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Abstract

A graph G is k-Hamiltonian if for all X ⊂ V (G) with |X| ≤ k, the sub-
graph induced by V (G) \X is Hamiltonian. A graph G is k-path-coverable
if V (G) can be covered by k or fewer vertex disjoint paths. In this paper,
by making use of the vertex degree sequence and an appropriate closure
concept (due to Bondy and Chvátal), we present sufficient spectral condi-
tions of a connected graph with fixed minimum degree and large order to be
k-Hamiltonian or k-path-coverable.
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1. Introduction

Throughout this paper we consider only connected simple graphs. Let G be a
connected graph with vertex set V (G) and edge set E(G) such that |V (G)| = n
and |E(G)| = m. Generally, we say G is of order n and size m. Let dv be the
degree of a vertex v in G. The minimum degree of G is denoted by δ(G). Let
Kn,Kn denote the complete graph, the empty graph on n vertices, respectively.
For vertex disjoint graphs G and H, G∪H and G∨H denote the union and join
of G and H, respectively.

The adjacency matrix of a simple graph G of order n is A(G) = (aij)n×n,
whose entries satisfy aij = 1 if vertices i and j are adjacent in G, and aij = 0
otherwise. The characteristic polynomial of G is PG(x) = det(xI − A(G)), and
the eigenvalues of G are the zeros of PG(x) (with multiplicities). Since A(G) is
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real and symmetric, the eigenvalues of G are real. The largest eigenvalue of G is
called the spectral radius of G and is denoted by λ(G).

The spectral radius of a graph is an important invariant in this subject.
Brualdi and Solheid [3] proposed the problem concerning the spectral radius of
graphs: Given a set G of graphs, find an upper bound for the spectral radius
in this set and identify the graph(s) for which the maximal spectral radius is
attained. For various classes of graphs, the above problem is well studied in the
literature (see for planar graphs [34], graphs with given matching number [8], edge
chromatic number [9], diameter [13], and domination number [32], etc.). For more
details, see also the book by Stevanović [33]. Needless to add, the eigenvalues
of graphs, apart from theoretical interest in mathematics and computer science,
are important in variety of applications of graph theory (see, for example, [4,
15, 20–22]). It is worth mentioning that, besides adjacency matrix, some other
matrices like Laplacian and signless Laplacian, or distance matrix are included
in investigations (see, for example, [36, 37] and references therein).

Analogous to Brualdi-Solheid problem, Nikiforov [27] proposed the following
related Turán–type problem, and it has been studied extensively in the literature.

Problem 1. For a given graph F , what is the maximum spectral radius of a
graph G on n vertices without a subgraph isomorphic to F?

The study of Problem 1 is largely due to Nikiforov. Fiedler and Nikiforov in
[12] obtained the following tight sufficient conditions for graphs to be Hamiltonian
or traceable.

Theorem 1 [12]. Let G be a graph of order n.

(1) If λ(G) > n− 2, then G is Hamiltonian unless G = K1 ∨ (Kn−2 ∪K1).

(2) If λ(G) ≥ n− 2, then G is traceable unless G = Kn−1 ∪K1.

In general sense, the problem of deciding whether a given graph is Hamilto-
nian or traceable is NP-complete. One possible way to tackle this problem is to
identify sufficient conditions guaranteeing the existence of a hamilton path (cycle)
or a path partitioning. One may refer to the survey paper of Li [18] for details. In-
spired by Theorem 1, many researchers are devoted to study the relation between
the spectral radius and the Hamiltonian problems see [23,24,26,30,31,35,38–41]
for more details. For other related topics in this area, see [10, 11, 25, 42].

When the minimum degree is involved, Li and Ning [17] obtained.

Theorem 2 [17]. Let t ≥ 1, and G be a graph of order n with minimum degree
δ(G) ≥ t.

(1) If n ≥ max{6t+ 10, (t2 + 7t+ 8)/2} and

λ(G) ≥ λ(Kt ∨ (Kn−2t−1 ∪ (t+ 1)K1)),
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then G is traceable, unless G = Kt ∨ (Kn−2t−1 ∪ (t+ 1)K1).

(2) If n ≥ max{6t+ 5, (t2 + 6t+ 4)/2} and

λ(G) ≥ λ(Kt ∨ (Kn−2t ∪ tK1)),

then G is Hamiltonian, unless G = Kt ∨ (Kn−2t ∪ tK1).

Theorem 2 is generalized by Nikiforov as follows.

Theorem 3 [28]. Let t ≥ 1 and G be a graph of order n.

(1) If n ≥ t3 + t+ 4, δ(G) ≥ t and

λ(G) ≥ n− t− 1,

then G is Hamiltonian unless G = K1∨(Kn−t−1∪Kt) or G = Kt∨(Kn−2t∪tK1).

(2) If n ≥ t3 + t2 + 2t+ 5, δ(G) ≥ t and

λ(G) ≥ n− t− 2,

then G is traceable unless G = Kt+1∪Kn−t−1 or G = Kt∨ (Kn−2t−1∪ (t+1)K1).

In what follows, we put our focus on k-Hamiltonian and k-path-coverable
graphs. A graph G is k-Hamiltonian [6, 16] if for all X ⊂ V (G) with |X| ≤ k,
the subgraph induced by V (G) \ X is Hamiltonian. Thus 0-Hamiltonian is the
same as Hamiltonian. A graph G is k-path-coverable if V (G) can be covered by
k or fewer vertex-disjoint paths. In particular, 1-path-coverable is the same as
traceable. The disjoint path cover problem is strongly related to the well-known
Hamiltonian problem (one may refer to [18] for a survey), which is among the
most fundamental ones in graph theory, and which attracts much attention in
theoretical computer science.

In [6], it is obtained that for a graph G, if δ(G) ≥ n+k
2 , then G is k-

Hamiltonian. In [7], the authors obtained sufficient conditions for a general graph
without any minimum degree restriction to be k-Hamiltonian and k-path cover-
able. In this paper, by utilizing the degree sequences and the closure concepts,
we aim to generalize Theorem 3 to the k-Hamiltonian and k-path-coverable. Our
results can be considered as the spectral counterpart for the above Dirac-type
condition.

For convenience, we denote

A(n, k, δ) := Kk+1 ∨ (Kδ−k ∪Kn−δ−1),

B(n, k, δ) := Kδ ∨ (Kn−2δ−k ∪Kδ+k).

The main results of this paper read as follows.
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Theorem 4. Let k ≥ 1 and δ ≥ k + 2. If G is a connected graph on n ≥
max

{
2δ2 − 2kδ + 2δ − k + 2, (δ − k)(k2 + 2k + 5) + 1

}
vertices and minimum de-

gree δ(G) ≥ δ such that
λ(G) ≥ n− δ + k − 1,

then G is k-Hamiltonian unless G = A(n, k, δ).

Since λ(A(n, k, δ)) contains Kn−δ+k as a subgraph, λ(A(n, k, δ)) ≥ n − δ +
k − 1, we immediately have.

Corollary 5. Let k ≥ 1 and δ ≥ k + 2. If G is a connected graph on n ≥
max

{
2δ2− 2kδ + 2δ − k + 2, (δ − k)(k2+ 2k + 5) + 1

}
vertices and minimum de-

gree δ(G) ≥ δ such that
λ(G) ≥ λ(A(n, k, δ)),

then G is k-Hamiltonian unless G = A(n, k, δ).

Theorem 6. Let k ≥ 1 and δ ≥ 2. If G is a connected graph on n ≥ max{δ2(δ+
k) + δ + k + 5, 5k + 6δ + 6} vertices and minimum degree δ(G) ≥ δ such that

λ(G) ≥ n− δ − k − 1,

then G is k-path-coverable unless G = B(n, k, δ).

Since λ(B(n, k, δ)) ≥ n− δ − k − 1, we immediately have.

Corollary 7. Let k ≥ 1 and δ ≥ 2. If G is a connected graph on n ≥ max{δ2(δ+
k) + δ + k + 5, 5k + 6δ + 6} vertices and minimum degree δ(G) ≥ δ such that

λ(G) ≥ λ(B(n, k, δ)),

then G is k-path-coverable unless G = B(n, k, δ).

In the reminder of this section we give some further notation. Given a graph
G, and a nonnegative integer k, a property P is said to be k-stable [2] if whenever
G+ uv has property P and

du + dv ≥ k,

where uv /∈ E(G), then G itself has property P . It is well known that the Hamil-
tonicity and traceability are n-stable and (n− 1)-stable, respectively. Among all
graphs H of order n such that G is a spanning subgraph of H and

du + dv < k

for all uv /∈ E(H), there is a unique smallest one, we shall call this graph the
k-closure of G, denoted clk(G). Obviously, clk(G) can be obtained from G by
recursively joining two nonadjacent vertices such that their degree sum is at
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least k. This concept plays a prominent role in many problems of structural
graph theory.

An integer sequence π = (d1 ≤ d2 ≤ · · · ≤ dn) is called graphical if there ex-
ists a graph G having π as its vertex degree sequence; in that case, G is called a re-
alization of π. If P is a graph property, such as Hamiltonicity or k-connectedness,
we call a graphical sequence π forcibly P if every realization of π has property P .
A survey in this area can be found in [1].

2. Preliminaries

We first give some lemmas that will be used later.

Lemma 8 [5]. Let G be a connected graph and π = (d1 ≤ d2 ≤ · · · ≤ dn) be a
graphical sequence. Suppose n ≥ 3, and 0 ≤ k ≤ n− 3. If

di ≤ i+ k ⇒ dn−i−k ≥ n− i,

for 1 ≤ i < 1
2(n− k), then π is forcibly k-Hamiltonian.

Lemma 9 [1, 2]. Let G be a connected graph and π = (d1 ≤ d2 ≤ · · · ≤ dn) be a
graphical sequence. Suppose k ≥ 1. If

di+k ≤ i ⇒ dn−i ≥ n− i− k,

for 1 ≤ i < 1
2(n− k), then π is forcibly k-path-coverable.

Lemma 10 [2]. The property that “G is k-Hamiltonian” is (n+ k)-stable.

Lemma 11 [2]. The property that “G is k-path-coverable” is (n− k)-stable.

Lemma 12 [2]. Let P be a property of graph G of order n ≥ 4. If P is k-stable
and the k-closure of G clk(G) has property P , then G itself has property P .

Lemma 13 [6]. Let G be a graph with n ≥ 3 vertices and let 0 ≤ k ≤ n − 3. If
for every pair of non-adjacent vertices u and v of G,

du + dv ≥ n+ k,

then G is k-Hamiltonian.

Lemma 14 [19]. Let G be a connected graph of order n ≥ 2k, where k ≥ 1. If
for every pair of nonadjacent vertices u and v

du + dv ≥ n− k − 1,

then G can be partitioned into k vertex-disjoint path unless G is of the form
Kn+k+1

2

∨ Ln−k−1

2

, where Ln−k−1

2

is any graph of order n−k−1
2 , n− k − 1 is even,

k ≥ 1.
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Lemma 15 [14, 29]. If G is a graph of order n, size m, and minimum degree δ,
then

λ(G) ≤
1

2

(
δ − 1 +

√
8m− 4nδ + (δ + 1)2

)
.

Lemma 16 [14]. If 2m ≤ n(n− 1), then the function

f(x) =
x− 1

2
+

√
2m− nx+

(x+ 1)2

4

is decreasing in x for x ≤ n− 1.

3. Main Results

3.1. k-Hamiltonicity and spectral radius

Observe first that if G has order n and is k-Hamiltonian, then δ(G) ≥ k + 2.
Otherwise, if there exists a vertex v ∈ V (G) with dG(v) ≤ k+1, then we can delete
at most k neighbours of v to obtain a subgraph of G which is not Hamiltonian.

Next theorem is crucial for proving Theorem 4. It is required that the Kk+1

part of A(n, k, δ) has at least two vertices, so we assume k ≥ 1 in Theorem 17.

Theorem 17. Let k ≥ 1 and δ ≥ k + 2. If G is a connected graph of order
n ≥ (δ − k)(k2 + 2k + 5) + 1 and minimum degree δ and if G is a subgraph of
A(n, k, δ), then

λ(G) < n− δ + k − 1,

unless G = A(n, k, δ).

Proof. Let λ := λ(G) for short, and let x = (x1, x2, . . . , xn)
T be the unit positive

eigenvector (also known as the Perron vector) corresponding to λ. Then we have

λ = xTA(G)x = 〈A(G)x, x〉 = 2
∑

ij∈E(G)

xixj .

Let G be a proper subgraph of A(n, k, δ). Without loss of generality, let G
be a proper subgraph obtained from A(n, k, δ) by deleting from it just one edge,
say uv. Denote by X for the set of vertices of A(n, k, δ) of degree δ, by Y the set
of their neighbors which is not in X, and by Z the set of the remaining n− δ− 1
vertices. Since G is a connected graph with minimum degree δ, G must contain
all the edges incident with X. Therefore {u, v} ⊂ Y ∪ Z, and this implies three
possible cases: (a) {u, v} ⊂ Y ; (b) u ∈ Y, v ∈ Z; (c) {u, v} ⊂ Z. We denote the
corresponding graph in each of these three cases by G1, G2 and G3, respectively.
We shall show that λ(G1) ≤ λ(G2) ≤ λ(G3).
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Case (a). {u, v} ⊂ Y and G = G1. We will show that λ(G1) ≤ λ(G2). If
w ∈ Z, we remove the edge uw and add the edge uv to obtain a graph G′ (as is G2

in case (b)). If xw ≤ xv = xu, then xTA(G′)x− xTA(G1)x = 2xu(xv − xw) ≥ 0,
and thus λ(G′) ≥ λ(G1) by the Rayleigh principle. If xw > xv, we construct the
vector x′ of G′ from x by swapping the entries xv and xw. Since G1nus{v, w}
and G′ \ {v, w} are isomorphic, we have

x′TA(G′)x′ − xTA(G1)x

= 2xw

(
∑

i∈X

xi +
∑

i∈Y \{u,v}

xi +
∑

i∈Z\{w}

xi + xu + xv

)

+ 2xv

(
∑

i∈Y \{u,v}

xi +
∑

i∈Z\{w}

xi

)

− 2xv

(
∑

i∈X

xi +
∑

i∈Y \{u,v}

xi +
∑

i∈Z\{w}

xi + xw

)

− 2xw

(
∑

i∈Y \{u,v}

xi +
∑

i∈Z\{w}

xi + xu

)
= 2
(
xw − xv

)∑

i∈X

xi > 0,

so by the Rayleigh principle, we have λ(G′) > λ(G1).

Case (b). Now u ∈ Y, v ∈ Z, and G = G2. We will show that λ(G2) ≤ λ(G3).
If w ∈ Z, we remove the edge vw and add the edge uv to obtain one graph G′′ (as
is G3 in case (c)). If xu ≥ xw, then xTA(G′′)x− xTA(G2)x = 2xv(xu − xw) ≥ 0,
and thus λ(G′′) ≥ λ(G2) by the Rayleigh principle. If xu < xw, we construct
the vector x′ from x by swapping the entries xw and xu. Since G2 \ {u,w} and
G′′ \ {u,w} are isomorphic, we have

x′TA(G′′)x′ − xTA(G2)x

= 2xw

(
∑

i∈X

xi +
∑

i∈Y \{u}

xi +
∑

i∈Z\{v,w}

xi + xu + xv

)

+ 2xu

(
∑

i∈Y \{u}

xi +
∑

i∈Z\{v,w}

xi

)

− 2xu

(
∑

i∈X

xi +
∑

i∈Y \{u}

xi +
∑

i∈Z\{v,w}

xi + xw

)

− 2xw

(
∑

i∈Y \{u}

xi +
∑

i∈Z\{v,w}

xi + xv

)
= 2
(
xw − xu

)∑

i∈X

xi > 0,

again by the Rayleigh principle, we have λ(G′′) > λ(G2).
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Case (c). Now {u, v} ⊂ Z and G = G3. From symmetry, we obtain xi =
xj := x for any i, j ∈ X; xi = xj := y for any i, j ∈ Y ; and xi = xj := z
for any i, j ∈ Z \ {u, v}. As the vertices u and v are symmetric, we may write
xu = xv := t. Since λxi =

∑
ji∈E(G) xj , we have

λx = (δ − k − 1)x+ (k + 1)y,

λy = (δ − k)x+ ky + (n− δ − 3)z + 2t,

λz = (k + 1)y + (n− δ − 4)z + 2t,

λt = (k + 1)y + (n− δ − 3)z.

From above, we find that

x =

(
k + 1

λ− δ + k + 1

)
y,(1)

z =

(
1−

(δ − k)(k + 1)

(λ− δ + k + 1)(λ+ 1)

)
y,

t =

(
λ+ 1

λ+ 2

)(
1−

(δ − k)(k + 1)

(λ− δ + k + 1)(λ+ 1)

)
y.(2)

Further, note that if we remove all edges incident with X and add the edge
uv to G, we obtain the graph Kδ−k ∪Kn−δ+k. Let x′′ be the restriction of x to
Kn−δ+k. Then we find that

〈
A(Kn−δ+k)x

′′, x′′
〉

= 〈A(G)x, x〉+ 2t2 − 2(k + 1)(δ − k)xy − (δ − k − 1)(δ − k)x2

= λ+ 2t2 − 2(k + 1)(δ − k)xy − (δ − k − 1)(δ − k)x2.

We have that

〈
A(Kn−δ+k)x

′′, x′′
〉
< λ(Kn−δ+k) = n− δ + k − 1,

that is,

λ+ 2t2 − 2(k + 1)(δ − k)xy − (δ − k − 1)(δ − k)x2 < n− δ + k − 1.(3)

Assume on the contrary that λ ≥ n− δ + k − 1, then from (3) we have

2(k + 1)(δ − k)xy + (δ − k − 1)(δ − k)x2 > 2t2.

And from (1) and (2) it follows that

2
(k + 1)2(δ − k)

λ− δ + k + 1
y2 +

(δ − k − 1)(δ − k)(k + 1)2

(λ− δ + k + 1)2
y2
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> 2

(
1−

1

λ+ 2

)2(
1−

(δ − k)(k + 1)

(λ− δ + k + 1)(λ+ 1)

)2

y2.

Cancelling y2 and applying Bernoulli inequality (which states that (1 + x)n >
1 + nx for any nonzero x > −1 and n > 1) to the right side, we obtain

2
(k + 1)2(δ − k)

λ− δ + k + 1
+

(δ − k − 1)(δ − k)(k + 1)2

(λ− δ + k + 1)2

> 2

(
1−

2

λ+ 2

)(
1−

2(δ − k)(k + 1)

(λ− δ + k + 1)(λ+ 1)

)

> 2

(
1−

2

λ+ 2
−

2(δ − k)(k + 1)

(λ− δ + k + 1)(λ+ 1)

)
,

which in turn yields

2(k + 1)2(δ − k) +
(δ − k − 1)(δ − k)(k + 1)2

λ− δ + k + 1

> 2

(
λ− δ + k + 1−

2(λ− δ + k + 1)

λ+ 2
−

2(δ − k)(k + 1)

λ+ 1

)
(4)

> 2 ((λ− δ + k + 1)− 2− 2) .

The last inequality holds since λ− δ + k + 1 < λ+ 2, and (δ − k)(k + 1) < λ+ 1
when n > (δ − k)(k + 2) := G1(δ, k).

Furthermore, since λ ≥ n− δ + k − 1, when n ≥ (δ − k)(k2 + 2k + 5) + 1 :=
G2(δ, k), we have

λ− δ + k + 1 ≥ n− 2δ + 2k

≥ (δ − k)(k2 + 2k + 5) + 1− 2δ + 2k

= (δ − k)(k2 + 2k + 3) + 1.

Bearing this in mind, from (4), we have

(δ − k − 1)(δ − k)(k + 1)2

≥ 2(λ− δ + k + 1)
[
(λ− δ + k + 1)− (k + 1)2(δ − k)− 4

]

≥ 2
[
(δ − k)(k2 + 2k + 3) + 1

] [(
(δ − k)(k2 + 2k + 3) + 1

)
−(k + 1)2(δ − k)− 4

]

= 2
[
(δ − k)(k2 + 2k + 3) + 1

] [
2(δ − k)− 3

]

≥ 2
[
(δ − k)(k2 + 2k + 3) + 1

] (
δ − k − 1

)
,

this is obviously a contradiction when n ≥ max{G1(δ, k), G2(δ, k)} = G2(δ, k).
This completes the proof of Theorem 17.
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Now we are ready to prove our main result.

Proof of Theorem 4. Suppose that λ(G) ≥ n − δ + k − 1 and G is not
k-Hamiltonian, in order to prove the result, we need only to prove that G =
A(n, k, δ). From Lemma 10, we consider the closure H := cln+k(G), by Lemma
12, H is not k-Hamiltonian, and δ(H) ≥ δ(G) ≥ δ and λ(H) ≥ λ(G) ≥ n − δ +
k − 1. From Theorem 17, we need only to prove that H = A(n, k, δ).

Obviously, for two vertices i, j ∈ V (H) such that i is not adjacent to j, we
have di + dj ≤ n+ k − 1.

According to the assumptions of the theorem, together with Lemmas 15, 16,
we have

n− δ + k − 1 ≤ λ(H) ≤
1

2

(
δ − 1 +

√
(δ + 1)2 + 4(2m− nδ)

)
,

and consequently

2m ≥ n2 + (2k − 2δ − 1)n+ (δ − k)(2δ − k + 1) := h1(n).(5)

Since H is not k-Hamiltonian, from Lemma 8, there exists an integer 1 ≤ i ≤
n−k−1

2 such that di ≤ i+ k and dn−i−k ≤ n− i− 1. So we have

2m ≤ i(i+ k) + (n− 2i− k)(n− i− 1) + (i+ k)(n− 1)

= 3i2 − (2n− 2k − 1)i+ n(n− 1).(6)

Since δ ≤ i+ k, we obtain δ − k ≤ i ≤ n−k−1
2 . We next prove that i = δ − k.

Suppose i ≥ δ− k+1. Due to (6), let f(x) = 3x2− (2n− 2k− 1)x, where δ− k+
1 ≤ x ≤ 1

2(n− k − 1). We have either

2m ≤ n2 + (2k − 2δ − 3)n+ (3δ − k + 4)(δ − k + 1) := h2(n),(7)

or

2m ≤
3n2

4
+

(
k

2
− 1

)
n−

k2 − 1

4
:= h3(n).(8)

From (5) and (7), when n > 1
2(4− 4k + 6δ − δk + δ2) := F1(δ, k), we obtain

h1(n)− h2(n) = −4 + 4k + 2n− 6δ + δk − δ2 > 0,

leading to a contradiction, hence inequality (7) cannot hold.
From (5) and (8), when n > 7δ − 3k := F2(δ, k), we obtain

h1(n)− h3(n) =
1

4

[
n2 − (8δ − 6k)n+ 8δ2 − 12kδ + 4δ + 5k2 − 4k − 1

]

=
1

4

[
(n− 4δ + 3k)2−8δ2+ (12kδ − 9k2+ 4δ) + (5k2−4k−1)

]
>0,
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a contradiction. Hence inequality (8) cannot hold.
Therefore, either (7) or (8) leads to a contradiction, and we have i = δ − k.

Thus
d1 = d2 = · · · = dδ−k = δ.

Next, we will show that dδ−k+1 ≥ n− δ + k − 1 + kδ − δ2 when n > δ − k +
1− kδ + δ2 := F3(δ, k). Suppose that dδ−k+1 < n− δ + k − 1 + kδ − δ2. Then

2m < (δ − k)δ + (n− δ + k − 1 + kδ − δ2)

+ (n− 2δ + k − 1)(n− δ + k − 1) + δ(n− 1)

= n2 + (2k − 2δ − 1)n+ (δ − k)(2δ − k + 1) ≤ 2m,

a contradiction. So we get that di ≥ n − δ + k − 1 + kδ − δ2 for any i ∈
{δ − k + 1, . . . , n}.

Next, we claim that the vertex set {δ−k+1, . . . , n} induces a complete graph.
Suppose i, j ∈ {δ−k+1, . . . , n} are not adjacent. If n ≥ 2δ2−2kδ+2δ−k+2 :=
F4(δ, k), we have

di + dj ≥ 2n− 2δ + 2k − 2 + 2kδ − 2δ2

≥ n+ (2δ2 − 2kδ + 2δ − k + 2)− 2δ + 2k − 2 + 2kδ − 2δ2

= n+ k − 1 + (2δ2 − 2kδ + 2δ − k + 2)− 2δ + k − 1 + 2kδ − 2δ2

= n+ k > n+ k − 1,

contradicting the definition of H. So our claim holds.
Let X = {1, 2, . . . , δ−k}, and let Y be the set of vertices in {δ−k+1, . . . , n}

having neighbors in X. In fact, every vertex from Y is adjacent to every vertex
in X. Suppose that is not the case, and let w ∈ Y, u, v ∈ X be such that w
is adjacent to u, but not to v. Since the vertices in X have degree δ, we have
dw + dv ≥ (n− δ+ k) + δ = n+ k, which contradicts the definition of the closure
of G.

Next, let ℓ := |Y |. As the degree of the vertices in X is δ, thus k+1 ≤ ℓ ≤ δ.
If ℓ = k + 1, then H = Kk+1 ∨ (Kδ−k ∪Kn−δ−1) = A(n, k, δ). If we delete k

vertices in Kk+1, then we obtain a graph with one cut vertex, and thus H is not
k-Hamiltonian.

If ℓ = δ, then H = Kδ ∨ (Kn−2δ+k ∪ Kδ−k). Since δ ≥ k + 2, n > F2(δ, k),
we have n − 2δ + k > 5δ − 2k ≥ 3k. In this case X = V (Kδ−k), Y = V (Kδ),
Z = V (Kn−2δ+k). Now we delete a vertex subset K of cardinality k from H with
x vertices from X, y vertices from Y , z vertices from Z, x + y + z = k. Then
0 ≤ x, y ≤ k. Since δ − y = |Y | − y ≥ |X| − x = δ − k − x, there always exists a
hamilton cycle in the graph induced by (X∪Y )\K. As Y ∪Z induces a complete
graph, therefore in this case, H is k-Hamiltonian, contradicting the assumption
of H.
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If k + 1 < ℓ < δ, we will show that H is k-Hamiltonian, which contradicts
the assumptions about H. Indeed, let F be the graph induced by the set X ∪ Y .
Since Kℓ ∨ Kδ−k ⊂ F , and δ − k ≥ 2, we see that F is 2-connected. Further,
if u, v are distinct nonadjacent vertices of F, with degrees du and dv, they must
belong to X, and thus du = dv = δ, that is to say,

du + dv = 2δ ≥ δ + ℓ+ 1 > (δ − k + ℓ) + k.

By Lemma 13, F is k-Hamiltonian. For H, if we delete k vertices, no matter
where these vertices are from, note that ℓ ≥ k + 2, the resulting graph is still
Hamiltonian, hence H is k-Hamiltonian, contradicting the assumption of H.

Finally, to make our proof valid, we need to add

n ≥ max{G1(δ, k), G2(δ, k), F1(δ, k), F2(δ, k), F3(δ, k), F4(δ, k)}

= max{G2(δ, k), F4(δ, k)}.

This completes the proof.

We should point out that Theorem 4 only deals with the problem for relatively
large n, for general n, we believe that additional tools are needed.

3.2. k-path-coverable and spectral radius

The following result is crucial for the proof of Theorem 6. It is very similar to
the proof of Theorem 17, and we present it here for completeness. We require
the Kδ part of B(n, k, δ) has at least two vertices, so we assume δ ≥ 2.

Theorem 18. Let k ≥ 1, δ ≥ 2 and n ≥ δ2(δ+k)+δ+k+5. If G is a connected
graph of order n and minimum degree δ and if G is a subgraph of B(n, k, δ), then

λ(G) < n− δ − k − 1,

unless G = B(n, k, δ).

Proof. Let x = (x1, . . . , xn)
T be the Perron vector of G corresponding to λ :=

λ(G). Assume that G is a proper subgraph of B(n, k, δ). To prove the result, we
only need to consider the graph G obtained by deleting just one edge uv from
B(n, k, δ). Let X be the set of vertices of B(n, k, δ) of degree δ, Y be the set
of the vertices adjacent to X, and Z be the set of remaining n− 2δ − k vertices
of B(n, k, δ). Obviously, G must contain all the edges between X and Y as its
minimum degree is δ. So we have {u, v} ⊂ Y ∪ Z, with three possible cases: (i)
{u, v} ⊂ Y ; (ii) u ∈ Y , v ∈ Z; (iii) {u, v} ⊂ Z. Similarly to the proof of Theorem
17, we only consider case (iii).

So assume that {u, v} ⊂ Z. From symmetry, we obtain xi = xj := x for any
i, j ∈ X; xi = xj := y for any i, j ∈ Y ; and xi = xj := z for any i, j ∈ Z \ {u, v}.
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As the vertices u and v are symmetric, we may write xu = xv := t. Since λxi =∑
ji∈E(G) xj , we have

λx = δy;

λy = (δ + k)x+ (δ − 1)y + (n− 2δ − k − 2)z + 2t;

λz = δy + (n− 2δ − k − 3)z + 2t;

λt = δy + (n− 2δ − k − 2)z,

and therefore

x =
δ

λ
y;(9)

z =

(
1−

δ(δ + k)

λ(λ+ 1)

)
y;

t =
λ+ 1

λ+ 2

(
1−

δ(δ + k)

λ(λ+ 1)

)
y.(10)

Note that if we remove all edges between X and Y and add the edge uv to G, we
can obtain the graph Kn−δ−k ∪Kδ+k. Let x1 be the restriction of x to Kn−δ−k.
Obviously ‖ x1 ‖<‖ x ‖= 1. Then

n− δ − k − 1 = λ(Kn−δ−k) ≥ xT1 A(Kn−δ−k)x1

= xTA(G)x+ 2t2 − 2δ(δ + k)xy

= λ+ 2t2 − 2δ(δ + k)xy,

so we obtain

λ+ 2t2 − 2δ(δ + k)xy ≤ n− δ − k − 1.

Assume on the contrary that λ ≥ n− δ − k − 1. Then we have

δ(δ + k)xy ≥ t2.

Replacing x, t among this inequality by (9), (10), respectively, and then cancelling
y2, we have

δ2(δ + k)

λ
≥

(
1−

1

λ+ 2

)2(
1−

δ(δ + k)

λ(λ+ 1)

)2

>

(
1−

2

λ+ 2

)(
1−

2δ(δ + k)

λ(λ+ 1)

)
by Bernoulli inequality

> 1−
2

λ+ 2
−

2δ(δ + k)

λ(λ+ 1)
.
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Therefore

δ2(δ + k) > λ−
2λ

λ+ 2
−

2δ(δ + k)

λ+ 1

> λ− 4 ≥ n− δ − k − 5,

a contradiction if n ≥ δ2(δ + k) + δ + k + 5 := G̃1(δ, k).

Now we will prove Theorem 6.

Proof of Theorem 6. Suppose that λ(G) ≥ n− δ − k− 1 and G is not k-path-
coverable. To prove the result, we need only to prove that G = B(n, k, δ). From
Lemma 11, we consider the closure H := cln−k(G), in light of Lemma 12, H is not
k-path-coverable. From Theorem 18, we need only to prove that H = B(n, k, δ).

Observe that δ(H) ≥ δ(G) ≥ δ and λ(H) ≥ λ(G) ≥ n − δ − k − 1. For any
two nonadjacent vertices i, j ∈ V (H), we have di + dj ≤ n− k − 1.

According to the assumptions, by Lemmas 15 and 16, we have

n− δ − k − 1 ≤ λ(H) ≤
1

2

(
δ − 1 +

√
(δ + 1)2 + 4(2m− nδ)

)
,

and therefore

2m ≥ n2 − (2δ + 2k + 1)n+ 2δ2 + k2 + 3kδ + δ + k := g1(n).(11)

Since H is not k-path-coverable, then from Lemma 9, there exists an integer
i with i < 1

2(n− k), such that di+k ≤ i and dn−i ≤ n− i− k − 1 hold. We have

2m ≤ i(i+ k) + (n− k − 2i)(n− i− k − 1) + i(n− 1)

= (n− k)(n− k − 1) + 3i2 − (2n− 4k − 1)i.

Next, we show that i = δ. Indeed, if i ≥ δ + 1, we consider f(x) = 3x2 −
(2n − 4k − 1)x, where δ + 1 ≤ x ≤ n−k−1

2 . Note that fmax(x) = max
{
f(δ +

1), f
(
n−k−1

2

)}
, f(δ + 1) = 3(δ + 1)2 − (2n − 4k − 1)(δ + 1), and f

(
n−k−1

2

)
=

3
(
n−k−1

2

)2
− (2n− 4k − 1)

(
n−k−1

2

)
,

f

(
n− k − 1

2

)
− f(δ + 1) = −

1

4
(n− k − 2δ − 3)(n− 5k − 6δ − 5).

Hence, when n > 5k + 6δ + 5 := F̃1(δ, k), fmax(x) = f(δ + 1). Then

2m ≤ (n− k)(n− k − 1) + f(δ + 1)

≤ n2 − (2δ + 2k + 3)n+ 3δ2 + k2 + 4kδ + 7δ + 5k + 4 := g2(n).
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If n > 1
2(δ

2 + kδ + 6δ + 4k + 4) := F̃2(δ, k), then

g2(n)− g1(n) = −2n+ δ2 + kδ + 6δ + 4k + 4 < 0.(12)

Therefore, (11) and (12) provide a contradiction. So i = δ, and hence d1 = d2 =
· · · = dδ+k = δ.

Now, we will show that dδ+k+1 ≥ n−kδ−δ2−δ−k−1 if n > kδ+δ2+δ+k+1 :=
F̃3(δ, k). Indeed, if dδ+k+1 < n− kδ − δ2 − δ − k − 1, then from the proof above,
we have

2m < δ(δ + k) + (n− kδ − δ2 − δ − k − 1)

+ (n− k − 2δ − 1)(n− δ − k − 1) + δ(n− 1)

= n2 − (2δ + 2k + 1)n+ 2δ2 + k2 + 3kδ + δ + k,

a contradiction to (11). So we get that di ≥ n − kδ − δ2 − δ − k − 1 for any
i ∈ {δ + k + 1, . . . , n}.

In what follows, we will show that the vertex set {δ+ k+1, . . . , n} induces a
complete graph. Suppose i, j ∈ {δ + k + 1, . . . , n} are two nonadjacent vertices.

If n > 2δ2 + 2kδ + 2δ + k + 2 := F̃4(δ, k), then

di + dj ≥ 2n− 2δ − 2k − 2δ2 − 2kδ − 2

= (n− k) + (n− 2δ − k − 2δ2 − 2kδ − 2) > n− k,

a contradiction to the definition of H. So the vertex set {δ+k+1, . . . , n} induces
a complete graph.

Suppose X = {1, 2, . . . , δ+k}. Let Y be the set of vertices in {δ+k+1, . . . , n}
having neighbors in X. In fact, every vertex in Y is adjacent to every vertex in
X. Indeed, suppose that this is not the case, and let i ∈ Y, j, t ∈ X be such that
i is adjacent to j, but not to t. Then we see that

di + dt ≥ (n− δ − k) + δ = n− k,

a contradiction.
Next, let ℓ := |Y |. Since each vertex in X is of degree δ, we have 1 ≤ ℓ ≤ δ.
If ℓ = δ, then H = B(n, k, δ), which is not k-path-coverable.
If 1 ≤ ℓ < δ, we will consider the subgraph H ′ induced by X ∪ Y . Obviously

|H ′| = δ+k+ℓ, and we need to show that H ′ is (k−1)-path-coverable. If u and v
are nonadjacent vertices of H ′, then u, v ∈ X, and we easily see that du = dv = δ
in H ′. Therefore, du + dv = 2δ ≥ δ + ℓ+ 1 > |H ′| − (k − 1)− 1, and by Lemma
14, H ′ is (k − 1)-path-coverable. Therefore, Z induces a complete subgraph and
thus it is 1-path-coverable, so we have that H is k-path-coverable.
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Finally, to make our proof valid, we need to add

n > max{G̃1(δ, k), F̃1(δ, k), F̃2(δ, k), F̃3(δ, k), F̃4(δ, k)} = max{G̃1(δ, k), F̃1(δ, k)}.

This completes the proof.

Similar to Theorem 4, Theorem 6 also only deals with the problem for rela-
tively large n, for general n, we believe that additional tools are needed.

Acknowledgement

The authors would like to express their sincere thanks for the referees for their
careful reading of this manuscript, which lead to a great improvement of the
presentation. The corresponding author L. Feng, with all authors, also wants
to thank Prof. G. Steiner sincerely for sending the paper [19]. This research
was supported by NSFC (Nos. 11671402, 11371207), Hunan Provincial Natural
Science Foundation (2016JJ2138) and Mathematics and Interdisciplinary Sciences
Project of CSU, Graduate Student Scientific Research Innovative Project of CSU
(Nos. 1053320170291,1053320171261).

References

[1] D. Bauer, H.J. Broersma, J. van den Heuvel, N. Kahl, A. Nevo, E. Schmeichel, D.R.
Woodall and M. Yatauro, Best monotone degree conditions for graph properties: a
survey, Graphs Combin. 31 (2015) 1–22.
doi:10.1007/s00373-014-1465-6
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