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Abstract

Let G = (V,E) be a finite graph and r ≥ 1 be an integer. For v ∈ V ,
let Br(v) = {x ∈ V : d(v, x) ≤ r} be the ball of radius r centered at v. A
set C ⊆ V is an r-dominating code if for all v ∈ V , we have Br(v) ∩ C 6= ∅;
it is an r-locating-dominating code if for all v ∈ V , we have Br(v) ∩ C 6= ∅,
and for any two distinct non-codewords x ∈ V \ C, y ∈ V \ C, we have
Br(x) ∩ C 6= Br(y) ∩ C; it is an r-identifying code if for all v ∈ V , we
have Br(v) ∩ C 6= ∅, and for any two distinct vertices x ∈ V , y ∈ V , we
have Br(x)∩C 6= Br(y)∩C. We denote by γr(G) (respectively, ldr(G) and
idr(G)) the smallest possible cardinality of an r-dominating code (respec-
tively, an r-locating-dominating code and an r-identifying code). We study
how small and how large the three differences idr(G)−ldr(G), idr(G)−γr(G)
and ldr(G)− γr(G) can be.
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1. Introduction

1.1. Definitions and notation

For graph theory, we refer to, e.g., [1, 2] or [8]; for the vast topic of domination
in graphs, see [13]. For locating-dominating codes, see the first papers [7] and
[18], for identifying codes, see the seminal paper [14]; for both, see also the large
bibliography at [15].

We shall denote by G = (V,E) a finite, simple, undirected graph with vertex
set V and edge set E, where an edge between x ∈ V and y ∈ V is indifferently
denoted by xy or yx. The order of the graph is its number of vertices, |V |. Our
graphs will generally be connected. The distance between two vertices x ∈ V ,
y ∈ V , will be denoted by dG(x, y), or d(x, y) when there is no ambiguity.

For an integer k ≥ 2, the k-th transitive closure, or k-th power, of G = (V,E)
is the graph Gk = (V,Ek) defined by Ek = {uv : u ∈ V, v ∈ V, 0 < dG(u, v) ≤ k}.
For a given graph G∗, any graph G such that Gk = G∗ is called a k-th root of G∗;
such roots do not always exist.

For any integer r ≥ 1, and for every vertex x ∈ V , we denote by BG,r(x)
(and Br(x) when there is no ambiguity) the ball of radius r centered at x, i.e.,
the set of vertices at distance at most r from x:

Br(x) = {y ∈ V : d(x, y) ≤ r}.

Whenever x ∈ Br(y) (which is equivalent to y ∈ Br(x)), we say that x and y
r-dominate or r-cover each other. A vertex x ∈ V is said to be r-universal if it
r-dominates all the vertices, i.e., if Br(x) = V . When three vertices x, y, z are
such that z ∈ Br(x) and z /∈ Br(y), we say that z r-sepatares x and y in G (note
that z = x is possible). A set of vertices is said to r-separate x and y if at least
one of its element does.

Let C ⊆ V be a set of vertices; the set C is called a code, and its elements
codewords.

A code C is said to be an r-dominating set or an r-dominating code (r-D
code for short) if for all x ∈ V , we have Br(x) ∩ C 6= ∅. One can also find the
terminology dominating set at distance r, or distance r dominating set.

A code C is said to be r-locating-dominating (r-LD for short) if for all x ∈ V ,
we have Br(x) ∩ C 6= ∅, and for any two distinct non-codewords x ∈ V \ C,
y ∈ V \ C, we have Br(x) ∩ C 6= Br(y) ∩ C.

A code C is said to be r-identifying (r-ID for short) if for all x ∈ V , we
have Br(x) ∩ C 6= ∅, and for any two distinct vertices x ∈ V , y ∈ V , we have
Br(x) ∩ C 6= Br(y) ∩ C.

In other words: every vertex must be r-dominated by at least one code-
word for the three definitions; in addition, every pair of distinct non-codewords
(respectively, vertices) must be r-separated by an r-LD (respectively, r-ID) code.
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Two vertices x ∈ V , y ∈ V , x 6= y, are said to be r-twins if Br(x) = Br(y).
Dominating and locating-dominating codes exist for all graphs. On the other
hand, it is easy to see that a graph G admits an r-identifying code if and only if

(1) ∀x ∈ V, ∀y ∈ V, x 6= y : Br(x) 6= Br(y).

A graph satisfying (1) is called r-identifiable or r-twin-free.

1.2. Aim of the paper

For all three concepts, we are often interested in finding the minimum sized
codes. We denote by γr(G) (respectively, ldr(G) and idr(G)) the smallest possible
cardinality of an r-dominating code (respectively, an r-locating-dominating code
and an r-identifying code when G is r-twin-free). We call γr(G) the r-domination

number of G. Since obviously an r-ID code (when it exists) is an r-LD code which
in turn is an r-D code, the following inequalities hold:

γr(G) ≤ ldr(G) ≤ idr(G).

In other words, location-domination is more “expensive” than domination, and
identification is more expensive than location-domination. In this paper, we
compare the respective “costs” for these three definitions.

More precisely, denoting

Gr,n = {G : G is r-twin-free, connected, with order n ≥ 2},

and Gtw
r,n = {G : G has r-twins and is connected, with order n ≥ 2},

we study the following maximum and minimum differences:

• Fid,ld(r, n) = max{idr(G)− ldr(G) : G ∈ Gr,n},

• fid,ld(r, n) = min {idr(G)− ldr(G) : G ∈ Gr,n} ,

• Fid,γ(r, n) = max{idr(G)− γr(G) : G ∈ Gr,n},

• fid,γ(r, n) = min{idr(G)− γr(G) : G ∈ Gr,n}.

For D- and LD-codes, we have two cases, (a) and (b), which study graphs which
are without or with twins, respectively:

(a) • Fld,γ(r, n) = max{ldr(G)− γr(G) : G ∈ Gr,n},

• fld,γ(r, n) = min{ldr(G)− γr(G) : G ∈ Gr,n};

these two functions are considered on the same set of graphs (the twin-free graphs)
as the four functions involving identification, unlike the two functions below:

(b) • F tw
ld,γ(r, n) = max

{

ldr(G)− γr(G) : G ∈ Gtw
r,n

}

,

• f tw
ld,γ(r, n) = min

{

ldr(G)− γr(G) : G ∈ Gtw
r,n

}

.
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Finally, if we want to consider all the connected graphs of order n, twin-free or
not, the result is obviously obtained by taking max

{

Fld,γ(r, n), F
tw
ld,γ(r, n)

}

and

min
{

fld,γ(r, n), f
tw
ld,γ(r, n)

}

.

2. Some Earlier Results

The following easy four lemmas are as old as the definitions of dominating,
locating-dominating or identifying codes. We give the proofs only for the first
two.

Lemma 1. (a) For any graph G = (V,E) of order n and any integer r ≥ 1, we
have

(2) ldr(G) ≥ ⌈log2(n− ldr(G) + 1)⌉ .

(b) For any integer r ≥ 1 and any r-twin-free graph G = (V,E) of order n, we
have

(3) idr(G) ≥ ⌈log2(n+ 1)⌉ .

Proof. (a) Let C be any r-LD code in G. All the n−|C| non-codewords v ∈ V \C
must be given nonempty and distinct sets Br(v) ∩ C constructed with the |C|
codewords, so 2|C| − 1 ≥ n− |C|, from which (2) follows when C is optimal;

(b) the argument is the same, but we have to consider all the n vertices
v ∈ V , so 2|C| − 1 ≥ n.

Lemma 2. Let r ≥ 2 be any integer and G = (V,E) be a graph.

(a) A code C is 1-locating-dominating in Gr, the r-th power of G, if and only if

it is r-locating-dominating in G.

(b) A code C is 1-identifying in Gr if and only if it is r-identifying in G.

(c) A code C is 1-dominating in Gr if and only if it is r-dominating in G.

Proof. (a) For every vertex v ∈ V , we have

{c ∈ C : dG(v, c) ≤ r} = {c ∈ C : dGr(v, c) ≤ 1},

so if for all v ∈ V \C, the sets on the left-hand side of the equality are nonempty
and distinct, then the sets on the right side also are, and vice-versa; (b) the same
proof, for all v ∈ V ; (c) the same proof, for all v ∈ V , with only nonemptiness to
be checked.

Lemma 3. (a) For any integer r ≥ 1, if G is a connected graph of order n, then

(4) ldr(G) ≤ n− 1.
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(b) If G is an r-twin-free graph of order n, then n ≥ 2r + 1, and the only

r-twin-free graph of order 2r + 1 is the path.

(c) If G is an r-twin-free cycle of order n, then n ≥ 2r + 2.

The following obvious lemma is often used implicitly.

Lemma 4. Let r ≥ 1 be any integer and G = (V,E) be a graph.

(a) If C is r-dominating in G, so is any set S ⊃ C.

(b) If C is r-locating-dominating in G, so is any set S ⊃ C.

(c) If C is r-identifying in G, so is any set S ⊃ C.

Proposition 5. (a) [16], [13, p. 41] If G has no isolated vertices (in particular,

if G is connected) and has order n, then γ1(G) ≤ n
2 .

(b) [11] If G is a 1-twin-free graph, then id1(G) ≤ 2ld1(G).

The following result is from [3], but a shorter proof can be found in [12].

Proposition 6. If G is a connected 1-twin-free graph of order n, then id1(G) ≤
n− 1.

Corollary 7. Let r ≥ 1 be any integer.

(i) If G is a connected graph of order n, then γr(G) ≤ n
2 .

(ii) If G is an r-twin-free graph, then idr(G) ≤ 2ldr(G).

(iii) If G is a connected r-twin-graph of order n, then

(5) idr(G) ≤ n− 1.

Proof. Use the r-th power of G, together with the previous two propositions.

Both lower bounds (2), (3) and upper bounds (4), (5) for r-LD and r-ID codes
can be reached [6], as well as all intermediate values [4], [5].

The graphs G of order n such that id1(G) = n − 1 have been characterized
in [10], but the case r ≥ 2 remains open.

3. Some Important Graphs

The following three lemmas describe three useful graphs, which have been used
in previous papers. The first graph is the “star”.

Lemma 8. For n ≥ 3, let Gn be the tree consisting of n vertices v0, v1, . . . , vn−1,

and n− 1 edges v0vi, 1 ≤ i ≤ n− 1. Then

γ1(Gn) = 1, ld1(Gn) = n− 1 and id1(Gn) = n− 1.



132 O. Hudry and A. Lobstein

Proof. (a) Since v0 is a 1-universal vertex, we have γ1(Gn) = 1.
(b) It is quite straightforward to check that taking for codewords any set of

n − 1 vertices is necessary and sufficient to obtain a 1-LD or 1-ID code, except
for n = 3, when only {v1, v2} is a 1-ID code.

The second graph, denoted G∗
2p, has even order and is the complete graph (or

clique) minus a perfect matching; see Figure 1.

vv1

vv
. . .

v0

p

1p−

2  p−p+1 1v

Figure 1. The complement of G∗

2p: only the missing edges v0vp, . . . , vp−1v2p−1 are repre-
sented.

Lemma 9. Let p ≥ 2 and G∗
2p =

(

V ∗
2p, E

∗
2p

)

, with V ∗
2p = {v0, v1, . . . , v2p−1},

E∗
2p =

{

vivj : vi ∈ V ∗
2p, vj ∈ V ∗

2p, i 6= j, i 6= j + p mod 2p
}

. Then

γ1
(

G∗
2p

)

= 2, ld1
(

G∗
2p

)

= p and id1
(

G∗
2p

)

= 2p− 1.

Proof. For every vi ∈ V ∗
2p, we have B1(vi) = V ∗

2p \
{

vi+p mod 2p

}

, and for
every pair of distinct vertices vi ∈ V ∗

2p, vj ∈ V ∗
2p, we have B1(vi)∆B1(vj) =

{

vi+p mod 2p, vj+p mod 2p

}

, where ∆ stands for the symmetric difference.

(a) The fact that γ1(G
∗
2p) = 2 is easy to check.

(b) Obviously, C = {v0, . . . , vp−1} is a 1-LD code, of size p. Assume that
there is a minimum 1-LD code C with fewer than p elements. Then there is at
least one j such that vj /∈ C and vj+p mod 2p /∈ C. Without loss of generality,
we may assume that v0 /∈ C, vp /∈ C. Then B1(v0)∆B1(vp) = {v0, vp} leads to
C ∩ (B1(v0)∆B1(vp)) = ∅, contradicting the definition of a 1-LD code: v0 and vp
are non-codewords not 1-separated by any codeword.

(c) We know that at most 2p−1 codewords are necessary in any minimum 1-
ID code C; therefore, assume, without loss of generality, that v0 /∈ C. Then for all
j 6= p, B1(vp)∆B1(vj) =

{

v0, vj+p mod 2p

}

, and, since vp and vj are 1-separated
by at least one codeword, we have ∅ 6= (B1(vp)∆B1(vj))∩C ⊆

{

vj+p mod 2p

}

. So
for all values of j but one, the 2p− 1 distinct vertices vj+pmod2p are codewords,
and |C| ≥ 2p− 1, i.e., |C| = 2p− 1.

The third graph is obtained from the previous one by adding one 1-universal
vertex, and its order is odd.

Lemma 10. Let p ≥ 2 and G∗
2p+1 =

(

V ∗
2p+1, E

∗
2p+1

)

, with V ∗
2p+1 = {v0, v1, . . . ,

v2p}, E∗
2p+1 =

{

vivj : vi ∈ V ∗
2p+1 \ {v2p} , vj ∈ V ∗

2p+1 \ {v2p}, i 6= j, i 6= j +

p mod 2p
}

∪
{

v2pvj : vj ∈ V ∗
2p+1 \ {v2p}

}

. Then
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γ1
(

G∗
2p+1

)

= 1, ld1
(

G∗
2p+1

)

= p and id1
(

G∗
2p+1

)

= 2p.

Proof. (a) The fact that v2p is 1-universal shows that γ1(G
∗
2p+1) = 1.

(b) For 1-LD codes, the argument of the Case (b) of the previous proof can
be applied mutatis mutandis, because the 1-universal vertex does not change
anything when considering symmetric differences of balls of radius one.

(c) For i ∈ {0, . . . , 2p− 1}, we have B1(v2p)∆B1(vi) =
{

vi+p mod 2p

}

, there-
fore all vertices but v2p must be codewords.

Now, what is more difficult and interesting is that the two graphs G∗
2p and G∗

2p+1

just described in Lemmas 9 and 10 admit r-th roots for any r, if p is sufficiently
large [6]. More precisely:

Proposition 11. Let r ≥ 2 and p ≥ 2 be integers.

(a) [6, Theorem 5] If 2p ≥ 3r2, then there exists a graph G2p of order 2p such

that (G2p)
r = G∗

2p.

(b) [6, Theorem 6] If 2p ≥ 3r2, then there exists a graph G2p+1 of order 2p+ 1
such that (G2p+1)

r = G∗
2p+1.

(c) For n ≥ 3r2, there exists a graph Gn of even order n such that γr(Gn) = 2,
ldr(Gn) =

n
2 and idr(Gn) = n− 1.

(d) For n ≥ 3r2+1, there exists a graph Gn of odd order n such that γr(Gn) = 1,
ldr(Gn) =

n−1
2 and idr(Gn) = n− 1.

Proof. (c)–(d). Use the properties of r-th powers of graphs (Lemma 2).

See also the constructions presented and discussed immediately after Proposition
23 in Section 7.1.

4. The Very Small Cases: n ≤ 4

Here, we denote by Tr(G) the triple (γr(G), ldr(G), idr(G)), with the convention
that idr(G) =? if G is not r-twin-free. Figure 2 gives all the nonisomorphic
unlabeled connected graphs with two, three or four vertices, together with their
triples for r = 1.

For r = 2, the triples are, for the nine graphs of Figure 2, respectively:
(1, 1, ?); (1, 2, ?) and (1, 2, ?); (1, 2, ?), (1, 3, ?), (1, 3, ?), (1, 3, ?), (1, 3, ?), and
(1, 3, ?). For r ≥ 3, the triples are (1, n− 1, ?) for all nine graphs. From this, we
have the following result.

Proposition 12. We have

(a) r = 1
n = 2 : F tw

ld,γ(1, 2) = f tw
ld,γ(1, 2) = 0;
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n = 3 : Fid,ld(1, 3) = fid,ld(1, 3) = 0; Fid,γ(1, 3) = fid,γ(1, 3) = 1;
Fld,γ(1, 3) = fld,γ(1, 3) = 1; F tw

ld,γ(1, 3) = f tw
ld,γ(1, 3) = 1;

n = 4 : Fid,ld(1, 4) = 1, fid,ld(1, 4) = 0; Fid,γ(1, 4) = 2, fid,γ(1, 4) = 1;

Fld,γ(1, 4) = 2, fld,γ(1, 4) = 0; F tw
ld,γ(1, 4) = 2, f tw

ld,γ(1, 4) = 1;
(b) r = 2

n = 2 : F tw
ld,γ(2, 2) = f tw

ld,γ(2, 2) = 0;

n = 3 : F tw
ld,γ(2, 3) = f tw

ld,γ(2, 3) = 1;

n = 4 : F tw
ld,γ(2, 4) = 2, f tw

ld,γ(2, 4) = 1;

(c) r ≥ 3

n ∈ {2, 3, 4} : F tw
ld,γ(r, n) = f tw

ld,γ(r, n) = n− 2.

(1,1,?) (1,2,?)(1,2,2)
n=

(1,3,?)(2,2,3) (1,2,?)

(2,2,3) (1,3,3) (1,2,?)

3

4

2

n=

n=

Figure 2. Small graphs, r = 1.

5. Identification vs Domination

First, we construct an infinite family of graphs G∗
n such that G∗

n has order n and
satisfies idr(G

∗
n) = γr(G

∗
n).

These graphs will have order n = k(r+1) and consist of one cycle of order k
and k strings with r vertices each: G∗

n = (V ∗
n , E

∗
n), with V ∗

n = V0 ∪
(
⋃

1≤i≤k Vi

)

and E∗
n = E0 ∪

(
⋃

1≤i≤k Ei

)

, where V0 = {v1,0, v2,0, . . . , vk,0}, Vi = {vi,j : 1 ≤
j ≤ r} for i ∈ {1, 2, . . . , k}, E0 = {vi,0vi+1,0 : 1 ≤ i ≤ k − 1} ∪ {vk,0v1,0} and
Ei =

{

vi,jvi,j+1 : 0 ≤ j ≤ r − 1
}

for i ∈ {1, 2, . . . , k} (see Figure 3(a)).

Proposition 13. For all r ≥ 1 and k ≥ 2r + 2, the graph G∗
n is such that

γr(G
∗
n) = idr(G

∗
n).

Proof. The k leaves vi,r must be r-dominated by at least one codeword, and no
vertex can r-dominate two leaves, so γr(G

∗
n) ≥ k. On the other hand, the code

C = V0 represented by the black vertices in Figure 3(a) has cardinality k, and it is
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(b)

v

(a)
v

v

v v

v2,0 v3,0

v1,0

w
v2,0 v3,01,0

1

k,r

00k,

1  ,r1  ,r v

v

k,r

k,

Figure 3. (a) The graph G∗

n. (b) The graph Gn+1. The k black vertices represent
codewords.

straightforward to check that it is r-identifying. Note in particular that vertices
in V0 are r-dominated by exactly 2r+1 codewords (this is where the assumption
k ≥ 2r + 2 is crucial, cf. Lemma 3(c)), and vertices vi,j ∈ Vi are r-dominated
by exactly 2r − 2j + 1 codewords. See also the proof of Proposition 28 for r-LD
codes, which is analogous but more intricate.

So k ≤ γr(G
∗
n) ≤ idr(G

∗
n) ≤ k.

Second, if we want n to reach all intermediate values between k(r + 1) and (k +
1)(r+1)−1, we can do so by adding p ∈ {0, . . . , r} vertices to G∗

n in the following
way: since p < k

2 , we can add the set of p vertices Wp = {w1, . . . , wp} together
with the set of edges Xp = {w1v1,0, w1v2,0, w2v3,0, w2v4,0, . . . , wpv2p−1,0, wpv2p,0},
see Figure 3(b) for p = 1. Setting Gn+p = (V ∗

n ∪Wp, E
∗
n∪Xp), we obtain a graph

of order n+p, for which, due to the assumption k ≥ 2r+2 and the remark in the
proof of Proposition 13 stating that all vertices in G∗

n are r-dominated by an odd
number of codewords, it is again straightforward to check that C = V0 is still a
(minimum) r-ID code. Therefore we have the following.

Proposition 14. For all r ≥ 1, k ≥ 2r + 2 and p ∈ {0, . . . , r}, the graph

Gk(r+1)+p is such that γr(Gk(r+1)+p) = idr(Gk(r+1)+p). As a consequence, for all

r ≥ 1 and n ≥ (2r + 2)(r + 1), we have

fid,γ(r, n) = 0.

In advance of the next sections, we have the following obvious consequence.

Corollary 15. For all r ≥ 1 and n ≥ (2r + 2)(r + 1), we have

fid,ld(r, n) = fld,γ(r, n) = 0.

For r = 1, the construction for Propositions 13 and 14 works for n ≥ 8; however,
we have the exact value of fid,γ(1, n) for all n, due to an alternative construction.

Proposition 12(a) has already settled the cases n = 3, n = 4. Lemma 1(b)
and Proposition 5(a) establish that any (1-twin-free) graph G with five vertices
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is such that id1(G) ≥ 3 and γ1(G) ≤ 2; on the other hand it is easy to find
graphs G of order five with id1(G) = 3 and γ1(G) = 2, e.g., the path, so that
fid,γ(1, 5) = 1. For even n, n ≥ 6, and odd n, n ≥ 7, it is easy to see that Figure
4 gives graphs G such that id1(G) = γ1(G) = k.

v vkvv1v1

(a) (b)

k 2v2

Figure 4. (a) n even. (b) n odd. The k black vertices represent codewords constituting
both a minimum 1-identifying and 1-dominating code.

Proposition 16. (a) For all n ≥ 6, we have fid,γ(1, n) = 0; consequently,

fid,ld(1, n) = fld,γ(1, n) = 0.

(b) For n ∈ {3, 4, 5}, we have fid,γ(1, n) = 1.

Now how large can the difference idr(G)− γr(G) be? By Corollary 7(iii), it is at
most n− 2, obtained by graphs G with idr(G) = n− 1 and γr(G) = 1.

We first treat the case r = 1, which is easy: the star on n vertices (Lemma
8) is an example of a graph G with id1(G) = n− 1 and γ1(G) = 1.

Proposition 17. For all n ≥ 3, we have Fid,γ(1, n) = n− 2.

We now turn to the case r ≥ 2. When n is odd, the answer is given by Proposition
11(d). Again, we can reach n − 2 for the difference idr(G) − γr(G). When n is
even, the study of all the graphs G of even order n such that id1(G) = n− 1 [10]
shows that none of them contains a 1-universal vertex, i.e., none of them is such
that γ1(G) = 1, except the star; but the star cannot be the power of any graph.
Therefore, for r ≥ 2, there can exist no graph G with even order n such that
idr(G) = n−1 and γr(G) = 1, since the r-th power of this graph would contradict
the characterization from [10]; consequently the difference idr(G) − γr(G) is at
most n − 3. On the other hand, Proposition 11(c) gives an example achieving
n− 3, and we have proved the following.

Proposition 18. (a) For all r ≥ 2 and even n ≥ 3r2, we have Fid,γ(r, n) = n−3.

(b) For all r ≥ 2 and odd n ≥ 3r2 + 1, we have Fid,γ(r, n) = n− 2.

6. Identification vs Location-Domination

We have already seen in Corollary 15 that, for r ≥ 1 and n ≥ (2r+ 2)(r+ 1), we
have fid,ld(r, n) = 0.
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For r = 1, and for all values of n, Propositions 12(a) and 16(a) completely
settle this case except when n = 5, where fid,ld(1, 5) = 0 thanks to the graph
G5 with vertex set {v1, v2, v3, v4, v5} and edge set {v1v2, v2v3, v3v4, v4v1, v1v5},
id1(G5) = ld1(G5) = 3. Therefore we have the following.

Proposition 19. For all n ≥ 3, we have fid,ld(1, n) = 0.

What about Fid,ld(r, n)? We can use Corollary 7(ii) and obtain that any (con-
nected) r-twin-free graph G is such that idr(G) ≤ 2ldr(G). Therefore, −ldr(G) ≤

− idr(G)
2 , and idr(G)−ldr(G) ≤ idr(G)− idr(G)

2 ≤ n−1
2 , leading to idr(G)−ldr(G) ≤

⌈

n
2

⌉

−1. On the other hand, Proposition 11(c)–(d) gives examples of graphs reach-
ing

⌈

n
2

⌉

− 1.

Proposition 20. For all r ≥ 1 and n ≥ 3r2 + 1, we have Fid,ld(r, n) =
⌈

n
2

⌉

− 1.

Proposition 21. (a) For all n ≥ 4, we have Fid,ld(1, n) =
⌈

n
2

⌉

− 1.

(b) Fid,ld(1, 3) = 0.

Proof. Proposition 12(a) settles the case n = 3.

7. Location-Domination vs Domination

7.1. Twin-free graphs

We have already seen in Corollary 15 that, for r ≥ 1 and n ≥ (2r+ 2)(r+ 1), we
have fld,γ(r, n) = 0. Moreover, for r = 1, Propositions 12(a) and 16(a) treat all
values of n but n = 5, for which the path shows that fld,γ(1, 5) = 0.

Proposition 22. (a) For all n ≥ 4, we have fld,γ(1, n) = 0.

(b) fld,γ(1, 3) = 1.

(c) For all r ≥ 1 and n ≥ (2r + 2)(r + 1), we have fld,γ(r, n) = 0.

We know, using the example of the star (Lemma 8), that Fld,γ(1, n) = n − 2.
What about Fld,γ(r, n) for general r?

On the one hand, Proposition 11(c)–(d) immediately gives examples proving
that Fld,γ(r, n) ≥

⌈

n
2

⌉

− 2, for all r ≥ 2 and n ≥ 3r2 + 1. On the other hand, the
characterization [10] of the graphs G of order n such that id1(G) = n − 1 gives
graphs which, apart from the star which is not the power of any graph, are such
that ld1(G) ≤ n − 2. This allows to conclude that Fld,γ(r, n) ≤ n − 3. Indeed,
Fld,γ(r, n) = n − 2 is possible only if a graph G of order n satisfies γr(G) = 1
and ldr(G) = n − 1, which implies γ1(G

r) = 1 and ld1(G
r) = n − 1 = id1(G

r),
contradicting the previous sentence.

Proposition 23. (a) For all n ≥ 3, we have Fld,γ(1, n) = n− 2.
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(b) For all r ≥ 2 and n ≥ 3r2 + 1, we have Fld,γ(r, n) ≥
⌈

n
2

⌉

− 2.

(c) For all r ≥ 2 and n ≥ 2r + 1, we have Fld,γ(r, n) ≤ n− 3.

We now present a general framework using Theorem 5 in [6], and, to a lesser
extent, Theorem 6 in [6], cf. Section 3, Proposition 11(a)–(b). We shall use it in
the case r = 2, when this gives a lower bound for Fld,γ(2, n) which is better than
⌈n2 ⌉ − 2, for all n ≥ 24; for r = 3, n = 30, this gives no improvement, and we
shall informally explain why for r = 3 and larger n, or for larger r, this method
is doomed to fail.

Let m = 2p ≥ 3r2 + 1. We consider the Euclidean division of p by r:
p = rQ + R, 0 ≤ R ≤ r − 1, and set k = Q + 1, A = r − R, so that p = rk − A
with A ∈ {1, 2, . . . , r}. We build Gm = (Vm, Em) in the following way:

(6) Vm = {vi : 0 ≤ i ≤ m− 1},

(7) Em =
{

vivi+j mod m : 0 ≤ i ≤ m− 1, j ∈ J = {1, 2, . . . , k −A− 1, k}
}

.

The graph Gm can be seen as a cycle with chords added according to the set
J , where every vertex plays the same role, see Figure 5(a). Theorem 5 from [6]
states that the r-th power of Gm is the graph G∗

m of Lemma 9, with m = 2p. We
now need to be more specific with respect to r.

In the case r = 2, we can improve on Proposition 23(b) and build, for n

large enough, graphs of order n proving that
Fld,γ(2,n)

n
tends to 5

8 when n goes to
infinity. The first step is the study of graphs with order a multiple of eight.

Proposition 24. For n = 8t ≥ 24, there exists a 2-twin-free graph Gn of order

n, with γ2(Gn) = 2 and ld2(Gn) = 5t− 1.

Proof. Let m = 6t = 2p ≥ 18 and p = 2k − A with A ∈ {1, 2}. Because A ∈
{1, 2} and p ≥ 9, we have p ≥ 3A+3 ⇒ p−A− 1 ≥ 2p

3 = 2t ⇒ 2k− 2A− 1 ≥ 2t,
and finally

(8) k −A ≥ 2t− (k −A− 1).

When p = 9, then A = 1 and p
3 ≥ A + 2, which also holds whenever p ≥ 12.

Therefore, 2k−A
3 ≥ A+2 ⇒ k ≥ 2A+3 ⇒ 3k−3A−3 ≥ 2k−A ⇒ k−A−1 ≥ p

3 ,
and finally

(9) 2t+ k −A− 1 =
2p

3
+ k −A− 1 ≥ p.

These two inequalities, (8) and (9), will be used later on. We have already seen
that the graph Gm = (Vm, Em) defined by (6) and (7) is such that the square
power of Gm is the graph G∗

m of Lemma 9, with m = 2p. This means that



Costs of Domination, Location-Domination and Identification 139

BGm,2(vi) = Vm \ {vi+p mod m}, for all i ∈ {0, . . . ,m − 1}; in other words, from
any vi we can go in two steps to any vertex in Vm but vi+p mod m. Next, we
diverge from Theorem 6 in [6]: we add m

3 = 2t vertices Zj , 0 ≤ j ≤ 2t −
1; every Zj is linked to three vertices in Vm, namely vj , vj+2t and vj+4t. By
setting Gn = (Vn, En) with Vn = Vm ∪

{

Zj : 0 ≤ j ≤ 2t − 1
}

and En =
Em ∪

{

Zjvj , Zjvj+2t, Zjvj+4t : 0 ≤ j ≤ 2t− 1
}

, we obtain a graph of order 8t, see
Figure 5(b).

0 1
2

p

k

(b)(a)

0 1
2

p

k

1m−m−1

k−A− 

p+1 p−1

1

1p+ 1p−

1k−A−  

Z

Z

0

4t
4t−

t2
t−2 1

2t−1

1

Figure 5. (a) The graph Gm. (b) The graph Gn (r = 2). Not all vertices nor edges are
represented. Only the indices of the vertices vi are given.

We claim that

(a) BGn,2(Zj) = Vm \ {Zℓ : 0 ≤ ℓ ≤ 2t− 1, ℓ 6= j}, for all j ∈ {0, . . . , 2t− 1};

(b) BGn,2(vi) = Vm \
{

vi+p mod m

}

, for all i ∈ {0, . . . ,m− 1}.

(a) That we cannot go in two steps from Zj to Zℓ is obvious since BGn,1(Zj)∩
BGn,1(Zℓ) = ∅. Note already that this could not be directly transposed to the
case r ≥ 3, since then the existence of paths such as Zjvj , vjvj+1, vj+1Zj+1 would
lead to a contradiction; see the discussion below for r = 3.

Next, we show that we can go in two moves from any Zj to any vi; because of
the symmetries of the graph, we need to do it only for, say, Z0, and the vertices
going from v0 to vp. Thanks to the edge Z0v0, Z0 can reach v1, v2, . . . , vk−1−A

(and vk, but we do not need it) in two moves; thanks to the edge Z0v2t, Z0 can
also reach v2t+1, . . . , v2t+k−1−A (and v2t+k), as well as v2t−1, . . . , v2t−(k−1−A) (and
v2t−k). Using (8), we can see that in the worst case, v2t−(k−1−A) = vk−A and all
the vertices between v0 and v2t can be reached, including in particular vk−1−A

and vk−A. In other words, the areas reached in one move by going clockwise from
v0 or anticlockwise from v2t do meet. Similarly, by (9), we have in the worst case
v2t+k−A−1 = vp and all the vertices between v2t+1 and vp can be reached in two
moves from Z0. Claim (a) is proved.
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(b) The proof is the same as for the graph Gm; we just have to check that
the additional vertices Zj and their edges do not make it possible to go in two
moves from v0 to vp (this is sufficient for reasons of symmetry).

Claims (a) and (b) show that Gn is 2-twin-free; they also show that the square
power of Gn is the following graph. (Gn)

2 has vertex set Vn and edge set all
the possible edges except the edges vivi+p mod m, 0 ≤ i ≤ p, and ZjZℓ, {j, ℓ} ⊂
{0, . . . , 2t− 1}, j 6= ℓ, see Figure 6.

vv

v v

v

v
. . .

Zj

Z

clique − perfect matching

Z0

0

p

1

1p+

1p−

12t−
12p−

Figure 6. A partial representation of (Gn)
2. Dotted lines are non-edges.

Now what are γ1
(

(Gn)
2
)

and ld1((Gn)
2) (or equivalently, γ2(Gn) and

ld2(Gn))? Obviously, γ1
(

(Gn)
2
)

= 2. Next, the argument of Case (b) of the
proofs of Lemmas 9 and 10 can be used to show that it is necessary to take
half of the vertices vi in Vm for a 2-LD code. Then, for j 6= ℓ, we have
B(Gn)2,1(Zj)∆B(Gn)2,1(Zℓ) = {Zj , Zℓ}, which implies that we have to take all
vertices Zj but one as codewords, together with p vertices in Vm, and this is
sufficient, ld1

(

(Gn)
2
)

= p+ (2t− 1) = 5t− 1.

In order to reach the values of n other than multiples of eight, we might consider
m = 6t+2 or 6t+4 instead ofm = 6t, but it is more efficient to stick tom = 6t and
simply add a number of vertices Zj smaller (by a number between 1 and 7) than
2t. Fromm = 6t ≥ 18 we constructed a graph with 8t vertices; now, we start from
6(t+1), and, instead of building a graph with order 6(t+1)+2(t+1) = 8(t+1),
we build a graph with 6(t+1)+[2(t+1)−q] = 8t+(8−q) vertices, by adding only
2(t+1)− q vertices Zj , with 1 ≤ q ≤ 7. The resulting graph has its 2-domination
number equal to 1 (in the unique case when t = 3, q = 7 and we add only one
vertex, Z0) or 2; any minimum 2-LD code has size 3(t+ 1) + [2(t+ 1)− q − 1] =
5(t+ 1)− q − 1, including when 2(t+ 1)− q = 1.

So, letting i = 8−q, 1 ≤ i ≤ 7, we obtain graphs Gn with order n = 8t+i and
ld2(Gn) = 5t + i − 4 (the borderline case i = 0, i.e., dropping eight vertices Zj ,
logically leads to a worse result, namely 5t− 4, than if we start from 6t to reach
8t, in which case we have just seen that we obtain 5t−1). Since the 2-domination
number of these graphs is at most 2, we have the following result.
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Proposition 25. (a) Let n = 8t ≥ 24. Then Fld,γ(2, n) ≥ 5t− 3.

(b) Let n = 8t+ i ≥ 24, with 1 ≤ i ≤ 7. Then Fld,γ(2, n) ≥ 5t+ i− 6.

The least favorable case is when i = 1, which leads to

(10) Fld,γ(2, n) ≥
5n− 45

8
.

The case m = 6t works best because we have a miraculously large number of Zj ’s,
namely 2t, which is advantageous when we look for a “large” LD-code, since we
have to take all of them but one in a 1-LD code in (Gn)

2. If we considerm = 6t+2
or m = 6t+ 4, we cannot take as many vertices Zj ; yet, if we can take a number
of Zj ’s which is only a fraction m

β
with β > 3, then we obtain a graph Gn with

order n = m + m
β

and ld2(Gn) = ld1
(

(Gn)
2
)

= m
2 + m

β
− 1, leading to the ratio

Fld,γ(2,n)
n

greater than ld2(Gn)−2
n

≈ β+2
2β+2 , which is not as good as 5

8 .

For r = 3, we consider m = 30 = 2p = 2(3k − A), leading to p = 15, k = 6,
A = 3, J = {1, 2, 6}. To the graph G30 defined by (6) and (7), whose third
power, by [6, Theorem 5], is G∗

30, we add first the vertex Z0 together with the
edges Z0v0, Z0v10 and Z0v20. Then we add the vertex Z1. Because we want no
path of the type Z0v0viZ1 for some i, among the vertices {v1, . . . , v15}, Z1 cannot
be linked to v1, v2 nor v6; because of Z0v10, this also excludes v4, v8, v9, v11 and
v12 as neighbours of Z1. Finally we can take, e.g., Z1 with the edges Z1v3, Z1v13,
Z1v23, Z2 with Z2v7, Z2v17, Z2v27, and no more. Exactly as before, this leads
to a graph G33 whose third power is a graph of the type given by Figure 6, with
33 vertices, ld3(G33) = 15 + (3 − 1) = 17, 3-domination number equal to 2, and
ld3(G33)− γ3(G33) = 15 =

⌈

33
2

⌉

− 2, i.e., not better than Proposition 23(b).

It is impossible to take fewer than three neighbours for each vertex Zℓ. On
the other hand, as discussed above when studying the possible neighbours of Z1,
if v0 is the neighbour of Z0, the “first” neighbour of Z1 will be vi with i ≥ k−A,
for Z2 it will be vj with j ≥ i+(k−A) ≥ 2(k−A), . . . So, roughly speaking, the
total number of possible neighbours for the vertices Zℓ is at most

(11)
m

k −A
=

m
p
3 − 2A

3

=
6p

p− 2A
,

and therefore, the number of vertices Zℓ is at most 2p
p−2A . When p = 15, this leads

to at most three vertices Zℓ, and things only worsen when m, hence p increases.
Anyway, with only three additional vertices Zℓ, all we can reach is a graph Gn

with n = m+ 3 vertices and

ld3(Gn)− γ3(Gn) = (p+ (3− 1))− 2 = p =
n− 3

2
.
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vv2
v2

1−twins

vv1 v kv
(a) (b) k 1 k−1

Figure 7. (a) n odd: n = 2k + 1 ≥ 5. (b) n even: n = 2k + 2 ≥ 8. The k black
vertices represent codewords constituting both a minimum 1-dominating and 1-locating-
dominating code.

When we place ourselves again in the general case for r, we must have the “first”
neighbour of Z1, say vi, such that i ≥ (r− 2)(k −A), in order to avoid a path of
length r between Z0 and Z1, and equalities (11) now read

m

(r − 2)(k −A)
=

m

(r − 2)
(

p
r
− (r−1)A

r

) =
2rp

(r − 2)(p− (r − 1)A)
.

Even with p = 3r2

2 and A = r, this can lead only to approximately 3r3

(r−2) r
2

2

≈ 6,

hence at most two vertices Zℓ, and again, things only worsen when p increases.
Therefore, other constructions should be invented—that is, if improvements do
exist in Proposition 23(b).

Open Problem. Reduce the gap between lower and upper bounds for Fld,γ(r, n),
when r > 1.

7.2. Graphs with twins

The study of F tw
ld,γ(r, n) is trivial, because of the clique, or complete graph on n

vertices, Kn, which obviously contains r-twins, and is such that γr(Kn) = 1 and
ldr(Kn) = n− 1.

We are going to prove that (i) for r = 1 and n ∈ {2, 5} or n ≥ 7 (Proposi-
tion 26) and (ii) for any r ≥ 2 and n large enough (Proposition 28), we have
f tw
ld,γ(r, n) = 0.

Proposition 26. (a) For n = 2, n = 5 and all n ≥ 7, we have f tw
ld,γ(1, n) = 0;

(b) For n ∈ {3, 4, 6}, we have f tw
ld,γ(1, n) = 1.

Proof. We already know by Proposition 12(a) that

f tw
ld,γ(1, 2) = 0; f tw

ld,γ(1, 3) = 1; f tw
ld,γ(1, 4) = 1.

For n = 6, Lemma 1(a) and Proposition 5(a) state that for any connected graph
G with six vertices, ld1(G) ≥ 3 and γ1(G) ≤ 3; but a study of the graphs
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with 1-twins shows that for them, γ1(G) ≤ 2 (alternatively, one can use the
characterization of the graphs with even order and 1-domination number half
their order [13, p. 42], [9, 17]), and eventually f tw

ld,γ(1, 6) = 1. For n = 5 and
n ≥ 7, we consider the graphs in Figure 7, obtained from the graphs in Figure
4 by a slight modification, intended to create one pair of 1-twins. The study of
these graphs is straightforward and gives the desired result.

We now turn to the case r ≥ 2 (even if the results below are also valid for
r = 1); first, we give an analogue of Proposition 13 for r-LD codes. We take
the graphs G∗

n = (V ∗
n , E

∗
n) represented in Figure 3(a) and described just before

Proposition 13, and transform them into graphs Gy
n+1 by applying the same type

of modification just performed for r = 1. We simply add one vertex y which is
the r-twin of vk,r, see Figure 8(a). The order of Gy

n+1 is n+ 1 = k(r + 1) + 1.

(b) y

 

w w2

(a) y

v v vv

v

v v

v

v1,0 2,0 3,0 0k,

k,r

1k,r−

1

k,r

k,0

1k,r−

Figure 8. The k black vertices represent codewords.

Observation 27. Because here we deal with r-LD codes, not r-ID codes like in

Proposition 13, the bound for k could be lowered, down to k ≥ 2r. For simplicity

and because this does not represent a significant improvement, we keep the bound

k ≥ 2r + 2.

Proposition 28. For all r ≥ 2 and k ≥ 2r + 2, the graphs Gy
n+1 are such that

γr
(

Gy
n+1

)

= ldr
(

Gy
n+1

)

.

Proof. Obviously, k ≤ γr
(

Gy
n+1

)

(and k ≤ ldr
(

Gy
n+1

)

), and the code C = {v1,0,
v2,0, . . . , vk−1,0, y}, with k codewords, is an r-D code. We are going to prove that
C is also r-LD. In spite of the fact that all we have to check is that any two distinct
non-codewords are r-separated by C, the proof is a little more intricate than the
proof of Proposition 13 for r-ID codes, because of the “missing” codeword vk,0,
so we present it in detail.

(a) The non-codewords vk,j , 0 ≤ j ≤ r, are the only non-codewords r-
dominated by y, so they all are r-separated by y ∈ C from other non-codewords;
each of them is r-dominated by a different number of codewords, because k is
large enough, and therefore they are pairwise r-separated by C.
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(b) Consider any two non-codewords vi,j , vi,t on the same string i, 1 ≤ i ≤
k−1, {j, t} ⊆ {1, . . . , r}, j < t; then vi,j is r-dominated by at least one codeword
more than vi,t (it would be at least two if we had all k elements of the cycle in
the code), and so these two vertices are r-separated by C.

(c) Let us consider two non-codewords vi,j and vs,t belonging to two differ-
ent strings, other than the k-th string: {i, s} ⊂ {1, . . . , k − 1}, i 6= s, {j, t} ⊆
{1, . . . , r}; without loss of generality, we may assume that j ≤ t.

If j < t, then again, vi,j is r-dominated by at least one codeword more than
vs,t; so from now on, we assume that j = t. The set of codewords r-dominating
vi,j has cardinality 2r − 2j + 1 or 2r − 2j, and consists, with computations per-
formed modulo k, of vi,0, vi−1,0, . . . , vi−r+j,0, vi+1,0, . . . , vi+r−j,0, or of the same
set without vk,0, which is not a codeword. In both cases, it cannot be the same
as the set of codewords r-dominating vs,j .

We have just proved that C r-separates the non-codewords vk,j between them-
selves and from the other non-codewords; the non-codewords belonging to the
same string; the non-codewords belonging to different strings. Therefore C is an
r-LD code.

Now, like in Proposition 14, we want to reach all intermediate values between
k(r+1)+ 1 and (k+1)(r+1). We do so by adding a set Wp = {w1, . . . , wp} of p
vertices, p ∈ {0, . . . , r}. However, if we proceed exactly as for Proposition 14 by
creating the edge set Xp = {w1v1,0, w1v2,0, w2v3,0, w2v4,0, . . . , wpv2p−1,0, wpv2p,0}
but now considering the code C = {v1,0, . . . , vk−1,0} ∪ {y}, we might have one or
two pairs of vertices not r-separated by C. We show one such pair (v4,1 and w2)
in Figure 9 when r = 4, k = 11, p = 4; more generally, this may occur whenever
r is even. Moreover, a symmetrical situation appears when k − r is odd, see the
same Figure with w4 and v7,1. The existence of both pairs is due to the fact that
vk,0 /∈ C.

So we choose another way of linking the vertices wi to the vertices vs,0: Xp =
{w1v1,0, w1v3,0, w2v2,0, w2v4,0, . . .}, see Figure 8(b) for p = 2. Setting Gy

n+1+p =
(

V ∗
n ∪{y}∪Wp, E

∗
n∪{yvk,r, yvk,r−1} ∪Xp

)

, we obtain a graph of order n+1+p =
k(r + 1) + 1 + p.

Proposition 29. For all r ≥ 2, k ≥ 2r + 2 and p ∈ {0, . . . , r}, the graph

Gy

k(r+1)+1+p
is such that γr

(

Gy

k(r+1)+1+p

)

= ldr

(

Gy

k(r+1)+1+p

)

.

Proof. Again, we take C = {vi,0 : 1 ≤ i ≤ k− 1}∪ {y}. Using anew the proof of
the previous proposition, we can see that we have only to prove in addition the
following two assertions about the wi’s.

(a) If p ≥ 2, any two non-codewords wi and ws, {i, s} ⊆ {1, 2, . . . , p}, i < s,
are r-separated by C. If wi is linked to vℓ,0 and vℓ+2,0, then the set of codewords r-
dominating wi has size 3+2(r−1) or 2+2(r−1), and consists (with computations
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modulo k) of vℓ,0, vℓ+1,0, vℓ+2,0, vℓ−1,0, . . . , vℓ−r+1,0, vℓ+3,0, . . . , vℓ+2+r−1,0, or of
the same set without vk,0. In both cases, it cannot be the same as the set of
codewords r-dominating ws.

y

v11,4

2,0v 4,1v 7,1v
8,0v 10,0v

w w
11,0v

42

Figure 9. r = 4, n = 60. The eleven black vertices represent codewords. Not all strings
are shown. The vertices w2 and v4,1 are not 4-separated by C; neither are w4 and v7,1,
which are both 4-dominated by vi,0, 4 ≤ i ≤ 10, as indicated by the dotted-line box.

(b) Two non-codewords wi, i ∈ {1, . . . , p}, and vs,t, 1 ≤ s ≤ k− 1, 1 ≤ t ≤ r,
are r-separated by C. If wi is linked to vℓ,0 and vℓ+2,0, the most crucial cases are
when s ∈ {ℓ, ℓ + 1, ℓ + 2} and t = 1, but even here, wi is r-dominated by more
codewords than vs,1 (note that this “W-construction” would not have worked for
r-ID codes, because then wi and vℓ+1,0 would not be r-separated by the code).

Corollary 30. For all r ≥ 2 and n ≥ (2r+2)(r+1)+1, we have f tw
ld,γ(r, n) = 0.

8. Conclusion

In the following tables, we recapitulate our results on the different minimum and
maximum differences between cardinalities of minimum dominating, locating-
dominating or identifying codes in connected graphs, first for r = 1, then for
r ≥ 2. For r = 1, we have exact values for all n and all functions.

n 2 3 4 5 6 ≥ 7 Proposition

fid,γ(1, n) × 1 1 1 0 0 16
Fid,γ(1, n) × 1 2 3 4 n− 2 17

fid,ld(1, n) × 0 0 0 0 0 19
Fid,ld(1, n) × 0 1 2 2

⌈

n
2

⌉

− 1 21

fld,γ(1, n) × 1 0 0 0 0 22(a)–(b)
Fld,γ(1, n) × 1 2 3 4 n− 2 23(a)

f tw
ld,γ(1, n) 0 1 1 0 1 0 26

F tw
ld,γ(1, n) 0 1 2 3 4 n− 2 (clique)
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For r ≥ 2, most results are valid for n large (typically, n is in r2).

id vs γ ∀r ≥ 2, fid,γ(r, n) = 0 [Proposition 14]
n even, ∀r ≥ 2, Fid,γ(r, n) = n− 3 [Proposition 18(a)]
n odd, ∀r ≥ 2, Fid,γ(r, n) = n− 2 [Proposition 18(b)]

id vs ld ∀r ≥ 2, fid,ld(r, n) = 0 [Corollary 15]
∀r ≥ 2, Fid,ld(r, n) =

⌈

n
2

⌉

− 1 [Proposition 20]

ld vs γ ∀r ≥ 2, fld,γ(r, n) = 0 [Corollary 15, Proposition 22(c)]
(twin-free Fld,γ(2, n) ≥

5n−45
8 ≈ 5n

8 [Prop. 25(b), case i = 1, ineq. (10)]
graphs) ∀r ≥ 3, Fld,γ(r, n) ≥

⌈

n
2

⌉

− 2 [Proposition 23(b)]
∀r ≥ 2, Fld,γ(r, n) ≤ n− 3 [Proposition 23(c)]

ld vs γ ∀r ≥ 2, f tw
ld,γ(r, n) = 0 [Corollary 30]

(with twins) ∀r ≥ 2, F tw
ld,γ(r, n) = n− 2 (clique)
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