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Abstract

The concept of k-rainbow index rxk(G) of a connected graph G, intro-
duced by Chartrand et al., is a natural generalization of the rainbow connec-
tion number of a graph. Liu introduced a parameter t(n, k, ℓ) to investigate
the problems of the minimum size of a connected graph with given order
and k-rainbow index at most ℓ and obtained some exact values and upper
bounds for t(n, k, ℓ). In this paper, we obtain some exact values of t(n, k, ℓ)
for large ℓ and better upper bounds of t(n, k, ℓ) for small ℓ and k = 3.
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1. Introduction

All graphs considered in this paper are simple, finite and undirected. We follow
the terminology and notation of Bondy and Murty [1]. For a graph, by size of
it we mean number of its edges. Let G be a nontrivial connected graph with
an edge-coloring c : E(G) → {1, 2, . . . , ℓ}, ℓ ∈ N, where adjacent edges may be
colored the same. A path of G is a rainbow path if every two edges of the path
have distinct colors. The graph G is rainbow connected if for every two vertices u
and v of G, there is a rainbow path connecting u and v. The minimum number of
colors for which there is an edge coloring of G such that G is rainbow connected is
called the rainbow connection number, denoted by rc(G). Results on the rainbow
connectivity can be found in [2, 4, 5, 8].

These concepts were introduced by Chartrand et al. in [2]. In [3], they
generalized the concept of rainbow path to rainbow tree. A tree T in G is a
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rainbow tree if no two edges of T receive the same color. For S ⊆ V (G), a
rainbow S-tree is a rainbow tree connecting the vertices of S. Given a fixed
integer k with 2 ≤ k ≤ n, the edge-coloring c of G is called a k-rainbow coloring

if for every set S of k vertices of G, there exists a rainbow S-tree. In this case,
we call G k-rainbow connected. The minimum number of colors that are needed
in a k-rainbow coloring of G is called the k-rainbow index, denoted by rxk(G).
Clearly, when k = 2, rx2(G) is nothing new but the rainbow connection number
rc(G) of G. For every connected graph G of order n, it is easy to see that
rx2(G) ≤ rx3(G) ≤ · · · ≤ rxn(G).

The Steiner distance dG(S) of a set S of vertices in G is the minimum size
of a tree in G containing S. The k-Steiner diameter sdiamk(G) of G is the
maximum Steiner distance of S among all sets S with k vertices in G. Then
there is a simple upper bound and lower bound for rxk(G).

Observation 1 [3]. For every connected graph G of order n ≥ 3 and each integer

k with 3 ≤ k ≤ n, k − 1 ≤ sdiamk(G) ≤ rxk(G) ≤ n− 1.

It is [3] shown that the tree is a class of graphs whose k-rainbow index attains
the upper bound.

Proposition 2 [3]. Let T be a tree of order n ≥ 3. For each integer k with

3 ≤ k ≤ n, rxk(T ) = n− 1.

Chartrand et al. also showed that the k-rainbow index of the unicyclic graph
is n− 1 or n− 2.

Theorem 3 [3]. If G is a unicyclic graph of order n ≥ 3 and girth g ≥ 3, then

(1) rxk(G) =

{

n− 2, if k = 3 and g ≥ 4,

n− 1, if g = 3 or 4 ≤ k ≤ n.

Schiermeyer [11] introduced a parameter t(n, d) to investigate the rainbow
connection. For integers n and d let t(n, d) denote the minimum size (number of
edges) in d-rainbow connected graphs of order n. Since a network which satisfies
our certain requirements and has as few links as possible can cut costs, reduce
the construction period and simplify later maintenance, the study of this param-
eter is significant. Later, this parameter was investigated [7, 10] and was solved
completely by Lo [10]. Motivated by the parameter t(n, d), Liu [9] introduced
a new parameter to study the minimum size of a graph G such that G has a
k-rainbow coloring using a fixed number of colors. Let t(n, k, ℓ) be the minimum
size of a connected graph G of order n with rxk(G) ≤ ℓ, where 2 ≤ ℓ ≤ n − 1
and 2 ≤ k ≤ n. Clearly, t(n, k, 1) ≥ t(n, k, 2) ≥ · · · ≥ t(n, k, n − 1). Liu [9] got
some exact values and some upper bounds for t(n, k, ℓ) when k and ℓ take specific
values. In this paper, we obtain some exact values of t(n, k, ℓ) for large ℓ and
better upper bounds of t(n, k, ℓ) for small ℓ and k = 3.
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2. Preliminaries

Definition. A rose graph Rp with p petals (or p-rose graph) is a graph obtained
by taking p cycles with just a vertex in common. The common vertex is called
the center of Rp. The rose graph with p petals is denoted by Rp(ℓ1, ℓ2, . . . , ℓp) if
the length of each cycle needs to be specified.

Definition. An edge-colored graph is rainbow if no two edges in the graph share
the same color.

Definition. To subdivide an edge e is to delete e, add a new vertex x, and join
x to the ends of e. Any graph derived from a graph G by a sequence of edge
subdivisions is called a subdivision of G.

Lemma 4 [6]. Let H be a connected subgraph of a connected graph G. Then

rxk(G) ≤ rxk(H) for 2 ≤ k ≤ n− 1.

Lemma 5 [6]. Let G be a connected graph, and H be a subdivision of G. Then

rxk(H) ≤ rxk(G) + |H| − |G|.

Theorem 6 [6]. For each integer k with k ≥ 3, rx3(Kk,k) = 3.

Lemma 7. For each integer k with k ≥ 3, rxk(K2,k−1) = k − 1.

Proof. LetG = K2,k−1 = G[X,Y ], whereX = {u,w} and Y = {v1, v2, . . . , vk−1}.
Define an edge-coloring c as follows: c(uvi) = i for 1 ≤ i ≤ k − 1, c(wvi) = i+ 1
for 1 ≤ i ≤ k − 1. It is easily checked that there exists a rainbow S-tree for any
S ⊆ V (G) and |S| = k. Thus rxk(K2,k−1) ≤ k − 1. Conversely, by Observation
1, we have rxk(K2,k−1) ≥ k − 1. Therefore, rxk(K2,k−1) = k − 1.

3. Some Results for t(n, k, n− 1) and t(n, k, n− 2)

In this section, we first consider the case when ℓ is large. By Proposition 2, we
get the exact value of t(n, k, ℓ) for ℓ = n− 1 and every k with 3 ≤ k ≤ n.

Theorem 8. Let n ≥ 3 be an integer. For each integer k with 3 ≤ k ≤ n,

t(n, k, n− 1) = n− 1.

For ℓ = n − 2, Liu [9] got t(n, k, n − 2) = n when k = 3, we get results for
k = 4 and k = n− 1.

Theorem 9. Let n ≥ 4 be an integer. Then t(n, 4, n− 2) = n+ 1.
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Proof. Let H be a graph obtained from K2,3 by subdividing n−5 edges. Then H

has n vertices and n+1 edges. Since rx4(K2,3) = 3, it follows that, by Lemma 5,
rx4(H) ≤ n−2. Thus t(n, 4, n−2) ≤ n+1. Conversely, if G is a tree or unicyclic,
then by Proposition 2 and Theorem 3, rx4(G) = n−1. Thus t(n, 4, n−2) ≥ n+1.
Therefore, t(n, 4, n− 2) = n+ 1.

Theorem 10. Let n ≥ 4 be an integer. Then t(n, n− 1, n− 2) = 2n− 4.

Proof. since t(n, n− 1, n− 2) ≤ 2n− 4 has been proved in [9], we need to prove
that t(n, n−1, n−2) ≥ 2n−4. To the contrary, suppose t(n, n−1, n−2) ≤ 2n−5.
Assume that G is a connected graph with 2n− 5 edges and n− 2 colors. By the
drawer principle, at least a color appears exactly once in G. Suppose a c1-edge
is incident to the vertex x. Delete the vertex x from G, and the remaining graph
G − x has n − 1 vertices but at most n − 3 colors, it follows that G − x has no
rainbow tree, a contradiction.

From t(n, 3, n− 2) = n, t(n, 4, n− 2) = n+1 and t(n, n− 1, n− 2) = 2n− 4,
we believe that t(n, k, n − 2) = n + k − 3 for general k. In fact, this is true for
general k.

Theorem 11. Let n ≥ 4 be an integer. For each integer k with 3 ≤ k ≤ n − 1,
t(n, k, n− 2) = n+ k − 3.

Proof. Let H be a graph obtained from K2,k−1 by subdividing n− k − 1 edges.
Since rxk(K2,k−1) = k − 1, it follows that, by Lemma 5, rxk(H) ≤ n− 2. As H
has n vertices and n+ k− 3 edges, we have t(n, k, n− 2) ≤ n+ k− 3. Conversely,
we need to prove that t(n, k, n − 2) ≥ n + k − 3. To the contrary, suppose
t(n, k, n− 2) ≤ n+ k − 4. Let G be a connected graph with n+ k − 4 edges and
n − 2 colors. Then at least n − k colors appears exactly once in G; otherwise,
at most n − k − 1 colors appear exactly once and at least k − 1 colors appear
at least twice in G, it follows that e(G) ≥ n − k − 1 + 2(k − 1) = n + k − 3, a
contradiction. Delete n− k vertices incident to the edges colored with the n− k

colors which appear exactly once, then the remaining graph has k vertices but at
most n − 2 − (n − k) = k − 2 colors. Thus the remaining graph has no rainbow
spanning tree, a contradiction.

4. Some Results for t(n, 3, ℓ)

In this section, we first focus on the case when ℓ is large.

Theorem 12. Let n ≥ 8 be an integer. Then t(n, 3, n− 4) = n+ 1.
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Figure 1. Graphs for Theorem 12 and Corollary 13.

Proof. Consider the graph Ga in Figure 1. Clearly, Ga has 8 vertices, 9 edges and
4 colors. It is easily checked that Ga is 3-rainbow connection, thus rx3(Ga) ≤ 4.
Let H be a graph obtained from Ga by subdividing n−8 edges. Then by Lemma
5, rx3(H) ≤ 4+(n−8) = n−4. Since H has n vertices and n+1 edges, it follows
that t(n, 3, n− 4) ≤ n+1. Conversely, if G is a tree or a unicyclic graph, then by
Proposition 2 and Theorem 3, rx3(G) is n− 1 or n− 2. So if G is a graph with
rx3(G) = n− 4, then G has at least n+ 1 edges and then t(n, 3, n− 4) ≥ n+ 1.
Therefore, t(n, 3, n− 4) = n+ 1.

Corollary 13. Let n ≥ 7 be an integer. Then t(n, 3, n− 3) = n+ 1.

Proof. Consider the graph Gb in Figure 1. Clearly, Gb has 7 vertices, 8 edges and
4 colors. It is easily checked that Gb is 3-rainbow connection, thus rx3(Gb) ≤ 4
and t(7, 3, 4) ≤ 8. Let n ≥ 8. Since t(n, 3, n − 4) ≥ (n, 3, n − 3), it follows that
t(n, 3, n−3) ≤ n+1 by Theorem 12. Conversely, if G is a tree or a unicyclic graph,
then by Proposition 2 and Theorem 3, rx3(G) is n−1 or n−2. So if G is a graph
with rx3(G) = n− 3, then G has at least n+1 edges. Thus t(n, 3, n− 3) ≥ n+1.
Therefore, t(n, 3, n− 3) = n+ 1.

Remark 14. For ℓ = n − 1 and ℓ = n − 2, Liu [9] got t(n, 3, n − 1) = n − 1
and t(n, 3, n − 2) = n. For n

2 ≤ ℓ ≤ n − 3, Liu [9] (see Theorem 2.11) got
t(n, 3, ℓ) ≤ 2n− ℓ− 1, which implies t(n, 3, n− 3) ≤ n+ 2, t(n, 3, n− 4) ≤ n+ 3
and t(n, 3, n − 5) ≤ n + 4. In fact, we get the exact values of t(n, 3, n − 3) and
t(n, 3, n− 4) in Theorem 12 and Corollary 13, respectively.

Theorem 15. Let n ≥ 11 be an integer. For each integer ℓ with
⌈

n+1
2

⌉

≤ ℓ ≤

n− 5, t(n, 3, ℓ) ≤
⌊

3n−ℓ−1
2

⌋

.

Proof. We consider two cases according to the parity of n and ℓ.

Case 1. n and ℓ have the same parity. Let w0 be the center ofRn−ℓ

2

(5, 5, . . . , 5)

and let Ci = w0uixiyiviw0 for 1 ≤ i ≤ n−ℓ
2 . To show that rx3

(

Rn−ℓ

2

(5, 5, . . . , 5)
)

≤
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n− ℓ+ 1, we provide an edge-coloring c1 : E
(

Rn−ℓ

2

(5, 5, . . . , 5)
)

→ {1, 2, . . . , n−

ℓ+ 1} defined by

c1(e) =







2i− 1, e = w0ui or yivi
(

1 ≤ i ≤ n−ℓ
2

)

,

2i, e = w0vi or uixi
(

1 ≤ i ≤ n−ℓ
2

)

,

n− ℓ+ 1, e = xiyi
(

1 ≤ i ≤ n−ℓ
2

)

.

For any S ⊆ V
(

Rn−ℓ

2

(5, 5, . . . , 5)
)

and |S| = 3, it is easily checked that there

exists a rainbow S-tree. Thus, rx3
(

Rn−ℓ

2

(5, 5, . . . , 5)
)

≤ n−ℓ+1. LetG be a graph

obtained from Rn−ℓ

2

(5, 5, . . . , 5) by subdividing 2ℓ−n−1 edges arbitrarily. Then
∣

∣V (G)
∣

∣ = 4· n−ℓ
2 +1+(2ℓ−n−1) = n and

∣

∣E(G)
∣

∣ = 5· n−ℓ
2 +(2ℓ−n−1) = 3n−ℓ−2

2 .
By Lemma 5, rx3(G) ≤ rx3

(

Rn−ℓ

2

(5, 5, . . . , 5)
)

+ (2ℓ− n− 1) ≤ ℓ. Since G has n

vertices and 3n−ℓ−2
2 edges, it follows that t(n, 3, ℓ) ≤ 3n−ℓ−2

2 . See Gc in Figure 2
for an example with n = 13, ℓ = 7.

Case 2. n and ℓ have different parities. Let w0 be the center ofRn−ℓ+1

2

(3, 5, . . .,

5), C1 = w0x1y1w0 and let Ci = w0uixiyiviw0, where 2 ≤ i ≤ n−ℓ+1
2 . To

show that rx3
(

Rn−ℓ+1

2

(3, 5, . . . , 5)
)

≤ n − ℓ + 1, we provide an edge-coloring

c2 : E
(

Rn−ℓ+1

2

(3, 5, . . . , 5)
)

→ {1, 2, . . . , n− ℓ+ 1} defined by

c2(e) =















1, e = w0x1 or w0y1,

2i− 2, e = w0ui or yivi
(

2 ≤ i ≤ n−ℓ+1
2

)

,

2i− 1, e = w0vi or uixi
(

2 ≤ i ≤ n−ℓ+1
2

)

,

n− ℓ+ 1, e = xiyi
(

1 ≤ i ≤ n−ℓ+1
2

)

.

For any S ⊆ V
(

Rn−ℓ+1

2

(3, 5, . . . , 5)
)

and |S| = 3, it is easily checked that

there exists a rainbow S-tree. Thus, rx3
(

Rn−ℓ+1

2

(3, 5, . . . , 5)
)

≤ n − ℓ + 1. Let

G be a graph obtained from Rn−ℓ+1

2

(3, 5, . . . , 5) by subdividing 2ℓ− n− 1 edges.

Then
∣

∣V (G)
∣

∣ = 4·
(

n−ℓ+1
2 − 1

)

+3+(2ℓ−n−1) = n and
∣

∣E(G)
∣

∣ = 5·
(

n−ℓ+1
2 − 1

)

+

3 + (2ℓ − n − 1) = 3n−ℓ−1
2 . By Lemma 5, rx3(G) ≤ rx3

(

Rn−ℓ+1

2

(3, 5, . . . , 5)
)

+

(2ℓ − n − 1) ≤ ℓ. Since G has n vertices and 3n−ℓ−1
2 edges, it follows that

t(n, 3, ℓ) ≤ 3n−ℓ−1
2 . See Gd in Figure 2 for an example with n = 11, ℓ = 6.

Combining the above two cases, we have that t(n, 3, ℓ) ≤
⌊

3n−ℓ−1
2

⌋

.

Remark 16. For n
2 ≤ ℓ ≤ n− 3, Liu [9] got t(n, 3, ℓ) ≤ 2n− ℓ− 1 (see Theorem

2.11). Since ℓ ≤ n − 5 in Theorem 15, it follows that 2n − ℓ − 1 −
⌊

3n−ℓ−1
2

⌋

≥

2n− ℓ− 1− 3n−ℓ−1
2 = n−ℓ−1

2 ≥ 2. Thus the upper bound in Theorem 15 is better
than the one in [9].

Theorem 17. Let n ≥ 17 and ℓ be integers with 9 ≤ ℓ ≤
⌊

n+1
2

⌋

. Then t(n, 3, ℓ) ≤

ℓ
⌈

3n−3
2ℓ−3

⌉

.
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Figure 2. Graphs for Theorem 15.

Proof. We consider three cases according to ℓ ≡ ℓ′ (mod 3).

Case 1. ℓ′ = 0. Set ℓ = 3t. Let H∗ be a connected rainbow graph
with 2t vertices and 3t edges, where V (H∗) = {v1, v2, . . . , v2t} and E(H∗) =
{

vivi+1, v1v2t, vjv2t+2−j , v1vt+1

}

for 1 ≤ i ≤ 2t − 1 and 2 ≤ j ≤ t. Note that,
v1 and vi (2 ≤ i ≤ 2t, i 6= t + 1) have three internally-disjoint rainbow paths
P1 = v1v2 · · · vi−1vi, P2 = v1vt+1vt · · · vi+1vi, P3 = v1v2tv2t−1 · · · v2t+3−iv2t+2−ivi;
v1 and vt+1 have three internally-disjoint rainbow paths P1 = v1v2 · · · vtvt+1, P2 =
v1vt+1, P3 = v1v2tv2t−1 · · · vt+2vt+1 in H∗. Also note that vertices v1 and vt+1

divide the cycle C2t := v1v2 · · · v2t−1v2tv1 into two segments C∗ = v1v2 · · · vtvt+1

and C∗∗ = vt+1vt+2 · · · v2tv1 in H∗.

Take
⌊

n−1
2t−1

⌋

copies of H∗ and denote them by H1, H2, . . . , H⌊ n−1

2t−1⌋ with

V (Hp) = {vp1 , v
p
2 , . . . , v

p
2t} and E(Hp) = {vpi v

p
i+1, v

p
1v

p
2t, v

p
j v

p
2t+2−j , v

p
1v

p
t+1} for 1 ≤

i ≤ 2t− 1 and 2 ≤ j ≤ t, 1 ≤ p ≤
⌊

n−1
2t−1

⌋

, and take a subgraph graph of H∗, de-

noted byH⌈ n−1

2t−1⌉, with n−(2t−1)
⌊

n−1
2t−1

⌋

vertices and corresponding edges ofH∗.

Let G be a graph with n vertices by identifying the vertices vp1

(

1 ≤ p ≤
⌊

n−1
2t−1

⌋)

and v
⌈ n−1

2t−1⌉
1 if H⌈ n−1

2t−1⌉ exists. Clearly, e(G) ≤ ℓ
⌈

n−1
2t−1

⌉

= ℓ
⌈

3n−3
2ℓ−3

⌉

. See Ge in

Figure 3 for an example with n = 15, ℓ = 9.

Let vxi , v
y
j and vzk be three vertices in G. Denote the corresponding vertex

of vyj (v
z
k) in Hx by vxj (v

x
k). By the drawer principle, we need to consider two

subcases according to the positions of vxi , v
x
j , v

x
k .

Subcase 1.1. vxi , v
x
j and vxk are in the same segment of Hx divided by vx1 and

vxt+1. If v
x
i , v

x
j , v

x
k ∈ Cx

∗
for i ≤ j ≤ k, then vx1v

x
2 · · · v

x
i−1v

x
i ∪v

y
j v

y
2t+2−jv

y
2t+3−j · · · v

y
2t

v
y
1∪v

z
kv

z
k+1 · · · v

z
t v

z
t+1v

z
1 is a {v

x
i , v

y
j , v

z
k}-rainbow tree. Since other cases are similar,

we omit them here.

Subcase 1.2. Two of vxi , v
x
j and vxk are in one segment of Hx, and the third one

is in the other segment of Hx. Suppose vxi , v
x
j ∈ Cx

∗
for i ≤ j and vxk ∈ Cx

∗∗
. Then
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vx1v
x
2 · · · v

x
i−1v

x
i ∪ v

y
j v

y
j+1 · · · v

y
t v

y
t+1v

y
1 ∪ vzkv

z
k+1 · · · v

z
2tv

z
1 is a

{

vxi , v
y
j , v

z
k

}

-rainbow
tree.

Case 2. ℓ′ = 1. Set ℓ = 3t + 1. Let H∗∗ be a connected rainbow graph
with 2t vertices and 3t+ 1 edges, which is obtained from H∗ by adding an edge

v1v3 where c(v1v3) receives a new color. Take
⌊

n−1
2t−1

⌋

copies of H∗∗ and de-

note them by H1, H2, . . . , H⌊ n−1

2t−1⌋ with V
(

Hp
)

= {vp1 , v
p
2 , . . . , v

p
2t} and E

(

Hp
)

=
{

v
p
i v

p
i+1, v

p
1v

p
2t, v

p
j v

p
2t+2−j , v

p
1v

p
t+1, v

p
1v

p
3

}

for 1 ≤ i ≤ 2t − 1 and 2 ≤ j ≤ t,

1 ≤ p ≤
⌊

n−1
2t−1

⌋

, and take a subgraph graph of H, denoted by H⌈ n−1

2t−1⌉, with

n − (2t − 1)
⌊

n−1
2t−1

⌋

vertices and corresponding edges of H. Let G be a graph

of order n by identifying the vertex v
p
1 and v

⌈ n−1

2t−1⌉
1 if H⌈ n−1

2t−1⌉ exists. Clearly,

e(G) ≤ ℓ
⌈

n−1
2t−1

⌉

= ℓ
⌈

3(n−1)
2ℓ−5

⌉

. See Gf in Figure 3 for an example with n =

15, ℓ = 10. Since the graph constructed in Case 1 is a spanning subgraph of the
corresponding graph in Case 2, it follows that, by Lemma 4, every three vertices
vxi , v

y
j and vzk in Case 2 have a rainbow tree connecting them.

Case 3. ℓ′ = 2. Set ℓ = 3t + 2. Let H∗∗∗ be a connected rainbow
graph with 2t vertices and 3t + 2 edges, which is obtained from H∗∗ by adding

an edge v1v2t−1 colored with a new color. Take
⌊

n−1
2t−1

⌋

copies of H and de-

note them by H1, H2, . . . , H⌊ n−1

2t−1⌋ with V
(

Hp
)

= {vp1 , v
p
2 , . . . , v

p
2t} and E(H) =

{

v
p
i v

p
i+1, v

p
j v

p
2t+2−j , v

p
1v

p
t , v

p
1v

p
3 , v

p
1v

p
t−1

}

for 1 ≤ i ≤ 2t− 1 and 2 ≤ j ≤ t, and take

a subgraph graph of H, denoted by H⌈ n−1

2t−1⌉, with n−(2t−1)
⌊

n−1
2t−1

⌋

vertices and

corresponding edges of H. Construct a graph G with n vertices similar to Case

1 and Case 2, then e(G) ≤ ℓ
⌈

n−1
2t−1

⌉

= ℓ
⌈

3(n−1)
2ℓ−7

⌉

. Similarly, since the graph con-

structed in Case 2 is a subgraph of the corresponding graph in Case 3, it follows
that, by Lemma 4, every three vertices in Case 3 have a rainbow tree connecting
them.

Combining the above three cases, we get t(n, 3, ℓ) ≤ ℓ
⌈

3n−3
2ℓ−3

⌉

.

Remark 18. For 9 ≤ ℓ ≤
⌊

n+1
2

⌋

, the upper bound in Theorem 17 is better than
the one in [9].

For small ℓ, Liu [9] just got exact values of t(n, 3, 3) for n = 3, 4, 5. Here we
get upper bounds for t(n, 3, 3) when n ≥ 6.

Theorem 19. For an integer n with n ≥ 6, t(n, 3, 3) ≤ n2+2n−3
4 .

Proof. We consider two cases according to whether n is even or n is odd.
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Ge Gf

Figure 3. Graphs for Theorem 17.

Case 1. n is even. Let n = 2k for some integer k ≥ 3. Let G be a regular
complete bipartite graph Kk,k. Then e(G) = n2

4 . By Theorem 6, rx3(G) = 3.

Case 2. n is odd. Let n = 2k + 1 for some integer k ≥ 3. Let G be a graph
with V (G) = {u1, u2, . . . , uk, w1, w2, . . . , wk, x} and E(G) = {uiwj , uix,wix} for

1 ≤ i, j ≤ k. It is easy to get e(G) = n2+2n−3
4 . Define an edge-coloring c :

E(G) → {1, 2, 3} as follows

c(e) =







1, if e = uiwj or e = uix, 1 ≤ i = j ≤ k,

2, if e = uiwj or e = wix, 1 ≤ i < j ≤ k,

3, if e = uiwj , 1 ≤ j < i ≤ k.

Now we show that c is a 3-rainbow coloring of G. Let S be a set of three
vertices of G. By Case 1, we need to consider three possibilities when S contain
x. If S =

{

x, ui, uj
}

, where i < j, then T =
{

uiwi, ujwi, wix
}

is a rainbow
S-tree; if S =

{

x,wi, wj

}

, where i < j, then T =
{

ujwi, ujwj , wjx
}

is a rainbow
S-tree; if S =

{

x, ui, wj

}

, then T =
{

uix,wjx
}

is a rainbow S-tree. Therefore,
rx3(G) ≤ 3.

Combining the above two cases, we have that t(n, 3, 3) ≤ n2+2n−3
4 .

Theorem 20. For an integer n ≥ 8, t(n, 3, 4) ≤ n2+22n+11
8 .

Proof. We consider four cases, according to n ≡ n′ (mod 4).

Case 1. n′ = 0. Let n = 4k for some integer k ≥ 2. Let G1 be a graph
with V (G1) = U1 ∪ U2 ∪ U3 ∪ U4 (where Ui =

{

u1i , u
2
i , . . . , u

k
i

}

) and E(G1) =
{

ui1u
j
2, u

i
3u

j
4, u

i
1u

i
3, u

i
2u

i
4

}

for 1 ≤ i, j ≤ k. It is easy to get e(G1) = 2k2 + 2k =
n2+4n

8 . See Gg in Figure 4 for an example with n = 8. We define an edge-coloring
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c1: E(G1) → {1, 2, 3, 4} as follows

c1(e) =



















1, if e = ui1u
j
2, u

i
3u

j
4, 1 ≤ i = j ≤ k,

2, if e = ui1u
j
2, u

i
3u

j
4, 1 ≤ i < j ≤ k,

3, if e = ui1u
j
2, u

i
3u

j
4, 1 ≤ j < i ≤ k,

4, if e = ui1u
i
3, u

i
2u

i
4, 1 ≤ i ≤ k.

Now we show that c1 is a 4-rainbow coloring of G1. Let S = {x, y, z} be a
set of three vertices of G1. Since the case when S ∈ U1 ∪ U2 or U3 ∪ U4 have
been proved in Theorem 6, by symmetry, we need to consider the following three
possibilities by the positions of x, y, z. If x, y ∈ U1, z ∈ U3, say x = ui1, y =
u
j
1, z = uk3, then there is a rainbow

{

x, y, uk1
}

-tree T ′ in U1∪U2 and T = T ′∪uk1z

is a rainbow S-tree. If x, y ∈ U1, z ∈ U4, say x = ui1, y = u
j
1, z = uk4, then there

is a rainbow
{

x, y, uk2
}

-tree T ′ in U1 ∪ U2 and T = T ′ ∪ uk2z is a rainbow S-tree.

If x ∈ U1, y ∈ U2, z ∈ U3, say x = ui1, y = u
j
2, z = uk3, then there is a rainbow

{

x, y, uk1
}

-tree T ′ in U1 ∪ U2 and T = T ′ ∪ uk1z is a rainbow S-tree. Therefore,
rx3(G1) ≤ 4.

Case 2. n′ = 1. Let n = 4k + 1 for some integer k ≥ 2. Let G2 be a
graph with V

(

G2

)

= U1 ∪ U2 ∪ U3 ∪ U4 ∪ {s} (where Ui =
{

u1i , u
2
i , . . . , u

k
i

}

)

and E
(

G2

)

=
{

ui1u
j
2, u

i
3u

j
4, u

i
1u

i
3, u

i
2u

i
4, su

i
1, su

i
2, su

i
3, su

i
4

}

for 1 ≤ i, j ≤ k. It is

easy to get e(G2) = 2k2 + 6k = n2+10n−11
8 . See Gh in Figure 4 for an example

with n = 9. Based on the coloring c1 in Case 1, we define an edge-coloring c2:
E(G2) → {1, 2, 3, 4} as follows

c2(e) =



















1, if e = ui1u
j
2, u

i
3u

j
4, su

i
1, 1 ≤ i = j ≤ k,

2, if e = ui1u
j
2, u

i
3u

j
4, su

i
2, 1 ≤ i < j ≤ k,

3, if e = ui1u
j
2, u

i
3u

j
4, su

i
3, 1 ≤ j < i ≤ k,

4, if e = ui1u
i
3, u

i
2u

i
4, su

i
4, 1 ≤ i ≤ k.

Now we show that c2 is a 4-rainbow coloring of G2. Let S = {x, y, z} be
a set of three vertices of G. Now we need to consider the subcases when S

contain s since other subcases have been discussed in Case 1. Set s = z. We
consider the following five possibilities by the positions of x, y. If x, y ∈ U1,
say y = ui1, then T =

{

xs, yui3, u
i
3s
}

is a rainbow S-tree; if x, y ∈ U2, say
y = ui2, then T =

{

xui1, u
i
1s, sy

}

is a rainbow S-tree; if x, y ∈ U3, say x = ui3,
then T =

{

xui1, u
i
1s, sy

}

is a rainbow S-tree; if x, y ∈ U4, say x = ui4, then
T =

{

xui3, u
i
3s, sy

}

is a rainbow S-tree; if x ∈ Ui and y ∈ Uj (i 6= j), then
T = {xs, sy} is a rainbow S-tree. Therefore, rx3(G2) ≤ 4.

Case 3. n′ = 2. Let n = 4k+2 for some integer k ≥ 2. Let G3 be a graph with
V (G3) = U1 ∪ U2 ∪ U3 ∪ U4 ∪ {s, t} (where Ui =

{

u1i , u
2
i , . . . , u

k
i

}

) and E
(

G3

)

=
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U1 U2

U3 U4

U1 U2

U3 U4

Gg Gh

Figure 4. Graphs for Theorem 20.

{

ui1u
j
2, u

i
3u

j
4, u

i
1u

i
3, u

i
2u

i
4, su

i
1, su

i
2, su

i
3, su

i
4, tu

i
1, tu

i
2, tu

i
3, tu

i
4

}

for 1 ≤ i, j ≤ k. It is

easy to get e
(

G3

)

= 2k2 + 10k = n2+16n−36
8 . Based on the coloring c2 in Case 2,

we define an edge-coloring c3 : E(G3) → {1, 2, 3, 4} as follows

c3(e) =



















1, if e = ui1u
j
2, u

i
3u

j
4, su

i
1, tu

i
1, 1 ≤ i = j ≤ k,

2, if e = ui1u
j
2, u

i
3u

j
4, su

i
2, tu

i
1, 1 ≤ i < j ≤ k,

3, if e = ui1u
j
2, u

i
3u

j
4, su

i
3, tu

i
1, 1 ≤ j < i ≤ k,

4, if e = ui1u
i
3, u

i
2u

i
4, su

i
4, tu

i
1, 1 ≤ i ≤ k.

Now we show that c3 is a 4-rainbow coloring of G3. Let S = {x, y, z} be
a set of three vertices of G. Based on the discussion in Case 2, we need to
consider the subcase when S contains s and t. Set s = y and t = z. We consider
the following four possibilities by the positions of x. If x ∈ U1, say x = ui1,
then T =

{

sui3, u
i
3u

i
1, u

i
1t
}

is a rainbow S-tree; if x ∈ U2, say x = ui2, then
T =

{

sui3, u
i
3u

i
4, u

i
4x, xt

}

is a rainbow S-tree; if x ∈ U3, say x = ui3, then T =
{

sx, xui4, u
i
4t
}

is a rainbow S-tree; if x ∈ U4, say x = ui4, then T =
{

sui3, u
i
3x, xt

}

is a rainbow S-tree. Therefore, rx3(G3) ≤ 4.

Case 4. n′ = 3. Let n = 4k+3 for some integer k ≥ 2. Let G4 be a graph with
V (G4) = U1 ∪U2 ∪U3 ∪U4 ∪{s, t, p} (where Ui =

{

u1i , u
2
i , . . . , u

k
i

}

) and E(G4) =
{

ui1u
j
2, u

i
3u

j
4, u

i
1u

i
3, u

i
2u

i
4, su

i
1, su

i
2, su

i
3, su

i
4, tu

i
1, tu

i
2, tu

i
3, tu

i
4, pu

i
1, pu

i
2, pu

i
3, pu

i
4, tp

}

for 1 ≤ i, j ≤ k. It is easy to get e(G4) = 2k2 + 14k + 1 = n2+22n+11
8 . Based on

the edge-coloring c3 in Case 3, we define an edge-coloring c4: E(G3) → {1, 2, 3, 4}
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as follows

c4(e) =



















1, if e = ui1u
j
2, u

i
3u

j
4, su

i
1, tu

i
1, pu

i
1, 1 ≤ i = j ≤ k,

2, if e = ui1u
j
2, u

i
3u

j
4, su

i
2, tu

i
1, pu

i
1 or e = tp, 1 ≤ i < j ≤ k,

3, if e = ui1u
j
2, u

i
3u

j
4, su

i
3, tu

i
1, pu

i
1, 1 ≤ j < i ≤ k,

4, if e = ui1u
i
3, u

i
2u

i
4, su

i
4, tu

i
1, pu

i
1, 1 ≤ i ≤ k.

Now we show that c4 is a 4-rainbow coloring of G4. Let S = {x, y, z} be a set
of three vertices of G. Now we need to consider the subcase when S = {s, t, p}.
Here T =

{

su11, u
1
1u

1
3, u

1
3t, tp

}

is a rainbow S-tree. Therefore, rx3(G4) ≤ 4.

Combining the above four cases, we have t(n, 3, 4) ≤ n2+22n+11
8 .

Remark 21. The upper bound in Theorem 20 is better than t(n, 3, 4) ≤
(

n
2

)

−
n+ 1, which is got in [9].

Theorem 22. For an integer n ≥ 6, t(n, 3, 5) ≤ 2n− 3.

Proof. Let G be a graph with V (G) = { v, v1, v2, . . . , vn−1 } and E(G) = { vvi,
vjvj+1 } for 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 2. It is easy to get e(G) = 2n− 3. Define
an edge-coloring c: E(G) → {1, 2, 3, 4, 5} as follows

c(e) =

{

i, if e = vvj , 1 ≤ i ≤ 5, 1 ≤ j ≤ n− 1, j = i (mod 5),
i, if e = vjvj+1, 1 ≤ i ≤ 5, 1 ≤ j ≤ n− 2, j + 3 = i (mod 5).

It is easy to show that c is a 5-rainbow coloring of G. Thus rx3(G) ≤ 5, it
follows that t(n, 3, 5) ≤ 2n− 3.

Remark 23. The result in Theorem 22 is better than t(n, 3, 5) ≤ 2n− 2, which
is got in [9].

Theorem 24. For an integer n ≥ 7, t(n, 3, 6) ≤ 2n− 6.

Proof. We consider three cases.

Case 1. n = 3t. Let G1 be a graph by taking t− 2 vertex-disjoint cliques of
order 4 and 5 vertex-disjointK2, and identifying a vertex from each of them. That
is, G1 is a graph with V (G1) = {v, v1, v2, . . . , vn−1} and E (G1) = {vvi, vjvj+1,

vjvj+2, vkvk+1} for 1 ≤ i ≤ n − 1, j = 1(mod 3), k = 2(mod 3), 1 ≤ j, k ≤
3(t− 2). It is easy to get e(G1) = 2n− 7. Define an edge-coloring c1: E(G1) →
{1, 2, 3, 4, 5, 6} as follows

c1(e) =































1, if e = vvi or e = vv3t−5, 1 ≤ i ≤ n− 6, i = 1 (mod 3),
2, if e = vvi or e = vv3t−4, 1 ≤ i ≤ n− 6, i = 2 (mod 3),
3, if e = vvi or e = vv3t−3, 1 ≤ i ≤ n− 6, i = 3 (mod 3),
4, if e = vivi+1 or e = vv3t−2, i = 1 (mod 3),
5, if e = vivi+2 or e = vv3t−1, i = 1 (mod 3),
6, if e = vivi+1, i = 2 (mod 3).
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It is easy to show that c1 is a 6-rainbow coloring of G1, thus rx3(G1) ≤ 6.

Case 2. n = 3t + 1. Let G2 be a graph with V (G2) =
{

v, v1, v2, . . . , vn−1

}

and E(G2) =
{

vvi, vjvj+1, vjvj+2, vkvk+1

}

for 1 ≤ i ≤ n − 1, j = 1(mod 3),
k = 2(mod 3), 1 ≤ j, k ≤ 3(t − 2). It is easy to get e(G2) = 2n − 8. Define an
edge-coloring c2: E(G2) → {1, 2, 3, 4, 5, 6} as follows:

c2(e) =































1, if e = vvi or e = vv3t−5, 1 ≤ i ≤ n− 7, i = 1 (mod 3),
2, if e = vvi or e = vv3t−4, 1 ≤ i ≤ n− 7, i = 2 (mod 3),
3, if e = vvi or e = vv3t−3, 1 ≤ i ≤ n− 7, i = 3 (mod 3),
4, if e = vivi+1 or e = vv3t−2, i = 1 (mod 3),
5, if e = vivi+2 or e = vv3t−1, i = 1 (mod 3),
6, if e = vivi+1 or e = vv3t, i = 2 (mod 3).

It is easy to show that c2 is a 6-rainbow coloring of G2, thus rx3(G2) ≤ 6.

Case 3. n = 3t + 2. Let G3 be a graph with V (G3) =
{

v, v1, v2, . . . , vn−1

}

and E(G3) =
{

vvi, vjvj+1, vjvj+2, vkvk+1

}

for 1 ≤ i ≤ n − 1, j = 1(mod 3),
k = 2(mod 3), 1 ≤ j, k ≤ 3(t − 1). It is easy to get e(G3) = 2n − 6. Define an
edge-coloring c3: E(G3) → {1, 2, 3, 4, 5, 6} as follows

c3(e) =































1, if e = vvi, 1 ≤ i ≤ n− 5, i = 1 (mod 3),
2, if e = vvi, 1 ≤ i ≤ n− 5, i = 2 (mod 3),
3, if e = vvi or e = vv3t−2, 1 ≤ i ≤ n− 5, i = 3 (mod 3),
4, if e = vivi+1 or e = vv3t−1, i = 1 (mod 3),
5, if e = vivi+2 or e = vv3t, i = 1 (mod 3),
6, if e = vivi+1 or e = vv3t+1, i = 2 (mod 3).

It is easy to show that c3 is a 6-rainbow coloring of G3, thus rx3(G3) ≤ 6.

Combining the above three cases, we have t(n, 3, 6) ≤ 2n− 6.

Remark 25. The upper bound in Theorem 24 is better than 2n − 3, which is
got in [9].

Theorem 26. For an integer n ≥ 8, t(n, 3, 7) ≤ 2n− 7.

Proof. We consider three cases.

Case 1. n = 3t+1. Set n′ = n−1 = 3t. Construct a graph G1 as in Theorem
24 and let G be a graph obtained from G1 by adding an edge colored by 7. It is
easy to see that G is 3-rainbow connected and e(G) = (2n′ − 7) + 1 = 2n− 8.

Case 2. n = 3t + 2. Set n′ = n − 1 = 3t + 1. Construct a graph G2 as in
Theorem 24 and let G be a graph obtained from G2 by adding an edge colored by
7. It is easy to see that G is 3-rainbow connected and e(G) = (2n′−8)+1 = 2n−9.
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Case 3. n = 3t + 3. Set n′ = n − 1 = 3t + 2. Construct a graph G3 as in
Theorem 24 and let G be a graph obtained from G3 by adding an edge colored by
7. It is easy to see that G is 3-rainbow connected and e(G) = (2n′−6)+1 = 2n−7.

Combining the above three cases, we have t(n, 3, 7) ≤ 2n− 7.

Theorem 27. For an integer n ≥ 9, t(n, 3, 8) ≤ 2n− 2.

Proof. Let H∗ be a connected rainbow graph with 5 vertices and 8 edges, where
V
(

H∗
)

=
{

v1, v2, . . . , v5
}

and E
(

H∗
)

=
{

vivi+1, v1v3, v1v4, v1v5, v2v5
}

for 1 ≤

i ≤ 4. Take
⌊

n−1
4

⌋

copies of H∗ and denote them by H1, H2, . . . , H⌊n−1

4 ⌋ with
V
(

Hp
)

= {vp1 , v
p
2 , . . . , v

p
5} and E

(

Hp
)

=
{

v
p
i v

p
i+1, v

p
1v

p
3 , v

p
1v

p
4 , v

p
1v

p
5 , v

p
2v

p
5

}

for 1 ≤

i ≤ 4, 1 ≤ p ≤
⌊

n−1
4

⌋

, and take a subgraph graph of H∗, denoted by H⌈n−1

4 ⌉,
with n− 4

⌊

n−1
4

⌋

vertices and corresponding edges of H∗. Let G be a graph with

n vertices by identifying the vertex v
p
1(1 ≤ p ≤

⌊

n−1
4

⌋

) and v
⌈n−1

4 ⌉
1 if H⌈n−1

4 ⌉

exists. Clearly, e(G) ≤ 2n − 2. Similar to the discussion in Theorem 17, it is
shown that G is 3-rainbow connected. Thus t(n, 3, 8) ≤ 2n− 2.

5. Summary

In Section 3, we get the exact values of t(n, k, n − 1) and t(n, k, n − 2) for 3 ≤
k ≤ n − 1. In Section 4, the exact values of t(n, 3, n − 3) and t(n, 3, n − 4) are
obtained. In other cases for k = 3, the upper bounds we got are better than the
ones in [9], but they are not tight. In fact, it is challenging to get the exact values
of t(n, k, ℓ) for all cases. We will continue to focus on this problem in the future.
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