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Abstract

In this paper we study graphs defined by pattern-avoiding words. Word-
representable graphs have been studied extensively following their introduc-
tion in 2004 and are the subject of a book published by Kitaev and Lozin
in 2015. Recently there has been interest in studying graphs represented by
pattern-avoiding words. In particular, in 2016, Gao, Kitaev, and Zhang in-
vestigated 132-representable graphs, that is, word-representable graphs that
can be represented by a word which avoids the pattern 132. They proved
that all 132-representable graphs are circle graphs and provided examples
and properties of 132-representable graphs. They posed several questions,
some of which we answer in this paper.

One of our main results is that not all circle graphs are 132-representable,
thus proving that 132-representable graphs are a proper subset of circle
graphs, a question that was left open in the paper by Gao et al. We show that
123-representable graphs are also a proper subset of circle graphs, and are
different from 132-representable graphs. We also study graphs represented
by pattern-avoiding 2-uniform words, that is, words in which every letter
appears exactly twice.
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1. Introduction

In this paper we study graphs defined by pattern-avoiding words. Word-represen-
table graphs have been investigated extensively following their introduction by
Kitaev in 2004 and their first systematic study in [3]. They are also the subject
of the book [6]. There is general interest in study various patterns in words as is
witnessed by [4, 5]. Recently there has been interest (see [1] and page 183 in [6])
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in studying graphs represented by pattern-avoiding words. In particular, Gao,
Kitaev, and Zhang studied 132-representable graphs, that is, word-representable
graphs which can be represented by a word which avoids the pattern 132 [1]. They
proved that all 132-representable graphs are circle graphs and provided examples
and properties of 132-representable graphs. They also posed several questions,
some of which we answer in this paper.

One of the main results in this paper is that not all circle graphs are 132-
representable, thus proving that 132-representable graphs are a strict subset of
circle graphs, a question that was left open in [1]. We show that 123-representable
graphs are also a proper subset of circle graphs, and are different from 132-
representable graphs. We also study graphs represented by pattern-avoiding 2-
uniform words, that is, words in which every letter appears exactly twice.

This paper is organized as follows. In Section 2 we introduce important def-
initions, notation, and past results that will be used in the paper. In Section
3 we prove several results about 123-representable graphs. In Section 4 we dis-
cuss and prove some properties of graphs which can be represented by 2-uniform
pattern-avoiding words, and provide some examples of such graphs. In Section
5 we prove that not all circle graphs are 132-representable, answering one of the
questions posed in [1]. Finally in Section 6 we give some research directions.

all graphs

word-representable graphs

circle graphs

123- rep. 132- rep.

odd wheels W5,W7 · · ·

prisms

K4 ⊔K4 ⊔K1,6

K4 ⊔K4

Kn, Cn, some trees

trees

Figure 1. The place of 123 and 132-representable graphs in the hierarchy of graph classes.

Figure 1 shows the hierarchy of graph classes, as established in this paper,
with some examples of graphs fitting into each category.

2. Preliminaries and Definitions

We will now introduce notation and definitions.
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2.1. Words and patterns

Throughout this paper, w refers to a word w1w2 · · ·wn over a totally ordered
alphabet. For any letter x in a word w, xi denotes the i-th instance of the letter
x in w from left to right.

Definition 2.1. A word v is a factor of the word w if w = xvy for (possibly
empty) words x and y.

Definition 2.2. A word w is k-uniform if there are exactly k copies of each letter
in w.

For example, the word 12432143 is 2-uniform, whereas 1232342 is not.

Definition 2.3. Two letters x and y alternate in a word w if there is an instance
of x between any two instances of y (if there is more than one y), and an instance
of y between any two instances of x (if there is more than one instance of x).

For example, in the word abcbd, the following pairs of letters are alternating:
(a, c), (a, d), (b, c), (c, d), while the pairs (a, b) and (b, d) are not.

Definition 2.4. A word w contains the pattern τ = τ1 · · · τk if there are indices
1 ≤ i1 < · · · < ik ≤ n such that wi1 · · ·wik is order-isomorphic to τ .

In particular, w contains the pattern 123 if there is a strictly increasing
substring of length 3 in w. For example, 31247 contains the pattern 123.

Definition 2.5. A word w avoids a pattern if it does not contain it.

Thus, the word 7546231 is 123-avoiding, whereas 7534621 is not.

2.2. Word-representable graphs

In this paper all graphs are simple. The degree of a vertex is denoted by d(v).

Definition 2.6. A circle graph G = (V,E) is a graph whose vertices can be
associated with chords of a circle such that two chords a and b intersect if and
only if ab ∈ E.

Definition 2.7. A graph G = (V,E) is word-representable if there exists a word
w over V such that x and y alternate in w if and only if xy ∈ E. Any such w is
said to represent G.

Definition 2.8. Given a pattern τ , a graph is τ -representable if, possibly af-
ter relabeling the vertices of the graph, it can be represented by a word which
avoids τ .
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Figure 2. An example of a word-representable graph. A 123-avoiding word that represents
this graph is 32414.

In particular, a graph is 123-representable if it can be represented by a 123-
avoiding word. See Figure 2 for an example of a 123-representable graph.

Note that labeling is important when dealing with τ -representable graphs,
for a pattern τ as opposed to simply word-representable graphs. Figure 3 shows
the importance of a correct labeling. The graphs on the right and left are the
same graph, but while the one on the left is 132-representable with its current
labeling (by the word 4321234), the one on the right is not. In the graph on the
right, at least two of the letters 1, 2, and 3 must appear twice, as otherwise there
would be at least two appearing once, and thus they would be alternating. Thus
if a and b (with a 6= b, a, b < 4) each appear twice and are not alternating with
each other, but are both alternating with 4, then there must be a subsequence in
the word ab4ba, and then either a4b or b4a forms a 132-pattern.

2 1 4

3

1 4 3

2

Figure 3. An example showing the importance of labeling correctly.

2.3. Preliminaries

We need the following results.

Theorem 2.9 [1]. Any 132-representable graph is a circle graph.

Theorem 2.10 [2]. A graph G is word-representable and has a representant with

at most two copies of each letter if and only if G is a circle graph.

Lemma 2.11 [1]. If G1, G2, . . . , Gk are the connected components of a graph G
that can be 132-represented by 2-uniform words then G is 132-representable by a

2-uniform word.
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3. 123-Representable Graphs

In this section we discuss properties of words representing 123-representable
graphs and properties of the graphs themselves.

We first present a simple, but useful generalization of Theorem 3.1 in [1].

Theorem 3.1. Let G be a word-representable graph, which can be represented

by a word avoiding a pattern τ of length k + 1. Let x be a vertex in G such that

d(x) ≥ k. Then, any word w representing G that avoids τ must contain no more

than k instances of x.

Proof. Since d(x) ≥ k, there must be vertices a1, a2, . . . , ak that are adjacent to
x, and each of a1, . . . , ak must be alternating with x in w.

Now suppose there are at least k+1 copies of x in w. Then there exists a sub-
sequence x1w1x2 · · ·wkxk+1 in w, where each w1, . . . , wk must have a copy of each
a1, . . . , ak. However, now every single possible permutation of x, a1, a2, . . . , ak can
be found in the word, since we can get any permutation of the ai’s by simply
taking the first element from w1, the second from w2, etc. Then we can find an x
between any two elements of the permutation of the ais, so we have all possible
permutations of x, a1, a2, . . . , ak. Therefore, all possible patterns of length k + 1
can be found in w. It follows that x can appear in w no more than k times for w
to avoid a pattern of length k + 1.

Note that in the case of 123-representability, Theorem 3.1 implies that in a
graph G, if x has degree at least 2, then x can appear at most two times in any
123-avoiding word representant for G.

Corollary 3.2. Let w be a word-representant for a graph which avoids a pattern

of length k+1. If some vertex a adjacent to x has degree at least k, then x occurs

at most k + 1 times in w.

Proof. By Theorem 3.1, a occurs at most k times in w. Since x must alternate
with a, there can be no more than k + 1 instances of x, for otherwise, x and a
would not be alternating.

Note that if x is a vertex of degree 1 in a graph G and a vertex a adjacent
to x has degree at least 2, then x occurs at most three times in any word that is
a 123-representant for G.

The following lemma will be very useful in the proof of Theorem 3.4.

Lemma 3.3. If w is a 123-representant for G = (V,E) and has a factor ab, with
a < b, then w′, formed by switching a and b, is also 123-avoiding. Furthermore,

w′ represents G if ab 6∈ E, and a and b do not alternate in w′.
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Proof. Assume for the sake of contradiction that w′ is not 123-avoiding, and thus
contains an increasing subsequence of length 3. Since the only difference between
w and w′ is the order of a and b, this means that they both must be in this
subsequence. However, they are in decreasing order in w′, so this is impossible.
Thus w′ is 123-avoiding.

The only possible edges (or lack thereof) that could have been affected by
the switch are edges incident with a or b. However, the relative order of a and b is
irrelevant when considering an edge only involving one of a or b. Thus if ab 6∈ E,
and a and b do not alternate in w′, then w′ represents G.

Note that Lemma 3.3 says that if we have a word w = w1a1a2 · · · akxw2 that
is 123-avoiding, with all ai < x for 1 ≤ i ≤ k, then the word w1xa1a2 · · · akw2

is also 123-avoiding and represents almost the same graph as w, except with
possible changes in the connections between x and all of the ai’s.

The following theorem will be the main ingredient in proving that all 123-
representable graphs are circle graphs.

Theorem 3.4. If a graph G is 123-representable, then there exists a 123-avoiding
word w representing G such that any letter in w appears at most twice.

Proof. Let w be a 123-representant for G = (V,E). We will show that if there is
a letter x which appears more than two times, we can create a new word that is
still a 123-representant of G but has x appearing only twice and does not change
the frequency of the other letters. Then this process can be repeated until every
letter appears at most twice.

We begin by noting that if a vertex in V has degree at least two, then by
Theorem 3.1, the corresponding letter appears at most twice. Hence we need
only consider vertices which have degree 1 or 0.

Case 1. d(x) = 0. Let w1 be the word obtained by deleting all instances
of x from w, and then re-label the graph so that the vertex previously labeled
x now has the largest value of any of the vertices, while preserving the relative
order of the other vertices. We denote this value x′. The desired word is x′x′w1.
This word is still 123-avoiding since x′ cannot participate in a 123-pattern as it is
at the beginning of the word. Furthermore, the word still represents G because
x′ cannot alternate with anything, and all other alternating pairs have not been
affected.

Case 2. d(x) = 1 and the vertex a connected to x also has degree 1. This
case means that the edge xa is disconnected from the rest of the graph. Let w1

be the word obtained from w after deleting all instances of a and x. Now we form
the final word x′a′x′a′w1, where x′ and a′ are greater than all the values of the
letters in w1. The new word is still 123-avoiding and it represents G because x′

alternates with a′ and neither of them alternates with any other letter.



On Graphs Representable by Pattern-Avoiding Words 381

Case 3. d(x) = 1 and the vertex a adjacent to x has degree at least
2. By Corollary 3.2, x cannot appear more than 3 times in w, and by The-
orem 3.1, a cannot appear more than twice. Then we have the word w =
w1x1w2a1w3x2w4a2w5x3w6 where wi are words such that x, a 6∈ wi.

Now consider the word w3. If w3 is nonempty, let c be a letter in w3. Then 5
of the 6 possible permutations of axc appear in w, namely, x1a1c, x1ca2, cx2a2,
ca2x3, and a1cx2. The only one that does not appear is axc. Thus, for w to be
123-avoiding, a < x < c must hold for any c ∈ w3.

Similarly, if w4 is nonempty, and it contains some c, then the only possible
ordering of a, x, and c is c < x < a, as w contains x1a1c, x1ca2, ca2x3, a1x2c,
and a1cx3.

Because both inequalities cannot hold simultaneously, w3 and w4 cannot both
be nonempty.

Let b be another vertex adjacent to a. Then we know b must be either in
w3 or w4 since it alternates with a. There are six possible relative orders of a, b,
and x.

1. x < a < b: This is impossible since x1a1b is a 123-pattern.

2. x < b < a: This is impossible since x1ba2 is a 123-pattern.

3. b < a < x: This is impossible since ba2x3 is a 123-pattern.

4. a < b < x: This is impossible since a1bx3 is a 123-pattern.

5. a < x < b: This is only possible if b ∈ w3. Otherwise, if b ∈ w4, then a1x2b
is a 123-pattern.

6. b < x < a: This is only possible if b ∈ w4. Otherwise, if b ∈ w3, then bx2a2
is a 123-pattern.

This gives us two subcases.

Subcase 3.1. a < x < b and b ∈ w3. This implies that w4 is empty since w3

is nonempty. This gives us w = w1x1w2a1w
′

3bx2a2w5x3w6 where w3 = w′

3b
If w5 is nonempty, consider some c ∈ w5. Note that w contains the pat-

terns a1cx3 and a1x2c. Then, since w is 123-avoiding, c < a. Thus every
letter in w5 is less than a (vacuously true if w5 is empty). Now let w′ =
w1x1w2a1w

′

3bx2a2x3w5w6 be a subword of w with x3 and w5 swapped, and
w′′ = w1w2a1w

′

3bx2a2x3w5w6 be w′ with x1 removed. By Lemma 3.3, w′ is
123-avoiding, and thus it is clear that w′′ is as well. To show that w′′ represents
G, it only remains to make sure that x shares an edge with a and does not share
an edge with any vertex in w5 (since d(x) = 1). Since a2 is the only letter between
x2 and x3, x can only alternate with a. In fact, it clearly does alternate with a,
so we have successfully created a word w′′ which only contains x twice.
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Subcase 3.2. b < x < a and b ∈ w4. This implies that w3 is empty since w4

is nonempty. This gives us w = w1x1w2a1x2bw
′

4a2w5x3w6 where w4 = bw′

4

If w2 is nonempty, consider some c ∈ w2. Note that w contains the subword
cx2a2. Thus, since w is 123-avoiding and x < a, we know x < c. Therefore
every letter in w2 is greater than x (vacuously true if w2 is empty). Now let
w′ = w1w2x1a1x2bw4a2w5w6.

By Lemma 3.3, w′ is 123-avoiding and it only remains to make sure that x
is only alternating with a. It is clear that x alternates with a, and since the only
letter between x1 and x2 is a1, x does not alternate with any other letters. Thus
we have successfully created a word w′ which is a 123-representant of G and only
contains x twice.

In both cases we were able to create a new word which represents the same
graph but only contains two copies of the letter x.

We have gone through all possible cases, and have shown that it is possible
to create a 123-representant for a graph G which has no more than two copies
of each letter, since we can repeat the process outlined above for every letter
which appears more than two times. Therefore there exists a word for any 123-
representable graph which contains no more than two copies of each letter.

The next corollary follows easily.

Corollary 3.5. Any 123-representable graph is a circle graph.

Proof. By Theorem 3.4, any 123-representable graph can be represented by a
123-avoiding word with at most two copies of each letter. From Theorem 2.10,
this implies that any 123-representable graph is a circle graph.

Finally, we prove that not all circle graphs are 123-representable. We begin
with a lemma.

Lemma 3.6. Let x be a vertex in a graph G = (V,E) with xa, xb ∈ E. If ab /∈ E,

and a and b appear on both sides of x in some word w representing G with at

most two copies of each letter, then a and b appear in opposite orders on both

sides of x.

Proof. Assume a and b appear in the same order (without loss of generality, a
followed by b) on each side of x. Then a alternates with b, but since ab /∈ E this
is impossible. Thus they must appear in opposite order.

Theorem 3.7. The star K1,6 is not 123-representable.

Proof. Consider the starK1,6 (Figure 4), and suppose w is some 123-representant
for it. At most one of the vertices labeled a through f can appear only once in
the word, since if two appear only once then they alternate with each other,
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c d

e
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x

Figure 4. The star K1,6.

a contradiction. Thus, without loss of generality, a, b, . . . , e appear twice in w.
There are two cases.

Case 1. x appears once. In this case, it is sufficient to consider only a, b and
c. We have one copy of each of these letters on either side of x. Without loss of
generality, let a < b < c. Note that b must appear after c on the right of x, for
otherwise a1b2c2 forms a 123-pattern. Furthermore, a must come after b on the
left of x because otherwise a1b1c2 would form a 123-pattern. Now, by Lemma
3.6 the only two possibilities for the order in which the letters appear in w are
b1a1c1xc2a2b2 and b1c1a1xa2c2b2.

We have x > c because otherwise a1xc2 would form a 123-pattern. However,
if c < x, a1c1x and b1c1x form 123-patterns in the first and second options,
respectively. Thus the star cannot be 123-represented with only one instance
of x.

Case 2. x appears twice. We must have each a, b, c, d, e appearing between
x1 and x2. The second copies of a, b, c, d, e can be either to the right of x2 or to
the left of x1. By the pigeonhole principle, there must be at least three letters
to one side of the x’s. Without loss of generality, let a, b, and c appear on both
sides of x1. Then we have reduced this argument to the same one examined in
Case 1, so we are done.

Therefore, the star K1,6 is not 123-representable.

Corollary 3.8. Not all circle graphs are 123-representable.

Proof. In the previous theorem we showed that the 7-star is not 123-representable.
However, since it is a tree, it is a circle graph [6]. Thus not all circle graphs are
123-representable.
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3.1. Examples of 123-representable graphs

In this section we give three families of 123-representble graphs.

Theorem 3.9. Complete graphs are 123-representable.

Proof. The complete graph on n vertices can be represented by the word n(n−

1) · · · 21. Clearly this is 123-avoiding and represents the complete graph since
each letter appears once, thereby alternating with every other letter.

Theorem 3.10. Paths are 123-representable.

Proof. A path on n vertices, with the natural labeling (consecutively labeled
with 1 at one endpoint and n at the other) can be represented by the 123-avoiding
word n(n− 1)n(n− 2)(n− 1)(n− 3)(n− 2) · · · 23121. This is clearly 123-avoiding
and represents a path since every vertex alternates only with the one before it
and after it, with the exception of 1 and n, which alternate only with 2 and n−1,
respectively.

Theorem 3.11. Cycles are 123-representable.

Proof. A cycle on n vertices with the natural labeling (same as the path in
Theorem 3.10 but with 1 and n adjacent) can be represented by the 123-avoiding
word (n− 1)n(n− 2)(n− 1)(n− 3)(n− 2) · · · 2312. This is the same word as the
one which represents a path, except with the first n and last 1 deleted to make
it alternate with 1 as well as with n− 1.

4. Graphs Representable by Pattern Avoiding 2-Uniform Words

In this section we provide some properties of graphs which are representable by
either 123-avoiding or 132-avoiding 2-uniform words. As stated in Lemma 2.11,
the disjoint union of graphs which can be represented by 132-avoiding 2-uniform
words is a 132-representable graph as well. Here, we prove a more general result.

Theorem 4.1. Let k ≥ 1 and G1, G2, . . . , Gk be connected 132(123)-representable
components of a graph G. Then G is 132(123)-representable if and only if at most

one of the connected components cannot be 132(123)-represented by a 2-uniform
word.

Proof. First we show that if at least 2 of the components are not 132(123)-
representable by 2-uniform words, then G is not 132(123)-representable. We first
prove this for 132-representable graphs.

Assume for the sake of contradiction that G is 132-representable and can be
represented by some w. Let components Gi and Gj be graphs not representable
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by a 132-avoiding 2-uniform word. By Theorems 2.9 and 2.10 we can assume
that w has at most 2 copies of each letter.

It is clear that w must have subwords wi and wj , formed by removing all
letters from w that do not appear in Gi and Gj , respectively, which represent
both Gi and Gj (otherwise it would be impossible for them to be components of
G). It is impossible for either wi or wj not to be 132-avoiding, thus Gi and Gj

must both be 132-representable. Now, if wi is not 2-uniform, then some letter
a must appear only once (as no letter appears more than two times). Similarly,
some b must appear only once in wj . However, this would mean that a and b
alternate, and then Gi and Gj are not disconnected components of G. We have
reached a contradiction, thus we are done.

Next we show that G is 132-representable if it has at most one component
that is not representable by a 132-avoiding 2-uniform word.

First we relabel the components the following way: G1 has vertices 1, 2, . . . , t1;
G2 has vertices t1 + 1, t1 + 2, . . . , t2; . . .; Gk has vertices tk−1 + 1, . . . , tk. Let
w1, w2, . . . , wk be 132-representants for G1, G2, . . . , Gk, respectively. Now we
show that the word w = wkwk−1 · · ·w1 is a 132-representant for G. It is easy to
see that w is 132-representable, as no wi contains a 132-pattern, and all letters
appearing after wi are smaller than all letters appearing in wi. Furthermore, w
represents G since it is impossible for any letter appearing twice in w to alternate
with anything that is not in its component’s word. Since at most one of the wi’s
can have letters appearing fewer than two times, they will not alternate with any
letters in any other wj . Thus G is 132-representable.

The proof for 123-representable graphs is exactly the same, except we use
Theorem 3.4 instead of Theorems 2.9 and 2.10.

Note that this gives us a new class of 123- and 132-representable graphs,
namely those formed by the disjoint union of several graphs representable by
2-uniform words and one that possibly is not 2-uniform.

4.1. Graphs representable by 123-avoiding 2-uniform words

Here we prove that linear forests and P3-free graphs can be 123-represented by
2-uniform words. We were not able to find examples of 123-representable graphs
that require non-2-uniform words but we suspect that cycle graphs could be such
examples. See Question 2.

Theorem 4.2. Any linear forest is 123-representable by a 2-uniform word.

Proof. We can see that paths are 123-representable by a 2-uniform word, which
follows directly from the construction given in Theorem 3.10. Furthermore, note
that the proof of Theorem 4.1 gives a construction for a 123-representant for the
disjoint union G of graphs G1, . . . , Gk representable by 2-uniform 123-avoiding
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words w1, . . . , wk which maintains the number of copies of each letter. Thus the
word representing G given in this construction is also 2 uniform, thus telling us
that linear forests, i.e., disjoint unions of paths, are also 123-representable by
2-uniform words.

Theorem 4.3. Any P3-free graph is 123-representable by a 2-uniform word.

Proof. A complete graph on n vertices can be represented by the 2-uniform word
n(n− 1) · · · 1n(n− 1) · · · 1. Then, by the same reasoning as in Theorem 4.2 and
by Theorem 4.1, any disjoint union of complete graphs (i.e., a P3-free graph) is
also 123-representable by a 2-uniform word.

4.2. Graphs representable by 132-avoiding 2-uniform words

Theorem 4.4. Any forest is 132-representable by a 2-uniform word.

Proof. The recursive algorithm provided in [1] for 132-representants for trees
gives a word which has one copy of the root vertex and two copies of every other
vertex. The recursively generated word is w(Tr)w(Tr−1) · · ·w(T1)1n1n2 · · ·nr,
where 1 is the root vertex, n1, n2, . . . , nr are the children of the root vertex, and
w(Tm) denotes the word generated in the same way, but representing the subtree
with nm’s as the root vertices. We claim that the word w(Tr)w(Tr−1) · · ·w(T1)1n1

n2 · · ·nr1 is also 132-avoiding and represents the same tree. It is easy to see that
it is still 132-avoiding since adding 1 at the end cannot possibly form a 132-
pattern. Furthermore, 1 is still alternating with all of ni, and not with any other
vertices. Thus any tree can be represented by a 2-uniform 132-avoiding word.
Then, by Theorem 4.1 and the same reasoning as in Theorem 4.2, we conclude
that any forest is 132-representable by a 2-uniform word.

Theorem 4.5. The complete graph Kn, with n > 3, is not 132-representable by

a 2-uniform word.

Proof. We prove this by contradiction. Assume there is a 132-avoiding 2-uniform
word w that represents a complete graph on at least 4 vertices. Since 1 must
appear twice in w, we have w = w11w21w3, with 2, 3, and 4 appearing in w2.
It is easy to see that they must appear in increasing order, since otherwise there
will be a 132-pattern. Each of 2, 3, and 4 must also appear either in w1 or in w3.
Neither 2 nor 3 cannot appear in w3 since otherwise they form a 132-pattern with
the first 1 and the 4 in w2. Thus they appear in w1 in increasing order because
otherwise the 2 and 3 would not be alternating. Finally, a 4 cannot appear in
w3 because then it would not be alternating with 2 or with 3. If the 4 is in w1 it
must come before the 2, since otherwise it would form a 132-pattern with the 2
in w1 and the 3 in w2. However, this makes it impossible for the 4 to alternate
with 2 and 3, a contradiction. This completes the proof.
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5. Circle Graphs

Our final result in this paper answers a question posed in [1].

Theorem 5.1. Not all circle graphs are 132-representable.

Proof. As shown in Theorem 4.5, K4 is not representable by a 2-uniform 132-
avoiding word. Then, by Theorem 4.1, the disjoint union of two complete graphs
of size 4 (Figure 5) is not 132-representable. However, Figure 6 demonstrates
that it is a circle graph. Thus not all circle graphs are 132-representable.

Figure 5. The disjoint union of two complete graphs of size 4.

Figure 6. The circle representation of the disjoint union of two complete graphs of size
4, which demonstrates that this is indeed a circle graph.

One might wonder if all circle graphs are either 123- or 132-representable.
This is not true, as can be seen in the simple counterexample in Figure 7. It is
not 123-representable for the same reason that a star on 7 vertices is not, and it is
not 132-representable for the same reason that the disjoint union of two complete
graphs greater than K3 is not 132-representable.

6. Open Research Directions

A natural next step in the study of pattern-representable graphs would be to
investigate longer patterns, or to find more examples of 132/123-representable
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Figure 7. An example of a circle graph which is neither 132-representable nor 123-
representable.

and non-representable graphs. In particular, the following questions may be of
interest.

Question 1. Is the disjoint union of two complete graphs of size 4 the smallest

non-132-representable circle graph?

Question 2. Can all 123-representable graphs be 2-uniformly representable?
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