier Tv is the maximal subtree
of T at v induced by D[v], and we let vk+1 = v. We note that Tk+1

∼= K1,∆−1.
Further, we note that the central vertex vi of the star Ti is a strong support vertex
of degree ∆ in the tree T for all i ∈ [k + 1], and the set

{
v1, v2, . . . , vk+1

}
is an

independent set in T . Thus, T ∈ T∆. Conversely, if T ∈ T∆, then by Lemma 11,
Ft(T ) = 1

∆

(
(∆− 1)n+ 1

)
. This completes the proof of Theorem 8.

For all graphs of order n with maximum degree ∆, we note that n ≥ ∆ + 1,
implying that

(1)
(∆− 1)n+ 1

∆
≤
(

∆

∆ + 1

)
n.

Further, equality holds in inequality (1) if and only if n = ∆+1. Thus, the upper
bound of Theorem 7 follows as an immediate consequence of the upper bound of
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Theorem 8. Moreover, if T is a tree for which equality holds in inequality (1),
then n = ∆ + 1, implying that T = K1,∆.

5. Lower Bounds on Total Forcing in Trees

In this section, we present a proof of Theorem 9, which establishes a lower bound
on the total forcing number of a tree in terms of the number of leaves in the tree,
and characterizes the extremal trees. For this purpose, we present a series of
preliminary lemmas which will be used in our subsequent argument to establish
the desired lower bound.

Lemma 12. Let G be an isolate-free graph that contains an edge e incident with
a vertex of degree at most 2. If G′ is obtained from G by subdividing the edge e
any number of times, then Ft(G) = Ft(G

′).

Proof. Let G be an isolate-free graph that contains an edge e = uv, where v
has degree 1 or 2 in G. Let G′ be obtained from G by subdividing the edge e
any number of times. We may assume the edge e is subdivided at least once,
for otherwise G′ = G and the result is immediate. Let P : uu1 · · ·ukv denote the
resulting (u, v)-path in G′, where k ≥ 1. If dG(v) = 2, then let w denote its
neighbor different from u in G.

We first show that Ft

(
G′
)
≤ Ft(G). Let S ⊆ V (G) be a minimum TF-set

of G, and so |S| = Ft(G). Suppose that v ∈ S. Since S is a TF-set of G, the
graph G[S] contains no isolated vertex. In particular, S contains a neighbor of
v. Suppose that both u and w belong to S. If v is the only neighbor of u in S,
then the set S \{u} is a TF-set of G, contradicting the minimality of S. Hence, u
has at least two neighbors in S. Analogously, w has at least two neighbors in S.
Thus, the set

(
S \ {v}

)
∪
{
u1

}
is a TF-set of G′, and so Ft

(
G′
)
≤ |S| = Ft(G), as

desired. If u ∈ S and w /∈ S, then once again the set
(
S \ {v}

)
∪
{
u1

}
is a TF-set

of G′, and Ft(G
′) ≤ Ft(G), as desired. If u /∈ S and w ∈ S, then the set S is a

TF-set of G′, and so Ft

(
G′
)
≤ |S| = Ft(G), as desired. Hence we may assume

that v /∈ S.

Since S is a TF-set of G, there is a sequence s : x1, . . . , xt of played vertices in
the forcing process that results in all V (G) colored, where xi denotes the forcing
colored vertex played in the ith step of the process. In particular, v = x` for
some integer ` where ` ∈ [t]. Before the vertex v is colored, at least one neighbor
of v is colored. If u is already colored before v, then starting with the same
initial colored set S, the sequence obtained from s by replacing the vertex x`
by the subsequence u1, . . . , uk, v results in a sequence of played vertices in the
forcing process that results in all V (G′) colored. If u is colored after v, then w is
necessarily colored before v. In this case, starting with the same initial colored
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set S, the sequence obtained from s by replacing the vertex x` by the subsequence
v, uk, uk−1, . . . , u1 results in a sequence of played vertices in the forcing process
that results in all V (G′) colored. Thus, once again Ft

(
G′
)
≤ |S| = Ft(G), as

desired.

We prove next that Ft(G) ≤ Ft

(
G′
)
. Let S′ ⊆ V (G) be a minimum TF-

set of G′, and so |S| = Ft

(
G′
)
. If

∣∣S′ ∩ V (P )
∣∣ ≤ 1, then since the graph G′[S]

contains no isolated vertex, the set S′ contains no vertex of P , except possibly
for one of the ends of P , namely the vertex u or the vertex v. In both cases,
the set S′ is a TF-set of G, and so Ft(G) ≤

∣∣S′∣∣ = Ft

(
G′
)
, as desired. If∣∣S′ ∩ V (P )

∣∣ ≥ 2, then the set
(
S′ \ V (P )

)
∪ {u, v} is a TF-set of G, and so

Ft(G) ≤ |S′| − |S′ ∩ V (P )|+ 2 ≤ |S′| = Ft(G
′), as desired. Thus, Ft

(
G′
)
≤ Ft(G)

and Ft(G) ≤ Ft

(
G′
)
. Consequently, Ft(G) = Ft

(
G′
)
.

The contraction of an edge e = xy in a graph G is the graph obtained from
G by replacing the vertices x and y by a new vertex and joining this new vertex
to all vertices that were adjacent to x or y in G. Given a non-trivial tree T , the
trimmed tree of T , denoted trim(T ), is the tree obtained from T by iteratively
contracting edges with one of its incident vertices of degree exactly 2 and with
the other incident vertex of degree at most 2 until no such edge remains. We
note that if the original tree T is a path, then trim(T ) is a path P2, while if T
is not a path, then every edge in trim(T ) is incident with a vertex of degree at
least 3. In particular, if T is not a path, then every support vertex in trim(T )
has degree at least 3. As an illustration, the trimmed tree trim(T ) of the tree T
shown in Figure 2(a) is shown in Figure 2(b).

(a) T (b) trim(T )

Figure 2. A tree T and its trimmed tree trim(T ).

Since every non-trivial tree T can be reconstructed from its trimmed tree
trim(T ) by applying a sequence of subdivisions of edges incident with a vertex
of degree at most 2, as an immediate consequence of Lemma 12 we note that
Ft(T ) = Ft

(
trim(T )

)
. We remark that the number of leaves in T is equal to the

number of leaves in trim(T ). We state these properties of a trimmed tree formally
as follows.
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Lemma 13. If T is a non-trivial tree, then the following hold.
(a) Ft(T ) = Ft

(
trim(T )

)
.

(b) The trees T and trim(T ) have the same number of leaves.

We proceed further by constructing a family F of trees with small total
forcing number.

T ′O1:(a)
u

v

7→
u

w
v

T ′O2:(b)

v

u w

7→
v

u w

x

T ′O3:(c)

w

u v 7→
w

u v

x

y

T ′O4:(d)
v

7→
v z

x

y

T ′O5:(e)
v

7→
v

v1 v2 v3 v4

u1 u3

Figure 3. The operations O1, O2, O3, O4, and O5.

The family F . Let F be the family of trees that contains a path P2 and is closed
under the five operations O1,O2, . . . ,O5 below, which extend a tree T ′ to a new
tree T . In Figure 3, the vertices of T ′ are colored black and the new vertices of
T are colored white.

Operation O1: If uv is an edge of T ′ where at least one of u and v has degree
at most 2 in T ′, then T is obtained from T ′ by subdividing the edge uv once. See
Figure 3(a), where w denotes the new vertex (of degree 2 in T ) obtained from
subdividing the edge uv.

Operation O2: If v is a strong support vertex in T ′, then T is obtained from T ′
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by adding an additional pendant edge to the vertex v. See Figure 3(b), where u
and w are leaf neighbors of v in T ′ and x is the new leaf added to T ′.

Operation O3: If w is a strong support vertex in T ′ and v is a leaf neighbor of
w, then T is obtained from T ′ by adding two pendant edges to v. See Figure 3(c),
where u and v are leaf neighbors of w in T ′, and vx and vy are the pendant edges
added to v.

Operation O4: If v is a vertex of degree at least 2 in T ′, then T is obtained
from T ′ by adding a path P3 and joining v to the central vertex of the path. See
Figure 3(d) where xyz is the added path and vy the added edge.

Operation O5: If v is a vertex of degree at least 2 in T ′, then T is obtained
from T ′ by adding a star K1,3 with one edge subdivided twice and adding an edge
joining the resulting support vertex of degree 2 to the vertex v. See Figure 3(e)
where the added star has central vertex v3 with leaf neighbors u1, u3 and v4, and
where the edge u1v3 of the star is subdivided twice resulting in the path u1v1v2v3

with v1 a support vertex of degree 2 in the subdivided star.

In operations O2, O3, O4 and O5 illustrated in Figure 3, we call the vertex
v the link vertex of T ′. We are now in a position to establish the following lower
bound on the total forcing number of a tree in terms of the number of leaves in
the tree.

Lemma 14. If T is a non-trivial tree with n1 leaves, then Ft(T ) ≥ n1. Further,
if Ft(T ) = n1, then T ∈ F .

Proof. We proceed by induction on the order n ≥ 2 of a tree T with n1 leaves.
If n = 2, then T = P2 ∈ F and Ft(T ) = 2 = n1. This establishes the base case.
Let n ≥ 3 and assume that if T ′ is a non-trivial tree of order n′ where n′ < n
having n′1 leaves, then Ft

(
T ′
)
≥ n′1 and that if Ft

(
T ′
)

= n′1, then T ′ ∈ F . Let T
be a tree of order n with n1 leaves. We proceed further with the following series
of claims.

Claim 15. If T 6= trim(T ), then Ft(T ) ≥ n1 and if Ft(T ) = n1, then T ∈ F .

Proof. Suppose that the trimmed tree, trim(T ), is different from T . This implies
that T contains an edge e with one of its incident vertices of degree exactly 2 and
with the other incident vertex of degree at most 2. Let T ′ be obtained from T by
contracting the edge e. By Lemma 12, Ft(T ) = Ft

(
T ′
)
. Let T ′ have n′1 leaves.

We note that T ′ has order n − 1, and that n1 = n′1. Applying the inductive
hypothesis to the tree T ′, Ft(T ) = Ft

(
T ′
)
≥ n′1 = n1. Further, if Ft(T ) = n1,

then Ft

(
T ′
)

= n′1 and by the inductive hypothesis, T ′ ∈ F . In this case, we can
restore the tree T by applying operation O1 to the tree T ′, implying that T ∈ F .



Total Forcing Sets and Zero Forcing Sets in Trees 747

By Claim 15, we may assume that T = trim(T ), for otherwise the desired
result follows. With this assumption, we note that every edge in T is incident
with a vertex of degree at least 3. In particular, every support vertex in T has
degree at least 3.

Claim 16. If T contains a support vertex with at least three leaf neighbors, then
Ft(T ) ≥ n1 and if Ft(T ) = n1, then T ∈ F .

Proof. Suppose that T contains a support vertex v with at least three leaf neigh-
bors. Let S be a minimum TF-set of F , and so |S| = Ft(F ). By Observation 5,
the set S contains the vertex v and all except possibly one leaf neighbor of v.
Let u and u′ be two distinct leaf neighbors of v. If S contains every leaf neighbor
of v, then by the minimality of S, there is a neighbor, w say, of v not in S. In
this case, replacing the vertex u in S with the vertex w produces a new minimum
TF-set of F . Hence, renaming the leaf neighbors of v if necessary, we may assume
that u /∈ S. We now consider the tree T ′ = T − u′. Let T ′ have n′1 leaves, and
so n′1 = n1 − 1. The set S \

{
u′
}

is necessarily a TF-set of T ′, implying that
Ft

(
T ′
)
≤ |S| − 1 = Ft(T )− 1. Applying the inductive hypothesis to the tree T ′,

we therefore have n1 − 1 = n′1 ≤ Ft

(
T ′
)
≤ Ft(T )− 1, implying that Ft(T ) ≥ n1.

Further, suppose that Ft(T ) = n1. In this case, Ft

(
T ′
)

= n′1. Applying the
inductive hypothesis to the tree T ′, we have T ′ ∈ F . We note that in the tree T ′

the vertex v is a strong support vertex. Hence, T can be obtained from the tree
T ′ by applying operation O2 with v as the link vertex, and so T ∈ F .

By Claim 16, we may assume that every support vertex in T and has at most
two leaf neighbors. Recall that every support vertex in T has degree at least 3.
With these assumptions, we note that T is not a star, and so diam(T ) ≥ 3.

Claim 17. If diam(T ) = 3, then Ft(T ) = n1 and T ∈ F .

Proof. Suppose that diam(T ) = 3, and so T ∼= S(r, s) is a double star, where
1 ≤ r ≤ s. Since T = trim(T ), both vertices of T that are not leaves are strong
support vertices, and so r ≥ 2. By assumption, every support vertex in T has
at most two leaf neighbors, and so s ≤ 2. Thus, r = s = 2 and T is the double
star S(2, 2). By Observation 5, Ft(T ) ≥ 4 = n1. If `1 and `2 are arbitrary leaves
at distance 3 apart in T , then the set V (T ) \

{
`1, `2

}
is a TF-set of T , and so

Ft(T ) ≤ |V (T )| − 2 = 4 = n1. Consequently, Ft(T ) = n1. Further, we note that
the double star T can be constructed from a path P2 by first applying operation
O1 and then applying operation O4. Thus, T ∈ F .

By Claim 17, we may assume that diam(T ) ≥ 4, for otherwise the desired
result holds. Let u and r be two vertices at maximum distance apart in T .
Necessarily, u and r are leaves and d(u, r) = diam(T ). We now root the tree
T at the vertex r. Let v be the parent of u, let w be the parent of v, let x
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be the parent of w, and let y be the parent of x. Possibly, y = r. We note
that every child of v is a leaf. Since T = trim(T ), we note that dT (v) ≥ 3. By
assumption, every support vertex in T has at most two leaf neighbors. Thus,
dT (v) ≤ 3. Consequently, dT (v) = 3. Let u′ be the child of v different from u.
Thus, NT (v) =

{
u, u′, w

}
, where recall that w is the parent of v in T .

Let S be a minimum TF-set of F , and so |S| = Ft(F ). If S contains both
children u and u′ of v, then by the minimality of S, the vertex w /∈ S. In this
case, replacing u in S with the vertex w produces a new minimum TF-set of F .
Hence, renaming the children of v if necessary, we may assume that u /∈ S. By
Observation 5, the set S therefore contains the vertex v and its child u′. Thus,{
u′, v

}
⊆ S and u /∈ S.

Claim 18. If dT (w) ≥ 3, then Ft(T ) ≥ n1 and if Ft(T ) = n1, then T ∈ F .

Proof. Suppose that dT (w) ≥ 3. We now consider the tree T ′ = T −
{
u, u′, v

}
.

Let T ′ have n′1 leaves, and so n′1 = n1 − 2. Let S′ = S \
{
u′, v

}
. If S′ is a TF-set

of T ′, then, by the inductive hypothesis, n1− 2 = n′1 ≤ Ft

(
T ′
)
≤ |S′| = |S| − 2 =

Ft(T )− 2, implying that Ft(T ) ≥ n1. Further, suppose that Ft(T ) = n1. In this
case, Ft

(
T ′
)

= n′1. Applying the inductive hypothesis to the tree T ′, we have
T ′ ∈ F . We note that in the tree T ′ the vertex w has degree at least 2, and
therefore T can be obtained from the tree T ′ by applying operation O4 with w
as the link vertex, and so T ∈ F .

Hence, we may assume that the set S′ is not a TF-set of T ′, implying that S
contains w but no neighbor of w except for its child v. In particular, S contains no
neighbor of w in T ′. If a child v′ of w different from v is not a leaf, then identical
arguments as shown with the vertex v show that dT (v′) = 3 and that v′ ∈ S.
Thus, S contains a neighbor of w different from v, a contradiction. Hence, every
child of w different from v is a leaf. If w has at least two leaf neighbors, then
by Observation 5, the set S contains w and all except possibly one leaf neighbor
of w, implying once again that S contains a neighbor of w different from v, a
contradiction. Therefore, dT (w) = 3 and the child, v′ say, of w different from v
is a leaf.

We now consider the tree T ′′ = T −
{
u, u′

}
. Let T ′′ have n′′1 leaves, and so

n′′1 = n1 − 1 noting that the vertex v is a leaf in T ′′ but not in T . Recall that
both v and w belong to S. The set S \

{
u′
}

is a TF-set of T ′′, implying that
Ft

(
T ′′
)
≤ |S| − 1 = Ft(T )− 1. Applying the inductive hypothesis to the tree T ′,

we therefore have n1 − 1 = n′′1 ≤ Ft

(
T ′′
)
≤ Ft(T )− 1, implying that Ft(T ) ≥ n1.

Further, suppose that Ft(T ) = n1. In this case, Ft

(
T ′′
)

= n′′1. Applying the
inductive hypothesis to the tree T ′′, we have T ′′ ∈ F . We note that in the tree
T ′′ the vertex w is a strong support vertex with v as one of its leaf neighbors.
Hence, T can be obtained from the tree T ′′ by applying operation O3 with v as
the link vertex, and so T ∈ F .
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By Claim 18, we may assume that dT (w) = 2, for otherwise the desired result
holds. Since T = trim(T ), this implies that dT (x) ≥ 3.

Claim 19. If w /∈ S or if {w, x} ⊂ S, then Ft(T ) ≥ n1 + 1.

Proof. Suppose that w /∈ S or {w, x} ⊂ S. In this case, we consider the tree
T ′ = T −

{
u, u′, v

}
. Let T ′ have n′1 leaves, and so n′1 = n1 − 1, noting that the

vertex w is a leaf in T ′ but not in T . Let S′ = S \
{
u′, v

}
. Since w /∈ S or

{w, x} ⊂ S, the set S′ is a TF-set of T ′, and so, by the inductive hypothesis,
n1− 1 = n′1 ≤ Ft

(
T ′
)
≤ |S′| = |S|− 2 = Ft(T )− 2, implying that Ft(T ) ≥ n1 + 1.

By Claim 19, we may assume that w ∈ S and x /∈ S, for otherwise the desired
result holds. Thus, by our earlier assumptions, S ∩

{
u, u′, v, w, x

}
=
{
u′, v, w

}
.

Recall that dT (x) ≥ 3.

Claim 20. If dT (v) ≥ 4 or if dT (x) = 3 and the child of x different from w is
not a leaf, then Ft(T ) ≥ n1 and if Ft(T ) = n1, then T ∈ F .

Proof. Suppose that dT (v) ≥ 4 or dT (x) = 3 and the child of x different from w
is not a leaf. If x has at least two leaf neighbors, then by our earlier assumptions,
x has exactly two leaf neighbors. In this case, by Observation 5 the set S contains
the vertex x (and at least one leaf neighbor of x). This contradicts our assumption
that x /∈ S. Hence, at most one child of x is a leaf. By assumption, there is a
child w1 of x different from w of degree at least 2. We note that either w1 has a
grandchild or every child of w1 is a leaf.

Suppose firstly that w1 has a grandchild, say u1. Let v1 be the parent of
u1. Using analogous arguments as before with the vertices v and w, we may
assume that dT (v1) = 3 and dT (w1) = 2, for otherwise the desired result follows.
Let u2 denote the child of v1 different from u1. Analogously as before, we may
assume that S ∩

{
u1, u2, v1, w1

}
=
{
u1, v1, w1

}
, for otherwise the desired result

follows. We now consider the tree T ′ = T −
{
u, u′, v, w

}
, and let T ′ have n′1

leaves. Thus, n′1 = n1− 2. The set S \
{
u′, v, w

}
is a TF-set of T ′, and so, by the

inductive hypothesis, n1 − 2 = n′1 ≤ Ft

(
T ′
)
≤ |S| − 3 = Ft(T )− 3, implying that

Ft(T ) ≥ n1 + 1. Hence, we may assume that w1 has no grandchild, for otherwise
Ft(T ) ≥ n1 + 1. Thus, every child of w1 is a leaf.

Since T = trim(T ), we note that dT (w1) ≥ 3. By assumption, every support
vertex in T has at most two leaf neighbors. Thus, dT (w1) ≤ 3. Consequently,
dT (w1) = 3. Let v1 and v2 denote the two children of w1. By Observation 5, the
set S contains the vertex w1 and at least one of v1 and v2. If S contains both v1

and v2, then replacing v1 in S with the vertex x produces a new minimum TF-set
of F that contains the vertex x, contradicting our earlier assumptions. Hence,
renaming v1 and v2 if necessary, we may assume that S∩

{
v1, v2, w1

}
=
{
v1, w1

}
.
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We now consider the tree T ′′ = T −
{
v1, v2, w1

}
. Let T ′′ have n′′1 leaves. Thus,

n′′1 = n1 − 2. The set S \
{
v1, w1

}
is a TF-set of T ′′, and so, by the inductive

hypothesis, n1−2 = n′′1 ≤ Ft

(
T ′′
)
≤ |S|−2 = Ft(T )−2, implying that Ft(T ) ≥ n1.

Further, if Ft(T ) = n1, then Ft

(
T ′′
)

= n′′1 and by the inductive hypothesis,
T ′′ ∈ F . In this case, we can restore the tree T by applying operation O4 to the
tree T ′′ with x as the link vertex, implying that T ∈ F .

By Claim 20, we may assume that dT (x) = 3 and the child, w′ say, of x
different from w is a leaf, for otherwise the desired result holds. Recall that by
our earlier assumptions, x /∈ S, implying that w′ /∈ S.

Claim 21. If dT (y) = 2, then Ft(T ) ≥ n1 + 1.

Proof. Suppose that dT (y) = 2. In this case, we consider the tree T ′ = T −{
u, u′, v, w,w′, x

}
; that is, T ′ is the tree obtained from T by deleting x and all

its descendants. Let T ′ have n′1 leaves. Thus, n′1 = n1− 2, noting that y is a leaf
in T ′ but is not a leaf in T . The set S \

{
u′, v, w

}
is necessarily a TF-set of T ′,

and so, by the inductive hypothesis, n1− 2 = n′1 ≤ Ft

(
T ′
)
≤ |S| − 3 = Ft(T )− 3,

implying that Ft(T ) ≥ n1 + 1.

By Claim 21, we may assume that dT (y) ≥ 3, for otherwise the desired result
holds. We now consider the tree T ′ = T −

{
u, u′, v, w,w′, x

}
; that is, T ′ is the

tree obtained from T by deleting x and all its descendants. Let T ′ have n′1 leaves.
Thus, n′1 = n1 − 3. The set S \

{
u′, v, w

}
is necessarily a TF-set of T ′, and

so, by the inductive hypothesis, n1 − 3 = n′1 ≤ Ft

(
T ′
)
≤ |S| − 3 = Ft(T ) − 3,

implying that Ft(T ) ≥ n1. Further, if Ft(T ) = n1, then Ft

(
T ′
)

= n′1 and by the
inductive hypothesis, T ′ ∈ F . In this case, we can restore the tree T by applying
operation O5 to the tree T ′ with y as the link vertex, implying that T ∈ F . This
completes the proof of Lemma 14.

We show next that every tree in the family F has total forcing number equal
to the number of leaves in the tree.

Lemma 22. If T is a tree in the family F with n1 leaves, then Ft(T ) = n1.

Proof. We proceed by induction on the order n ≥ 2 of a tree T in the family F
with n1 leaves. If n = 2, then T = P2 and Ft(T ) = 2 = n1. This establishes the
base case. Let n ≥ 3 and assume that if T ′ ∈ F is a tree of order n′ where n′ < n
and with n′1 leaves, then Ft

(
T ′
)

= n′1. Let T be a tree of order n in the family F
with n1 leaves. By definition of the family F , there is a sequence T0, T1, . . . , Tk
of trees where T0 = P2, Tk = T and for i ∈ [k], the tree Ti can be obtained from
the tree Ti−1 by one of the five operations O1,O2, . . . ,O5. Let T ′ = Tk−1. Hence,
T ′ ∈ F and the tree T ′ has order less than n. Let T ′ have n′1 leaves. By the
inductive hypothesis, Ft(T ) = n′1. Let S′ be a minimum TF-set of T ′.
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Suppose that T is obtained from T ′ by applying operation O1. In this case,
n1 = n′1 and, by Lemma 12, Ft(T ) = Ft

(
T ′
)
, implying that Ft(T ) = n1.

Suppose that T is obtained from T ′ by applying operation O2. In this case,
n1 = n′1 + 1. Adopting the notation of Figure 3(b), by Observation 5 the set S′

contains the vertex v and all except possibly one leaf neighbor. Thus, the set
S′ ∪ {x} is a TF-set of T , and so Ft(T ) ≤ |S′|+ 1 = Ft

(
T ′
)

+ 1 = n′1 + 1 = n1.

Suppose that T is obtained from T ′ by applying operation O3. In this case,
n1 = n′1 + 1. Adopting the notation of Figure 3(c), by Observation 5 we may
choose S′ so that {v, w} ⊆ S. Thus, the set S′ ∪ {x} is a TF-set of T , and so
Ft(T ) ≤ |S′|+ 1 = Ft

(
T ′
)

+ 1 = n′1 + 1 = n1.

Suppose that T is obtained from T ′ by applying operation O4. In this case,
n1 = n′1 + 2. Adopting the notation of Figure 3(d), every minimum TF-set of
T ′ can be extended to a TF-set of T by adding to it x and y, and so Ft(T ) ≤
Ft

(
T ′
)

+ 2 = n′1 + 2 = n1.

Suppose that T is obtained from T ′ by applying operation O5. In this case,
n1 = n′1 + 3. Adopting the notation of Figure 3(e), every minimum TF-set of T ′

can be extended to a TF-set of T by adding to it the vertices v2, v3 and v4, and
so Ft(T ) ≤ Ft

(
T ′
)

+ 3 = n′1 + 3 = n1. In all the above cases, Ft(T ) ≤ n1. By
Lemma 14, Ft(T ) ≥ n1. Consequently, Ft(T ) = n1.

Theorem 9 follows as an immediate consequence of Lemmas 14 and 22. We
present next a proof of Theorem 10. We first observe that a simple adaptation
of the proof given for Lemma 13 yields an analogous result on forcing. We state
this formally with the following lemma.

Lemma 23. If T is a non-trivial tree, then F (T ) = F
(
trim(T )

)
.

We proceed further by defining a family H of trees as follows.

The family H. Let n ≥ 2 be an integer and let H be the family of all trees T of
order n such that T ∼= Pn or trim(T ) ∼= K1,n−1 for n ≥ 3.

We are now in a position to prove Theorem 10.

Proof of Theorem 10. Let T be a non-trivial tree with n1 leaves. By Theo-
rem 9, Ft(T ) ≥ n1. In [2], it was shown that F (T ) ≤ n1 − 1 holds for all trees
T . Consequently, Ft(T ) ≥ F (T ) + 1, which establishes the desired inequality
relating the total forcing number and forcing number of a non-trivial tree. Sup-
pose next that Ft(T ) = F (T ) + 1. Let T ′ denote the trimmed tree of T ; that is,
T ′ = trim(T ). By Lemma 13, Ft(T ) = Ft

(
T ′
)
, and by Lemma 23, F (T ) = F

(
T ′
)
.

Therefore, by supposition, Ft

(
T ′
)

= F
(
T ′
)

+ 1.

Suppose that T ′ has at least two strong support vertices, say v and w. Let
S′ be a minimum TF-set in T ′, and so |S′| = Ft

(
T ′
)
. By Observation 5, the set

S′ contains both v and w, and all except possibly one leaf neighbor of each of v
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and w in T ′. Let v′ and w′ be an arbitrary leaf neighbor of v and w, respectively,
that belongs to the set S′. We now consider the set S = S′ \ {v, w}. We claim
that S is a forcing set of T ′. In the first step of the forcing process starting with
the initial set S, we play the vertex v′ which forces its (unique) neighbor v to be
colored. In the second step of the forcing process, we play the vertex w′ which
forces its (unique) neighbor w to be colored. At this stage of the forcing process,
the resulting set of colored vertices is precisely the set S′, which is TF-set of T ′

and therefore also a forcing set of T ′. We now follow a sequence of played vertices
in the total forcing process determined by the TF-set S′ of T ′. In this way, all
vertices of V

(
T ′
)

are colored. Thus, the set S is a forcing set of T ′, implying that
Ft

(
T ′
)
− 1 = F

(
T ′
)
≤ |S| =

∣∣S′∣∣− 2 = Ft

(
T ′
)
− 2, a contradiction. Therefore, T ′

has at most one strong support vertex. If T ′ has no strong support vertex, then
T is a path, and so T ∈ H. If T ′ has exactly one strong support vertex, then
trim(T ) ∼= K1,n1 where n1 ≥ 3, and so T ∈ H. Hence, if Ft(T ) = F (T ) + 1, then
T ∈ H.

It remains for us to prove that if T ∈ H, then Ft(T ) = F (T ) + 1. Let T ∈ H
have order n with n1 leaves. If T ∼= Pn, then it is well-known (and simple to
observe) that F (T ) = 1 = n1 − 1. If T � Pn, then trim(T ) ∼= K1,n−1 for some
n ≥ 4 and F (T ) = n − 2 = n1 − 1. In both cases, F (T ) = n1 − 1. Every tree
in the family H can be constructed from a path P2 by applying a sequence of
operations O1 and O2, and therefore belongs to the family F ; that is, H ⊆ F .
Hence since T ∈ H, we note that T ∈ F , implying by Lemma 22 that Ft(T ) = n1.
Thus, Ft(T ) = F (T ) + 1.

By Theorem 10, all trees T in the family H achieve equality in the inequality
Ft(T ) ≥ F (T ) + 1. We close by proving that the gap in this inequality can be
made arbitrarily large.

Proposition 24. For every integer k ≥ 1, there exists a tree T such that

Ft(T ) = F (T ) + k.

Proof. Let k ≥ 1 be an arbitrary integer, and let T ′ ∼= Pk be a path on k
vertices. Let T be the graph obtained from T ′ by adding two pendant edges to
each vertex of T ′. Thus, T has order 3k and every vertex in V

(
T ′
)

is a strong
support vertex of T . For each vertex of V

(
T ′
)
, select one of its leaf-neighbors

and let S denote the resulting set of k leaves. The set V (T ) \ S is a TF-set of
T , and so Ft(T ) ≤ |V (T )| − |S| = 2k. Conversely, by Observation 5, Ft(T ) ≥ 2k.
Consequently, Ft(T ) = 2k. Moreover, the set S is a forcing set of T , and so
F (T ) ≤ k. However, every forcing set of T must contain at least one leaf neighbor
of every vertex of V

(
T ′
)

in T , implying that F (T ) ≥ k. Consequently, F (T ) = k.
Therefore, Ft(T )− F (T ) = k.
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