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Abstract

A traceable graph is a graph with a Hamilton path. The 3-Decomposition
Conjecture states that every connected cubic graph can be decomposed into
a spanning tree, a 2-regular graph and a matching. We prove the conjecture
for cubic traceable graphs.
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1. Introduction

In the paper all graphs are finite and simple. The reader can refer to [3, 18] for
concepts not defined here. A graph G is cubic if every vertex in G is of degree
3. A spanning tree of G is an acyclic connected subgraph containing all vertices
of G. A graph that consists of pairwise disjoint edges is called a matching. A k-
regular spanning subgraph of G is called a k-factor. A 1-factor of G is also called
a perfect matching. An edge e of G is called a chord of a cycle C in G if the two
endpoints of e are on C but e is not itself an edge of C. A cycle C is separating in
a cubic graph G if either C has a chord, or G− V (C) is disconnected; otherwise,
non-separating. A Hamilton cycle is a cycle in G containing all vertices of G.
A graph with a Hamilton cycle is called a Hamiltonian graph. A Hamilton path
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is a path in G containing all vertices of G. A graph with a Hamilton path is
called a traceable graph. Assume that H is a Hamilton path in G. Each edge
e ∈ E(G) \ E(H) is called a chord of H. For every chord e = vu of H, there
exists a unique cycle Ce consisting of e and the subpath vHu. We call Ce the
associated cycle of e. A chord e = st of H is minimal if there is no other chord
of H whose two endpoints are on the subpath sHt.

A decomposition of a graph G consists of pairwise edge-disjoint subgraphs
whose union is G. It is a canonical problem in structural graph theory to decom-
pose cubic graphs into subgraphs with certain properties. Such a problem can be
traced back to the Petersen Theorem [16] that every bridgeless cubic graph has a
1-factor, which implies that each bridgeless cubic graph can be decomposed into
a 1-factor and a 2-factor. The Vizing Theorem [17] on proper edge-coloring shows
that every cubic graph admits a decomposition consisting of four matchings.

Decompositions of cubic graphs into paths are related to the Fan-Raspaud
conjecture [9] that every 2-edge-connected cubic graph contains three perfect
matchings with empty intersection. It is interesting to decompose a cubic graph
into a spanning tree and other subgraphs. Malkevitch [14] asked which cubic
graphs admit a decomposition into a spanning tree and a 2-regular subgraph, that
is, a decomposition with a HIST (a homeomorphically irreducible spanning tree

is a spanning tree without a 2-degree vertex). Many researchers characterized
graphs with a HIST (see [1, 2, 5, 6, 7]). Douglas [8] proved that it is NP-
complete to decide whether a graph with maximum degree 3 contains a HIST,
which positively solves the problem presented by Albertson, Berman, Hutchinson
and Thomassen [2]. It is clear that the complete graph K4 can be decomposed
into a HIST (a star) and a 2-regular subgraph (a triangle) while the cube Q3 has
no HIST. However, we can decompose Q3 into a spanning tree (with two 2-degree
vertices), a 2-regular subgraph (a 4-cycle) and a matching (an edge). See Figure
1. Relaxing the restriction that the spanning tree does not contain a vertex of
degree 2, Hoffmann-Ostenhof presented the following conjecture.

(a) (b)

Figure 1. A decomposition of K4 with a star (thin line) and a triangle (dot line) in (a)

while a decomposition of Q3 with a spanning tree (thin line), a 4-cycle (dot line) and a

matching (thick line) in (b).
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Conjecture 1 (3-Decomposition Conjecture). Every connected cubic graph can

be decomposed into a spanning tree, a 2-regular graph and a matching.

Conjecture 1 was first posed in [10] (see also [4, Problem BCC 22.12] and
[13]). Ozeki and Ye [15] showed that Conjecture 1 holds for 3-connected cubic
graphs on the plane and the projective plane. Hoffmann-Ostenhof, Kaiser and
Ozeki [12] proved that Conjecture 1 holds for all connected planar cubic graphs.
In [1, 11] it was proved that a cubic Hamiltonian graph admits such a desired
decomposition. It was informed that Ye [19] showed Conjecture 1 for 3-connected
cubic graphs on the Klein bottle and the torus. In the paper, we prove Conjecture
1 for traceable cubic graphs.

Theorem 2. Every traceable cubic graph can be decomposed into a spanning tree,

a 2-regular graph and a matching.

The proof of Theorem 2 consists of four cases (see Section 2). The first
case discusses cubic Hamiltonian graphs. The second and third cases are more
extensive analyses than the first case. A new technique is used to deal with the
fourth case.

2. Proof of Theorem 2

Assume that G is a cubic graph with a Hamilton path H. Let the vertices v1 and
v6 be the two endpoints of H. Then v1 and v6 are incident with two chords of H,
every other vertex on H is incident with only one chord. If v1 is adjacent to v6
by a chord of H, then let the vertex v2 be a neighbor of v1 and v5 be a neighbor
of v6 such that the two pairs of vertices are jointed by chords of H, respectively.
Otherwise, let the vertices v2, v3 be two neighbors of v1 jointed by chords of H
such that these vertices are ordered as v1, v2, v3 on H, and let the vertices v4, v5
be two neighbors of v6 jointed by chords of H with the order as v4, v5, v6 on H.

Lemma 3. Assume that C is a 2-regular non-separating subgraph of G that is

the union of associated cycles of chords of H, and assume that each of v1 and v6
is joined by a chord of H to at least one vertex of V (C)∪ {v1, v6}. Then there is

a decomposition of G− E(C) into a spanning tree of G and a matching.

Proof. Since C is a 2-regular non-separating subgraph of G, G − E(C) is con-
nected and has a spanning tree. Let T be a spanning tree of G − E(C) that
contains the forest H − E(C), and let M be the subgraph of G induced by
E(G−E(C ∪ T )). Then M is a matching of G−E(C). Thus G−E(C) admits
a decomposition consisting of the spanning tree T and the matching M .
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Proof of Theorem 2. Let G and H be defined as above. Considering the sym-
metry of the position of the vertex vi (i = 1, 2, . . . , 6) on H, we have the following
four cases.

Case 1. v1 is adjacent to v6 by a chord of H.

Case 2. v4 is on the subpath v1Hv2.

Case 3. v4 is on the subpath v2Hv3.

Case 4. v4 is on the subpath v3Hv5.

v1 v6 v1 v2 v6

v1 v2 v6v1 v2 v6

v4 v3

v4 v3 v3 v4 v5

(1) v1 is adjacent to v6 by a chord (2) v4 is on the subpath v1Hv2

(3) v4 is on the subpath v2Hv3 (4) v4 is on the subpath v3Hv5

v2

Figure 2. The four cases are illustrated.

It is sufficient to show that each case admits a desired decomposition of G. See
Figure 2.

Case 1. v1 is adjacent to v6 by a chord of H. In this case, G is a Hamiltonian
cubic graph. For completeness we give a proof similar to [1, 11].

Since G is a simple cubic graph, there are other chords of H besides the chord
v1v6. Then there exists a minimal chord e of H. Let Ce be the associated cycle
of e. Then Ce is a non-separating cycle. From Lemma 3, G − E(Ce) admits a
decomposition consisting of a spanning tree T and a matching M . So there is a
decomposition of G with the 2-regular subgraph Ce, the spanning tree T and the
matching M .

Case 2. v4 is on the subpath v1Hv2. Let C2
1
= v1Hv4v6Hv3v1 and C2

2
=

v1v2Hv3v1 be the cycles (see (2) of Figure 2).
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Suppose that C2
1
is a non-separating cycle of G. From Lemma 3, G−E(C2

1
)

admits a decomposition consisting of a spanning tree T and a matching M . Thus
we can decompose G into the spanning tree T , the 2-regular subgraph C2

1
and

the matching M . Otherwise, C2
1
is a separating cycle of G. Then there is at least

one chord of C2
1
(and of H also) locating on the subpath v1Hv4, locating on the

subpath v3Hv6, or linking the subpaths v1Hv4 and v3Hv6.

Further suppose that C2
2
is a non-separating cycle of G. Let M be a set of all

chords of H whose two endpoints are not both on C2
2
except the chord v4v6, and

let T = G− E(C2
2
)−M . Then M and T are a matching and a spanning tree of

G respectively. T ∪M ∪ C2
2
forms a desired decomposition of G. Otherwise, C2

2

is a separating cycle of G. Then there is at least one chord of C2
2
on the subpath

v2Hv3. Now, we discuss three subcases as follows.

Subcase 2.1. There is at least one chord of C2
1
on the subpath v1Hv4. Since

there is at least one chord of C2
1
on the subpath v1Hv4, we can pick a minimal

chord e1 = u1u2 of H such that the right endpoint u2 of e1 is the closest to the
vertex v4 among all minimal chords of H on the subpath v1Hv4. Let Ce1 be
the associated cycle of e1. Similarly, since there is at least one chord of C2

2
on

the subpath v2Hv3, we have a minimal chord e2 = u3u4 of H such that the left
endpoint u3 of e2 is the closest to the vertex v2 among all minimal chords of H
on the subpath v2Hv3. Let Ce2 be the associated cycle of e2. Suppose that there
is no chord of H which links Ce1 and Ce2 . Let M be the set of all chords of H
none of whose two endpoints are on Ce1 and on Ce2 except the chords v1v3 and
v4v6. Thus M becomes a matching of G. Let T = G − E (Ce1 ∪ Ce2) − E(M).
Then T is a spanning tree of G. We can give a desired decomposition of G with
the spanning tree T , the 2-regular subgraph Ce1 ∪ Ce2 , and the matching M .
Otherwise, there is at least one chord of H which links the cycles Ce1 and Ce2 .
Let e3 = u5u6 be such a chord of H, and let Ce3 be the associated cycle of e3.
Suppose that Ce3 is a non-separating cycle of G.From Lemma 3, G − E(Ce3)
has a decomposition consisting of a spanning tree T and a matching M . We
can decompose G into the spanning tree T , the 2-regular subgraph Ce3 and the
matching M . Otherwise, Ce3 is a separating cycle of G. Then, there is at least
one chord of H on the subpath u5Hu6 other than e3. So there must be a minimal
chord of H on the subpath u5Hu6.

Let e4 be a minimal chord of H on the subpath u5Hu6, and let Ce4 be
the associated cycle of e4. If the vertex v4 is on Ce4 , let M be the set of all
chords of H none of whose two endpoints are on Ce4 except the chord v1v3.
Let T = G − E(Ce4) − E(M). So we obtain a desired decomposition of G

with the spanning tree T , the 2-regular subgraph Ce4 , and the matching M .
If the vertex v2 is on Ce4 and the vertex v4 not on Ce4 , let M be the set of all
chords of H none of whose two endpoints are on Ce4 except the chord v4v6. Let
T = G − E(Ce4) − E(M). Thus we can decompose G into the spanning tree T ,
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the 2-regular subgraph Ce4 , and the matching M . See Figure 3.

v1 u1 u2 v4

v2
u3 u4 v3 v6

e3

e1

u5 u6

e4

e2

Figure 3. v2 is on Ce4
and v4 not on Ce4

.

So we suppose that neither v2 nor v4 is on Ce4 . According to the choices
of e1 and e2, we deduce that e4 must locate on the subpath v4Hv2. Thus there
is at least one minimal chord on the subpath v4Hv2 (for example, the minimal
chord e4). We pick up a minimal chord, denoted by e∗

4
, on the subpath v4Hv2

such that the right endpoint u∗ of e∗
4
is the closed to the vertex v2 among all

minimal chords of H on the subpath v4Hv2. Let Ce∗
4
be the associated cycle of

e∗
4
. Further suppose that there is no chord of H which links Ce∗

4
and Ce2 . Let

M be the set of all chords of H none of whose two endpoints are on Ce∗
4
and on

Ce2 except the chords v1v2 and v4v6. Let T = G−E(Ce∗
4
∪Ce2)−E(M). So we

obtain a desired decomposition of G with T , Ce∗
4
∪Ce2 , and M . Otherwise, there

is at least one chord of H which links Ce∗
4
and Ce2 . Since neither the subpath

u∗Hv2 nor the subpath v2Hu3 has any chord, there must exist a minimal chord
e5 of H such that its associated cycle Ce5 contains the vertex v2. We can employ
the same means to get a desired decomposition of G as the case that v2 is on Ce4

and v4 not on Ce4 . See Figure 4.

Subcase 2.2. There is at least one chord of C2
1
on the subpath v3Hv6. Since

there is at least one chord of C2
1
on the subpath v3Hv6, we choose a minimal

chord e′
1
= u′

1
u′
2
of H such that the left endpoint u′

1
of e′

1
is the closest to the

vertex v3 among all minimal chords of H on the subpath v3Hv6. Let Ce′
1
be the

associated cycle of e′
1
. Similarly, since there is at least one chord of C2

2
on the

subpath v2Hv3, there exists a minimal chord e′
2
= u′

3
u′
4
of H such that the right

endpoint u′
4
of e′

2
is the closest to the vertex v3 among all minimal chords of H

on the subpath v2Hv3. Let Ce′
2
be the associated cycle of e′

2
. Suppose that there

is no chord of H which links Ce′
1
and Ce′

2
. Let M be the set of all chords of H

none of whose two endpoints are on Ce′
1
and on Ce′

2
except the chords v1v3 and

v4v6. Thus M becomes a matching of G. Let T = G − E(Ce′
1
∪ Ce′

2
) − E(M).

Then T is a spanning tree of G. We obtain a desired decomposition of G with
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v1 u1 u2 v4 v2 u3 u4 v3 v6

e3

e1

u5 u6

e2e∗4

e5

u∗

Figure 4. The minimal chord e5 of H links C
e
′

4
and Ce2

, and its associated cycle Ce5

contains v2.

T , Ce′
1
∪ Ce′

2
, and M . Otherwise, there is at least one chord of H which links

the cycles Ce′
1
and Ce′

2
. Let e′

3
= u′

5
u′
6
be such a chord of H, and let Ce′

3
be the

associated cycle of e′
3
. Suppose that Ce′

3
is a non-separating cycle of G. Let M

be the set of all chords of H none of whose two endpoints are on Ce′
3
except the

chord v4v6, and let T = G − E(Ce′
3
) − E(M). We can decompose G into the

spanning tree T , the 2-regular subgraph Ce′
3
and the matching M . Otherwise,

Ce′
3
is a separating cycle of G. Then, there is at least one chord of H on the

subpath u′
5
Hu′

6
other than e′

3
. So there must be a minimal chord of H on the

subpath u′
5
Hu′

6
. Let e′

4
be a minimal chord of H on the subpath u′

5
Hu′

6
, and

let Ce′
4
be the associated cycle of e′

4
. According to the definitions of e′

1
and e′

2
,

we deduce that e′
4
is incident with the vertex v3. Let M be the set of all chords

of H none of whose two endpoints are on Ce′
4
except the chord v4v6, and let

T = G−E(Ce′
4
)−E(M). So G has the decomposition with the spanning tree T ,

2-regular subgraph Ce′
4
and the matching M .

Subcase 2.3. There exists at least one chord of C2
1
which links the subpaths

v1Hv4 and v3Hv6. From Subcase 2.1 and Subcase 2.2, we only need to consider
that neither the subpath v1Hv4 nor the subpath v3Hv6 has any chord of C2

1
in

the subcase. Since there exists at least one chord of C2
1
which links the subpaths

v1Hv4 and v3Hv6, we can pick a chord e6 = u7u8 whose left endpoint u7 is the
closest to the vertex v1 among all chords of C2

1
which link the subpaths v1Hv4

and v3Hv6. Since neither the subpath v1Hv4 nor the subpath v3Hv6 has any
chord of C2

1
, so do the subpaths v1Hu7 and v3Hu8. Then, we can deduce the

cycle C2
3
= v1Hu7u8Hv3v1 is a non-separating cycle of G. Let M be the set of

all chords of H none of whose two endpoints are on C2
3
except the chord v4v6.

Let T = G − E
(

C2
3

)

− E(M). Then M and T are a matching and a spanning
tree of G, respectively. So we get a desired decomposition of G with T , C2

3
, and

M , see Figure 5.
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v1 v4 v2 v3 v6

e6

u7 u8

Figure 5. The cycle C2

3
= v1Hu7u8Hv3v1 is a non-separating cycle of G.

Case 3. v4 is on the subpath v2Hv3. Suppose that there exists a minimal
chord f of H on the subpath v1Hv3 such that its associated cycle Cf contains
the vertex v4. Let M be the set of all chords of H none of whose two endpoints
are on Cf except the chord v1v3, and let T = G−E (Cf )−E(M). Then M and
T are a matching and a spanning tree of G, respectively. Thus we have a desired
decomposition of G with T , Cf and M . Otherwise it is sufficient to consider that

(3.0) the associated cycle of any minimal chord of H on the subpath v1Hv3 does

not contain v4.

Since there is a chord of H on the subpath v1Hv2 (for example, the chord
v1v2), we can pick a minimal chord f1 = t1t2 of H such that the right endpoint
t2 is the closest to the vertex v2 among all minimal chords of H on the subpath
v1Hv2. Note if f1 is the chord v1v2, then let ti = vi (i = 1, 2). Let Cf1 be the
associated cycle of f1. Similar to the subpath v5Hv6, we can pick a minimal chord
f2 = t3t4 of H such that the left endpoint t3 is the closest to the vertex v5 among
all minimal chords of H on the subpath v5Hv6. If f2 is the chord v5v6, then let
t3 = v5 and t4 = v6. Let Cf2 be the associated cycle of f2. Suppose that there is
no chord of H which links the cycles Cf1 and Cf2 . Let M be the set of all chords
of H none of whose two endpoints are on Cf1 and on Cf2 except the chords v1v3
and v4v6. Then M is a matching of G. Let T = G − E (Cf1 ∪ Cf2) − E(M). T

is a spanning tree of G. So we can decompose G into the spanning tree T , the 2-
regular subgraph Cf1 ∪Cf2 , and the matching M . Otherwise, there exists at least
one chord of H which links Cf1 and Cf2 . We can assume that a chord f3 = t5t6 of
H links Cf1 and Cf2 and t5 is the left endpoint of f3. Let C

3
1
= v1v2Hv3v1. If C

3
1

is a non-separating cycle of G, then let M be the set of all chords of H none of
whose two endpoints are on C3

1
except the chord f3, and T = G−E

(

C3
1

)

−E(M).
It is clear that M and T are a matching and a spanning tree of G, respectively.
Thus we obtain a desired decomposition of G with T , C3

1
and M . Otherwise, C3

1

is a separating cycle of G. Then, there is at least one chord of H on the subpath
v2Hv3. Let f4 be any minimal chord of H on the subpath v2Hv3, and let Cf4 be
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the associated cycle of f4. From (3.0), Cf4 does not contain the vertex v4.

Suppose that there is not any chord of H which links the cycles Cf4 and Cf2 .
Let M be the set of all chords of H none of whose two endpoints are on Cf4 and
on Cf2 except the chords v1v3 and v4v6. Let T = G − E (Cf4 ∪ Cf2) − E(M).
Then G has the desired decomposition {T,Cf4∪Cf2 ,M}. Otherwise, there is
a chord of H which links Cf4 and Cf2 . Of course, there is at least one chord
of H which links the subpath t5Hv3 and Cf2 . Let f5 = t7t8 be a chord of H
linking the subpath t5Hv3 and Cf2 such that the left endpoint t7 is the closest
to the vertex t5 among all chords of H linking the subpath t5Hv3 and Cf2 . Let
C3
2
= t5Ht7t8Ht6t5. If C3

2
is a non-separating cycle of G, then let M be the set

of all chords of H none of whose two endpoints are on C3
2
except the chords v1v3

and v5v6. Let T = G−E
(

C3
2

)

−E(M). So we get a desired decomposition of G
with T , C3

2
and M . Otherwise, C3

2
is a separating cycle of G. Then there must be

at least one chord of H on the subpath t5Ht7. Let f6 be a minimal chord of H on
the subpath t5Ht7, and let Cf6 be the associated cycle of f6. From (3.0), we have
that Cf6 does not contain the vertex v4. According to the choice of f5, there is
no chord of H which links Cf6 and Cf2 . Let M be the set of all chords of H none
of whose two endpoints are on Cf6 and on Cf2 except the chords v1v3 and v4v6.
Let T = G − E(Cf6 ∪ Cf2) − E(M). Thus we have a desired decomposition of
G with the spanning tree T , the 2-regular subgraph Cf6 ∪Cf2 , and the matching
M , see Figure 6.

v1 t1 t2 t3 t4

v2
v4 v3 v5

t8t7t5 t6
v6

f1 f2

f3

f5

C3
1

C3
2

f6

f4

Figure 6. Case 3 is illustrated.

Case 4. v4 is on the subpath v3Hv5. Since there are chords of H on the
subpath v1Hv3 (for example, the chords v1v2 and v1v3 ), we can choose a minimal
chord g1 = s1s2 of H on the subpath v1Hv3. If g1 is the chord v1v2, then si = vi
(i = 1, 2). Let Cg1 be the associated cycle of g1. Similarly, let g2 = s3s4 be a
minimal chord of H on the subpath v4Hv6. If g2 is the chord v5v6, then s3 = v5
and s4 = v6. Let Cg2 be the associated cycle of g2. If there is no chord of H
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which links the cycles Cg1 and Cg2 , then let M be the set of all chords of H none
of whose two endpoints are on Cg1 and on Cg2 except the chords v1v3 and v4v6.
Let T = G − E(Cg1 ∪ Cg2) − E(M). Thus we have a desired decomposition of
G with the spanning tree T , the 2-regular subgraph Cg1 ∪ Cg2 and the matching
M . Otherwise, we suppose that

(4.0) the associated cycle of any minimal chord of H on the subpath v1Hv3 is

linked by a chord of H with the associated cycle of each minimal chord of H on

the subpath v4Hv6.

Since the subpath v1Hv2 has at least one chord of H, there is a minimal
chord g3 of H. If the subpath v1Hv2 only has the chord v1v2, then g3 = v1v2.
Let Cg3 be the associated cycle of g3. Similarly, there exists a minimal chord g4
of H on the subpath v5Hv6. If the subpath v5Hv6 only has the chord v5v6, then
g4 = v5v6. Let Cg4 be the associated cycle of g4. From (4.0), there is at least one
chord of H which links Cg3 and Cg4 . Let g5 = s5s6 be such a chord of H. We
discuss the following two subcases.

Subcase 4.1. There are at least two chords of H which link the subpaths

v1Hv3 and v4Hv6. Let g6 = s7s8 be a chord of H linking the subpaths v1Hv3
and v4Hv6 different from g5 such that the left endpoint s7 is the closest to the
vertex s5 among all chords of H linking such two subpaths. Suppose that the
cycle C4

1
= s5Hs7s8Hs6s5 is a non-separating cycle of G. Let M be the set of

all chords of H none of whose two endpoints are on C4
1
except the chords v1v3

and v4v6, and let T = G−E
(

C4
1

)

−E(M). Thus G can be decomposed into the
spanning tree T , the 2-regular subgraph C4

1
and the matching M , see Figure 7.

v6v1 v2 v3 v4 v5

g3 g4

s5 s6

g6

g5

C4
1

s7 s8

Figure 7. The cycle C4

1
= s5Hs7s8Hs6s5 is a non-separating cycle of G (dot line).

Otherwise, C4
1
is a separating cycle of G. From (4.0) and the choice of g6,

we can deduce that there exists at least one chord of H on the subpath s8Hs6.
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Then we pick a minimal chord g7 of H on the subpath s8Hs6 such that the right
endpoint of g7 is the closest to the vertex s6 among all chords of H on the subpath
s8Hs6. Let Cg7 be the associated cycle of g7. According to (4.0), there is at least
one chord of H which links the cycles Cg3 and Cg7 . Let g8 = s9s10 be a chord
of H linking Cg3 and Cg7 such that the right endpoint s10 is the closest to the
vertex s6 among such all chords of H. Then, the cycle C4

2
= s9Hs5s6Hs10s9 is a

non-separating cycle. Since both s5 and s9 are on the associated cycle Cg3 of the
minimal chord g3, there is no chord of H on the subpath s9Hs5. Let M be the set
of all chords of H none of whose two endpoints are on C4

2
except the chords v1v3

and v4v6, and let T = G−E
(

C4
2

)

−E(M). So we have a desired decomposition
of G with T , C4

2
and M , see Figure 8.

v6v1 v2 v3 v4 v5

g3 g4

s5 s6

g7g6

g5

C4
1 C4

2

s9 s10s7 s8

C4
2

g8

Figure 8. The cycle C4

2
= s9Hs5s6Hs10s9 is a non-separating cycle of G (dot line).

Subcase 4.2. The chord g5 is the only one chord of H which links the subpaths

v1Hv3 and v4Hv6. According to (4.0), it can be deduced that the vertex s5 locates
between two endpoints of any minimal chord of H on the subpath v1Hv3. If not,
there is a minimal chord of H such that its associate cycle is not incident with s5.
Then there is a chord of H different from g5 which links the associated cycle of
this minimal chord and Cg4 , contradiction. Further we can obtain that s5 locates
between two endpoints of each chord of H on the subpath v1Hv3.

Only for convenience, we give a drawing of the graph G here. Except that
the chord g5 is arranged on one side of H, all chords of H are arranged on the
other side of H. We discuss two cases as follows.

Subcase 4.2.1. There exists a chord g of H such that g intersects at least

two chords of H on the subpath v1Hv3. Let g9 = s11s12 and g10 = s13s14 be two
chords of H intersecting g such that the left endpoint s11 of g9 is the closest to the
left endpoint s13 of g10 among such all chords of H on the subpath v1Hv3. Let
the cycle C4

3
= s11s12Hs14s13Hs11. Then C4

3
is a non-separating cycle of G. If
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none of g9 and g10 is the chord v1v3, then let M be the set of all chords of H none
of whose two endpoints are on C4

3
and on Cg4 except the chords v1v3, v4v6, and g;

otherwise, let M be the set of all chords of H none of whose two endpoints are on
C4
3
and on Cg4 except the chords v4v6 and g. Let T = G−E

(

C4
3
∪ Cg4

)

−E(M).
Thus the graph G can be decomposed into the spanning tree T , the 2-regular
subgraph C4

3
∪ Cg4 and the matching M , see Figure 9.

s5 s6

g5

v1 v2 v3 v5 v6v4 s5 s6

g5

v1 v2 v3 v5 v6v4

(1) (2)

g
g

g4 g4

Figure 9. (1) g intersects the chords g9 and g10 on the subpath v1Hv3, and none of g9
and g10 is the chord v1v3;

(2) g intersects the chords g9 and g10 on the subpath v1Hv3, and one of g9 and g10 is

the chord v1v3.

Subcase 4.2.2. There is not any chord of H that intersects two chords on

the subpath v1Hv3. Suppose that there is a chord g1 = s1s2 of H such that the
endpoint s1 is on the subpath v1Hs5 and the endpoint s2 is on the subpath v2Hv3
(the former case for short). On the subpath v1Hs2, we start from the second edge
and choose every other edge along the direction from v1 to s2. Otherwise, there
is not any chord of H one of which endpoints is on the subpath v1Hs5 and the
other on the subpath v2Hv3 (the latter case for short). On the subpath v1Hv2,
we start from the second edge and choose every other edge along the direction
from v1 to v2. Let M0 be the set of the chosen edges in both cases. Then M0

is a matching of G. Let V be the set of vertices on the subpath v1Hs2 for the
former case or the set of vertices on the subpath v1Hv2 for the latter case. We
first prove the following claim.

Claim. Let M0, V , the former case, and the latter case be defined as above. Then

the subgraph G[V ]−E (M0) is a path, where G[V ] is a subgraph of G induced by V .

Proof. Let G1 = G[V ] − E (M0). Since the vertex s5 locates between the two
endpoints of each chord of H on the subpath v1Hv3, V insists of s5 and the union
of the two endpoints of each chord on the subpath v1Hs2 for the former case or
on the subpath v1Hv2 for the latter case. |V | is odd. Both the subpath v1Hs2

and the subpath v1Hv2 have an even number of edges. According to the choice
of M0, all vertices of G1 are of degree 2 except two 1-degree vertices s5 and s2 for
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s5 s6

g5

v1 v2s1 s2 v3 v5
v6v4

s5 s6

g5

v1 v2 v3 v5
v6v4

g3
g4

g3 g4

(1) (2)

g1

Figure 10. (1) the former case that there exists a chord g1 = s1s2 of H such that s1 is
on the subpath v1Hs5 and s2 is on the subpath v2Hv3;

(2) the latter case that there is not any chord of H like g1.

the former case or two 1-degree vertices s5 and v2 for the latter case. It suffices
to prove that G1 is connected.

Suppose that G1 is disconnected. The components of G1 consist of one path
and some cycles according to the degree condition of G1. Let C be a component
of G1 which is a cycle. In G1, s5 is not incident with C since s5 is of degree
1. Let t1 and t2 be two vertices of C such that t1 is the closest to s5 among all
vertices of C which locate on the left side of s5 and t2 is the closest to s5 among
all vertices of C which locate on the right side of s5. Let the path P = t1Hs5Ht2.
Then the edges incident with t1 and t2 on P are edges of M0. So P has an odd
number of edges and an even number of vertices according to the choice of M0.
We can deduce that there is a chord g∗ of H such that it only has one endpoint
on P . The endpoint of g∗ not on P can not be on C according to the choice of
M0 and P . Then g∗ intersects at least two edges of C which are chords of H
on the subpath v1Hv3, contraction with assumptions in Subcase 4.2.2. So G1 is
connected, and is a path.

Let the subpath P1 = s2Hv6 for the former case or P1 = v2Hv6 for the
latter case. Let M1 be the set of all chords of H on P1 none of whose two
endpoints are on Cg4 except the chord v4v6. Let M = M0 ∪M1 ∪ v1v3, and let
T = G − E(Cg4) − E(M). Thus we get a desired decomposition of G with the
spanning tree T , the 2-regular subgraph Cg4 and the matching M , see Figure 10.

From Theorem 2, we have the following corollary.

Corollary 4. Let G be a connected cubic graph with n vertices and girth at least

(n − 1). Then G can be decomposed into a spanning tree, a 2-regular graph and

a matching.
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