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Abstract

A planar 3-connected graph G is called essentially 4-connected if, for
every 3-separator S, at least one of the two components of G − S is an
isolated vertex. Jackson and Wormald proved that the length circ(G) of a
longest cycle of any essentially 4-connected planar graph G on n vertices
is at least 2n+4

5
and Fabrici, Harant and Jendrol’ improved this result to

circ(G) ≥ 1

2
(n + 4). In the present paper, we prove that an essentially

4-connected planar graph on n vertices contains a cycle of length at least
3

5
(n+ 2) and that such a cycle can be found in time O(n2).
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For a finite and simple graph G with vertex set V (G) and edge set E(G),
let N(x) and d(x) = |N(x)| denote the neighborhood and the degree of any
x ∈ V (G) in G, respectively. The circumference circ(G) of a graph G is the
length of a longest cycle of G. A subset S ⊆ V (G) is an s-separator of G if
|S| = s and G− S is disconnected. From now on, let G be a 3-connected planar
graph. For every 3-separator S of G, it is well-known that G − S has exactly
two components. We call S trivial if at least one component of G− S is a single
vertex. If every 3-separator S of G is trivial, we call the 3-connected planar graph
G essentially 4-connected. In the present paper, we are interested in lower bounds
on the circumference of essentially 4-connected planar graphs.

Jackson and Wormald [4] proved that circ(G) ≥ 2n+4
5 for every essentially 4-

connected planar graph on n vertices and presented an infinite family of essentially
4-connected planar graphs G such that circ(G) ≤ c·n for each real constant c > 2

3 .
Moreover, there is a construction of infinitely many essentially 4-connected planar
graphs with circ(G) = 2

3(n + 4) (for example see [2]). It is open whether there
exists an essentially 4-connected planar graph G on n vertices with circ(G) <
2
3(n+4). Further results on the length of longest cycles in essentially 4-connected
planar graphs can be found in [2, 3, 7].

Fabrici, Harant and Jendrol’ [2] extended the result of Jackson and Wormald
by proving that circ(G) ≥ 1

2(n+4) for every essentially 4-connected planar graph
G on n vertices.

Our result is presented in the following theorem.

Theorem 1. For any essentially 4-connected planar graph G on n vertices,

circ(G) ≥ 3
5(n+ 2).

We remark that the assertion of the theorem can be improved to circ(G) ≥
3
5(n + 4) if n ≥ 16. This follows from using Lemma 5 in [2] and a more special
version of the forthcoming inequality (i). We will also show how cycles of G of
length at least 3

5(n+ 2) can be found in quadratic time.

Let C be a plane cycle and let B be a set disjoint from V (C). A plane graph
H is called a (B,C)-graph if B ∪ V (C) is the vertex set of H, the cycle C is an
induced subgraph of H, the subgraph of H induced by B is edgeless, and each
vertex of B has degree 3 in H. The vertices in B are called outer vertices of C.

A face f of H is called minor (major) if it is incident with at most one (at
least two) outer vertices. Note that f is incident with no outer vertex if and only
if C is the facial cycle of f .

For every (B,C)-graph H, let µ(H) denote the number of minor faces of H.
Then

µ(H) ≥ |V (H)| − |V (C)|+ 2.(i)
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Proof of (i). LetH be a smallest counterexample. SinceB = ∅ implies |V (H)| =
|V (C)| and µ(H) = 2, which satisfies the inequality (i), we may assume that
B is non-empty. For each vertex y ∈ B, the three neighbors of y divide C

into three internally disjoint paths P1(y), P2(y), and P3(y) with endvertices in
N(y). We may assume that |V (P1(y))| ≤ |V (P2(y))| ≤ |V (P3(y))| and define
φ(y) = |V (P1(y))|+ |V (P2(y))| − 1 in this case.

Let x ∈ B be chosen such that φ(x) = min{φ(y) | y ∈ B}. Consider the two
cycles A1 and A2 induced by V (P1(x))∪{x} and V (P2(x))∪{x}, respectively. We
claim that the interior of A1 as well as the interior of A2 is a face of H and hence,
both are minor faces. Suppose that there is a vertex z in the interior of Ai for i ∈
{1, 2}. Then φ(z) = |V (P1(z))|+|V (P2(z))|−1 ≤ max{ |V (P1(x))|, |V (P2(x))| } <

|V (P1(x))|+ |V (P2(x))| − 1 = φ(x), which contradicts the choice of x.

Let H ′ = H − x. Note that H ′ is a ((B \ {x}), C)-graph and has fewer
vertices than H. Then |V (H ′)| = |V (H)| − 1, µ(H ′) ≤ µ(H) − 1, and µ(H ′) ≥
|V (H ′)| − |V (C)| + 2, hence µ(H) ≥ 1 + µ(H ′) ≥ 1 + |V (H ′)| − |V (C)| + 2 =
|V (H)| − |V (C)|+ 2.

Proof of Theorem 1. Let G be an essentially 4-connected plane graph on n

vertices. If G has at most 10 vertices, then it is well known that G is Hamil-
tonian [1]. In this case, we are done, since n ≥ 3

5(n + 2) for n ≥ 3. Thus, we
assume n ≥ 11. A cycle C of G is called an outer-independent-3-cycle (OI3-
cycle) if V (G) \ V (C) is an independent set of vertices and d(x) = 3 for every
x ∈ V (G) \ V (C). An edge a = xy ∈ E(C) of a cycle C is called an extendable

edge of C if x and y have a common neighbor in V (G) \ V (C).

In [2], it is shown that every essentially 4-connected planar graph G on n ≥ 11
vertices contains an OI3-cycle. In this proof, let C be a longest OI3-cycle of G,
let c = |V (C)|, and let H be the graph obtained from G by removing all chords of
C, i. e. by removing all edges in E(G) \E(C) that connect vertices of C. Clearly,
C does not contain an extendable edge. Obviously, H is a (B,C)-graph, with
B = V (H) \ V (C).

For the number µ of minor faces of H, we have by (i) µ ≥ n− c+ 2.

Moreover, we will show

6µ ≤ 4 c(ii)

and then, the theorem follows immediately.

Proof of (ii). An edge e of C is incident with exactly two faces f1 and f2 of H.
In this case, we say f1 is opposite to f2 with respect to e. A face f of H is called
j-face if it is incident with exactly j edges of C and the edges of C incident with
f are called C-edges of f . Because C does not contain an extendable edge, we
have j ≥ 2 for every minor j-face of H.
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We define a weight function w0 on the set F (H) of faces of H, by setting
weight w0(f) = 6 for every minor face f of H and weight w0(f) = 0 for every
major face f of H. Then

∑
f∈F (H)w0(f) = 6µ. Next, we redistribute the weights

of faces of H by the rules R1 and R2.

Rule R1. A minor 2-face f of H sends weight 1 through both C-edges to the
opposite (possibly identical) faces.

Rule R2. A minor 3-face f of H with C-edges ux, xy, and yz sends weight 1
through its middle C-edge xy to the opposite face.

Let w1 denote the new weight function; clearly,
∑

f∈F (H)w1(f) = 6µ still holds.

For the proof of (ii), we will show

w1(f) ≤ 2 j for each j-face f of H.(iii)

To see that (ii) is a consequence of (iii), let each j-face f of H satisfying j ≥ 1

send the weight w1(f)
j

to each of its C-edges. Note that each 0-face f is major,
thus w1(f) = 0. Hence, the total weight of all minor and major faces is moved
to the edges of C. Since every edge of C gets weight at most 4, we obtain
6µ =

∑
f∈F (H)w1(f) ≤ 4 c, and (ii) follows.

Proof of (iii). Next we distinguish several cases. In most of them, we construct
a cycle C̃ that is obtained from C by replacing a subpath of C with another path.
In every case, C̃ will be an OI3-cycle of G that is longer than C. This contradicts
the choice of C and therefore shows that the considered case cannot occur. Note
that all vertices of C in the following figures are different, because the length of
the longest OI3-cycle C in a planar graph on n ≥ 11 vertices is at least 8 [2,
Lemma 4(ii)].

Case 1. f is a major j-face. Because w0(f) = 0 and f gets weight ≤ 1
through each of its C-edges, we have w1(f) ≤ j.

Case 2. f is a minor 2-face (see Figure 1). We will show that f does not
get any new weight by R1 or by R2; this implies w1(f) = w0(f) − (1 + 1) = 4.
Let xy and yz be the C-edges of f and a be the outer vertex incident with f (see
Figure 1).

If f gets new weight by R1 or by R2 from a face f ′ opposite to f with respect
to a C-edge of f , then f ′ is a minor 2-face or a minor 3-face of H. Without loss
of generality, we may assume that f ′ is opposite to f with respect to the edge
yz. Then yz is a common C-edge of f and f ′ and we distinguish the following
subcases.

Case 2a. f ′ is a 2-face and xy is a C-edge of f ′. Then {x, z} is the neigh-
borhood of y in G, which contradicts the 3-connectedness of G.
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x y z

a

f

C

Figure 1

Case 2b. f ′ is a 2-face and xy is not a C-edge of f ′ (see Figure 2). Then a
longer OI3-cycle C̃ is obtained from C by replacing the path (x, y, z, u) with the
path (x, a, z, y, b, u), which gives a contradiction.

x y z u

a

f

b

C

Figure 2

x y z u

a

f

b

C

Figure 3

Case 2c. f ′ is a 3-face. Since f ′ sends weight to f , then, by rule R2, a
C-edge of f is the middle C-edge of f ′. It follows that both C-edges of f are also
C-edges of f ′ and the situation as shown in Figure 3 occurs. The edge yu exists
in G, because otherwise d(y) = 2 and G would not be 3-connected. Then C̃ is
obtained from C by replacing the path (x, y, z, u) with the path (x, a, z, y, u).

Case 3. f is a minor 3-face (see Figure 4). Since f loses weight 1 by rule
R2 and possibly gets weight w by R1 or by R2, we have w1(f

′) = 5 + w.
If w ≤ 1, then we are done.
If w ≥ 2, then f does not get any weight through the edge xy from the

opposite face f ′. Otherwise, if f ′ is a 2-face, then we have the situation as in
Case 2c and if f ′ is a 3-face, then w = 1, with contradiction in both cases. Hence,
f gets weight 1 through vx from the opposite face f1 and weight 1 through yz

from the opposite face f2. Clearly, f1 6= f2 and they are not simultaneously
3-faces.

Case 3a. Both f1 and f2 are 2-faces. The situation is as illustrated in Figure 5
and C̃ is obtained from C by replacing the path (w, v, x, y, z, u) with the path
(w, b, x, v, a, z, y, c, u). Note that b 6= c, because d(b) = d(c) = 3.
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v x y z
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C

Figure 4
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Figure 5

w v x y z u
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C

Figure 6

Case 3b. f1 is a 2-face and f2 is a 3-face. Then e2 = yz is the middle
C-edge of f2, as shown in Figure 6, and C̃ is obtained from C by replacing the
path (w, v, x, y, z, u) with the path (w, v, a, z, y, x, c, u).

Case 4. f is a minor 4-face (see Figure 7).

v w x y z

a

f

C

Figure 7

If w1(f) = w0(f) + w = 6 + w and w ≤ 2, then we are done.
If otherwise w ≥ 3, there are at least three edges e1, e2, and e3 among the

four C-edges vw, wx, xy, and yz of f such that f gets weight from minor faces
which are opposite to f with respect to e1, e2, and e3, respectively.

Case 4a. w = 3 and {e1, e2, e3} = {vw,wx, xy}. Then no edge of {e1, e2, e3}
is the middle C-edge of a minor 3-face and yz is not a C-edge of a minor 2-face.
We have the situation of Figure 8 and one of the edges vx or xz exists in G,
because otherwise x would have degree 2 in G.
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Then C̃ is obtained again from C by replacing the path (v, w, x, y, z) with
the path (v, x, w, c, y, z) or with the path (v, w, c, y, x, z), respectively.

v w x y z

a

f

b c

C

Figure 8

t v w x y z

a

f

b c

C

Figure 9

Case 4b. w = 3, {e1, e2, e3} = {vw, xy, yz} and wx is not a C-edge of a

minor 3-face. Then vw is not the middle C-edge of a minor 3-face opposite to
f . We have the situation of Figure 9 and one of the edges vy or wy exists in G,
because otherwise y would have degree 2 in G.

Note that b 6= c, because d(b) = d(c) = 3. Then C̃ is obtained from C by
replacing the path (t, v, w, x, y, z) with the path (t, b, w, v, y, x, c, z) or with the
path (t, v, w, y, x, c, z).

Case 4c. w = 3, {e1, e2, e3} = {vw, xy, yz} and wx is a C-edge of a minor

3-face. Then vw is the middle C-edge of a minor 3-face opposite to f (see
Figure 10).

Then at least one of the edges vy or wy exists, because otherwise y would
have degree 2 in G, and C̃ is obtained from C by replacing the path (t, v, w, x, y, z)
with the path (t, b, x, w, v, y, z) or with the path (t, v, w, y, x, c, z).

t v w x y z

a

f

b c

C

Figure 10

v w x y z

a

f
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C

Figure 11

Case 4d. w = 4. Then the edges vw, wx, xy, and yz are C-edges of minor
2-faces of H. Either a situation similar to Case 4a occurs, a contradiction, or the
situation of Figure 11 follows.
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Then the edge wy exists in G, because otherwise d(w) = 2 or d(y) = 2 in
G, and C̃ is obtained from C by replacing the path (v, w, x, y, z) with the path
(v, w, y, x, c, z).

Case 5. f is a minor 5-face. Let w1(f) = w0(f) +w = 6+w. If w ≤ 4, then
w1(f) ≤ 10 and we are done. If w = 5, then all five C-edges of f are also C-edges
of minor 2-faces and we have the situation of Figure 12.

s v w x y z t

a

f

b c d

C

Figure 12

If the edge vx exists, then C̃ is obtained from C by replacing the path
(s, v, w, x) with the path (s, b, w, v, x).

If vx does not exist, then, because d(v) ≥ 3, y or z is a neighbor of v. If
the edge vy exists, we get d(x) = 2, a contradiction. Hence, vz exists and, since
d(x) ≥ 3, xz exists as well. In this case, C̃ is obtained from C by replacing the
path (w, x, y, z) with the path (w, c, y, x, z).

The remaining case completes the proof of (iii) and therefore the proof of
(ii).

Case 6. f is a minor j-face with j ≥ 6. Then w1(f) = w0(f) +w = 6+w ≤
6 + j ≤ 2 j.

Algorithm. We now show that a cycle of length at least 3
5(n+2) in any essen-

tially 4-connected planar graph G on n vertices can be computed in time O(n2).
For n ≤ 10, we may compute even a longest cycle in constant time, so assume
n ≥ 11. The existential proof of the theorem proceeds by using a longest not
extendable OI3-cycle of G. However, it is straightforward to observe that the
proof is still valid when we replace this cycle by an OI3-cycle C that is not ex-
tendable and for which none of the local replacements described in the Cases 1–6
can be applied to increase its length (as argued, all these replacements preserve
an OI3-cycle).

It suffices to describe how such a cycle C can be computed efficiently; the
desired length of C is then implied by the theorem. In [2, Lemma 3], an OI3-cycle
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of G is obtained by constructing a special Tutte cycle with the aid of Sander’s
result on Tutte paths [5]. Using the recent result in [6], we can compute such
Tutte paths and, by prescribing its end vertices accordingly, also the desired Tutte
cycle in time O(n2). This gives an OI3-cycle Ci of G.

If Ci is extendable, we compute an extendable edge of Ci and extend Ci to a
longer cycle Ci+1; this takes time O(n) and preserves that Ci+1 is an OI3-cycle.
Otherwise, if there is no extendable edge of Ci (in this case, the length of Ci is
at least 8 due to n ≥ 11 and [2, Lemma 4(ii)]), we decide in time O(n) whether
one of the local replacements of the Cases 1–6 can be applied to Ci. If so, we
apply any such case and obtain the longer OI3-cycle Ci+1 (which however may
be extendable); since all replacements modify only subgraphs of constant size,
this can be done in constant time. Iterating this implies a total running time of
O(n2), as the length of the cycle is increased at most O(n) times.
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