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Abstract

A total k-weighting f of a graph G is an assignment of integers from the
set {1, . . . , k} to the vertices and edges of G. We say that f is neighbor ex-
panded sum distinguishing, or NESD for short, if

∑

w∈N(v)

(

f(vw) + f(w)
)

differs from
∑

w∈N(u)(f(uw) + f(w)) for every two adjacent vertices v and
u of G. The neighbor expanded sum distinguishing index of G, denoted
by egndi∑(G), is the minimum positive integer k for which there exists an
NESD weighting of G. An NESD weighting was introduced and investigated
by Flandrin et al. (2017), where they conjectured that egndi∑(G) ≤ 2 for
any graph G. They examined some special classes of graphs, while prov-
ing that egndi∑(G) ≤ χ(G) + 1. We improve this bound and show that
egndi∑(G) ≤ 3 for any graph G. We also show that the conjecture holds
for all bipartite, 3-regular and 4-regular graphs.

Keywords: general edge coloring, total coloring, neighbor sum distinguish-
ing index.
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1. Introduction

All graphs considered in this paper are finite, simple and undirected. Let V (G),
E(G), ∆(G), δ(G) and χ(G) denote the vertex set, the edge set, the maximum
degree, the minimum degree, and the chromatic number of a graph G, respec-
tively. Let NG(v) and degG(v) denote the set of neighbors and the degree of a
vertex v in G, respectively. For all other terminology used in this paper, we refer
the reader to [1].
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A total k-weighting f of a graph G is an assignment of integers from the set
{1, . . . , k} to the vertices and edges of G. We say that f is neighbor expanded
sum distinguishing, or NESD for short, if

(1) σ(v) =
∑

u∈N(v)

(

f(uv) + f(u)
)

yields a proper vertex coloring of G. The minimum positive integer k for which
an NESD weighting of a graph G exists is called the neighbor expanded sum
distinguishing index of G and denoted by egndi∑(G). An NESD weighting was
introduced and investigated by Flandrin et al. in [2], where they proposed the
following conjecture.

Conjecture 1. For any graph G, egndi∑(G) ≤ 2.

They examined some classes of graphs, including paths, cycles, complete
graphs and trees, and proved a relaxed upper bound egndi∑(G) ≤ χ(G) + 1 for
any graph G. Our main result is an improvement over this bound stated in the
next theorem.

Theorem 2. For any graph G, egndi∑(G) ≤ 3.

Proofs of our theorems are deferred to the Section 2. Flandrin et al. [2]
proved the following theorem.

Theorem 3. Let G = (X,Y,E) be a connected bipartite graph. If any of the

bipartite sets X and Y has an even number of vertices, or there is a vertex of odd

degree in G, then egndi∑(G) ≤ 2.

In our next theorem we extend their claim to any bipartite graph.

Theorem 4. If G is a bipartite graph, then egndi∑(G) ≤ 2

Furthermore, we show that for any 3-regular and any 4-regular graph there
exists an NESD weighting using only the weights 1 and 2.

Theorem 5. If G is a 3-regular or a 4-regular graph, then egndi∑(G) ≤ 2.

Before we proceed with proofs of Theorems 2, 4 and 5, we will mention a
closely related variation of weighting. An edge k-weighting f of a graph G is called
neighbor sum distinguishing, or NSD for short, if a function φ(v) =

∑

e∋v f(e)
yields a proper vertex coloring of G. The minimum positive integer k for which
such a weighting exists is the neighbor sum distinguishing index of G, denoted
by gndi∑(G). The following problem, also known as the 1-2-3 conjecture, was
proposed by Karonski et al. [3], and it received a significant attention.

Conjecture 6. For any graph G without isolated edges, gndi∑(G) ≤ 3.

Kalkowski et al. [4] proved that gndi∑(G) ≤ 5 for any graph G without
isolated edges, which is by now the best known bound for gndi∑(G). In the
proof of Theorem 2 we use an approach similar to that used in [4].
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2. Proofs of Our Theorems

Proof of Theorem 2. If the statement holds for any connected graph, an im-
mediate consequence is that it also holds for any disconnected graph. Thus we
may assume that G is a connected graph.

We prove a slightly stronger claim, that is, there exists a total 3-weighting

f such that
⌊

σ(v)
2

⌋

6=
⌊

σ(u)
2

⌋

for any two adjacent vertices v and u of G. Let

V = V (G) =
{

v1, . . . , vk
}

be the set of vertices of G arranged in an arbitrary
order. Let E = E(G) be the set of edges of G and f : E ∪ V → {1, 2, 3}.
For 1 ≤ j ≤ k, let S1(V,E, f, j) and S2(V,E, f, j) denote the following two
statements:

S1(V,E, f, j) :

⌊

σ(vi)

2

⌋

6=

⌊

σ(vl)

2

⌋

for every vivl ∈ E and 1 ≤ i < l ≤ j.

S2(V,E, f, j) : f(vi)=2, and f(viu)=2 for every vi ∈ V , j < i ≤ k, and viu∈E.

We start by assigning the weight 2 to each vertex of V and each edge of E. Hence
S1(V,E, f, 1) and S2(V,E, f, 1) are trivially true. Suppose that S1(V,E, f, j) and
S2(V,E, f, j) hold for some weighting f and integer j with 1 ≤ j < k. Let d

denote the value of σ(vj+1) for the current weighting f . Let U =
{

u1, . . . , un
}

be
the subset of vertices from

{

v1, . . . , vj
}

that are adjacent to vj+1 in G. Next, let
Uo and Ue be the subsets of U , with Uo ∪Ue = U , such that σ(v) is odd for every
v ∈ Uo, and σ(u) is even for every u ∈ Ue. Let no =

∣

∣Uo

∣

∣ and ne =
∣

∣Ue

∣

∣, thus
no +ne = n. We now consider possible adjustments of f

(

vj+1

)

and f
(

ulvj+1

)

for
ul ∈ U , where both S1(V,E, f, j) and S2(V,E, f, j + 1) remain satisfied.

1. Since f
(

ulvj+1

)

= 2 for every l ∈ {1, . . . , n}, we can increase by 1 the
weight of any of the ne edges joining vj+1 with the vertices of Ue, while keeping
S1(V,E, f, j) satisfied. Similarly, we can decrease by 1 the weight of any of the
no edges joining vj+1 with the vertices of Uo. Hence we can adjust the weights of
these edges to obtain that σ

(

vj+1

)

equals any integer value from
[

d−no, d+ne

]

.

2. By changing f(vj+1) to 1, and f(ulvj+1) to 3, for every l ∈ {1, . . . , n},
the value of σ(vj+1) increases by n, while σ(ul) remains the same for every l ∈
{1, . . . , n}. Now, we can decrease by 1 the weight of any of the no edges joining
vj+1 with the vertices of Uo, while keeping S1(V,E, f, j) satisfied. Hence we can
achieve that σ

(

vj+1

)

equals any integer value from
[

d + ne, d + n
]

.

3. By changing f
(

vj+1

)

to 3 and f
(

ulvj+1

)

to 1, for every l ∈ {1, . . . , n},
the value of σ

(

vj+1

)

decreases by n, while σ
(

ul
)

remains the same for every
l ∈ {1, . . . , n}. Now, similarly to the previous case, we can achieve that σ

(

vj+1

)

equals any integer value from
[

d− n, d− no

]

.
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Therefore, we can make adjustments to the weights of vj+1 and ulvj+1, with
ul ∈ U , so that σ

(

vj+1

)

equals any integer value from
[

d−n, d+n
]

, while keeping
S1(V,E, f, j) and S2(V,E, f, j+1) satisfied. Since there are n neighboring vertices
of vj+1 preceding it, and there are 2n + 1 reachable values for σ

(

vj+1

)

, we can
adjust the weights of vj+1 and ulvj+1, with 1 ≤ l ≤ n, so that S1(V,E, f, j + 1)
holds. In the above described procedure we do not change the weight of any
vertex vl ∈ V , with l > j + 1, nor the weight of any edge incident with vl. Thus
S2(V,E, f, j + 1) holds. Continuing in this manner until j + 1 = k, we obtain a
desired weighting.

In the proof of Theorem 4 we follow the idea used in [3], and later imple-
mented in the proof of Theorem 3.

Proof of Theorem 4. As stated in the proof of Theorem 2, it suffices to show
that the theorem holds for every connected graph. Thus we may assume that G

is a connected graph. If X or Y have an even number of vertices, or there exists
a vertex of odd degree in G, the statement is true by Theorem 3. So we may
assume that both X and Y have an odd number of vertices, and every vertex of
G has even degree.

Let X =
{

x1, . . . , x2k+1

}

. We may assume, without loss of generality, that
X contains a vertex with degree equal to δ(G), and that x2k+1 is such a vertex.
First, we assign the weight 2 to every edge of G and vertex of X, and the weight 1
to every vertex of Y . Since every vertex of G has even degree, after the described
assignment σ(v) is even for every v ∈ X ∪Y . We now change the weights of some
edges of G so that σ

(

xi
)

becomes odd for every i ∈ {1, 2k}, while σ(y) remains
even for every y ∈ Y . We subsequently prove that σ

(

x2k+1

)

< σ(y) for every
y ∈ NG

(

x2k+1

)

, which implies the statement of the theorem.

Let Pi denote a path from xi to xi+k, for every integer i with 1 ≤ i ≤ k. For
each path Pi, with 1 ≤ i ≤ k, we change the weight of every edge on the path,
that is, from 1 to 2, and from 2 to 1. This way the parity of σ(u) stays the same
for every vertex u on Pi different from xi and xi+k. After this procedure the value
of σ

(

xi
)

is odd for every integer i with 1 ≤ i ≤ 2k, while σ(y) is even for every
y ∈ Y . Next, let y ∈ Y be an arbitrary neighbor of x2k+1. Let d = deg

(

x2k+1

)

.
Since d = δ(G), we have d ≤ deg(y). Since f(u) = 1 for every u ∈ NG

(

x2k+1

)

,
we have σ

(

x2k+1

)

≤ 3(d− 1) + f
(

x2k+1y
)

+ 1. On the other hand, since f(u) = 2
for every u ∈ NG(y), we have σ(y) ≥ 3(d − 1) + f

(

x2k+1y
)

+ 2. Therefore,
σ
(

x2k+1

)

< σ(y) for every y ∈ NG

(

x2k+1

)

, completing the proof.

The proof of Theorem 5 is organized as follows. We start from some proper
vertex coloring c of G. Then we define a total weighting f of G by assigning a
weight from the set {1, 2} to every vertex v of G depending on the value of c(v),
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and to every edge uv of G depending on the values of c(u) and c(v). Finally, we
adjust some of these weights and prove that such a weighting is NESD.

Proof of Theorem 5. Let G be a k-regular graph with k ∈ {3, 4}. Flandrin
et al. proved in [2] that egndi∑(G) = 2 for any complete graph G. Thus we may
assume that G is not a complete graph. Then χ(G) ≤ k according to Brooks’
Theorem [5]. For 1 ≤ i ≤ k, let Vi be the color classes of V (G). We may assume
that every vertex v of Vj , with 1 < j ≤ k, has at least one neighbor in every Vi,
with 1 ≤ i < j. Otherwise, while there exists v ∈ Vj that has no neighbor in
Vi, 1 ≤ i < j, we move v to Vi. This way sets Vi remain independent for every
1 ≤ i ≤ k, hence c remains a proper coloring with k colors.

First, we prove the case when G is a 3-regular graph. As observed above,
we may assume that χ(G) ≤ 3. Let c be any proper vertex coloring of G with
colors from {1, 2, 3}. As noted earlier, we may assume that every vertex colored
j, 1 < j ≤ 3, has a neighbor colored i for every 1 ≤ i < j. We now define a total
2-weighting f of G. We assign the weight 1 to every v ∈ Vi with i ∈ {1, 3}, and
the weight 2 to every v ∈ V2. For every two adjacent vertices u and v of G, if
c(u) = 3 or c(v) = 3, then we assign 2 to f(uv); otherwise we assign 1 to f(uv).
For every v ∈ Vj , the vertex v has a neighbor in every Vi with 1 ≤ i < j, so we
have the following:

1. for j = 1, we have σ(v) = 9,

2. for j = 2, we have σ(v) < 9,

3. for j = 3, we have σ(v) > 9.

Because Vj is an independent set for every j ∈ {1, 2, 3}, it follows that σ(v) 6= σ(u)
for every two adjacent vertices v and u of G, completing the first part of the proof.

We now prove that the statement holds for every 4-regular graph G. As
before, we may assume that χ(G) ≤ 4. Let c be an arbitrary proper vertex
coloring of G with colors from {1, 2, 3, 4}. Again, we may assume that every
v ∈ Vj , with 1 < j ≤ 4, has at least one neighbor in every Vi, with 1 ≤ i < j. We
now define a total 2-weighting f . We assign the weight 1 to every vertex of V1

and V3, and the weight 2 to every vertex of V2 and V4. We assign the weight 1 to
edges joining the vertices of V1 with the vertices of V2, and also to edges incident
with the vertices of V4, while to all other edges we assign the weight 2. Now, for
every v ∈ Vj , the vertex v has a neighbor in every Vi with 1 ≤ i < j, so we have
the following:

1. for j = 1, we have σ(v) = 12,

2. for j = 2, we have σ(v) < 12,

3. for j = 3, we have σ(v) > 12,
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4. for j = 4, we have σ(v) ∈ {9, 10}.

Clearly, for any two adjacent vertices v and u of G, the values of σ(v) and σ(u)
may be equal only when one of these two vertices is from V2 and the other is from
V4. We now change the weights of some of the vertices and edges of G to obtain
an NESD coloring.

First, for every v ∈ V4 with σ(v) = 10, we do the following. Since σ(v) = 10,
the vertex v has exactly one neighbor in both V1 and V3, and two neighbors in
V2. Denote by

{

v1, v
′

2, v
′′

2 , v3
}

the neighbors of v, where v1 ∈ V1, v
′

2, v
′′

2 ∈ V2 and
v3 ∈ V3. We consider two cases, depending on the value of σ(v3).

Case 1. σ
(

v3
)

= 14. We adjust the weights as follows: f(v) = 1, f(v1v) = 2.
Now, we have σ

(

v1
)

= 12, σ
(

v′2
)

≤ 10, σ
(

v′′2
)

≤ 10, σ
(

v3
)

= 13 and σ(v) = 11.

Case 2. σ
(

v3
)

= 13. We make the following changes: f(v) = 1, f
(

v1v
)

= 2,
f
(

v′2v
)

= 2, f
(

v′′2v
)

= 2, f
(

v3v
)

= 2. Hence the values of σ
(

v1
)

, σ
(

v′2
)

, σ
(

v′′2
)

and σ
(

v3
)

remain the same, while now σ(v) = 14. Thus σ(v) differs from σ(w)
for every w ∈ N(v).

Note that since the value of σ(v3) for v3 ∈ V3 never changes to 14, there is no
conflict between the two adjustments above.

Next, for every v ∈ V4 with σ(v) = 9, we do the following. In this case v has
only one neighbor u in V2. If σ(u) 6= 9, then σ(v) is different from σ(w) for every
w ∈ NG(v), and we do not need to change any weight. Otherwise, since f(v) = 2
and σ(u) = 9, if follows that u does not have any neighbor in V3, and also every
edge incident with u has the weight 1. We now change the weight of u to 1, and
the weight of every edge incident with u to 2. This way σ(y) remains the same
for every y ∈ NG(u), while the value of σ(u) becomes 13. The vertex u has no
neighbor in V3, while σ(y) 6= 13 for every y ∈ V4. Thus σ(u) 6= σ(w) for every
w ∈ NG(u).

After the procedure above is finished, we have σ(v) 6= σ(u) for every two
adjacent vertices v and u of G, and the proof is completed.
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