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1. Introduction

Domination is one of the most well-studied and widely applied concepts in graph
theory. A set S ⊆ V (G) is dominating for a graph G if every vertex of G is
either in S, or is adjacent to a vertex in S. A related parameter of interest is
the domination number, denoted γ(G), which is the cardinality of the smallest
dominating set of G. Much of the literature on domination is surveyed in the two
monographs of Haynes, Hedetniemi and Slater [14, 15]. For more recent results
on domination, see [4–6,11, 19, 24] and the references therein.

In 1984, Fink and Jacobson [9] generalized domination by introducing the
notion of k-domination and its associated graph invariant, the k-domination num-
ber. Given a positive integer k, S ⊆ V (G) is a k-dominating set for a graph G
if every vertex not in S is adjacent to at least k vertices in S. The minimum
cardinality of a k-dominating set of G is the k-domination number of G, de-
noted γk(G). When k = 1, the 1-domination number is precisely the domination
number; that is, γ1(G) = γ(G). Like domination, k-domination has also been
extensively studied; for results on k-domination related to this paper, we refer
the reader to [2, 3, 8, 12, 18, 21, 22].

Computing the k-domination number is NP -hard [17], and as such, many
researchers have sought computationally efficient upper and lower bounds for this
parameter. In general, the degree sequence of a graph can be a useful tool for
bounding NP -hard graph invariants, see for example [1, 7, 10, 20]. In relation
to this paper, we highlight that the degree sequence derived invariant known
as the Slater number serves as a lower bound on the domination number from
below [23]. Recently, Caro and Pepper [1] introduced the degree sequence index

strategy, or DSI-strategy, which provides a unified framework for using the degree
sequence of a graph to bound NP -hard invariants. In this paper we generalize
the Slater number, and in doing so, introduce a new degree sequence invariant
called the sub-k-domination number, which serves as a sharp lower bound on the
k-domination number; our investigation contributes to the known literature on
both degree sequence invariants and domination.

Throughout this paper all graphs are simple and finite. LetG = (V (G), E(G))
be a graph. Two vertices v and w in G are adjacent, or neighbors, if there exists
an edge vw ∈ E. A vertex is an isolate if it has no neighbors. The complement of
G is the graph G with the same vertex set, in which two vertices are adjacent if
and only if they are not adjacent in G. A set S ⊆ V (G) is independent if no two
vertices in S are adjacent; the cardinality of the largest independent set in G is
denoted α(G). For any edge e ∈ E(G), G− e denotes the graph G with the edge
e removed. For any vertex v ∈ V (G), G− v denotes the graph G with the vertex
v and all edges incident to v removed; for any edge e ∈ E(G), G+ e denotes the
graph G with the edge e added.
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The degree of a vertex v, denoted d(v), is the number of vertices adjacent
to v. We will use the notation n(G) = |V (G)| to denote the order of G, ∆(G) to
denote the maximum degree of G, and δ(G) to denote the minimum degree of G;
when there is no scope for confusion, the dependence on G will be omitted. We
will also use di to denote the ith element in the degree sequence of G, denoted
D(G) = {∆ = d1 ≥ d2 ≥ · · · ≥ dn = δ}, which lists the vertex degrees in non-
increasing order. We may abbreviate D(G) by only writing distinct degrees, with
the number of vertices realizing each degree in superscript. For example, the star
Kn−1,1 may have its degree sequence written as D(Kn−1,1) = {n− 1, 1n−1}, and
the complete graph Kn may have degree sequence written as D(Kn) = {(n−1)n}.
If a graph is said to be r-regular, every vertex degree is r. More specifically, a
cubic graph will be a graph where every vertex degree will be three. For other
graph terminology and notation, we will generally follow [16].

This paper is organized as follows. In the next section, we introduce the
sub-k-domination number of a graph and show that it is a lower bound on the
k-domination number. In Section 3, we characterize the sub-k-domination num-
bers of several families of graphs and provide other structural results on sub-k-
domination. In Section 4, we compare the sub-k-domination number to other
known lower bounds on the k-domination number. In Section 5, we explore the
properties of subk(G)-critical graphs. We conclude with some final remarks and
open questions in Section 6.

2. Sub-k-Domination

In this section we introduce the sub-k-domination number of a graph and prove
that it is a lower bound on the k-domination number. We first recall a definition
and result due to Slater [23], which is a special case of our result. For consistency
in terminology, we will refer to Slater’s definition as the sub-domination number

of a graph; this invariant was originally denoted sl(G), and for our purposes will
be denoted sub(G).

Definition 1. If G is a graph with order n and degree sequenceD(G) = {∆(G) =
d1, . . . , dn = δ(G)}, the sub-domination number, denoted sub(G), and originally
introduced as the Slater number sl(G) in [23], is defined as the smallest integer
t such that t+

∑t
i=1 di ≥ n.

In [23], Slater showed that sl(G) = sub(G) serves as a lower bound on the
domination number. We recall the statement of this result with the following
theorem.

Theorem 1 (Slater [23]). If G is a graph, then

γ(G) ≥ sub(G),

and this bound is sharp.
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As a strengthening of domination, we observe that for any k ≥ 1, the
k-domination number is monotonically increasing with respect to k; that is,
γk(G) ≤ γk+1(G). Keeping monotonicity in mind, it is natural that a param-
eter generalizing sub(G) will need to increase with respect to increasing k. This
idea motivates the following definition.

Definition 2. Let k ≥ 1 be an integer. If G is a graph with order n and degree
sequence D(G) = {∆(G) = d1, . . . , dn = δ(G)}, the sub-k-domination number,
denoted subk(G), is defined as the smallest integer t such that t+ 1

k

∑t
i=1 di ≥ n.

Since the vertex degrees of G are integers between 0 and n − 1, the sorted
degree sequence of G can be obtained in O(n) time by counting sort (assuming
vertex degrees can be accessed in O(1) time). By maintaining the sum of the first
t elements in D(G) and incrementing t, subk(G) can be computed in linear time;
we state this formally below.

Observation 1. If G is a graph and k ≥ 1 is an integer, then subk(G) can be

computed in O(n) time.

Taking k = 1 in Definition 2, we observe sub1(G) = sub(G), and hence
sub1(G) ≤ γ1(G) by Theorem 1. More generally, we will now show that the k-
domination number of a graph is bounded below by its sub-k-domination number.

Theorem 2. If G is a graph and k ≥ 1 is an integer, then

γk(G) ≥ subk(G),

and this bound is sharp.

Proof. Let S = {v1, . . . , vt} be a minimum k-dominating set of G. By definition,
each of the n− t vertices in V (G)\S is adjacent to at least k vertices in S. Thus,
the sum of the degrees of the vertices in S, i.e.,

∑t
i=1 d(vi), is at least k(n − t).

Dividing by k and rearranging, we obtain

t+
1

k

t
∑

i=1

d(vi) ≥ n.

Since the degree sequence of G is non-increasing, it follows that
∑t

i=1 di ≥
∑t

i=1 d(vi). Thus,

(1) t+
1

k

t
∑

i=1

di ≥ n.

Since subk(G) is the smallest index for which (1) holds, we must have subk(G) ≤
t = γk(G).
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When k = 1, note that sub(Kn−1,1) = 1 = γ(Kn−1,1). When k > 1, let G
be a complete bipartite graph with a perfect matching removed where each part
of the vertex partition is of size k + 1. Then subk(G) = min

{

t : t+ 1
k

∑t
i=1 k ≥

n
}

= k + 1 = γk(G). Thus, the bound is sharp for all k.

We conclude this section by showing that sub-k-domination is subadditive
with respect to disjoint unions of graphs.

Lemma 3. If G and H are disjoint graphs and k ≥ 1 is an integer, then

subk(G) + subk(H) ≥ subk(G ∪H).

Proof. Let G and H be disjoint graphs with degree sequences D(G) =
{

dG1 ≥

· · · ≥ dG
n(G)

}

, D(H) =
{

dH1 ≥ · · · ≥ dH
n(H)

}

, and D(G ∪ H) =
{

dG∪H
1 ≥ · · · ≥

dG∪H
n(G∪H)

}

. Since the degree sequences are non-increasing, it follows that

(2)

subk(G)+subk(H)
∑

i=1

dG∪H
i ≥

subk(G)
∑

i=1

dGi +

subk(H)
∑

i=1

dHi .

Moreover, by definition of sub-k-domination,

subk(G) +
1

k

subk(G)
∑

i=1

dGi + subk(H) +
1

k

subk(H)
∑

i=1

dHi ≥ n(G) + n(H) = n(G ∪H).

Combining (2) and the above inequality, we obtain

subk(G) + subk(H) +
1

k

subk(G)+subk(H)
∑

i=1

dG∪H
i ≥ n(G ∪H).

Thus, subk(G) + subk(H) is an integer which satisfies

(3) t+
1

k

t
∑

i=1

dG∪H
i ≥ n(G ∪H),

but by definition, subk(G ∪ H) is the smallest integer which satisfies (3), so it
follows that subk(G) + subk(H) ≥ subk(G ∪H).

Since k-domination is additive with respect to disjoint unions of graphs; that
is γk(G ∪ H) = γk(G) + γk(H), for any disjoint graphs G and H, the following
theorem is an immediate consequence of Lemma 3 and gives slight improvements
to Theorem 2.

Theorem 4. If G and H are disjoint graphs and k ≥ 1 is an integer, then

γk(G ∪H) ≥ subk(G) + subk(H) ≥ subk(G ∪H).
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In the next section, we compute subk(G) for several families of graphs and
investigate graphs for which subk(G) = γk(G).

3. Graphs for Which subk(G) = γk(G)

In this section we explore the case of equality for Theorem 2. First, note that
sub(G) = γ(G) = n for an empty graph G. We therefore exclude empty graphs
from the following discussion; that is, assume ∆ ≥ 1. We begin with two propo-
sitions for the case k = 1.

Proposition 1. If G is a graph with maximum degree ∆ ≥ n−2, then sub(G) =
γ(G).

Proof. If ∆ = n− 1 then γ(G) = 1 and thus sub(G) = γ(G), since by Theorem
2, 1 ≤ sub(G) ≤ γ(G) = 1. If ∆ = n − 2, then γ(G) = 2 since no single vertex
can dominate the graph, but a maximum degree vertex and its non-neighbor is a
dominating set. Moreover, sub(G) 6= 1 since 1+ (n− 2) < n; thus, 2 ≤ sub(G) ≤
γ(G) = 2.

If G is a graph with maximum degree ∆ ≤ n − 3, then sub(G) may not be
equal to γ(G). For example, let G be the graph obtained by appending a pendant
vertex to two leaves of K1,3; it can be verified that γ(G) = 3 and sub(G) = 2.

Proposition 2. If G is a graph with γ(G) ≤ 2, then sub(G) = γ(G).

Proof. From Theorem 2, if γ(G) = 1 then sub(G) = 1. Conversely, if sub(G) =
1, then 1+d1 ≥ n and hence from Proposition 1, γ(G) = 1. Similarly, if γ(G) = 2
then sub(G) ≤ 2; however, since sub(G) = 1 if and only if γ(G) = 1, it follows
that sub(G) = 2.

If G is a graph with γ(G) ≥ 3, then sub(G) may not be equal to γ(G). For
example, let G be the graph obtained by appending two pendants to each vertex
of K3; it can be verified that γ(G) = 3 and sub(G) = 2.

We next determine the sub-k-domination number of regular graphs. This
will reveal some families of graphs for which subk(G) = γk(G) for k ≥ 2.

Theorem 5. If G is an r-regular graph and k ≥ 1 is an integer, then subk(G) =
⌈

kn
r+k

⌉

.

Proof. Let G be an r-regular graph and let k ≥ 1 be an integer. Since G is
r-regular, di = r for 1 ≤ i ≤ n. Then, from the definition of sub-k-domination,
we have

(4) subk(G) +
subk(G)r

k
= subk(G) +

1

k

subk(G)
∑

i=1

di ≥ n.
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Rearranging (4), we obtain

(5)
kn

r + k
≤ subk(G).

Since subk(G) is the smallest integer that satisfies (5), it follows that subk(G) =
⌈

kn
r+k

⌉

.

Note that γk(G) = n whenever k > ∆(G). We therefore restrict ourselves to
the more interesting case of k ≤ ∆. The next example shows an infinite family of
graphs for which the sub-k-domination number equals the k-domination number
for all k ≤ ∆.

Observation 2. If Cn is a cycle with order n and k ≤ 2 is a positive integer,

then subk(Cn) = γk(Cn).

Proof. When k = 1, it is known that γ(Cn) =
⌈

n
3

⌉

. Since cycles are 2-regular,
Theorem 5 gives sub(Cn) =

⌈

n
3

⌉

. Hence, γ(Cn) = sub(Cn) for all n. When k = 2,
Theorem 5 gives

⌈

n
2

⌉

= sub2(Cn). Since we can produce a 2-dominating set for
Cn by first picking any vertex v and adding all vertices whose distance from v is
even, it follows that γ2(Cn) ≤

⌈

n
2

⌉

. Thus sub2(Cn) = γ2(Cn).

As another example, from Proposition 1 and Theorem 5, we see that γ(Kn) =
sub(Kn) = 1 and γ2(Kn) = sub2(Kn) = 2 for all n. When k ≥ 3, γk(Kn) does not
equal subk(Kn) for all n (for example, sub3(K4) = 2 but γ3(K4) = 3); however,
our next result shows that equality does hold when n is large enough.

Proposition 3. If Kn is a complete graph with order n and k ≤ n − 1 is a

positive integer, then

subk(Kn) = γk(Kn) = k,

if and only if n > (k − 1)2.

Proof. First, note that γk(Kn) = k for k ≤ n − 1, since any set of k vertices of
Kn is k-dominating, while any set with at most k− 1 vertices is at most (k− 1)-
dominating. Next, since Kn is regular of degree n− 1 it follows from Theorem 5
that

subk(Kn) =

⌈

kn

n− 1 + k

⌉

≤ k = γk(Kn).

If subk(Kn) = k, we must have

kn

n− 1 + k
> k − 1.

Rearranging, we obtain that n > (k − 1)2.
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We next consider sub-k-domination in certain trees. A perfect j-ary tree with

height h, denoted T (j, h) is a rooted tree for which every vertex has either 0 or j
children, and where every leaf is at distance h from the root.

Theorem 6. For any integers h ≥ 1 and j ≥ k ≥ 3, subk(T (j, h)) = γk(T (j, h))
if and only if h = 1 and k = n− 1, where n is the order of T (j, h).

Proof. If h = 1, then T := T (j, h) ∼= K1,n−1 and γk(T ) = n− 1. For k < n− 1,
(n − 2) + 1

k
((n − 1) + (n − 3)) = (n − 2 + 2n−4

k
) ≥ (n − 2 + 2n−4

n−2 ) ≥ n, so
subk(T ) ≤ n − 2 < γk(T ). For k = n − 1, subk(T ) = n − 1 = γk(T ). Thus,
assume henceforth that h ≥ 2. When h ≥ 2, the order of T is n =

∑h
i=1 j

h and

the degree sequence of T is {(j + 1)n−1−jh , j1, 1j
h

}. Since k ≥ 3, no leaf can be
excluded from a k-dominating set; moreover, since h ≥ 2, there is at least one
vertex which is not adjacent to any leaf, so γk(T ) ≥ jh + 1.

By definition, subk(T ) is the smallest integer t such that t+ 1
k

∑t
i=1 di ≥ n.

Suppose that t ≤ n− jh. Then,

(6)

(

n− jh
)

+
1

k

(n−jh)
∑

i=1

di ≥ n

(

n− jh
)

+
(

n− jh − 1
)

(j + 1) + j ≥ kn

(j + 1 + k)
(

n− jh
)

− 1 ≥ kn

jh(1 + j + k − jk)− 2j

j − 1
≥ 0.

The last inequality (6) follows by substituting n = 1+ j+ j2+ · · ·+ jh = jh+1
−1

j−1 .
Since j ≥ 3, (6) is satisfied only when 1 + j + k − jk > 0, i.e., when k = 1 or
j = k = 2; this contradicts k ≥ 3. Thus, t > n− jh, and we have

(7)

t+
1

k

((

n− jh − 1
)

(j + 1) + j +
(

t−
(

n− jh − 1
)

− 1
))

≥ n

kt+
(

n− jh − 1
)

j + j + t− 1 ≥ kn

t ≥
jh+1 − n(j − k) + 1

k + 1
.

Since subk(T ) is the smallest positive integer t which satisfies (7), it follows that

subk(T ) =

⌈

jh+1 − n(j − k) + 1

k + 1

⌉

=

⌈

jh+1 − (jh + jh−1 + · · ·+ j + 1)(j − k) + 1

k + 1

⌉
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=

⌈

jh+1 − (jh + 1)(j − k)− (jh−1 + · · ·+ j)(j − k) + 1

k + 1

⌉

≤

⌈

jh+1 − (jh + 1)(j − k) + 1

k + 1

⌉

=

⌈

kjh + k + 1− j

k + 1

⌉

<

⌈

jh +
k + 1− j

k

⌉

≤ jh + 1 ≤ γk(T ).

Our last focus in this section is on the sub-k-domination number and k-
domination number of 3-regular, or cubic, graphs. First, we recall an upper
bound for the k-domination number due to Caro and Roditty [2].

Theorem 7 [2]. If G is a graph with order n, and k, r ≥ 1 are integers such that

δ ≥ r+1
r
k − 1, then γk(G) ≤ r

r+1n.

In particular, for cubic graphs, Theorem 5 and the Caro-Roditty bound (with
r taken to be the smallest positive integer satisfying 3 ≥ r+1

r
k − 1) imply the

following intervals for the k-domination number.

Corollary 4. If G is a cubic graph with order n, then

1.
⌈

n
4

⌉

≤ γ(G) ≤
⌊

n
2

⌋

,

2.
⌈

2n
5

⌉

≤ γ2(G) ≤
⌊

n
2

⌋

,

3.
⌈

n
2

⌉

≤ γ3(G) ≤
⌊

3n
4

⌋

.

We see from Corollary 4 that subk(G) = γk(G) for some cubic graphs with
small values of n; for example, sub(G) = γ(G) when n ≤ 6 and sub2(G) = γ2(G)
when n ≤ 8.

4. Comparison to Known Bounds on γk(G)

A well-known lower bound on the domination number of a graph is n
∆+1 . This

bound is not difficult to derive a priori, but it immediately follows from the def-
inition of sub(G) and Theorem 2. In [9], Fink and Jacobson generalized this
bound by showing that kn

∆+k
≤ γk(G); this also follows from a result of Hans-

berg and Pepper in [13]. In the following theorem, we show that subk(G) is an
improvement on this bound.

Theorem 8. If G is a graph and k ≤ ∆ is an integer, then

kn

∆+ k
≤ subk(G) ≤ γk(G).
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Proof. The right hand side of the inequality in the theorem follows from Theo-
rem 2. Thus, in order to prove the theorem, it suffices to show the left hand side
of the inequality. Fix k and let t = subk(G). By definition, t + 1

k

∑t
i=1 di ≥ n.

Since ∆ ≥ di for 1 ≤ i ≤ n, it follows that

t+
t∆

k
= t+

1

k

t
∑

i=1

∆ ≥ t+
1

k

t
∑

i=1

di ≥ n.

Rearranging the above inequality gives

kn

∆+ k
≤ t = subk(G).

Recall from Theorem 5 that if G is regular of degree r, then subk(G) =
⌈

kn
r+k

⌉

. Thus, from Theorem 8, we see that regular graphs minimize the sub-
k-domination number over all graphs with n vertices and maximum degree ∆.
This suggests that in order to maximize the sub-k-domination number, we might
consider graphs which are, in some sense, highly irregular with respect to vertex
degrees. This motivates the following theorem and its corollary, where the number
of vertices with the t largest distinct degrees in the graph (st) and the (t + 1)-
largest distinct degree in the graph (∆t) are leveraged to bound subk(G).

Theorem 9. Let G be a graph; for 1 ≤ t ≤ ∆ let nt be the number of vertices of

G with degree t, let st =
∑t

i=1 n∆+1−i, and let ∆t = dst+1. If st +
∑st

i=1 di < n
for some t, then

kn−
∑t

i=1(∆ + 1−∆t − i)n∆+1−i

k +∆t

≤ subk(G).

Proof. From the definition of subk(G), we have

(8) n ≤ subk(G) +
1

k

subk(G)
∑

i=1

di.

Since st +
∑st

i=1 di < n, it follows that st < sub1(G) ≤ subk(G), and thus

(9)

subk(G)
∑

i=1

di =

st
∑

i=1

di +

subk(G)
∑

i=st+1

di.

Since st = n∆ + n∆−1 + · · · + n∆−t+1 and since the degree sequence of G is
non-increasing and has nj elements with value j, we have

st
∑

i=1

di = ∆n∆ + (∆− 1)n∆−1 + · · ·+ (∆− t+ 1)n∆−t+1

=
t
∑

i=1

(∆ + 1− i)n∆+1−i.(10)
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Again since D(G) is non-decreasing, we have that ∆t = dst+1 ≥ dst+2 ≥ · · · ≥
dsubk(G). Thus, it follows that

(11)

subk(G)
∑

i=st+1

di ≤

subk(G)
∑

i=st+1

∆t = (subk(G)− st)∆t.

Substituting (9), (10), and (11) into the right-hand-side of (8) yields

n ≤ subk(G) +
1

k

t
∑

i=1

(∆ + 1− i)n∆+1−i +
1

k

(

subk(G)− st
)

∆t.

By expanding (subk(G) − st)∆t and substituting st =
∑t

i=1 n∆+1−i, the above
inequality can be rewritten as

n ≤ subk(G)

(

1 +
∆t

k

)

+
1

k

t
∑

i=1

(∆ + 1−∆t − i)n∆+1−i.

Rearranging the last inequality gives

kn−
∑t

i=1(∆ + 1−∆t − i)n∆+1−i

k +∆t

≤ subk(G).

We note that the bound in Theorem 9 is optimal when t is taken to be
the maximum positive integer for which st +

∑st
i=1 di < n. Theorem 9 can be

used to give simple lower bounds for the k-domination number of a graph when
certain restrictions on the order and maximum degree are met. These bounds
also improve on the lower bound given in Theorem 8.

Corollary 5. Let G be a graph, let n∆ denote the number of maximum degree

vertices of G, and let ∆′ denote the second-largest degree of G. If k is a positive

integer and n∆ + ∆n∆

k
< n, then

(12)
kn− n∆(∆−∆′)

∆′ + k
≤ subk(G) ≤ γk(G).

Proof. Take t = 1 in the bound from Theorem 9 and note that s1 = n∆ and
∆1 = dn∆+1 = ∆′. Since n∆ + ∆n∆

k
< n, we have that s1 +

1
k

∑s1
i=1 di = n∆ +

1
k

∑n∆

i=1 di = n∆ + ∆n∆

k
< n. Thus, the condition of Theorem 9 is satisfied, and

we obtain the first inequality in (12); the second inequality in (12) follows from
Theorem 2.

We see from Corollary 5 that if G has a unique maximum degree vertex, then

kn−∆+∆′

∆′ + k
≤ γk(G).
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Corollary 5 gives significant improvements on the lower bound in Theorem 8
whenever the difference between ∆ and ∆′ is large. For example, consider the
subdivided star S(K1,n−1) (n ≥ 3) which is obtained by subdividing each edge in
K1,n−1. The degree sequence of this graph is {n− 1, 2n−1, 1n−1} and its order is
2n− 1. This graph meets the conditions of Corollary 5, and the bound given in
the corollary simplifies to (2k−1)n−(k−3)

2+k
, whereas the bound given by Theorem 8

is k(2n−1)
n−1+k

. To compare these two bounds, we first compute the difference between
them

(2k − 1)n− (k − 2)

2 + k
−

k(2n− 1)

n− 1 + k
=

(2k − 1)n2 + (4− 6k)n+ 8k − k2 − 3

(2 + k)(n− 1 + k)
.

When k is fixed, the difference between these two bounds approaches ∞ as n →
∞. In particular, the bound given by Theorem 8 approaches a constant, 2k, as
n grows large, while the bound given by Corollary 5 is approximately 2n.

5. Critical Graphs

There are three natural ways to consider critical graphs in the context of sub-
k-domination: graphs which are critical with respect to edge-deletion, edge-
addition, and vertex-deletion.

Definition 3. If G is a graph and k ≥ 1 is an integer, we shall define

1. G is edge-deletion-subk(G)-critical if for any e ∈ E(G), subk(G − e) >
subk(G).

2. G is edge-addition-subk(G)-critical if for any e ∈ E(G), subk(G + e) <
subk(G).

3. G is vertex-deletion-subk(G)-critical if for any v ∈ V (G), subk(G − v) >
subk(G).

These properties will respectively be abbreviated as subk(G)-ED-critical, subk(G)-
EA-critical, and subk(G)-VD-critical.

In this section, we present several structural results about sub-k-domination
critical graphs, including connections to other graph parameters. Throughout
the section, we will assume that given a graph G with V (G) = {v1, . . . , vn} and
D(G) = {d1, . . . , dn} where d1 ≥ · · · ≥ dn, it holds that di = d(vi) — in other
words, the vertices of G are labeled according to a non-increasing ordering of
their degrees.

We first present two results about subk(G)-ED-critical graphs.

Proposition 6. If G is a subk(G)-ED-critical graph with subk(G) = t, then

{vt+1, . . . , vn} is an independent set of G, and n− subk(G) ≤ α(G).
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Proof. Suppose for contradiction that {vt+1, . . . , vn} is not an independent set
and let e = vxvy be an edge with vx, vy ∈ {vt+1, . . . , vn}. Then, the degree
sequence of G − e is d′1 ≥ · · · ≥ d′n, where d′i = di for all 1 ≤ i ≤ t. Thus,
t + 1

k

∑t
i=1 d

′

i = t + 1
k

∑t
i=1 di ≥ n, which implies that subk(G − e) ≤ t; this

contradicts the assumption that G is subk(G)-ED-critical. Thus, {vt+1, . . . , vn}
is an independent set, so α(G) ≥ n− t.

Proposition 7. If G is a subk(G)-ED-critical graph with no isolates and subk(G)
= t, then k(n− t) =

∑t
i=1 di, and for any e ∈ E(G), subk(G− e) = subk(G) + 1.

Proof. By definition of subk(G) and since n is an integer, we have that
⌊

t +
1
k

∑t
i=1 di

⌋

≥ n. Suppose for contradiction that
⌊

t + 1
k

∑t
i=1 di

⌋

> n. More

precisely, t+ 1
k

∑t
i=1 di ≥ n+ 1

k
since t+ 1

k

∑t
i=1 di cannot be any number between

n and n + 1
k
. Since by Proposition 6, {vt+1, . . . , vn} is an independent set of G

and since G has no isolates, we can choose an edge e incident to exactly one
vertex in {v1, . . . , vt}. The degree sequence of G − e is d′1 ≥ · · · ≥ d′n, where
∑t

i=1 d
′

i =
(
∑t

i=1 di
)

− 1. Thus,

t+
1

k

t
∑

i=1

d′i = t+
1

k

(

t
∑

i=1

di − 1

)

=

(

t+
1

k

t
∑

i=1

di

)

−
1

k
≥

(

n+
1

k

)

−
1

k
= n,

meaning subk(G − e) = t, which contradicts G being subk(G)-ED-critical. By
rearranging t+ 1

k

∑t
i=1 di = n, we get k(n− t) =

∑t
i=1 di.

Now let e be any edge of G and d′1 ≥ · · · ≥ d′n be the degree sequence of G−e.
The deletion of e decreases

∑t+1
i=1 di by at most 2, i.e.,

∑t+1
i=1 d

′

i ≥
(
∑t+1

i=1 di
)

− 2.
Thus,

(t+ 1) +
1

k

t+1
∑

i=1

d′i ≥ (t+ 1) +
1

k

t+1
∑

i=1

di −
2

k
= t+

1

k

(

t
∑

i=1

di

)

+
dt+1 − 2

k
+ 1 ≥ n,

where in the last inequality dt+1 ≥ 1 since G has no isolates; this implies subk(G−
e) = t+ 1 = subk(G) + 1.

Next, we present two analogous results about subk(G)-EA-critical graphs.

Proposition 8. If G is a subk(G)-EA-critical graph with subk(G) = t, then the

vertices in {v ∈ V (G) : d(v) < dt} form a clique.

Proof. Suppose on the contrary that there are two non-adjacent vertices vx and
vy with dt > dx ≥ dy. Then, the degree sequence of G + vxvy is d′1 ≥ · · · ≥ d′n,
where d′i = di for all 1 ≤ i ≤ t. This implies that subk(G + e) = subk(G), a
contradiction.



222 D. Amos, J. Asplund, B. Brimkov and R. Davila

Proposition 9. If G is a subk(G)-EA-critical graph with no isolates and subk(G)
= t, then k(n − t + 1) − 1 =

∑t−1
i=1 di and for each e ∈ E(G), subk(G + e) =

subk(G)− 1.

Proof. Let e be any edge in G and d′1 ≥ · · · ≥ d′n be the degree sequence of
G + e. Let {v1, . . . , vn} be the vertices in G such that degG(vi) = di. Let ε
denote the change in degree sum to {v1, . . . , vt−1} by adding the edge e, i.e.,
∑t−1

i=1 d
′

i =
∑t−1

i=1 di + ε. Then,

n ≤ t− 1+
1

k

t−1
∑

i=1

d′i = t− 1+
1

k

(

t−1
∑

i=1

di + ε

)

=

(

t− 1 +
1

k

t−1
∑

i=1

di

)

+
ε

k
< n+

ε

k
.

This means that n − ε
k
≤ t − 1 + 1

k

∑t−1
i=1 di < n. Since ε ≤ 2, it follows that

t − 1 + 1
k

∑t−1
i=1 di equals n − 1

k
or n − 2

k
. In the latter case, ε = 2 and the

only edges that could be added are edges in which both vertices are contained
in {v1, . . . , vt−1}. Therefore, each vertex in {vt, . . . , vn} is already adjacent to
every other vertex in the graph. However, since these are the vertices of smallest
degree, this would imply that the graph is a clique, so no edge could have been
added, a contradiction. Thus t − 1 + 1

k

∑t−1
i=1 di = n − 1

k
and by algebraically

manipulating this equation, we get the desired result.

We now aim to show subk(G + e) = subk(G) − 1. With ε defined as above,
and using the fact that t− 1 + 1

k

∑t−1
i=1 di = n− 1

k
, we have

(t− 2) +
1

k

t−2
∑

i=1

d′i = (t− 2) +
1

k

(

t−1
∑

i=1

d′i

)

−
d′t−1

k

=

(

(t− 1) +
1

k

(

t−1
∑

i=1

di

))

+
1

k
(ε− d′t−1)− 1

=

(

n−
1

k

)

+
ε− d′t−1

k
− 1 = n−

1 + d′t−1 + k − ε

k
< n,

where in the last inequality 1 + d′t−1 + k − ε > 0 since G has no isolates; this
implies subk(G+ e) > t− 2, so subk(G+ e) = subk(G)− 1.

Graphs that are subk(G)-VD-critical differ from subk(G)-ED-critical graphs
and subk(G)-EA-critical graphs, in the sense that it is possible for subk(G − v)
and subk(G) to differ by much more than 1. For example, this is the case for
the star Kn−1,1 when the center of the star is the vertex removed. We now show
another result for subk(G)-VD-critical graphs.

Proposition 10. If G is a subk(G)-VD-critical graph with subk(G) = t, then

each vertex in {vt+1, . . . , vn} is adjacent to at least k+ 1 vertices in {v1, . . . , vt}.
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Proof. Suppose that vx ∈ {vt+1, . . . , vn} is adjacent to at most k vertices in
{v1, . . . , vt}. Then G− vx has degree sequence d′1, . . . , d

′

n−1 such that
∑t

i=1 d
′

i ≥
(
∑t

i=1 di
)

−k. Thus, t+ 1
k

∑t
i=1 d

′

i ≥ t+ 1
k

∑t
i=1 di−1 ≥ n−1, which implies that

subk(G−vx) ≤ t; this contradicts the assumption that G is subk(G)-VD-critical.

6. Conclusion

In this paper, we introduced the sub-k-domination number and showed that it is
a computationally efficient lower bound on the k-domination number of a graph.
We also showed that the sub-k-domination number improves on several known
bounds for the k-domination number, and gave some conditions which assure
that subk(G) = γk(G). This investigation was a step toward the general problem
of characterizing graphs for which γk(G) = subk(G) for each positive integer k.
In particular, future work in this direction could focus on generalizing Theorem 6
by characterizing all trees T for which γk(T ) = subk(T ). Other work to improve
lower bounds on k-domination using the DSI-strategy can be pursued, in the vein
of Theorem 9 and Corollary 5.

We also explored critical graphs in the context of subk-domination, and found
that adding an edge to a subk-EA-critical graph and deleting an edge from a
subk-ED-critical graph changes the subk-domination number by one. It may be
interesting to investigate criticality with respect to edge contraction or other
operations, and determine, e.g., if subk(G/e) must differ from subk(G) by one.

As another direction for future work, it would be interesting to define and
study an analogue of sub-k-domination which is an upper bound to the k-domi-
nation number, or explore degree sequence based invariants which bound the
connected domination number or the independent domination number of a graph.
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