THE COMPARED COSTS OF DOMINATION LOCATION-DOMINATION AND IDENTIFICATION

Olivier Hudry
LTCI, Télécom ParisTech
Université Paris-Saclay
46 rue Barrault, 75634 Paris Cedex 13 - France
e-mail: olivier.hudry@telecom-paristech.fr

AND
Antoine Lobstein
Centre National de la Recherche Scientifique
Laboratoire de Recherche en Informatique, UMR 8623
Université Paris-Sud, Université Paris-Saclay Bâtiment 650 Ada Lovelace, 91405 Orsay Cedex - France
e-mail: antoine.lobstein@lri.fr

Abstract

Let $G=(V, E)$ be a finite graph and $r \geq 1$ be an integer. For $v \in V$, let $B_{r}(v)=\{x \in V: d(v, x) \leq r\}$ be the ball of radius r centered at v. A set $C \subseteq V$ is an r-dominating code if for all $v \in V$, we have $B_{r}(v) \cap C \neq \emptyset$; it is an r-locating-dominating code if for all $v \in V$, we have $B_{r}(v) \cap C \neq \emptyset$, and for any two distinct non-codewords $x \in V \backslash C, y \in V \backslash C$, we have $B_{r}(x) \cap C \neq B_{r}(y) \cap C$; it is an r-identifying code if for all $v \in V$, we have $B_{r}(v) \cap C \neq \emptyset$, and for any two distinct vertices $x \in V, y \in V$, we have $B_{r}(x) \cap C \neq B_{r}(y) \cap C$. We denote by $\gamma_{r}(G)$ (respectively, $l d_{r}(G)$ and $\left.i d_{r}(G)\right)$ the smallest possible cardinality of an r-dominating code (respectively, an r-locating-dominating code and an r-identifying code). We study how small and how large the three differences $i d_{r}(G)-l d_{r}(G), i d_{r}(G)-\gamma_{r}(G)$ and $l d_{r}(G)-\gamma_{r}(G)$ can be.

Keywords: graph theory, dominating set, locating-dominating code, identifying code, twin-free graph.
2010 Mathematics Subject Classification: 68R10, 05C90, 94C12, 94B60, 94B65.

1. Introduction

1.1. Definitions and notation

For graph theory, we refer to, e.g., [1, 2] or [8]; for the vast topic of domination in graphs, see [13]. For locating-dominating codes, see the first papers [7] and [18], for identifying codes, see the seminal paper [14]; for both, see also the large bibliography at [15].

We shall denote by $G=(V, E)$ a finite, simple, undirected graph with vertex set V and edge set E, where an edge between $x \in V$ and $y \in V$ is indifferently denoted by $x y$ or $y x$. The order of the graph is its number of vertices, $|V|$. Our graphs will generally be connected. The distance between two vertices $x \in V$, $y \in V$, will be denoted by $d_{G}(x, y)$, or $d(x, y)$ when there is no ambiguity.

For an integer $k \geq 2$, the k-th transitive closure, or k-th power, of $G=(V, E)$ is the graph $G^{k}=\left(V, E^{k}\right)$ defined by $E^{k}=\left\{u v: u \in V, v \in V, 0<d_{G}(u, v) \leq k\right\}$. For a given graph G^{*}, any graph G such that $G^{k}=G^{*}$ is called a k-th root of G^{*}; such roots do not always exist.

For any integer $r \geq 1$, and for every vertex $x \in V$, we denote by $B_{G, r}(x)$ (and $B_{r}(x)$ when there is no ambiguity) the ball of radius r centered at x, i.e., the set of vertices at distance at most r from x :

$$
B_{r}(x)=\{y \in V: d(x, y) \leq r\}
$$

Whenever $x \in B_{r}(y)$ (which is equivalent to $y \in B_{r}(x)$), we say that x and y r-dominate or r-cover each other. A vertex $x \in V$ is said to be r-universal if it r-dominates all the vertices, i.e., if $B_{r}(x)=V$. When three vertices x, y, z are such that $z \in B_{r}(x)$ and $z \notin B_{r}(y)$, we say that $z r$-sepatares x and y in G (note that $z=x$ is possible). A set of vertices is said to r-separate x and y if at least one of its element does.

Let $C \subseteq V$ be a set of vertices; the set C is called a code, and its elements codewords.

A code C is said to be an r-dominating set or an r-dominating code (r - D code for short) if for all $x \in V$, we have $B_{r}(x) \cap C \neq \emptyset$. One can also find the terminology dominating set at distance r, or distance r dominating set.

A code C is said to be r-locating-dominating (r-LD for short) if for all $x \in V$, we have $B_{r}(x) \cap C \neq \emptyset$, and for any two distinct non-codewords $x \in V \backslash C$, $y \in V \backslash C$, we have $B_{r}(x) \cap C \neq B_{r}(y) \cap C$.

A code C is said to be r-identifying (r-ID for short) if for all $x \in V$, we have $B_{r}(x) \cap C \neq \emptyset$, and for any two distinct vertices $x \in V, y \in V$, we have $B_{r}(x) \cap C \neq B_{r}(y) \cap C$.

In other words: every vertex must be r-dominated by at least one codeword for the three definitions; in addition, every pair of distinct non-codewords (respectively, vertices) must be r-separated by an r-LD (respectively, r-ID) code.

Two vertices $x \in V, y \in V, x \neq y$, are said to be r-twins if $B_{r}(x)=B_{r}(y)$. Dominating and locating-dominating codes exist for all graphs. On the other hand, it is easy to see that a graph G admits an r-identifying code if and only if

$$
\begin{equation*}
\forall x \in V, \forall y \in V, x \neq y: B_{r}(x) \neq B_{r}(y) \tag{1}
\end{equation*}
$$

A graph satisfying (1) is called r-identifiable or r-twin-free.

1.2. Aim of the paper

For all three concepts, we are often interested in finding the minimum sized codes. We denote by $\gamma_{r}(G)$ (respectively, $l d_{r}(G)$ and $\left.i d_{r}(G)\right)$ the smallest possible cardinality of an r-dominating code (respectively, an r-locating-dominating code and an r-identifying code when G is r-twin-free). We call $\gamma_{r}(G)$ the r-domination number of G. Since obviously an r-ID code (when it exists) is an r-LD code which in turn is an r-D code, the following inequalities hold:

$$
\gamma_{r}(G) \leq l d_{r}(G) \leq i d_{r}(G)
$$

In other words, location-domination is more "expensive" than domination, and identification is more expensive than location-domination. In this paper, we compare the respective "costs" for these three definitions.

More precisely, denoting

$$
\mathcal{G}_{r, n}=\{G: G \text { is } r \text {-twin-free, connected, with order } n \geq 2\},
$$

and $\mathcal{G}_{r, n}^{t w}=\{G: G$ has r-twins and is connected, with order $n \geq 2\}$,
we study the following maximum and minimum differences:

- $F_{i d, l d}(r, n)=\max \left\{i d_{r}(G)-l d_{r}(G): G \in \mathcal{G}_{r, n}\right\}$,
- $f_{i d, l d}(r, n)=\min \left\{i d_{r}(G)-l d_{r}(G): G \in \mathcal{G}_{r, n}\right\}$,
- $F_{i d, \gamma}(r, n)=\max \left\{i d_{r}(G)-\gamma_{r}(G): G \in \mathcal{G}_{r, n}\right\}$,
- $f_{i d, \gamma}(r, n)=\min \left\{i d_{r}(G)-\gamma_{r}(G): G \in \mathcal{G}_{r, n}\right\}$.

For D- and LD-codes, we have two cases, (a) and (b), which study graphs which are without or with twins, respectively:
(a) • $F_{l d, \gamma}(r, n)=\max \left\{l d_{r}(G)-\gamma_{r}(G): G \in \mathcal{G}_{r, n}\right\}$,

- $f_{l d, \gamma}(r, n)=\min \left\{l d_{r}(G)-\gamma_{r}(G): G \in \mathcal{G}_{r, n}\right\} ;$
these two functions are considered on the same set of graphs (the twin-free graphs) as the four functions involving identification, unlike the two functions below:
(b) $\bullet F_{l d, \gamma}^{t w}(r, n)=\max \left\{l d_{r}(G)-\gamma_{r}(G): G \in \mathcal{G}_{r, n}^{t w}\right\}$,
- $f_{l d, \gamma}^{t w}(r, n)=\min \left\{l d_{r}(G)-\gamma_{r}(G): G \in \mathcal{G}_{r, n}^{t w}\right\}$.

Finally, if we want to consider all the connected graphs of order n, twin-free or not, the result is obviously obtained by taking $\max \left\{F_{l d, \gamma}(r, n), F_{l d, \gamma}^{t w}(r, n)\right\}$ and $\min \left\{f_{l d, \gamma}(r, n), f_{l d, \gamma}^{t w}(r, n)\right\}$.

2. Some Earlier Results

The following easy four lemmas are as old as the definitions of dominating, locating-dominating or identifying codes. We give the proofs only for the first two.

Lemma 1. (a) For any graph $G=(V, E)$ of order n and any integer $r \geq 1$, we have

$$
\begin{equation*}
l d_{r}(G) \geq\left\lceil\log _{2}\left(n-l d_{r}(G)+1\right)\right\rceil \tag{2}
\end{equation*}
$$

(b) For any integer $r \geq 1$ and any r-twin-free graph $G=(V, E)$ of order n, we have

$$
\begin{equation*}
i d_{r}(G) \geq\left\lceil\log _{2}(n+1)\right\rceil \tag{3}
\end{equation*}
$$

Proof. (a) Let C be any r-LD code in G. All the $n-|C|$ non-codewords $v \in V \backslash C$ must be given nonempty and distinct sets $B_{r}(v) \cap C$ constructed with the $|C|$ codewords, so $2^{|C|}-1 \geq n-|C|$, from which (2) follows when C is optimal;
(b) the argument is the same, but we have to consider all the n vertices $v \in V$, so $2^{|C|}-1 \geq n$.

Lemma 2. Let $r \geq 2$ be any integer and $G=(V, E)$ be a graph.
(a) A code C is 1-locating-dominating in G^{r}, the r-th power of G, if and only if it is r-locating-dominating in G.
(b) A code C is 1-identifying in G^{r} if and only if it is r-identifying in G.
(c) A code C is 1-dominating in G^{r} if and only if it is r-dominating in G.

Proof. (a) For every vertex $v \in V$, we have

$$
\left\{c \in C: d_{G}(v, c) \leq r\right\}=\left\{c \in C: d_{G^{r}}(v, c) \leq 1\right\},
$$

so if for all $v \in V \backslash C$, the sets on the left-hand side of the equality are nonempty and distinct, then the sets on the right side also are, and vice-versa; (b) the same proof, for all $v \in V$; (c) the same proof, for all $v \in V$, with only nonemptiness to be checked.

Lemma 3. (a) For any integer $r \geq 1$, if G is a connected graph of order n, then

$$
\begin{equation*}
l d_{r}(G) \leq n-1 \tag{4}
\end{equation*}
$$

(b) If G is an r-twin-free graph of order n, then $n \geq 2 r+1$, and the only r-twin-free graph of order $2 r+1$ is the path.
(c) If G is an r-twin-free cycle of order n, then $n \geq 2 r+2$.

The following obvious lemma is often used implicitly.
Lemma 4. Let $r \geq 1$ be any integer and $G=(V, E)$ be a graph.
(a) If C is r-dominating in G, so is any set $S \supset C$.
(b) If C is r-locating-dominating in G, so is any set $S \supset C$.
(c) If C is r-identifying in G, so is any set $S \supset C$.

Proposition 5. (a) [16], [13, p. 41] If G has no isolated vertices (in particular, if G is connected) and has order n, then $\gamma_{1}(G) \leq \frac{n}{2}$.
(b) [11] If G is a 1-twin-free graph, then $i d_{1}(G) \leq 2 l d_{1}(G)$.

The following result is from [3], but a shorter proof can be found in [12].
Proposition 6. If G is a connected 1-twin-free graph of order n, then $i d_{1}(G) \leq$ $n-1$.

Corollary 7. Let $r \geq 1$ be any integer.
(i) If G is a connected graph of order n, then $\gamma_{r}(G) \leq \frac{n}{2}$.
(ii) If G is an r-twin-free graph, then $d_{r}(G) \leq 2 l d_{r}(G)$.
(iii) If G is a connected r-twin-graph of order n, then

$$
\begin{equation*}
i d_{r}(G) \leq n-1 \tag{5}
\end{equation*}
$$

Proof. Use the r-th power of G, together with the previous two propositions.
Both lower bounds (2), (3) and upper bounds (4), (5) for r-LD and r-ID codes can be reached [6], as well as all intermediate values [4], [5].

The graphs G of order n such that $i d_{1}(G)=n-1$ have been characterized in [10], but the case $r \geq 2$ remains open.

3. Some Important Graphs

The following three lemmas describe three useful graphs, which have been used in previous papers. The first graph is the "star".

Lemma 8. For $n \geq 3$, let G_{n} be the tree consisting of n vertices $v_{0}, v_{1}, \ldots, v_{n-1}$, and $n-1$ edges $v_{0} v_{i}, 1 \leq i \leq n-1$. Then

$$
\gamma_{1}\left(G_{n}\right)=1, l d_{1}\left(G_{n}\right)=n-1 \text { and } i d_{1}\left(G_{n}\right)=n-1
$$

Proof. (a) Since v_{0} is a 1 -universal vertex, we have $\gamma_{1}\left(G_{n}\right)=1$.
(b) It is quite straightforward to check that taking for codewords any set of $n-1$ vertices is necessary and sufficient to obtain a 1-LD or 1-ID code, except for $n=3$, when only $\left\{v_{1}, v_{2}\right\}$ is a 1 -ID code.

The second graph, denoted $G_{2 p}^{*}$, has even order and is the complete graph (or clique) minus a perfect matching; see Figure 1.

v_{0}	0	0v_{1} v_{p} 0$\quad<$$v_{p-1}$ v_{p+1}	\cdots	0
$v_{2 p-1}$				

Figure 1. The complement of $G_{2 p}^{*}$: only the missing edges $v_{0} v_{p}, \ldots, v_{p-1} v_{2 p-1}$ are represented.

Lemma 9. Let $p \geq 2$ and $G_{2 p}^{*}=\left(V_{2 p}^{*}, E_{2 p}^{*}\right)$, with $V_{2 p}^{*}=\left\{v_{0}, v_{1}, \ldots, v_{2 p-1}\right\}$, $E_{2 p}^{*}=\left\{v_{i} v_{j}: v_{i} \in V_{2 p}^{*}, v_{j} \in V_{2 p}^{*}, i \neq j, i \neq j+p \bmod 2 p\right\}$. Then

$$
\gamma_{1}\left(G_{2 p}^{*}\right)=2, l d_{1}\left(G_{2 p}^{*}\right)=p \text { and } i d_{1}\left(G_{2 p}^{*}\right)=2 p-1
$$

Proof. For every $v_{i} \in V_{2 p}^{*}$, we have $B_{1}\left(v_{i}\right)=V_{2 p}^{*} \backslash\left\{v_{i+p} \bmod 2 p\right\}$, and for every pair of distinct vertices $v_{i} \in V_{2 p}^{*}, v_{j} \in V_{2 p}^{*}$, we have $B_{1}\left(v_{i}\right) \Delta B_{1}\left(v_{j}\right)=$ $\left\{v_{i+p} \bmod 2 p, v_{j+p} \bmod 2 p\right\}$, where Δ stands for the symmetric difference.
(a) The fact that $\gamma_{1}\left(G_{2 p}^{*}\right)=2$ is easy to check.
(b) Obviously, $C=\left\{v_{0}, \ldots, v_{p-1}\right\}$ is a 1-LD code, of size p. Assume that there is a minimum 1-LD code C with fewer than p elements. Then there is at least one j such that $v_{j} \notin C$ and $v_{j+p \bmod 2 p} \notin C$. Without loss of generality, we may assume that $v_{0} \notin C, v_{p} \notin C$. Then $B_{1}\left(v_{0}\right) \Delta B_{1}\left(v_{p}\right)=\left\{v_{0}, v_{p}\right\}$ leads to $C \cap\left(B_{1}\left(v_{0}\right) \Delta B_{1}\left(v_{p}\right)\right)=\emptyset$, contradicting the definition of a 1-LD code: v_{0} and v_{p} are non-codewords not 1 -separated by any codeword.
(c) We know that at most $2 p-1$ codewords are necessary in any minimum 1ID code C; therefore, assume, without loss of generality, that $v_{0} \notin C$. Then for all $j \neq p, B_{1}\left(v_{p}\right) \Delta B_{1}\left(v_{j}\right)=\left\{v_{0}, v_{j+p} \bmod 2 p\right\}$, and, since v_{p} and v_{j} are 1-separated by at least one codeword, we have $\emptyset \neq\left(B_{1}\left(v_{p}\right) \Delta B_{1}\left(v_{j}\right)\right) \cap C \subseteq\left\{v_{j+p} \bmod 2 p\right\}$. So for all values of j but one, the $2 p-1$ distinct vertices $v_{j+p \bmod 2 p}$ are codewords, and $|C| \geq 2 p-1$, i.e., $|C|=2 p-1$.

The third graph is obtained from the previous one by adding one 1 -universal vertex, and its order is odd.

Lemma 10. Let $p \geq 2$ and $G_{2 p+1}^{*}=\left(V_{2 p+1}^{*}, E_{2 p+1}^{*}\right)$, with $V_{2 p+1}^{*}=\left\{v_{0}, v_{1}, \ldots\right.$, $\left.v_{2 p}\right\}, E_{2 p+1}^{*}=\left\{v_{i} v_{j}: v_{i} \in V_{2 p+1}^{*} \backslash\left\{v_{2 p}\right\}, v_{j} \in V_{2 p+1}^{*} \backslash\left\{v_{2 p}\right\}, i \neq j, i \neq j+\right.$ $p \bmod 2 p\} \cup\left\{v_{2 p} v_{j}: v_{j} \in V_{2 p+1}^{*} \backslash\left\{v_{2 p}\right\}\right\}$. Then

$$
\gamma_{1}\left(G_{2 p+1}^{*}\right)=1, l d_{1}\left(G_{2 p+1}^{*}\right)=p \text { and } i d_{1}\left(G_{2 p+1}^{*}\right)=2 p
$$

Proof. (a) The fact that $v_{2 p}$ is 1-universal shows that $\gamma_{1}\left(G_{2 p+1}^{*}\right)=1$.
(b) For 1-LD codes, the argument of the Case (b) of the previous proof can be applied mutatis mutandis, because the 1-universal vertex does not change anything when considering symmetric differences of balls of radius one.
(c) For $i \in\{0, \ldots, 2 p-1\}$, we have $B_{1}\left(v_{2 p}\right) \Delta B_{1}\left(v_{i}\right)=\left\{v_{i+p} \bmod 2 p\right\}$, therefore all vertices but $v_{2 p}$ must be codewords.

Now, what is more difficult and interesting is that the two graphs $G_{2 p}^{*}$ and $G_{2 p+1}^{*}$ just described in Lemmas 9 and 10 admit r-th roots for any r, if p is sufficiently large [6]. More precisely:

Proposition 11. Let $r \geq 2$ and $p \geq 2$ be integers.
(a) [6, Theorem 5] If $2 p \geq 3 r^{2}$, then there exists a graph $G_{2 p}$ of order $2 p$ such that $\left(G_{2 p}\right)^{r}=G_{2 p}^{*}$.
(b) [6, Theorem 6] If $2 p \geq 3 r^{2}$, then there exists a graph $G_{2 p+1}$ of order $2 p+1$ such that $\left(G_{2 p+1}\right)^{r}=G_{2 p+1}^{*}$.
(c) For $n \geq 3 r^{2}$, there exists a graph G_{n} of even order n such that $\gamma_{r}\left(G_{n}\right)=2$, $l d_{r}\left(G_{n}\right)=\frac{n}{2}$ and $i d_{r}\left(G_{n}\right)=n-1$.
(d) For $n \geq 3 r^{2}+1$, there exists a graph G_{n} of odd order n such that $\gamma_{r}\left(G_{n}\right)=1$, $l d_{r}\left(G_{n}\right)=\frac{n-1}{2}$ and $i d_{r}\left(G_{n}\right)=n-1$.

Proof. (c)-(d). Use the properties of r-th powers of graphs (Lemma 2).
See also the constructions presented and discussed immediately after Proposition 23 in Section 7.1.

4. The Very Small Cases: $n \leq 4$

Here, we denote by $T_{r}(G)$ the triple $\left(\gamma_{r}(G), l d_{r}(G), i d_{r}(G)\right)$, with the convention that $i d_{r}(G)=$? if G is not r-twin-free. Figure 2 gives all the nonisomorphic unlabeled connected graphs with two, three or four vertices, together with their triples for $r=1$.

For $r=2$, the triples are, for the nine graphs of Figure 2, respectively: $(1,1, ?) ;(1,2, ?)$ and ($1,2, ?$); ($1,2, ?$), ($1,3, ?$), ($1,3, ?$), ($1,3, ?$), ($1,3, ?$), and $(1,3, ?)$. For $r \geq 3$, the triples are ($1, n-1$, ?) for all nine graphs. From this, we have the following result.

Proposition 12. We have
(a) $r=1$

$$
n=2: F_{l d, \gamma}^{t w}(1,2)=f_{l d, \gamma}^{t w}(1,2)=0
$$

$$
\begin{aligned}
n=3: & F_{i d, l d}(1,3)=f_{i d, l d}(1,3)=0 ; F_{i d, \gamma}(1,3)=f_{i d, \gamma}(1,3)=1 ; \\
& F_{l d, \gamma}(1,3)=f_{l d, \gamma}(1,3)=1 ; F_{l d, \gamma}^{t w}(1,3)=f_{l d, \gamma}^{t w}(1,3)=1 ; \\
n=4: & F_{i d, l d}(1,4)=1, f_{i d, l d}(1,4)=0 ; F_{i d, \gamma}(1,4)=2, f_{i d, \gamma}(1,4)=1 ; \\
& F_{l d, \gamma}(1,4)=2, f_{l d, \gamma}(1,4)=0 ; F_{l d, \gamma}^{t w}(1,4)=2, f_{l d, \gamma}^{t w}(1,4)=1 ;
\end{aligned}
$$

(b) $r=2$

$$
\begin{aligned}
& n=2: F_{l d, \gamma}^{t w}(2,2)=f_{l d, \gamma}^{t w}(2,2)=0 \\
& n=3: F_{l d, \gamma}^{t w}(2,3)=f_{l d, \gamma}^{t w}(2,3)=1 ; \\
& n=4: F_{l d, \gamma}^{t w}(2,4)=2, f_{l d, \gamma}^{t w}(2,4)=1 ;
\end{aligned}
$$

(c) $r \geq 3$

$$
n \in\{2,3,4\}: F_{l d, \gamma}^{t w}(r, n)=f_{l d, \gamma}^{t w}(r, n)=n-2 .
$$

$$
n=2 \underset{(1,1, ?)}{\circ} \quad n=3 \quad \underset{(1,2,2)}{\circ} \circ
$$

$$
n=4
$$

?

$(2,2,3)$

$(1,3,3)$

(1,2,?)

(1,2,?)

(1,3,?)

Figure 2. Small graphs, $r=1$.

5. Identification vs Domination

First, we construct an infinite family of graphs G_{n}^{*} such that G_{n}^{*} has order n and satisfies $i d_{r}\left(G_{n}^{*}\right)=\gamma_{r}\left(G_{n}^{*}\right)$.

These graphs will have order $n=k(r+1)$ and consist of one cycle of order k and k strings with r vertices each: $G_{n}^{*}=\left(V_{n}^{*}, E_{n}^{*}\right)$, with $V_{n}^{*}=V_{0} \cup\left(\bigcup_{1 \leq i \leq k} V_{i}\right)$ and $E_{n}^{*}=E_{0} \cup\left(\bigcup_{1 \leq i \leq k} E_{i}\right)$, where $V_{0}=\left\{v_{1,0}, v_{2,0}, \ldots, v_{k, 0}\right\}, V_{i}=\left\{v_{i, j}: 1 \leq\right.$ $j \leq r\}$ for $i \in\{1,2, \ldots, k\}, E_{0}=\left\{v_{i, 0} v_{i+1,0}: 1 \leq i \leq k-1\right\} \cup\left\{v_{k, 0} v_{1,0}\right\}$ and $E_{i}=\left\{v_{i, j} v_{i, j+1}: 0 \leq j \leq r-1\right\}$ for $i \in\{1,2, \ldots, k\}$ (see Figure 3(a)).
Proposition 13. For all $r \geq 1$ and $k \geq 2 r+2$, the graph G_{n}^{*} is such that

$$
\gamma_{r}\left(G_{n}^{*}\right)=i d_{r}\left(G_{n}^{*}\right) .
$$

Proof. The k leaves $v_{i, r}$ must be r-dominated by at least one codeword, and no vertex can r-dominate two leaves, so $\gamma_{r}\left(G_{n}^{*}\right) \geq k$. On the other hand, the code $C=V_{0}$ represented by the black vertices in Figure 3(a) has cardinality k, and it is

Figure 3. (a) The graph G_{n}^{*}. (b) The graph G_{n+1}. The k black vertices represent codewords.
straightforward to check that it is r-identifying. Note in particular that vertices in V_{0} are r-dominated by exactly $2 r+1$ codewords (this is where the assumption $k \geq 2 r+2$ is crucial, cf. Lemma 3(c)), and vertices $v_{i, j} \in V_{i}$ are r-dominated by exactly $2 r-2 j+1$ codewords. See also the proof of Proposition 28 for r-LD codes, which is analogous but more intricate.

So $k \leq \gamma_{r}\left(G_{n}^{*}\right) \leq i d_{r}\left(G_{n}^{*}\right) \leq k$.
Second, if we want n to reach all intermediate values between $k(r+1)$ and $(k+$ 1) $(r+1)-1$, we can do so by adding $p \in\{0, \ldots, r\}$ vertices to G_{n}^{*} in the following way: since $p<\frac{k}{2}$, we can add the set of p vertices $W_{p}=\left\{w_{1}, \ldots, w_{p}\right\}$ together with the set of edges $X_{p}=\left\{w_{1} v_{1,0}, w_{1} v_{2,0}, w_{2} v_{3,0}, w_{2} v_{4,0}, \ldots, w_{p} v_{2 p-1,0}, w_{p} v_{2 p, 0}\right\}$, see Figure 3(b) for $p=1$. Setting $G_{n+p}=\left(V_{n}^{*} \cup W_{p}, E_{n}^{*} \cup X_{p}\right)$, we obtain a graph of order $n+p$, for which, due to the assumption $k \geq 2 r+2$ and the remark in the proof of Proposition 13 stating that all vertices in G_{n}^{*} are r-dominated by an odd number of codewords, it is again straightforward to check that $C=V_{0}$ is still a (minimum) r-ID code. Therefore we have the following.

Proposition 14. For all $r \geq 1, k \geq 2 r+2$ and $p \in\{0, \ldots, r\}$, the graph $G_{k(r+1)+p}$ is such that $\gamma_{r}\left(G_{k(r+1)+p}\right)=i d_{r}\left(G_{k(r+1)+p}\right)$. As a consequence, for all $r \geq 1$ and $n \geq(2 r+2)(r+1)$, we have

$$
f_{i d, \gamma}(r, n)=0 .
$$

In advance of the next sections, we have the following obvious consequence.
Corollary 15. For all $r \geq 1$ and $n \geq(2 r+2)(r+1)$, we have

$$
f_{i d, l d}(r, n)=f_{l d, \gamma}(r, n)=0
$$

For $r=1$, the construction for Propositions 13 and 14 works for $n \geq 8$; however, we have the exact value of $f_{i d, \gamma}(1, n)$ for all n, due to an alternative construction.

Proposition 12(a) has already settled the cases $n=3, n=4$. Lemma 1(b) and Proposition 5(a) establish that any (1-twin-free) graph G with five vertices
is such that $i d_{1}(G) \geq 3$ and $\gamma_{1}(G) \leq 2$; on the other hand it is easy to find graphs G of order five with $i d_{1}(G)=3$ and $\gamma_{1}(G)=2$, e.g., the path, so that $f_{i d, \gamma}(1,5)=1$. For even $n, n \geq 6$, and odd $n, n \geq 7$, it is easy to see that Figure 4 gives graphs G such that $i d_{1}(G)=\gamma_{1}(G)=k$.

Figure 4. (a) n even. (b) n odd. The k black vertices represent codewords constituting both a minimum 1-identifying and 1-dominating code.

Proposition 16. (a) For all $n \geq 6$, we have $f_{i d, \gamma}(1, n)=0$; consequently, $f_{i d, l d}(1, n)=f_{l d, \gamma}(1, n)=0$.
(b) For $n \in\{3,4,5\}$, we have $f_{i d, \gamma}(1, n)=1$.

Now how large can the difference $i d_{r}(G)-\gamma_{r}(G)$ be? By Corollary 7(iii), it is at most $n-2$, obtained by graphs G with $i d_{r}(G)=n-1$ and $\gamma_{r}(G)=1$.

We first treat the case $r=1$, which is easy: the star on n vertices (Lemma $8)$ is an example of a graph G with $i d_{1}(G)=n-1$ and $\gamma_{1}(G)=1$.

Proposition 17. For all $n \geq 3$, we have $F_{i d, \gamma}(1, n)=n-2$.
We now turn to the case $r \geq 2$. When n is odd, the answer is given by Proposition 11(d). Again, we can reach $n-2$ for the difference $i d_{r}(G)-\gamma_{r}(G)$. When n is even, the study of all the graphs G of even order n such that $i d_{1}(G)=n-1$ [10] shows that none of them contains a 1-universal vertex, i.e., none of them is such that $\gamma_{1}(G)=1$, except the star; but the star cannot be the power of any graph. Therefore, for $r \geq 2$, there can exist no graph G with even order n such that $i d_{r}(G)=n-1$ and $\gamma_{r}(G)=1$, since the r-th power of this graph would contradict the characterization from [10]; consequently the difference $i d_{r}(G)-\gamma_{r}(G)$ is at most $n-3$. On the other hand, Proposition $11(\mathrm{c})$ gives an example achieving $n-3$, and we have proved the following.

Proposition 18. (a) For all $r \geq 2$ and even $n \geq 3 r^{2}$, we have $F_{i d, \gamma}(r, n)=n-3$.
(b) For all $r \geq 2$ and odd $n \geq 3 r^{2}+1$, we have $F_{i d, \gamma}(r, n)=n-2$.

6. IDENTIFICATION vS LOCATION-Domination

We have already seen in Corollary 15 that, for $r \geq 1$ and $n \geq(2 r+2)(r+1)$, we have $f_{i d, l d}(r, n)=0$.

For $r=1$, and for all values of n, Propositions 12(a) and 16(a) completely settle this case except when $n=5$, where $f_{i d, l d}(1,5)=0$ thanks to the graph G_{5} with vertex set $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ and edge set $\left\{v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}, v_{4} v_{1}, v_{1} v_{5}\right\}$, $i d_{1}\left(G_{5}\right)=l d_{1}\left(G_{5}\right)=3$. Therefore we have the following.

Proposition 19. For all $n \geq 3$, we have $f_{\text {id,ld }}(1, n)=0$.
What about $F_{i d, l d}(r, n)$? We can use Corollary $7($ ii $)$ and obtain that any (connected) r-twin-free graph G is such that $i d_{r}(G) \leq 2 l d_{r}(G)$. Therefore, $-l d_{r}(G) \leq$ $-\frac{i d_{r}(G)}{2}$, and $i d_{r}(G)-l d_{r}(G) \leq i d_{r}(G)-\frac{i d_{r}(G)}{2} \leq \frac{n-1}{2}$, leading to $i d_{r}(G)-l d_{r}(G) \leq$ $\left\lceil\frac{n}{2}\right\rceil-1$. On the other hand, Proposition 11(c)-(d) gives examples of graphs reaching $\left\lceil\frac{n}{2}\right\rceil-1$.
Proposition 20. For all $r \geq 1$ and $n \geq 3 r^{2}+1$, we have $F_{i d, l d}(r, n)=\left\lceil\frac{n}{2}\right\rceil-1$.
Proposition 21. (a) For all $n \geq 4$, we have $F_{i d, l d}(1, n)=\left\lceil\frac{n}{2}\right\rceil-1$.
(b) $F_{i d, l d}(1,3)=0$.

Proof. Proposition 12(a) settles the case $n=3$.

7. Location-Domination vs Domination

7.1. Twin-free graphs

We have already seen in Corollary 15 that, for $r \geq 1$ and $n \geq(2 r+2)(r+1)$, we have $f_{l d, \gamma}(r, n)=0$. Moreover, for $r=1$, Propositions 12(a) and 16(a) treat all values of n but $n=5$, for which the path shows that $f_{l d, \gamma}(1,5)=0$.

Proposition 22. (a) For all $n \geq 4$, we have $f_{l d, \gamma}(1, n)=0$.
(b) $f_{l d, \gamma}(1,3)=1$.
(c) For all $r \geq 1$ and $n \geq(2 r+2)(r+1)$, we have $f_{l d, \gamma}(r, n)=0$.

We know, using the example of the star (Lemma 8), that $F_{l d, \gamma}(1, n)=n-2$. What about $F_{l d, \gamma}(r, n)$ for general r ?

On the one hand, Proposition 11(c)-(d) immediately gives examples proving that $F_{l d, \gamma}(r, n) \geq\left\lceil\frac{n}{2}\right\rceil-2$, for all $r \geq 2$ and $n \geq 3 r^{2}+1$. On the other hand, the characterization [10] of the graphs G of order n such that $i d_{1}(G)=n-1$ gives graphs which, apart from the star which is not the power of any graph, are such that $l d_{1}(G) \leq n-2$. This allows to conclude that $F_{l d, \gamma}(r, n) \leq n-3$. Indeed, $F_{l d, \gamma}(r, n)=n-2$ is possible only if a graph G of order n satisfies $\gamma_{r}(G)=1$ and $l d_{r}(G)=n-1$, which implies $\gamma_{1}\left(G^{r}\right)=1$ and $l d_{1}\left(G^{r}\right)=n-1=i d_{1}\left(G^{r}\right)$, contradicting the previous sentence.

Proposition 23. (a) For all $n \geq 3$, we have $F_{l d, \gamma}(1, n)=n-2$.
(b) For all $r \geq 2$ and $n \geq 3 r^{2}+1$, we have $F_{l d, \gamma}(r, n) \geq\left\lceil\frac{n}{2}\right\rceil-2$.
(c) For all $r \geq 2$ and $n \geq 2 r+1$, we have $F_{l d, \gamma}(r, n) \leq n-3$.

We now present a general framework using Theorem 5 in [6], and, to a lesser extent, Theorem 6 in [6], cf. Section 3, Proposition 11(a)-(b). We shall use it in the case $r=2$, when this gives a lower bound for $F_{l d, \gamma}(2, n)$ which is better than $\left\lceil\frac{n}{2}\right\rceil-2$, for all $n \geq 24$; for $r=3, n=30$, this gives no improvement, and we shall informally explain why for $r=3$ and larger n, or for larger r, this method is doomed to fail.

Let $m=2 p \geq 3 r^{2}+1$. We consider the Euclidean division of p by r : $p=r Q+R, 0 \leq R \leq r-1$, and set $k=Q+1, A=r-R$, so that $p=r k-A$ with $A \in\{1,2, \ldots, r\}$. We build $G_{m}=\left(V_{m}, E_{m}\right)$ in the following way:

$$
\begin{equation*}
V_{m}=\left\{v_{i}: 0 \leq i \leq m-1\right\} \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
E_{m}=\left\{v_{i} v_{i+j \bmod m}: 0 \leq i \leq m-1, j \in J=\{1,2, \ldots, k-A-1, k\}\right\} \tag{7}
\end{equation*}
$$

The graph G_{m} can be seen as a cycle with chords added according to the set J, where every vertex plays the same role, see Figure 5(a). Theorem 5 from [6] states that the r-th power of G_{m} is the graph G_{m}^{*} of Lemma 9 , with $m=2 p$. We now need to be more specific with respect to r.

In the case $r=2$, we can improve on Proposition $23(\mathrm{~b})$ and build, for n large enough, graphs of order n proving that $\frac{F_{l d, \gamma}(2, n)}{n}$ tends to $\frac{5}{8}$ when n goes to infinity. The first step is the study of graphs with order a multiple of eight.

Proposition 24. For $n=8 t \geq 24$, there exists a 2 -twin-free graph G_{n} of order n, with $\gamma_{2}\left(G_{n}\right)=2$ and $l d_{2}\left(G_{n}\right)=5 t-1$.

Proof. Let $m=6 t=2 p \geq 18$ and $p=2 k-A$ with $A \in\{1,2\}$. Because $A \in$ $\{1,2\}$ and $p \geq 9$, we have $p \geq 3 A+3 \Rightarrow p-A-1 \geq \frac{2 p}{3}=2 t \Rightarrow 2 k-2 A-1 \geq 2 t$, and finally

$$
\begin{equation*}
k-A \geq 2 t-(k-A-1) \tag{8}
\end{equation*}
$$

When $p=9$, then $A=1$ and $\frac{p}{3} \geq A+2$, which also holds whenever $p \geq 12$. Therefore, $\frac{2 k-A}{3} \geq A+2 \Rightarrow k \geq 2 A+3 \Rightarrow 3 k-3 A-3 \geq 2 k-A \Rightarrow k-A-1 \geq \frac{p}{3}$, and finally

$$
\begin{equation*}
2 t+k-A-1=\frac{2 p}{3}+k-A-1 \geq p \tag{9}
\end{equation*}
$$

These two inequalities, (8) and (9), will be used later on. We have already seen that the graph $G_{m}=\left(V_{m}, E_{m}\right)$ defined by (6) and (7) is such that the square power of G_{m} is the graph G_{m}^{*} of Lemma 9 , with $m=2 p$. This means that
$B_{G_{m}, 2}\left(v_{i}\right)=V_{m} \backslash\left\{v_{i+p \bmod m}\right\}$, for all $i \in\{0, \ldots, m-1\}$; in other words, from any v_{i} we can go in two steps to any vertex in V_{m} but $v_{i+p} \bmod m$. Next, we diverge from Theorem 6 in [6]: we add $\frac{m}{3}=2 t$ vertices $Z_{j}, 0 \leq j \leq 2 t-$ $1 ;$ every Z_{j} is linked to three vertices in V_{m}, namely $v_{j}, v_{j+2 t}$ and $v_{j+4 t}$. By setting $G_{n}=\left(V_{n}, E_{n}\right)$ with $V_{n}=V_{m} \cup\left\{Z_{j}: 0 \leq j \leq 2 t-1\right\}$ and $E_{n}=$ $E_{m} \cup\left\{Z_{j} v_{j}, Z_{j} v_{j+2 t}, Z_{j} v_{j+4 t}: 0 \leq j \leq 2 t-1\right\}$, we obtain a graph of order $8 t$, see Figure 5(b).

Figure 5. (a) The graph G_{m}. (b) The graph $G_{n}(r=2)$. Not all vertices nor edges are represented. Only the indices of the vertices v_{i} are given.

We claim that
(a) $B_{G_{n}, 2}\left(Z_{j}\right)=V_{m} \backslash\left\{Z_{\ell}: 0 \leq \ell \leq 2 t-1, \ell \neq j\right\}$, for all $j \in\{0, \ldots, 2 t-1\}$;
(b) $B_{G_{n}, 2}\left(v_{i}\right)=V_{m} \backslash\left\{v_{i+p} \bmod m\right\}$, for all $i \in\{0, \ldots, m-1\}$.
(a) That we cannot go in two steps from Z_{j} to Z_{ℓ} is obvious since $B_{G_{n}, 1}\left(Z_{j}\right) \cap$ $B_{G_{n}, 1}\left(Z_{\ell}\right)=\emptyset$. Note already that this could not be directly transposed to the case $r \geq 3$, since then the existence of paths such as $Z_{j} v_{j}, v_{j} v_{j+1}, v_{j+1} Z_{j+1}$ would lead to a contradiction; see the discussion below for $r=3$.

Next, we show that we can go in two moves from any Z_{j} to any v_{i}; because of the symmetries of the graph, we need to do it only for, say, Z_{0}, and the vertices going from v_{0} to v_{p}. Thanks to the edge $Z_{0} v_{0}, Z_{0}$ can reach $v_{1}, v_{2}, \ldots, v_{k-1-A}$ (and v_{k}, but we do not need it) in two moves; thanks to the edge $Z_{0} v_{2 t}, Z_{0}$ can also reach $v_{2 t+1}, \ldots, v_{2 t+k-1-A}$ (and $v_{2 t+k}$), as well as $v_{2 t-1}, \ldots, v_{2 t-(k-1-A)}$ (and $\left.v_{2 t-k}\right)$. Using (8), we can see that in the worst case, $v_{2 t-(k-1-A)}=v_{k-A}$ and all the vertices between v_{0} and $v_{2 t}$ can be reached, including in particular v_{k-1-A} and v_{k-A}. In other words, the areas reached in one move by going clockwise from v_{0} or anticlockwise from $v_{2 t}$ do meet. Similarly, by (9), we have in the worst case $v_{2 t+k-A-1}=v_{p}$ and all the vertices between $v_{2 t+1}$ and v_{p} can be reached in two moves from Z_{0}. Claim (a) is proved.
(b) The proof is the same as for the graph G_{m}; we just have to check that the additional vertices Z_{j} and their edges do not make it possible to go in two moves from v_{0} to v_{p} (this is sufficient for reasons of symmetry).

Claims (a) and (b) show that G_{n} is 2 -twin-free; they also show that the square power of G_{n} is the following graph. $\left(G_{n}\right)^{2}$ has vertex set V_{n} and edge set all the possible edges except the edges $v_{i} v_{i+p} \bmod m, 0 \leq i \leq p$, and $Z_{j} Z_{\ell},\{j, \ell\} \subset$ $\{0, \ldots, 2 t-1\}, j \neq \ell$, see Figure 6 .

Figure 6. A partial representation of $\left(G_{n}\right)^{2}$. Dotted lines are non-edges.
Now what are $\gamma_{1}\left(\left(G_{n}\right)^{2}\right)$ and $l d_{1}\left(\left(G_{n}\right)^{2}\right)$ (or equivalently, $\gamma_{2}\left(G_{n}\right)$ and $\left.l d_{2}\left(G_{n}\right)\right)$? Obviously, $\gamma_{1}\left(\left(G_{n}\right)^{2}\right)=2$. Next, the argument of Case (b) of the proofs of Lemmas 9 and 10 can be used to show that it is necessary to take half of the vertices v_{i} in V_{m} for a 2-LD code. Then, for $j \neq \ell$, we have $B_{\left(G_{n}\right)^{2}, 1}\left(Z_{j}\right) \Delta B_{\left(G_{n}\right)^{2}, 1}\left(Z_{\ell}\right)=\left\{Z_{j}, Z_{\ell}\right\}$, which implies that we have to take all vertices Z_{j} but one as codewords, together with p vertices in V_{m}, and this is sufficient, $l d_{1}\left(\left(G_{n}\right)^{2}\right)=p+(2 t-1)=5 t-1$.

In order to reach the values of n other than multiples of eight, we might consider $m=6 t+2$ or $6 t+4$ instead of $m=6 t$, but it is more efficient to stick to $m=6 t$ and simply add a number of vertices Z_{j} smaller (by a number between 1 and 7) than $2 t$. From $m=6 t \geq 18$ we constructed a graph with $8 t$ vertices; now, we start from $6(t+1)$, and, instead of building a graph with order $6(t+1)+2(t+1)=8(t+1)$, we build a graph with $6(t+1)+[2(t+1)-q]=8 t+(8-q)$ vertices, by adding only $2(t+1)-q$ vertices Z_{j}, with $1 \leq q \leq 7$. The resulting graph has its 2-domination number equal to 1 (in the unique case when $t=3, q=7$ and we add only one vertex, Z_{0}) or 2 ; any minimum 2-LD code has size $3(t+1)+[2(t+1)-q-1]=$ $5(t+1)-q-1$, including when $2(t+1)-q=1$.

So, letting $i=8-q, 1 \leq i \leq 7$, we obtain graphs G_{n} with order $n=8 t+i$ and $l d_{2}\left(G_{n}\right)=5 t+i-4$ (the borderline case $i=0$, i.e., dropping eight vertices Z_{j}, logically leads to a worse result, namely $5 t-4$, than if we start from $6 t$ to reach $8 t$, in which case we have just seen that we obtain $5 t-1$). Since the 2 -domination number of these graphs is at most 2 , we have the following result.

Proposition 25. (a) Let $n=8 t \geq 24$. Then $F_{l d, \gamma}(2, n) \geq 5 t-3$.
(b) Let $n=8 t+i \geq 24$, with $1 \leq i \leq 7$. Then $F_{l d, \gamma}(2, n) \geq 5 t+i-6$.

The least favorable case is when $i=1$, which leads to

$$
\begin{equation*}
F_{l d, \gamma}(2, n) \geq \frac{5 n-45}{8} \tag{10}
\end{equation*}
$$

The case $m=6 t$ works best because we have a miraculously large number of Z_{j} 's, namely $2 t$, which is advantageous when we look for a "large" LD-code, since we have to take all of them but one in a 1-LD code in $\left(G_{n}\right)^{2}$. If we consider $m=6 t+2$ or $m=6 t+4$, we cannot take as many vertices Z_{j}; yet, if we can take a number of Z_{j} 's which is only a fraction $\frac{m}{\beta}$ with $\beta>3$, then we obtain a graph G_{n} with order $n=m+\frac{m}{\beta}$ and $l d_{2}\left(G_{n}\right)=l d_{1}\left(\left(G_{n}\right)^{2}\right)=\frac{m}{2}+\frac{m}{\beta}-1$, leading to the ratio $\frac{F_{l d, \gamma}(2, n)}{n}$ greater than $\frac{l d_{2}\left(G_{n}\right)-2}{n} \approx \frac{\beta+2}{2 \beta+2}$, which is not as good as $\frac{5}{8}$.

For $r=3$, we consider $m=30=2 p=2(3 k-A)$, leading to $p=15, k=6$, $A=3, J=\{1,2,6\}$. To the graph G_{30} defined by (6) and (7), whose third power, by [6, Theorem 5], is G_{30}^{*}, we add first the vertex Z_{0} together with the edges $Z_{0} v_{0}, Z_{0} v_{10}$ and $Z_{0} v_{20}$. Then we add the vertex Z_{1}. Because we want no path of the type $Z_{0} v_{0} v_{i} Z_{1}$ for some i, among the vertices $\left\{v_{1}, \ldots, v_{15}\right\}, Z_{1}$ cannot be linked to v_{1}, v_{2} nor v_{6}; because of $Z_{0} v_{10}$, this also excludes $v_{4}, v_{8}, v_{9}, v_{11}$ and v_{12} as neighbours of Z_{1}. Finally we can take, e.g., Z_{1} with the edges $Z_{1} v_{3}, Z_{1} v_{13}$, $Z_{1} v_{23}, Z_{2}$ with $Z_{2} v_{7}, Z_{2} v_{17}, Z_{2} v_{27}$, and no more. Exactly as before, this leads to a graph G_{33} whose third power is a graph of the type given by Figure 6, with 33 vertices, $l d_{3}\left(G_{33}\right)=15+(3-1)=17,3$-domination number equal to 2 , and $l d_{3}\left(G_{33}\right)-\gamma_{3}\left(G_{33}\right)=15=\left\lceil\frac{33}{2}\right\rceil-2$, i.e., not better than Proposition $23(\mathrm{~b})$.

It is impossible to take fewer than three neighbours for each vertex Z_{ℓ}. On the other hand, as discussed above when studying the possible neighbours of Z_{1}, if v_{0} is the neighbour of Z_{0}, the "first" neighbour of Z_{1} will be v_{i} with $i \geq k-A$, for Z_{2} it will be v_{j} with $j \geq i+(k-A) \geq 2(k-A), \ldots$ So, roughly speaking, the total number of possible neighbours for the vertices Z_{ℓ} is at most

$$
\begin{equation*}
\frac{m}{k-A}=\frac{m}{\frac{p}{3}-\frac{2 A}{3}}=\frac{6 p}{p-2 A} \tag{11}
\end{equation*}
$$

and therefore, the number of vertices Z_{ℓ} is at most $\frac{2 p}{p-2 A}$. When $p=15$, this leads to at most three vertices Z_{ℓ}, and things only worsen when m, hence p increases. Anyway, with only three additional vertices Z_{ℓ}, all we can reach is a graph G_{n} with $n=m+3$ vertices and

$$
l d_{3}\left(G_{n}\right)-\gamma_{3}\left(G_{n}\right)=(p+(3-1))-2=p=\frac{n-3}{2}
$$

Figure 7. (a) n odd: $n=2 k+1 \geq 5$. (b) n even: $n=2 k+2 \geq 8$. The k black vertices represent codewords constituting both a minimum 1-dominating and 1-locatingdominating code.

When we place ourselves again in the general case for r, we must have the "first" neighbour of Z_{1}, say v_{i}, such that $i \geq(r-2)(k-A)$, in order to avoid a path of length r between Z_{0} and Z_{1}, and equalities (11) now read

$$
\frac{m}{(r-2)(k-A)}=\frac{m}{(r-2)\left(\frac{p}{r}-\frac{(r-1) A}{r}\right)}=\frac{2 r p}{(r-2)(p-(r-1) A)}
$$

Even with $p=\frac{3 r^{2}}{2}$ and $A=r$, this can lead only to approximately $\frac{3 r^{3}}{(r-2) \frac{r^{2}}{2}} \approx 6$, hence at most two vertices Z_{ℓ}, and again, things only worsen when p increases. Therefore, other constructions should be invented-that is, if improvements do exist in Proposition 23(b).

Open Problem. Reduce the gap between lower and upper bounds for $F_{l d, \gamma}(r, n)$, when $r>1$.

7.2. Graphs with twins

The study of $F_{l d, \gamma}^{t w}(r, n)$ is trivial, because of the clique, or complete graph on n vertices, K_{n}, which obviously contains r-twins, and is such that $\gamma_{r}\left(K_{n}\right)=1$ and $l d_{r}\left(K_{n}\right)=n-1$.

We are going to prove that (i) for $r=1$ and $n \in\{2,5\}$ or $n \geq 7$ (Proposition 26) and (ii) for any $r \geq 2$ and n large enough (Proposition 28), we have $f_{l d, \gamma}^{t w}(r, n)=0$.

Proposition 26. (a) For $n=2, n=5$ and all $n \geq 7$, we have $f_{l d, \gamma}^{t w}(1, n)=0$;
(b) For $n \in\{3,4,6\}$, we have $f_{l d, \gamma}^{t w}(1, n)=1$.

Proof. We already know by Proposition 12(a) that

$$
f_{l d, \gamma}^{t w}(1,2)=0 ; f_{l d, \gamma}^{t w}(1,3)=1 ; f_{l d, \gamma}^{t w}(1,4)=1
$$

For $n=6$, Lemma 1(a) and Proposition 5(a) state that for any connected graph G with six vertices, $l d_{1}(G) \geq 3$ and $\gamma_{1}(G) \leq 3$; but a study of the graphs
with 1-twins shows that for them, $\gamma_{1}(G) \leq 2$ (alternatively, one can use the characterization of the graphs with even order and 1-domination number half their order [13, p. 42], $[9,17]$), and eventually $f_{l d, \gamma}^{t w}(1,6)=1$. For $n=5$ and $n \geq 7$, we consider the graphs in Figure 7, obtained from the graphs in Figure 4 by a slight modification, intended to create one pair of 1-twins. The study of these graphs is straightforward and gives the desired result.

We now turn to the case $r \geq 2$ (even if the results below are also valid for $r=1$); first, we give an analogue of Proposition 13 for r-LD codes. We take the graphs $G_{n}^{*}=\left(V_{n}^{*}, E_{n}^{*}\right)$ represented in Figure 3(a) and described just before Proposition 13, and transform them into graphs G_{n+1}^{y} by applying the same type of modification just performed for $r=1$. We simply add one vertex y which is the r-twin of $v_{k, r}$, see Figure 8(a). The order of G_{n+1}^{y} is $n+1=k(r+1)+1$.

Figure 8. The k black vertices represent codewords.
Observation 27. Because here we deal with r-LD codes, not r-ID codes like in Proposition 13, the bound for k could be lowered, down to $k \geq 2 r$. For simplicity and because this does not represent a significant improvement, we keep the bound $k \geq 2 r+2$.
Proposition 28. For all $r \geq 2$ and $k \geq 2 r+2$, the graphs G_{n+1}^{y} are such that $\gamma_{r}\left(G_{n+1}^{y}\right)=l d_{r}\left(G_{n+1}^{y}\right)$.
Proof. Obviously, $k \leq \gamma_{r}\left(G_{n+1}^{y}\right)$ (and $\left.k \leq l d_{r}\left(G_{n+1}^{y}\right)\right)$, and the code $C=\left\{v_{1,0}\right.$, $\left.v_{2,0}, \ldots, v_{k-1,0}, y\right\}$, with k codewords, is an r-D code. We are going to prove that C is also r-LD. In spite of the fact that all we have to check is that any two distinct non-codewords are r-separated by C, the proof is a little more intricate than the proof of Proposition 13 for r-ID codes, because of the "missing" codeword $v_{k, 0}$, so we present it in detail.
(a) The non-codewords $v_{k, j}, 0 \leq j \leq r$, are the only non-codewords r dominated by y, so they all are r-separated by $y \in C$ from other non-codewords; each of them is r-dominated by a different number of codewords, because k is large enough, and therefore they are pairwise r-separated by C.
(b) Consider any two non-codewords $v_{i, j}, v_{i, t}$ on the same string $i, 1 \leq i \leq$ $k-1,\{j, t\} \subseteq\{1, \ldots, r\}, j<t$; then $v_{i, j}$ is r-dominated by at least one codeword more than $v_{i, t}$ (it would be at least two if we had all k elements of the cycle in the code), and so these two vertices are r-separated by C.
(c) Let us consider two non-codewords $v_{i, j}$ and $v_{s, t}$ belonging to two different strings, other than the k-th string: $\{i, s\} \subset\{1, \ldots, k-1\}, i \neq s,\{j, t\} \subseteq$ $\{1, \ldots, r\}$; without loss of generality, we may assume that $j \leq t$.

If $j<t$, then again, $v_{i, j}$ is r-dominated by at least one codeword more than $v_{s, t}$; so from now on, we assume that $j=t$. The set of codewords r-dominating $v_{i, j}$ has cardinality $2 r-2 j+1$ or $2 r-2 j$, and consists, with computations performed modulo k, of $v_{i, 0}, v_{i-1,0}, \ldots, v_{i-r+j, 0}, v_{i+1,0}, \ldots, v_{i+r-j, 0}$, or of the same set without $v_{k, 0}$, which is not a codeword. In both cases, it cannot be the same as the set of codewords r-dominating $v_{s, j}$.
We have just proved that $C r$-separates the non-codewords $v_{k, j}$ between themselves and from the other non-codewords; the non-codewords belonging to the same string; the non-codewords belonging to different strings. Therefore C is an r-LD code.

Now, like in Proposition 14, we want to reach all intermediate values between $k(r+1)+1$ and $(k+1)(r+1)$. We do so by adding a set $W_{p}=\left\{w_{1}, \ldots, w_{p}\right\}$ of p vertices, $p \in\{0, \ldots, r\}$. However, if we proceed exactly as for Proposition 14 by creating the edge set $X_{p}=\left\{w_{1} v_{1,0}, w_{1} v_{2,0}, w_{2} v_{3,0}, w_{2} v_{4,0}, \ldots, w_{p} v_{2 p-1,0}, w_{p} v_{2 p, 0}\right\}$ but now considering the code $C=\left\{v_{1,0}, \ldots, v_{k-1,0}\right\} \cup\{y\}$, we might have one or two pairs of vertices not r-separated by C. We show one such pair ($v_{4,1}$ and w_{2}) in Figure 9 when $r=4, k=11, p=4$; more generally, this may occur whenever r is even. Moreover, a symmetrical situation appears when $k-r$ is odd, see the same Figure with w_{4} and $v_{7,1}$. The existence of both pairs is due to the fact that $v_{k, 0} \notin C$.

So we choose another way of linking the vertices w_{i} to the vertices $v_{s, 0}: X_{p}=$ $\left\{w_{1} v_{1,0}, w_{1} v_{3,0}, w_{2} v_{2,0}, w_{2} v_{4,0}, \ldots\right\}$, see Figure 8(b) for $p=2$. Setting $G_{n+1+p}^{y}=$ $\left(V_{n}^{*} \cup\{y\} \cup W_{p}, E_{n}^{*} \cup\left\{y v_{k, r}, y v_{k, r-1}\right\} \cup X_{p}\right)$, we obtain a graph of order $n+1+p=$ $k(r+1)+1+p$.
Proposition 29. For all $r \geq 2, k \geq 2 r+2$ and $p \in\{0, \ldots, r\}$, the graph $G_{k(r+1)+1+p}^{y}$ is such that $\gamma_{r}\left(G_{k(r+1)+1+p}^{y}\right)=l d_{r}\left(G_{k(r+1)+1+p}^{y}\right)$.
Proof. Again, we take $C=\left\{v_{i, 0}: 1 \leq i \leq k-1\right\} \cup\{y\}$. Using anew the proof of the previous proposition, we can see that we have only to prove in addition the following two assertions about the w_{i} 's.
(a) If $p \geq 2$, any two non-codewords w_{i} and $w_{s},\{i, s\} \subseteq\{1,2, \ldots, p\}, i<s$, are r-separated by C. If w_{i} is linked to $v_{\ell, 0}$ and $v_{\ell+2,0}$, then the set of codewords r dominating w_{i} has size $3+2(r-1)$ or $2+2(r-1)$, and consists (with computations
modulo k) of $v_{\ell, 0}, v_{\ell+1,0}, v_{\ell+2,0}, v_{\ell-1,0}, \ldots, v_{\ell-r+1,0}, v_{\ell+3,0}, \ldots, v_{\ell+2+r-1,0}$, or of the same set without $v_{k, 0}$. In both cases, it cannot be the same as the set of codewords r-dominating w_{s}.

Figure 9. $r=4, n=60$. The eleven black vertices represent codewords. Not all strings are shown. The vertices w_{2} and $v_{4,1}$ are not 4 -separated by C; neither are w_{4} and $v_{7,1}$, which are both 4 -dominated by $v_{i, 0}, 4 \leq i \leq 10$, as indicated by the dotted-line box.
(b) Two non-codewords $w_{i}, i \in\{1, \ldots, p\}$, and $v_{s, t}, 1 \leq s \leq k-1,1 \leq t \leq r$, are r-separated by C. If w_{i} is linked to $v_{\ell, 0}$ and $v_{\ell+2,0}$, the most crucial cases are when $s \in\{\ell, \ell+1, \ell+2\}$ and $t=1$, but even here, w_{i} is r-dominated by more codewords than $v_{s, 1}$ (note that this "W-construction" would not have worked for r-ID codes, because then w_{i} and $v_{\ell+1,0}$ would not be r-separated by the code).

Corollary 30. For all $r \geq 2$ and $n \geq(2 r+2)(r+1)+1$, we have $f_{l d, \gamma}^{t w}(r, n)=0$.

8. Conclusion

In the following tables, we recapitulate our results on the different minimum and maximum differences between cardinalities of minimum dominating, locatingdominating or identifying codes in connected graphs, first for $r=1$, then for $r \geq 2$. For $r=1$, we have exact values for all n and all functions.

n	2	3	4	5	6	≥ 7	Proposition
$f_{i d, \gamma}(1, n)$	\times	1	1	1	0	0	16
$F_{i d, \gamma}(1, n)$	\times	1	2	3	4	$n-2$	17
$f_{i d, l d}(1, n)$	\times	0	0	0	0	0	19
$F_{i d, l d}(1, n)$	\times	0	1	2	2	$\left\lceil\frac{n}{2}\right\rceil-1$	21
$f_{l d, \gamma}(1, n)$	\times	1	0	0	0	0	$22(\mathrm{a})-(\mathrm{b})$
$F_{l d, \gamma}(1, n)$	\times	1	2	3	4	$n-2$	$23(\mathrm{a})$
$f_{l,}^{t w}(1, n)$	0	1	1	0	1	0	26
$F_{l d, \gamma}^{t w}(1, n)$	0	1	2	3	4	$n-2$	(clique)

For $r \geq 2$, most results are valid for n large (typically, n is in r^{2}).

$i d$ vs γ	$\forall r \geq 2, f_{i d, \gamma}(r, n)=0$ [Proposition 14]
	n even, $\forall r \geq 2, F_{i d, \gamma}(r, n)=n-3$ [Proposition 18(a)]
	n odd, $\forall r \geq 2, F_{i d, \gamma}(r, n)=n-2$ [Proposition 18(b)]
$i d$ vs $l d$	$\forall r \geq 2, f_{i d, l d}(r, n)=0$ [Corollary 15]
	$\forall r \geq 2, F_{i d, l d}(r, n)=\left[\frac{n}{2}\right]-1$ [Proposition 20]
$l d$ vs γ	$\forall r \geq 2, f_{l d, \gamma}(r, n)=0$ [Corollary 15, Proposition 22(c)]
(twin-free	$F_{l d, \gamma}(2, n) \geq \frac{5 n-45}{8} \approx \frac{5 n}{8}$ [Prop. 25(b), case $i=1$, ineq. (10)]
graphs)	$\forall r \geq 3, F_{l d, \gamma}(r, n) \geq\left[\frac{n}{2}\right\rceil-2$ [Proposition 23(b)]
	$\forall r \geq 2, F_{l l, \gamma}(r, n) \leq n-3$ [Proposition 23(c)]
$l d$ vs γ	$\forall r \geq 2, f_{l d, \gamma}^{t t w}(r, n)=0$ [Corollary 30]
(with twins)	$\forall r \geq 2, F_{l d, \gamma}^{t w}(r, n)=n-2$ (clique)

References

[1] C. Berge, Graphes (Gauthier-Villars, Paris, 1983).
[2] C. Berge, Graphs (North-Holland Publishing Co., Amsterdam, 1985).
[3] N. Bertrand, Codes identifiants et codes localisateurs-dominateurs sur certains graphes, Mémoire de stage de maîtrise, ENST (Paris, France, 2001).
[4] I. Charon, O. Hudry and A. Lobstein, Possible cardinalities for identifying codes in graphs, Australas. J. Combin. 32 (2005) 177-195.
[5] I. Charon, O. Hudry and A. Lobstein, Possible cardinalities for locating-dominating codes in graphs, Australas. J. Combin. 34 (2006) 23-32.
[6] I. Charon, O. Hudry and A. Lobstein, Extremal cardinalities for identifying and locating-dominating codes in graphs, Discrete Math. 307 (2007) 356-366. doi:10.1016/j.disc.2005.09.027
[7] C.J. Colbourn, P.J. Slater and L.K. Stewart, Locating dominating sets in series parallel networks, Congr. Numer. 56 (1987) 135-162.
[8] R. Diestel, Graph Theory (Springer-Verlag, Berlin, 2005).
[9] J.F. Fink, M.S. Jacobson, L.F. Kinch and J. Roberts, On graphs having domination number half their order, Period. Math. Hungar. 16 (1985) 287-293. doi:10.1007/BF01848079
[10] F. Foucaud, E. Guerrini, M. Kovše, R. Naserasr, A. Parreau and P. Valicov, Extremal graphs for the identifying code problem, European J. Combin. 32 (2011) 628-638. doi:10.1016/j.ejc.2011.01.002
[11] S. Gravier, R. Klasing and J. Moncel, Hardness results and approximation algorithms for identifying codes and locating-dominating codes in graphs, Algorithmic Oper. Res. 3 (2008) 43-50.
[12] S. Gravier and J. Moncel, On graphs having a $V \backslash\{x\}$ set as an identifying code, Discrete Math. 307 (2007) 432-434.
doi:10.1016/j.disc.2005.09.035
[13] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).
[14] M.G. Karpovsky, K. Chakrabarty and L.B. Levitin, On a new class of codes for identifying vertices in graphs, IEEE Trans. Inform. Theory 44 (1998) 599-611. doi:10.1109/18.661507
[15] A. Lobstein, Watching systems, identifying, locating-dominating and discriminating codes in graphs, a bibliography.
https://www.lri.fr/~lobstein/debutBIBidetlocdom.pdf
[16] O. Ore, Theory of Graphs (American Mathematical Society, Providence, 1962). doi:10.1090/coll/038
[17] C. Payan and N.H. Xuong, Domination-balanced graphs, J. Graph Theory 6 (1982) 23-32.
doi:10.1002/jgt. 3190060104
[18] P.J. Slater, Domination and location in graphs, Research Report 93 (National University of Singapore, 1983).

Received 21 July 2017
Revised 15 February 2018
Accepted 15 February 2018

