GREGARIOUS KITE FACTORIZATION OF TENSOR PRODUCT OF COMPLETE GRAPHS

A. Tamil Elakkiya
Department of Mathematics
Gobi Arts \& Science College, Erode
Tamil Nadu, India
e-mail: elakki.1@gmail.com
AND
A. Muthusamy
Department of Mathematics
Periyar University, Salem
Tamil Nadu, India
e-mail: ambdu@yahoo.com

Abstract

A kite factorization of a multipartite graph is said to be gregarious if every kite in the factorization has all its vertices in different partite sets. In this paper, we show that there exists a gregarious kite factorization of $K_{m} \times K_{n}$ if and only if $m n \equiv 0(\bmod 4)$ and $(m-1)(n-1) \equiv 0(\bmod 2)$, where \times denotes the tensor product of graphs.

Keywords: tensor product, kite, decomposition, gregarious factor, factorization.
2010 Mathematics Subject Classification: 05C70.

1. Introduction

A latin square of order n is an $n \times n$ array such that each row and each column of the array contains each of the symbols from $\{1,2, \ldots, n\}$ exactly once. Two latin squares L_{1} and L_{2} of order n are said to be orthogonal if for each $(x, y) \in$ $\{1,2, \ldots, n\} \times\{1,2, \ldots, n\}$ there is exactly one cell (i, j) in which L_{1} contains the symbol x and L_{2} contains the symbol y. In other words, if L_{1} and L_{2} are
superimposed, the resulting set of n^{2} ordered pairs are distinct. The latin squares $L_{1}, L_{2}, \ldots, L_{t}$ of order n are said to be mutually orthogonal (MOLS(n)) if for $1 \leq a \neq b \leq t, L_{a}$ and L_{b} are orthogonal. $N(n)$ denotes the maximum number of $\operatorname{MOLS}(n)$.

Partition of G into subgraphs $G_{1}, G_{2}, \ldots, G_{r}$ such that $E\left(G_{i}\right) \cap E\left(G_{j}\right)=\emptyset$ for $i \neq j, i, j \in\{1,2, \ldots, r\}$ and $E(G)=\bigcup_{i=1}^{r} E\left(G_{i}\right)$ is called decomposition of G; in this case we write G as $G=G_{1} \oplus G_{2} \oplus \cdots \oplus G_{r}$, where \oplus denotes edge-disjoint sum of subgraphs. If $G_{i} \cong H, 1 \leq i \leq r$, then we say that H-decomposes G; in notation $H \mid G$. A spanning subgraph of G such that each component of it is isomorphic to some graph H is called an H-factor of G. A partition of G into edge-disjoint H-factors is called an H-factorization of G; in notation $H \| G$. Let C_{k}, K_{k} and I_{k}, respectively denote a cycle, a complete graph and a null graph on k vertices. A k-regular spanning subgraph of G is called a k-factor of G. A C_{k}-factor of G is a 2-factor in which each component is a C_{k}. Decomposition of G into C_{k}-factors is called a C_{k}-factorization of G. A cycle containing all the vertices of G is called a Hamilton cycle. We say that G has a Hamilton cycle decomposition if its edge set can be partitioned into edge-disjoint Hamilton cycles. For an integer $\lambda, \lambda G$ denotes a graph with λ components each isomorphic to G.

The tensor product $G \times H$ and the wreath product $G \otimes H$ of two simple graphs G and H are defined as follows: $V(G \times H)=V(G \otimes H)=\{(u, v) \mid u \in V(G), v \in$ $V(H)\} . E(G \times H)=\{(u, v)(x, y) \mid u x \in E(G)$ and $v y \in E(H)\}$ and $E(G \otimes H)=$ $\{(u, v)(x, y) \mid u=x$ and $v y \in E(H)$, or $u x \in E(G)\}$. It is well known that tensor product is commutative and distributive over an edge-disjoint union of subgraphs, that is, if $G=G_{1} \oplus G_{2} \oplus \cdots \oplus G_{r}$, then $G \times H=\left(G_{1} \times H\right) \oplus\left(G_{2} \times H\right) \oplus \cdots \oplus\left(G_{r} \times H\right)$. A graph G having partite sets $V_{1}, V_{2}, \ldots, V_{m}$ with $\left|V_{i}\right|=n, 1 \leq i \leq n$, and $E(G)$ $=\left\{u v \mid u \in V_{i}\right.$ and $\left.v \in V_{j}, i \neq j\right\}$ is called complete m-partite graph and is denoted by $K_{m}(n)$. Note that $K_{m}(n)$ is same as the $K_{m} \otimes I_{n}$.

A kite is a graph which is obtained by attaching an edge to a vertex of the triangle, see Figure 1. We denote the kite with edge set $\{a b, b c, c a, c d\}$ by $(a, b, c ; c d)$.

Figure 1. The kite graph.
A subgraph of a multipartite graph G is said to be gregarious if each of its vertices lies in different partite sets of G. A kite factorization of a multipartite graph is said to be gregarious if each kite in the factorization has its vertices in
four different partite sets.
The study of kite-design is not new. Bermond and Schonheim [3] proved that a kite-design of order n exists if and only if $n \equiv 0,1(\bmod 8)$. Wang and Chang $[18,19]$ considered the existence of $\left(K_{3}+e\right)$ and $\left(K_{3}+e, \lambda\right)$-group divisible designs of type $g^{t} u^{1}$. Wang [17] has shown that the obvious necessary conditions for the existence of resolvable ($K_{3}+e$)-group divisible design of type g^{u} are also sufficient. Fu et al. [5] have shown that there exists a gregarious kite decomposition of $K_{m}(n)$ if and only if $n \equiv 0,1(\bmod 8)$ for odd m or $n \geq 4$ for even m. Gionfriddo and Milici [6] considered the existence of uniformly resolvable decompositions of K_{v} and $K_{v}-I$ into paths and kites. For more results on kite designs, see $[4,7,9,11,12]$.

In this direction, in [15] we have shown that the necessary conditions for the existence of a gregarious kite decomposition of tensor product of complete graphs are also sufficient. Further, in this paper, we show that there exists a gregarious kite factorization of $K_{m} \times K_{n}$ if and only if $m n \equiv 0(\bmod 4)$ and $(m-1)(n-1)$ $\equiv 0(\bmod 2)$.
We require the following to prove our main results.

2. Preliminary Results

Theorem 1 [10]. There exists a pair of mutually orthogonal latin squares (MOLS(n)) of order n for every $n \neq 2,6$.

Theorem 2 [1]. If $n=p^{d}$ is a prime power, then $N(n)=n-1$.
Corrolary 3 [2]. If $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}}$, where each number p_{i} is a distinct prime number and $\alpha_{i} \geq 1, i=1,2, \ldots, t$, then $N(n) \geq \min \left\{p_{i}^{\alpha_{i}} \mid i=1,2, \ldots, t\right\}$.

Theorem 4 [8]. Let G be a graph with chromatic number $\chi(G)$. Then
(i) $G \mid G \otimes I_{n}$ if $\chi(G) \leq N(n)+2$ and
(ii) $G \| G \otimes I_{n}$ if $\chi(G) \leq N(n)+1$.

Theorem 5 [17]. The necessary conditions for the existence of a kite factorization of $K_{m}(n)$, namely, $m \geq 3, n(m-1) \equiv 0(\bmod 2), m n \equiv 0(\bmod 4)$ are also sufficient.

Theorem 6 [13]. $C_{3} \| K_{m}$ if and only if $m \equiv 3(\bmod 6)$.
Note 7. Let $G_{1}=v_{1} v_{2} v_{3} v_{4} v_{5} \cdots v_{p-1} v_{p} v_{1}, G_{2}=v_{1} v_{3} v_{5} \cdots v_{p} v_{2} v_{4} v_{6} \cdots v_{p-3} v_{p-1} v_{1}$ and $G_{3}=v_{1} v_{5} v_{9} \cdots v_{p-1} v_{3} v_{7} v_{11} \cdots v_{p-3} v_{1}$ be three cycles of length p (p is odd). Now consider two graphs $G=G_{1} \oplus G_{2}$ and $H=G_{1} \oplus G_{2} \oplus G_{3}$ as shown in Figures 2 and 3.

Figure 2. $G=G_{1} \oplus G_{2}$.

Figure 3. $H=G_{1} \oplus G_{2} \oplus G_{3}$.
Remark 8 [16]. Let $V\left(K_{p}\right)=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}, p$ is a prime. For $1 \leq i \leq(p-$ 1)/2, let $H_{i}=v_{1} v_{(2+(i-1))} v_{(3+[2(i-1)]]} v_{(4+[3(i-1)])} v_{(5+[4(i-1)])} \cdots v_{(p+[(p-1)(i-1)])} v_{1}$, where the subscripts are taken modulo p with residues $1,2,3, \ldots, p$. Note that each H_{i} is a Hamilton cycle of K_{p} and $\left\{H_{1}, H_{2}, \ldots, H_{(p-1) / 2}\right\}$ gives a Hamilton cycle decomposition of K_{p}, p is a prime. Further, $\left\{H_{1}, H_{2}, \ldots H_{(p-1) / 2}\right\}$ can be partitioned into sets of 2 or 3 cycles such that the sum of the cycles of each set is isomorphic to G or H, respectively.

3. Gregarious Kite Factorization of $K_{m} \times K_{n}$

Lemma 9. There exists a gregarious kite factorization of $K_{4} \times K_{3}$.
Proof. Let $V\left(K_{4}\right)=\{1,2,3,4\}$ and $V\left(K_{3}\right)=\{1,2,3\}$. Then $V\left(K_{4} \times K_{3}\right)=$ $\bigcup_{i=1}^{4} V_{i}$, where $V_{i}=\left\{i_{j} \mid 1 \leq j \leq 3\right\}$. Now we construct a gregarious kite factorization of $K_{4} \times K_{3}$ as follows: For $0 \leq s \leq 2$, let $F_{s}^{1}=\left\{1_{1+s}, 2_{2+s}, 4_{3+s} ; 4_{3+s} 3_{1+s}\right\}$; $F_{s}^{2}=\left\{2_{1+s}, 4_{3+s}, 3_{2+s} ; 3_{2+s} 1_{3+s}\right\} ; F_{s}^{3}=\left\{3_{1+s}, 2_{2+s}, 1_{3+s} ; 1_{3+s} 4_{1+s}\right\}$, where the subscripts are taken modulo 3 with residues $1,2,3$. Clearly each $F_{i}=\bigcup_{s=0}^{2} F_{s}^{i}$, $1 \leq i \leq 3$, is a gregarious kite factor of $K_{4} \times K_{3}$ and $\left\{F_{1}, F_{2}, F_{3}\right\}$ gives a gregarious kite factorization of $K_{4} \times K_{3}$.

Lemma 10. For $n \equiv 3(\bmod 6)$, there exists a gregarious kite factorization of $K_{4} \times K_{n}$.

Proof. By Theorem 6, we have a K_{3}-factorization of $K_{n}, n=6 s+3, s \geq 1$ (since the case $s=0$ follows from Lemma 9). Since tensor product is distributive over an edge-disjoint union of subgraphs, corresponding to each K_{3}-factor of K_{n}, we have
a $\left(K_{4} \times K_{3}\right)$-factor of $K_{4} \times K_{n}$. Hence a K_{3}-factorization of K_{n} gives a $\left(K_{4} \times K_{3}\right)$ factorization of $K_{4} \times K_{n}$. By Lemma 9, we have a gregarious kite factorization of $K_{4} \times K_{3}$. Thus combining all these we get a gregarious kite factorization of $K_{4} \times K_{n}$.

Lemma 11. For $|V(G)|=p, p \geq 5$ is a prime, there exists a gregarious kite factorization of $K_{4} \times G$, where G is described as in Note 7 .

Proof. Let $V\left(K_{4}\right)=\{1,2,3,4\}$ and $V(G)=\{1,2, \ldots, p\}, p \geq 5$. Then $V\left(K_{4} \times G\right)$ $=\bigcup_{i=1}^{4} V_{i}$, where $V_{i}=\left\{i_{j} \mid 1 \leq j \leq p\right\}$. Now we construct a gregarious kite factorization of $K_{4} \times G$ as follows: For $0 \leq s \leq p-1$, let

$$
\begin{aligned}
& F_{s}^{1}=\left\{3_{1+s}, 2_{p+s}, 1_{p-1+s} ; 1_{p-1+s} 4_{1+s}\right\} ; F_{s}^{2}=\left\{3_{1+s}, 4_{2+s}, 2_{3+s} ; 2_{3+s} 1_{1+s}\right\} ; \\
& F_{s}^{3}=\left\{3_{3+s}, 1_{2+s}, 4_{1+s} ; 4_{1+s} 2_{p-1+s}\right\} ; F_{s}^{4}=\left\{3_{1+s}, 2_{2+s}, 1_{3+s} ; 1_{3+s} 4_{1+s}\right\} ; \\
& F_{s}^{5}=\left\{3_{1+s}, 4_{p+s}, 2_{p-1+s} ; 2_{p-1+s} 1_{1+s}\right\} ; F_{s}^{6}=\left\{3_{p+s}, 1_{1+s}, 4_{2+s} ; 4_{2+s} 2_{4+s}\right\} .
\end{aligned}
$$

In all the above constructions the subscripts are taken modulo p with residues $1,2, \ldots, p$. Clearly each $F_{i}=\bigcup_{s=0}^{p-1} F_{s}^{i}, 1 \leq i \leq 6$, is a gregarious kite factor of $K_{4} \times G$ and $\left\{F_{1}, F_{2}, \ldots, F_{6}\right\}$ gives a gregarious kite factorization of $K_{4} \times G$.

Lemma 12. There exists a gregarious kite factorization of $K_{4} \times K_{7}$.
Proof. Let $V\left(K_{4}\right)=\{1,2,3,4\}$ and $V\left(K_{7}\right)=\{1,2, \ldots, 7\}$. Then $V\left(K_{4} \times K_{7}\right)$ $=\bigcup_{i=1}^{4} V_{i}$, where $V_{i}=\left\{i_{j} \mid 1 \leq j \leq 7\right\}$. Now we construct a gregarious kite factorization of $K_{4} \times K_{7}$ as follows: For $0 \leq s \leq 6$, let

$$
\begin{aligned}
& F_{s}^{1}=\left\{3_{1+s}, 2_{7+s}, 1_{6+s} ; 1_{6+s} 4_{2+s}\right\} ; F_{s}^{2}=\left\{4_{1+s}, 2_{2+s}, 3_{7+s} ; 3_{7+s} 1_{4+s}\right\} ; \\
& F_{s}^{3}=\left\{1_{1+s}, 3_{2+s}, 4_{7+s} ; 4_{7+s} 2_{4+s}\right\} ; F_{s}^{4}=\left\{3_{1+s}, 2_{2+s}, 1_{3+s} ; 1_{3+s} 4_{1+s}\right\} ; \\
& F_{s}^{5}=\left\{3_{1+s}, 4_{5+s}, 2_{4+s} ; 2_{4+s} 1_{6+s}\right\} ; F_{s}^{6}=\left\{1_{1+s}, 2_{4+s}, 3_{7+s} ; 3_{7+s} 4_{2+s}\right\} ; \\
& F_{s}^{7}=\left\{4_{1+s}, 2_{4+s}, 1_{7+s} ; 1_{7+s} 3_{4+s}\right\} ; F_{s}^{8}=\left\{1_{1+s}, 2_{3+s}, 4_{5+s} ; 4_{5+s} 3_{6+s}\right\} ; \\
& F_{s}^{9}=\left\{2_{1+s}, 3_{3+s}, 4_{6+s} ; 4_{6+s} 1_{4+s}\right\} .
\end{aligned}
$$

In all the above constructions the subscripts are taken modulo 7 with residues $1,2, \ldots, 7$. Clearly each $F_{i}=\bigcup_{s=0}^{6} F_{s}^{i}, 1 \leq i \leq 9$, is a gregarious kite factor of $K_{4} \times K_{7}$ and $\left\{F_{1}, F_{2}, \ldots, F_{9}\right\}$ gives a gregarious kite factorization of $K_{4} \times K_{7}$.

Lemma 13. For $|V(H)|=p, p \geq 11$ is a prime, there exists a gregarious kite factorization of $K_{4} \times H$, where H is described as in Note 7 .

Proof. Let $V\left(K_{4}\right)=\{1,2,3,4\}$ and $V(H)=\{1,2, \ldots, p\}, p \geq 11$. Then $V\left(K_{4} \times\right.$ $H)=\bigcup_{i=1}^{4} V_{i}$, where $V_{i}=\left\{i_{j} \mid 1 \leq j \leq p\right\}$. Now we construct a gregarious kite
factorization of $K_{4} \times H$ as follows: For $0 \leq s \leq p-1$, let

$$
\begin{aligned}
& F_{s}^{1}=\left\{4_{p-1+s}, 1_{p+s}, 2_{1+s} ; 2_{1+s} 3_{5+s}\right\} ; F_{s}^{2}=\left\{4_{2+s}, 3_{3+s}, 1_{1+s} ; 1_{1+s} 2_{5+s}\right\} ; \\
& F_{s}^{3}=\left\{1_{p+s}, 4_{2+s}, 3_{1+s} ; 3_{1+s} 2_{5+s}\right\} ; F_{s}^{4}=\left\{1_{3+s}, 2_{p-1+s}, 3_{1+s} ; 3_{1+s} 4_{5+s}\right\} ; \\
& F_{s}^{5}=\left\{2_{p-1+s}, 1_{p-3+s}, 4_{1+s} ; 4_{1+s} 3_{5+s}\right\} ; F_{s}^{6}=\left\{4_{p-1+s}, 2_{p+s}, 1_{1+s} ; 1_{1+s} 3_{5+s}\right\} ; \\
& F_{s}^{7}=\left\{3_{2+s}, 1_{3+s}, 2_{1+s} ; 2_{1+s} 4_{5+s}\right\} ; F_{s}^{8}=\left\{2_{3+s}, 4_{p-1+s}, 3_{1+s} ; 3_{1+s} 1_{5+s}\right\} ; \\
& F_{s}^{9}=\left\{2_{p+s}, 3_{p-1+s}, 4_{1+s} ; 4_{1+s} 1_{5+s}\right\} .
\end{aligned}
$$

In all the above constructions the subscripts are taken modulo p with residues $1,2, \ldots, p$. Clearly each $F_{i}=\bigcup_{s=0}^{p-1} F_{s}^{i}, 1 \leq i \leq 9$, is a gregarious kite factor of $K_{4} \times H$ and $\left\{F_{1}, F_{2}, \ldots, F_{9}\right\}$ gives a gregarious kite factorization of $K_{4} \times H$.

Lemma 14. For all odd prime p, there exists a gregarious kite factorization of $K_{4} \times K_{p}$.

Proof. By Remark 8, we have a factorization of K_{p} into graphs isomorphic to G or H. A gregarious kite factorization of $K_{4} \times K_{p}$ follows from Lemmas 9, 11, 12 and 13.

Lemma 15. For all odd prime p and $s>1$, there exists a gregarious kite factorization of $K_{4} \times K_{p^{s}}$.

Proof. For $s>1, K_{4} \times K_{p^{s}}=K_{4} \times\left[p K_{p^{s-1}} \oplus K_{p}\left(p^{s-1}\right)\right]=p\left(K_{4} \times K_{p^{s-1}}\right) \oplus$ $\left[K_{4} \times K_{p}\left(p^{s-1}\right)\right]$ (since the case $s=1$ follows from Lemma 14).

For $s=2, K_{4} \times K_{p^{2}}=p\left(K_{4} \times K_{p}\right) \oplus\left[K_{4} \times K_{p}(p)\right]$. By Lemma 14, we have a gregarious kite factorization of $p\left(K_{4} \times K_{p}\right)$. By Theorem 4, we have a K_{p}-factorization of $K_{p}(p)$. Corresponding to each K_{p}-factor of $K_{p}(p)$, we have a ($K_{4} \times K_{p}$)-factor of $K_{4} \times K_{p}(p)$. Hence a K_{p}-factorization of $K_{p}(p)$ implies a ($K_{4} \times K_{p}$) -factorization of $K_{4} \times K_{p}(p)$. Now the existence of a gregarious kite factorization of ($K_{4} \times K_{p}$) follows from Lemma 14.

For $s=3, K_{4} \times K_{p^{3}}=p\left(K_{4} \times K_{p^{2}}\right) \oplus\left[K_{4} \times K_{p}\left(p^{2}\right)\right]$. Now the gregarious kite factorization of $p\left(K_{4} \times K_{p^{2}}\right)$ follows from the case $s=2$. By Theorem 4, we have a K_{p}-factorization of $K_{p}\left(p^{2}\right)$. Corresponding to each K_{p}-factor of $K_{p}\left(p^{2}\right)$, we have a ($K_{4} \times K_{p}$)-factor of $K_{4} \times K_{p}\left(p^{2}\right)$. Hence a K_{p}-factorization of $K_{p}\left(p^{2}\right)$ implies a ($K_{4} \times K_{p}$)-factorization of $K_{4} \times K_{p}\left(p^{2}\right)$. Now the existence of a gregarious kite factorization of ($K_{4} \times K_{p}$) follows from Lemma 14.

For $s>1, K_{4} \times K_{p^{s}}=p\left(K_{4} \times K_{p^{s-1}}\right) \oplus\left[K_{4} \times K_{p}\left(p^{s-1}\right)\right]$. By the induction hypothesis on s, we have a gregarious kite factorization of $p\left(K_{4} \times K_{p^{s-1}}\right)$. By Theorem 4, we have a K_{p}-factorization of $K_{p}\left(p^{s-1}\right)$. Corresponding to each $K_{p^{-}}$ factor of $K_{p}\left(p^{s-1}\right)$, we have a $\left(K_{4} \times K_{p}\right)$-factor of $K_{4} \times K_{p}\left(p^{s-1}\right)$. Thus a $K_{p^{-}}$ factorization of $K_{p}\left(p^{s-1}\right)$ implies a $\left(K_{4} \times K_{p}\right)$-factorization of $K_{4} \times K_{p}\left(p^{s-1}\right)$.

Now the existence of a gregarious kite factorization of ($K_{4} \times K_{p}$) follows from Lemma 14. Hence combining all the above we have a gregarious kite factorization of $K_{4} \times K_{p^{s}}$, for all $s>1$.

Lemma 16. For all odd primes $p, q(p<q)$ and all integers $s, t \geq 1$, there exists a gregarious kite factorization of $K_{4} \times K_{p^{s} q^{t}}$.
Proof. For $s, t \geq 1$ and $p<q, K_{4} \times K_{p^{s} q^{t}}=K_{4} \times K_{p . p^{s-1} q^{t}}=K_{4} \times\left[p K_{p^{s-1} q^{t}} \oplus\right.$ $\left.K_{p}\left(p^{s-1} q^{t}\right)\right]=p\left[K_{4} \times K_{p^{s-1} q^{t}}\right] \oplus\left[K_{4} \times K_{p}\left(p^{s-1} q^{t}\right)\right]$.

Case 1. (a) For $s=1, t=1, K_{4} \times K_{p q}=K_{4} \times\left(p K_{q} \oplus K_{p}(q)\right)=p\left[K_{4} \times K_{q}\right] \oplus$ [$K_{4} \times K_{p}(q)$]. By Theorem 4, we have a K_{p}-factorization of $K_{p}(q)$. Corresponding to each K_{p}-factor of $K_{p}(q)$, we have a ($K_{4} \times K_{p}$)-factor of $K_{4} \times K_{p}(q)$. Thus a K_{p}-factorization of $K_{p}(q)$ implies a ($K_{4} \times K_{p}$)-factorization of $K_{4} \times K_{p}(q)$. Now the existence of a gregarious kite factorization of $K_{4} \times K_{p}$ and $p\left(K_{4} \times K_{q}\right)$ follows from Lemma 14.
(b) For $s=1, t=2, K_{4} \times K_{p q^{2}}=K_{4} \times\left[p K_{q^{2}} \oplus K_{p}\left(q^{2}\right)\right]=p\left[K_{4} \times K_{q^{2}}\right] \oplus$ $\left[K_{4} \times K_{p}\left(q^{2}\right)\right]$. By Theorem 4, we have a K_{p}-factorization of $K_{p}\left(q^{2}\right)$. Corresponding to each K_{p}-factor of $K_{p}\left(q^{2}\right)$, we have a ($K_{4} \times K_{p}$)-factor of $K_{4} \times K_{p}\left(q^{2}\right)$. Thus a K_{p}-factorization of $K_{p}\left(q^{2}\right)$ implies a $\left(K_{4} \times K_{p}\right)$-factorization of $K_{4} \times K_{p}\left(q^{2}\right)$. Now the existence of a gregarious kite factorization of $K_{4} \times K_{p}$ and $p\left(K_{4} \times K_{q^{2}}\right)$ follows from Lemmas 14 and 15 , respectively.
(c) For $s=1, t \geq 3, K_{4} \times K_{p q^{t}}=K_{4} \times\left[p K_{q^{t}} \oplus K_{p}\left(q^{t}\right)\right]=p\left[K_{4} \times K_{q^{t}}\right] \oplus$ [$K_{4} \times K_{p}\left(q^{t}\right)$]. By Theorem 4, we have a K_{p}-factorization of $K_{p}\left(q^{t}\right)$. Corresponding to each K_{p}-factor of $K_{p}\left(q^{t}\right)$, we have a ($K_{4} \times K_{p}$)-factor of $K_{4} \times K_{p}\left(q^{t}\right)$. Thus a K_{p}-factorization of $K_{p}\left(q^{t}\right)$ implies a $\left(K_{4} \times K_{p}\right)$-factorization of $K_{4} \times K_{p}\left(q^{t}\right)$. Now the existence of a gregarious kite factorization of $K_{4} \times K_{p}$ and $p\left(K_{4} \times K_{q^{t}}\right)$ follows from Lemmas 14 and 15, respectively.

Case 2. (a) For $s=2, t=1, K_{4} \times K_{p^{2} q}=K_{4} \times K_{p . p q}=K_{4} \times\left[p K_{p q} \oplus K_{p}(p q)\right]$ $=p\left[K_{4} \times K_{p q}\right] \oplus\left[K_{4} \times K_{p}(p q)\right]$. By Theorem 4, we have a K_{p}-factorization of $K_{p}(p q)$. Corresponding to each K_{p}-factor of $K_{p}(p q)$, we have a $\left(K_{4} \times K_{p}\right)$ factor of $K_{4} \times K_{p}(p q)$. Thus a K_{p}-factorization of $K_{p}(p q)$ implies a $\left(K_{4} \times K_{p}\right)$ factorization of $K_{4} \times K_{p}(p q)$. Now the existence of a gregarious kite factorization of $K_{4} \times K_{p}$ and $p\left[K_{4} \times K_{p q}\right]$ follows from Lemma 14 and Case 1(a), respectively.
(b) For $s=2, t=2, K_{4} \times K_{p^{2} q^{2}}=K_{4} \times K_{p . p q^{2}}=K_{4} \times\left[p K_{p q^{2}} \oplus K_{p}\left(p q^{2}\right)\right]$ $=p\left[K_{4} \times K_{p q^{2}}\right] \oplus\left[K_{4} \times K_{p}\left(p q^{2}\right)\right]$. By Theorem 4, we have a K_{p}-factorization of $K_{p}\left(p q^{2}\right)$. Corresponding to each K_{p}-factor of $K_{p}\left(p q^{2}\right)$, we have a $\left(K_{4} \times K_{p}\right)$ factor of $K_{4} \times K_{p}\left(p q^{2}\right)$. Thus a K_{p}-factorization of $K_{p}\left(p q^{2}\right)$ implies a $\left(K_{4} \times K_{p}\right)$ factorization of $K_{4} \times K_{p}\left(p q^{2}\right)$. Now the existence of a gregarious kite factorization of $K_{4} \times K_{p}$ and $p\left[K_{4} \times K_{p q^{2}}\right]$ follows from Lemma 14 and Case 1(b), respectively.
(c) For $s=2, t \geq 3, K_{4} \times K_{p^{2} q^{t}}=K_{4} \times K_{p . p q^{t}}=K_{4} \times\left[p K_{p q^{t}} \oplus K_{p}\left(p q^{t}\right)\right]$ $=p\left[K_{4} \times K_{p q}{ }^{t}\right] \oplus\left[K_{4} \times K_{p}\left(p q^{t}\right)\right]$. By Theorem 4, we have a K_{p}-factorization
of $K_{p}\left(p q^{t}\right)$. Corresponding to each K_{p}-factor of $K_{p}\left(p q^{t}\right)$, we have a $\left(K_{4} \times K_{p}\right)$ factor of $K_{4} \times K_{p}\left(p q^{t}\right)$. Thus a K_{p}-factorization of $K_{p}\left(p q^{t}\right)$ implies a ($K_{4} \times K_{p}$)factorization of $K_{4} \times K_{p}\left(p q^{t}\right)$. Now the existence of a gregarious kite factorization of $K_{4} \times K_{p}$ and $p\left[K_{4} \times K_{p q^{t}}\right]$ follows from Lemma 14 and Case 1(c), respectively.
(d) For $s, t \geq 1, K_{4} \times K_{p^{s} q^{t}}=p\left[K_{4} \times K_{p^{s-1} q^{t}}\right] \oplus\left[K_{4} \times K_{p}\left(p^{s-1} q^{t}\right)\right]$. By induction hypothesis on s, we have a gregarious kite factorization of $p\left[K_{4} \times K_{p^{s-1} q^{t}}\right]$. By Theorem 4, we have a K_{p}-factorization of $K_{p}\left(p^{s-1} q^{t}\right)$. Corresponding to each K_{p}-factor of $K_{p}\left(p^{s-1} q^{t}\right)$, we have a ($\left.K_{4} \times K_{p}\right)$-factor of $K_{4} \times K_{p}\left(p^{s-1} q^{t}\right)$. Thus a K_{p}-factorization of $K_{p}\left(p^{s-1} q^{t}\right)$ implies a $\left(K_{4} \times K_{p}\right)$-factorization of $K_{4} \times$ $K_{p}\left(p^{s-1} q^{t}\right)$. Now the existence of a gregarious kite factorization of $K_{4} \times K_{p}$ follows from Lemma 14. Hence combining all the above we have a gregarious kite factorization of $K_{4} \times K_{p^{s} q^{t}}$, for all $s, t \geq 1$ and $p<q$.

Lemma 17. For all odd $n>1$, there exists a gregarious kite factorization of $K_{4} \times K_{n}$.

Proof. By fundamental theorem of arithmetic, any integer $n>1$ can be uniquely written as prime powers or product of prime powers. Consider $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}}$, where each p_{i} is a distinct odd prime and $\alpha_{i} \geq 1, i=1,2, \ldots, t$. Fix $p_{1}^{\alpha_{1}}<p_{2}^{\alpha_{2}}<$ $\cdots<p_{t}^{\alpha_{t}}$. Now,

$$
\begin{aligned}
K_{4} \times K_{n} & =K_{4} \times K_{p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{t}^{\alpha_{t}}}=K_{4} \times\left[p_{1}^{\alpha_{1}} K_{\left.p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3} \ldots p_{t}^{\alpha_{t}}} \oplus K_{p_{1}^{\alpha_{1}}}\left(p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}} \cdots p_{t}^{\alpha_{t}}\right)\right]}\right. \\
& =p_{1}^{\alpha_{1}}\left[K_{4} \times K_{\left.p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3} \ldots p_{t}^{\alpha_{t}}}\right] \oplus\left[K_{4} \times K_{p_{1}^{\alpha_{1}}}\left(p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}} \cdots p_{t}^{\alpha_{t}}\right)\right] .} .\right.
\end{aligned}
$$

It is enough to show that there exists a gregarious kite factorization of $K_{4} \times$ $K_{p_{1}^{\alpha_{1}}}\left(p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}} \cdots p_{t}^{\alpha_{t}}\right)$ and $p_{1}^{\alpha_{1}}\left[K_{4} \times K_{\left.p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}} \ldots p_{t}^{\alpha_{t}}\right] \text {. }}^{\text {. }}\right.$

Case 1. Consider $K_{4} \times K_{p_{1}^{\alpha_{1}}}\left(p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}} \cdots p_{t}^{\alpha_{t}}\right)$. By Theorem 4, we have a $K_{p_{1}^{\alpha_{1}}}$-factorization of $K_{p_{1}^{\alpha_{1}}}\left(p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}} \cdots p_{t}^{\alpha_{t}}\right)$. Corresponding to each $K_{p_{1}^{\alpha_{1}}}$-factor of $K_{p_{1}^{\alpha_{1}}}\left(p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}} \cdots p_{t}^{\alpha_{t}}\right)$, we have a $\left(K_{4} \times K_{p_{1}^{\alpha_{1}}}\right)$-factor of $K_{4} \times K_{p_{1}^{\alpha_{1}}}\left(p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}} \cdots p_{t}^{\alpha_{t}}\right)$. Now the existence of a gregarious kite factorization of $K_{4} \times K_{p_{1}^{\alpha_{1}}}$ follows from Lemma 15.

$$
\begin{aligned}
& p_{1}^{\alpha_{1}}\left[K_{4} \times K_{\left.p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3} \ldots p_{t}^{\alpha_{t}}}\right]}=p_{1}^{\alpha_{1}}\left\{K_{4} \times\left[p_{2}^{\alpha_{2}} K_{p_{3}^{\alpha_{3}} \ldots p_{t}^{\alpha_{t}}} \oplus K_{p_{2}^{\alpha_{2}}}\left(p_{3}^{\alpha_{3}} \cdots p_{t}^{\alpha_{t}}\right)\right]\right\}\right. \\
&=p_{1}^{\alpha_{1}}\left\{p_{2}^{\alpha_{2}}\left[K_{4} \times K_{p_{3}^{\alpha_{3}} \ldots p_{t}^{\alpha_{t}}}\right] \oplus\left[K_{4} \times K_{p_{2}^{\alpha_{2}}}\left(p_{3}^{\alpha_{3}} \cdots p_{t}^{\alpha_{t}}\right)\right]\right\} \\
&=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}\left[K_{4} \times K_{p_{3}^{\alpha_{3}} \ldots p_{t}^{\alpha_{t}}}\right] \oplus p_{1}^{\alpha_{1}}\left[K_{4} \times K_{p_{2}^{\alpha_{2}}}\left(p_{3}^{\alpha_{3}} \cdots p_{t}^{\alpha_{t}}\right)\right] .
\end{aligned}
$$

Now we have to show the existence of gregarious kite factorization of $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}$ $\left[K_{4} \times K_{p_{3}^{\alpha_{3}} \ldots p_{t}^{\alpha_{t}}}\right]$ and $p_{1}^{\alpha_{1}}\left[K_{4} \times K_{p_{2}^{\alpha_{2}}}\left(p_{3}^{\alpha_{3}} \cdots p_{t}^{\alpha_{t}}\right)\right]$. The existence of gregarious kite factorization of $p_{1}^{\alpha_{1}}\left[K_{4} \times K_{p_{2}^{\alpha_{2}}}\left(p_{3}^{\alpha_{3}} \cdots p_{t}^{\alpha_{t}}\right)\right]$ is similar to Case 1.

Now we can write

$$
\begin{aligned}
p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}\left[K_{4} \times K_{p_{3}^{\alpha_{3}} \ldots p_{t}^{\alpha_{t}}}\right] & =p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}\left\{K_{4} \times\left[p_{3}^{\alpha_{3}} K_{p_{4}^{\alpha_{4}} \ldots p_{t}^{\alpha_{t}}} \oplus K_{p_{3}^{\alpha_{3}}}\left(p_{4}^{\alpha_{4}} \cdots p_{t}^{\alpha_{t}}\right)\right]\right\} \\
& =p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}}\left[K_{4} \times K_{p_{4}^{\alpha_{4}} \ldots p_{t}^{\alpha_{t}}}\right] \\
& \oplus p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}\left[K_{4} \times K_{p_{3}^{\alpha_{3}}}\left(p_{4}^{\alpha_{4}} \cdots p_{t}^{\alpha_{t}}\right)\right] .
\end{aligned}
$$

The existence of gregarious kite factorization of the second term $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}$ $\left[K_{4} \times K_{p_{3}^{\alpha_{3}}}\left(p_{4}^{\alpha_{4}} \cdots p_{t}^{\alpha_{t}}\right)\right]$ is similar to Case 1.

Now we consider the first term $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}}\left[K_{4} \times K_{p_{4}^{\alpha_{4}} \ldots p_{t}^{\alpha_{t}}}\right]$ and repeat the above process until we end up with $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{t-1}^{\alpha_{t-1}}\left[K_{4} \times K_{p_{t}^{\alpha_{t}}}\right] \oplus p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{t-2}^{\alpha_{t-2}}$ $\left[K_{4} \times K_{p_{t-1}^{\alpha_{t-1}}}\left(p_{t}^{\alpha_{t}}\right)\right]$. Now the existence of a gregarious kite factorization of $K_{4} \times$ $K_{p_{t}^{\alpha_{t}}}$ and hence the first term follows from Lemma 15 and the existence of gregarious kite factorization of $K_{4} \times K_{p_{t-1}}^{\alpha_{t-1}}\left(p_{t}^{\alpha_{t}}\right)$ and hence the second term is similar

Hence from Cases 1 and 2, we have a gregarious kite factorization of $K_{4} \times$ $K_{p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{t}^{\alpha_{t}}}=K_{4} \times K_{n}$.
Lemma 18. There exists a gregarious kite factorization of $K_{8} \times K_{3}$.
Proof. Let $V\left(K_{8}\right)=\{1,2, \ldots, 8\}$ and $V\left(K_{3}\right)=\{1,2,3\}$. Then $V\left(K_{8} \times K_{3}\right)$ $=\bigcup_{i=1}^{8} V_{i}$, where $V_{i}=\left\{i_{j} \mid 1 \leq j \leq 3\right\}$. Now we construct a gregarious kite factorization of $K_{8} \times K_{3}$ as follows: For $0 \leq s \leq 2$, let

$$
\begin{aligned}
& F_{s}^{1}=\left\{\left(1_{1+s}, 2_{3+s}, 3_{2+s} ; 3_{2+s} 6_{1+s}\right)\left(8_{1+s}, 5_{3+s}, 4_{2+s} ; 4_{2+s} 7_{3+s}\right)\right\} ; \\
& F_{s}^{2}=\left\{\left(1_{1+s}, 5_{3+s}, 7_{2+s} ; 7_{2+s} 2_{3+s}\right)\left(3_{1+s}, 6_{2+s}, 4_{3+s} ; 4_{3+s} 8_{1+s}\right)\right\} ; \\
& F_{s}^{3}=\left\{\left(4_{1+s}, 2_{3+s}, 1_{2+s} ; 1_{2+s} 3_{1+s}\right)\left(5_{1+s}, 8_{3+s}, 6_{2+s} ; 6_{2+s} 7_{1+s}\right)\right\} ; \\
& F_{s}^{4}=\left\{\left(6_{1+s}, 2_{2+s}, 8_{3+s} ; 8_{3+s} 1_{1+s}\right)\left(7_{1+s}, 5_{3+s}, 3_{2+s} ; 3_{2+s} 4_{3+s}\right)\right\} ; \\
& F_{s}^{5}=\left\{\left(2_{1+s}, 5_{3+s}, 6_{2+s} ; 6_{2+s} 1_{1+s}\right)\left(3_{1+s}, 8_{3+s}, 7_{2+s} ; 7_{2+s} 4_{3+s}\right)\right\} ; \\
& F_{s}^{6}=\left\{\left(1_{1+s}, 8_{2+s}, 7_{3+s} ; 7_{3+s} 6_{2+s}\right)\left(2_{1+s}, 4_{3+s}, 5_{2+s} ; 5_{2+s} 3_{3+s}\right)\right\} ; \\
& F_{s}^{7}=\left\{\left(6_{1+s}, 4_{3+s}, 1_{2+s} ; 1_{2+s} 5_{3+s}\right)\left(8_{1+s}, 3_{3+s}, 2_{2+s} ; 2_{2+s} 7_{3+s}\right)\right\} .
\end{aligned}
$$

In all the above constructions the subscripts are taken modulo 3 with residues $1,2,3$. Clearly each $F_{i}=\bigcup_{s=0}^{2} F_{s}^{i}, 1 \leq i \leq 7$, is a gregarious kite factor of $K_{8} \times K_{3}$ and $\left\{F_{1}, F_{2}, \ldots, F_{7}\right\}$ gives a gregarious kite factorization of $K_{8} \times K_{3}$.

Lemma 19. For $n \equiv 3(\bmod 6)$, there exists a gregarious kite factorization of $K_{8} \times K_{n}$.

Proof. By Theorem 6, we have a K_{3}-factorization of $K_{n}, n=6 s+3, s \geq 1$ (since the case $s=0$ follows from Lemma 18). Corresponding to each K_{3}-factor of K_{n}, we have a $\left(K_{8} \times K_{3}\right)$-factor of $K_{8} \times K_{n}$. Hence a K_{3}-factorization of K_{n} implies a $\left(K_{8} \times K_{3}\right)$-factorization of $K_{8} \times K_{n}$. By Lemma 18, we have a gregarious kite factorization of $K_{8} \times K_{3}$. Thus combining all these we get a gregarious kite factorization of $K_{8} \times K_{n}, n=6 s+3, s \geq 1$.

Lemma 20. For $|V(G)|=p, p \geq 5$ is a prime, there exists a gregarious kite factorization of $K_{8} \times G$, where G is described as in Note 7 .

Proof. Let $V\left(K_{8}\right)=\{1,2, \ldots, 8\}$ and $V(G)=\{1,2, \ldots, p\}, p \geq 5$. Then $V\left(K_{8} \times\right.$ $G)=\bigcup_{i=1}^{8} V_{i}$, where $V_{i}=\left\{i_{j} \mid 1 \leq j \leq p\right\}$. Now we construct a gregarious kite factorization of $K_{8} \times G$ as follows: For $0 \leq s \leq p-1$, let

$$
\begin{aligned}
F_{s}^{1} & =\left\{\left(2_{1+s}, 3_{2+s}, 1_{p+s} ; 1_{p+s} 7_{2+s}\right)\left(8_{1+s}, 5_{3+s}, 4_{2+s} ; 4_{2+s} 6_{4+s}\right)\right\} ; \\
F_{s}^{2} & =\left\{\left(1_{1+s}, 5_{3+s}, 7_{2+s} ; 7_{2+s} 2_{4+s}\right)\left(3_{2+s}, 6_{p+s}, 4_{1+s} ; 4_{1+s} 8_{p-1+s}\right)\right\} ; \\
F_{s}^{3} & =\left\{\left(1_{3+s}, 4_{2+s}, 2_{1+s} ; 2_{1+s} 8_{3+s}\right)\left(3_{2+s}, 5_{3+s}, 6_{1+s} ; 6_{1+s} 7_{3+s}\right)\right\} ; \\
F_{s}^{4} & =\left\{\left(1_{3+s}, 6_{2+s}, 8_{1+s} ; 8_{1+s} 2_{3+s}\right)\left(3_{3+s}, 5_{1+s}, 7_{2+s} ; 7_{2+s} 4_{p+s}\right)\right\} ; \\
F_{s}^{5} & =\left\{\left(2_{1+s}, 5_{3+s}, 6_{2+s} ; 6_{2+s} 1_{4+s}\right)\left(4_{1+s}, 7_{2+s}, 8_{3+s} ; 8_{3+s} 3_{1+s}\right)\right\} ; \\
F_{s}^{6} & =\left\{\left(1_{2+s}, 8_{3+s}, 7_{1+s} ; 7_{1+s} 6_{3+s}\right)\left(5_{1+s}, 4_{2+s}, 2_{3+s} ; 2_{3+s} 3_{5+s}\right)\right\} ; \\
F_{s}^{7} & =\left\{\left(1_{2+s}, 5_{1+s}, 4_{3+s} ; 4_{3+s} 2_{1+s}\right)\left(6_{2+s}, 7_{3+s}, 3_{1+s} ; 3_{1+s} 8_{p-1+s}\right)\right\} ; \\
F_{s}^{8} & =\left\{\left(3_{2+s}, 4_{3+s}, 1_{1+s} ; 1_{1+s} 7_{p-1+s}\right)\left(2_{2+s}, 5_{1+s}, 8_{3+s} ; 8_{3+s} 6_{1+s}\right)\right\} ; \\
F_{s}^{9} & =\left\{\left(1_{3+s}, 2_{2+s}, 3_{1+s} ; 3_{1+s} 6_{3+s}\right)\left(5_{1+s}, 8_{2+s}, 7_{3+s} ; 7_{3+s} 4_{5+s}\right)\right\} ; \\
F_{s}^{10} & =\left\{\left(2_{3+s}, 6_{2+s}, 4_{1+s} ; 4_{1+s} 1_{3+s}\right)\left(8_{2+s}, 5_{3+s}, 3_{1+s} ; 3_{1+s} 7_{p-1+s}\right)\right\} ; \\
F_{s}^{11} & =\left\{\left(1_{3+s}, 3_{2+s}, 5_{1+s} ; 5_{1+s} 4_{p-1+s}\right)\left(6_{1+s}, 8_{2+s}, 2_{3+s} ; 2_{3+s} 7_{5+s}\right)\right\} ; \\
F_{s}^{12} & =\left\{\left(5_{2+s}, 6_{3+s}, 1_{1+s} ; 1_{1+s} 2_{3+s}\right)\left(3_{1+s}, 4_{3+s}, 7_{2+s} ; 7_{2+s} 8_{p+s}\right)\right\} ; \\
F_{s}^{13} & =\left\{\left(1_{2+s}, 8_{1+s}, 6_{3+s} ; 6_{3+s} 4_{5+s}\right)\left(7_{1+s}, 5_{3+s}, 2_{2+s} ; 2_{2+s} 3_{p+s}\right)\right\} ; \\
F_{s}^{14} & =\left\{\left(2_{1+s}, 7_{2+s}, 6_{3+s} ; 6_{3+s} 5_{1+s}\right)\left(4_{1+s}, 3_{3+s}, 8_{2+s} ; 8_{2+s} 1_{p+s}\right)\right\}
\end{aligned}
$$

In all the above constructions the subscripts are taken modulo p with residues $1,2, \ldots, p$. Clearly each $F_{i}=\bigcup_{s=0}^{p-1} F_{s}^{i}, 1 \leq i \leq 14$, is a gregarious kite factor of $K_{8} \times G$ and $\left\{F_{1}, F_{2}, \ldots, F_{14}\right\}$ gives a gregarious kite factorization of $K_{8} \times G$.

Lemma 21. There exists a gregarious kite factorization of $K_{8} \times K_{7}$.
Proof. Let $V\left(K_{8}\right)=\{1,2, \ldots, 8\}$ and $V\left(K_{7}\right)=\{1,2, \ldots, 7\}$. Then $V\left(K_{8} \times K_{7}\right)$ $=\bigcup_{i=1}^{8} V_{i}$, where $V_{i}=\left\{i_{j} \mid 1 \leq j \leq 7\right\}$. Now we construct a gregarious kite
factorization of $K_{8} \times K_{7}$ as follows: For $0 \leq s \leq 6$, let

$$
\begin{aligned}
& F_{s}^{1}=\left\{\left(6_{1+s}, 2_{5+s}, 3_{3+s} ; 3_{3+s} 1_{6+s}\right)\left(8_{1+s}, 7_{3+s}, 4_{5+s} ; 4_{5+s} 5_{1+s}\right)\right\} ; \\
& F_{s}^{2}=\left\{\left(8_{3+s}, 4_{5+s}, 2_{1+s} ; 2_{1+s} 5_{4+s}\right)\left(7_{1+s}, 6_{4+s}, 1_{6+s} ; 1_{6+s} 3_{2+s}\right)\right\} ; \\
& F_{s}^{3}=\left\{\left(8_{1+s}, 2_{4+s}, 3_{6+s} ; 3_{6+s} 5_{3+s}\right)\left(4_{1+s}, 6_{3+s}, 7_{5+s} ; 7_{5+s} 1_{1+s}\right)\right\} ; \\
& F_{s}^{4}=\left\{\left(4_{1+s}, 1_{2+s}, 2_{6+s} ; 2_{6+s} 8_{2+s}\right)\left(7_{1+s}, 3_{3+s}, 6_{5+s} ; 6_{5+s} 5_{1+s}\right)\right\} ; \\
& F_{s}^{5}=\left\{\left(2_{1+s}, 4_{4+s}, 7_{6+s} ; 7_{6+s} 5_{3+s}\right)\left(8_{1+s}, 3_{3+s}, 6_{6+s} ; 6_{6+s} 1_{3+s}\right)\right\} ; \\
& F_{s}^{6}=\left\{\left(4_{1+s}, 1_{3+s}, 8_{5+s} ; 8_{5+s} 5_{2+s}\right)\left(2_{1+s}, 6_{5+s}, 7_{3+s} ; 7_{3+s} 3_{7+s}\right)\right\} ; \\
& F_{s}^{7}=\left\{\left(1_{1+s}, 2_{3+s}, 7_{6+s} ; 7_{6+s} 8_{2+s}\right)\left(5_{1+s}, 6_{3+s}, 4_{6+s} ; 4_{6+s} 3_{2+s}\right)\right\} ; \\
& F_{s}^{8}=\left\{\left(2_{2+s}, 3_{3+s}, 1_{1+s} ; 1_{1+s} 6_{5+s}\right)\left(8_{1+s}, 4_{2+s}, 5_{3+s} ; 5_{3+s} 7_{7+s}\right)\right\} ; \\
& F_{s}^{9}=\left\{\left(7_{2+s}, 5_{3+s}, 1_{1+s} ; 1_{1+s} 2_{4+s}\right)\left(4_{1+s}, 3_{2+s}, 6_{6+s} ; 6_{6+s} 8_{3+s}\right)\right\} ; \\
& F_{s}^{10}=\left\{\left(1_{1+s}, 8_{6+s}, 6_{7+s} ; 6_{7+s} 4_{4+s}\right)\left(7_{1+s}, 5_{7+s}, 3_{2+s} ; 3_{2+s} 2_{6+s}\right)\right\} ; \\
& F_{s}^{11}=\left\{\left(8_{1+s}, 1_{5+s}, 2_{3+s} ; 2_{3+s} 4_{4+s}\right)\left(6_{1+s}, 5_{3+s}, 3_{2+s} ; 3_{2+s} 7_{6+s}\right)\right\} ; \\
& F_{s}^{12}=\left\{\left(2_{1+s}, 6_{2+s}, 5_{3+s} ; 5_{3+s} 1_{7+s}\right)\left(4_{1+s}, 7_{2+s}, 8_{3+s} ; 8_{3+s} 3_{7+s}\right)\right\} ; \\
& F_{s}^{13}=\left\{\left(7_{1+s}, 1_{2+s}, 8_{3+s} ; 8_{3+s} 6_{7+s}\right)\left(5_{1+s}, 2_{3+s}, 4_{2+s} ; 4_{2+s} 3_{6+s}\right)\right\} ; \\
& F_{s}^{14}=\left\{\left(5_{1+s}, 4_{3+s}, 1_{2+s} ; 1_{2+s} 8_{6+s}\right)\left(6_{2+s}, 7_{3+s}, 3_{1+s} ; 3_{1+s} 2_{4+s}\right)\right\} ; \\
& F_{s}^{15}=\left\{\left(1_{1+s}, 3_{2+s}, 4_{3+s} ; 4_{3+s} 6_{2+s}\right)\left(5_{1+s}, 8_{3+s}, 2_{2+s} ; 2_{2+s} 7_{6+s}\right)\right\} ; \\
& F_{s}^{16}=\left\{\left(3_{1+s}, 2_{2+s}, 1_{3+s} ; 1_{3+s} 4_{7+s}\right)\left(8_{2+s}, 7_{3+s}, 5_{1+s} ; 5_{1+s} 6_{4+s}\right)\right\} ; \\
& F_{s}^{17}=\left\{\left(6_{2+s}, 2_{3+s}, 4_{1+s} ; 4_{1+s} 7_{4+s}\right)\left(3_{1+s}, 8_{2+s}, 5_{3+s} ; 5_{3+s} 1_{6+s}\right)\right\} ; \\
& F_{s}^{18}=\left\{\left(1_{3+s}, 3_{2+s}, 5_{1+s} ; 5_{1+s} 4_{4+s}\right)\left(6_{1+s}, 2_{3+s}, 8_{2+s} ; 8_{2+s} 7_{5+s}\right)\right\} ; \\
& F_{s}^{19}=\left\{\left(1_{1+s}, 6_{3+s}, 5_{2+s} ; 5_{2+s} 2_{5+s}\right)\left(7_{2+s}, 4_{3+s}, 3_{1+s} ; 3_{1+s} 8_{5+s}\right)\right\} ; \\
& F_{s}^{20}=\left\{\left(8_{1+s}, 6_{3+s}, 1_{2+s} ; 1_{2+s} 4_{5+s}\right)\left(7_{1+s}, 2_{2+s}, 5_{3+s} ; 5_{3+s} 3_{7+s}\right)\right\} ; \\
& F_{s}^{21}=\left\{\left(2_{1+s}, 6_{3+s}, 7_{2+s} ; 7_{2+s} 1_{6+s}\right)\left(4_{1+s}, 3_{3+s}, 8_{2+s} ; 8_{2+s} 5_{5+s}\right)\right\} \text {. }
\end{aligned}
$$

In all the above constructions the subscripts are taken modulo 7 with residues $1,2, \ldots, 7$. Clearly each $F_{i}=\bigcup_{s=0}^{6} F_{s}^{i}, 1 \leq i \leq 21$, is a gregarious kite factor of $K_{8} \times K_{7}$ and $\left\{F_{1}, F_{2}, \ldots, F_{21}\right\}$ gives a gregarious kite factorization of $K_{8} \times K_{7}$.

Lemma 22. For $|V(H)|=p, p \geq 11$ is a prime, there exists a gregarious kite factorization of $K_{8} \times H$, where H is described as in Note 7 .

Proof. Let $V\left(K_{8}\right)=\{1,2, \ldots, 8\}$ and $V(H)=\{1,2, \ldots, p\}, p \geq 11$. Then $V\left(K_{8} \times H\right)=\bigcup_{i=1}^{8} V_{i}$, where $V_{i}=\left\{i_{j} \mid 1 \leq j \leq p\right\}$. Now we construct a gregarious kite factorization of $K_{8} \times H$ as follows: For $0 \leq s \leq p-1$, let

$$
\begin{aligned}
& F_{s}^{1}=\left\{\left(7_{3+s}, 4_{5+s}, 1_{1+s} ; 1_{1+s} 2_{5+s}\right)\left(5_{p-1+s}, 8_{p+s}, 6_{1+s} ; 6_{1+s} 3_{5+s}\right)\right\} ; \\
& F_{s}^{2}=\left\{\left(4_{3+s}, 2_{2+s}, 1_{1+s} ; 1_{1+s} 3_{5+s}\right)\left(8_{3+s}, 6_{2+s}, 5_{1+s} ; 5_{1+s} 7_{5+s}\right)\right\} ;
\end{aligned}
$$

$$
\begin{aligned}
F_{s}^{3} & =\left\{\left(6_{p-1+s}, 4_{p+s}, 1_{1+s} ; 1_{1+s} 7_{5+s}\right)\left(5_{p-1+s}, 2_{p+s}, 3_{1+s} ; 3_{1+s} 8_{5+s}\right)\right\} ; \\
F_{s}^{4} & =\left\{\left(8_{p-3+s}, 1_{p-1+s}, 2_{1+s} ; 2_{1+s} 3_{5+s}\right)\left(7_{p-1+s}, 6_{p+s}, 5_{1+s} ; 5_{1+s} 4_{5+s}\right)\right\} ; \\
F_{s}^{5} & =\left\{\left(1_{3+s}, 2_{2+s}, 3_{1+s} ; 3_{1+s} 7_{5+s}\right)\left(4_{2+s}, 5_{3+s}, 8_{1+s} ; 8_{1+s} 6_{5+s}\right)\right\} ; \\
F_{s}^{6} & =\left\{\left(7_{2+s}, 4_{3+s}, 2_{1+s} ; 2_{1+s} 1_{5+s}\right)\left(8_{p-1+s}, 5_{p+s}, 3_{1+s} ; 3_{1+s} 6_{5+s}\right)\right\} ; \\
F_{s}^{7} & =\left\{\left(3_{2+s}, 1_{p+s}, 6_{1+s} ; 6_{1+s} 4_{5+s}\right)\left(7_{1+s}, 2_{3+s}, 8_{5+s} ; 8_{5+s} 5_{1+s}\right)\right\} ; \\
F_{s}^{8} & =\left\{\left(1_{3+s}, 7_{2+s}, 5_{1+s} ; 5_{1+s} 3_{5+s}\right)\left(2_{2+s}, 6_{3+s}, 4_{1+s} ; 4_{1+s} 8_{5+s}\right)\right\} ; \\
F_{s}^{9} & =\left\{\left(6_{p+s}, 5_{2+s}, 2_{1+s} ; 2_{1+s} 7_{5+s}\right)\left(8_{p+s}, 4_{2+s}, 3_{1+s} ; 3_{1+s} 1_{5+s}\right)\right\} ; \\
F_{s}^{10} & =\left\{\left(8_{p+s}, 2_{p-1+s}, 1_{1+s} ; 1_{1+s} 5_{5+s}\right)\left(3_{3+s}, 4_{5+s}, 7_{1+s} ; 7_{1+s} 6_{p-3+s}\right)\right\} ; \\
F_{s}^{11} & =\left\{\left(1_{3+s}, 6_{5+s}, 4_{1+s} ; 4_{1+s} 3_{5+s}\right)\left(7_{3+s}, 8_{5+s}, 2_{1+s} ; 2_{1+s} 5_{5+s}\right)\right\} ; \\
F_{s}^{12} & =\left\{\left(8_{3+s}, 6_{p-1+s}, 4_{1+s} ; 4_{1+s} 2_{p-3+s}\right)\left(1_{3+s}, 7_{4+s}, 5_{5+s} ; 5_{5+s} 3_{1+s}\right)\right\} ; \\
F_{s}^{13} & =\left\{\left(2_{3+s}, 5_{1+s}, 6_{5+s} ; 6_{5+s} 7_{1+s}\right)\left(8_{2+s}, 1_{p+s}, 3_{1+s} ; 3_{1+s} 4_{5+s}\right)\right\} ; \\
F_{s}^{14} & =\left\{\left(7_{2+s}, 5_{p+s}, 4_{1+s} ; 4_{1+s} 1_{5+s}\right)\left(6_{3+s}, 2_{p-1+s}, 3_{1+s} ; 3_{1+s} 8_{p-3+s}\right)\right\} ; \\
F_{s}^{15} & =\left\{\left(2_{p-1+s}, 6_{p-3+s}, 5_{1+s} ; 5_{1+s} 1_{5+s}\right)\left(3_{p-1+s}, 7_{p+s}, 8_{1+s} ; 8_{1+s} 4_{5+s}\right)\right\} ; \\
F_{s}^{16} & =\left\{\left(1_{3+s}, 8_{p-1+s}, 7_{1+s} ; 7_{1+s} 5_{5+s}\right)\left(6_{1+s}, 3_{3+s}, 2_{5+s} ; 2_{5+s} 4_{1+s}\right)\right\} ; \\
F_{s}^{17} & =\left\{\left(8_{2+s}, 2_{3+s}, 4_{1+s} ; 4_{1+s} 5_{5+s}\right)\left(3_{2+s}, 6_{3+s}, 7_{1+s} ; 7_{1+s} 1_{5+s}\right)\right\} ; \\
F_{s}^{18} & =\left\{\left(1_{p+s}, 6_{p-1+s}, 8_{1+s} ; 8_{1+s} 5_{5+s}\right)\left(7_{3+s}, 4_{p-1+s}, 3_{1+s} ; 3_{1+s} 2_{5+s}\right)\right\} ; \\
F_{s}^{19} & =\left\{\left(5_{2+s}, 3_{p+s}, 1_{1+s} ; 1_{1+s} 8_{5+s}\right)\left(4_{p-1+s}, 6_{p+s}, 7_{1+s} ; 7_{1+s} 2_{5+s}\right)\right\} ; \\
F_{s}^{20} & =\left\{\left(4_{p-1+s}, 3_{p+s}, 5_{1+s} ; 5_{1+s} 2_{5+s}\right)\left(7_{3+s}, 8_{p-1+s}, 6_{1+s} ; 6_{1+s} 1_{5+s}\right)\right\} ; \\
F_{s}^{21} & =\left\{\left(4_{2+s}, 5_{p+s}, 1_{1+s} ; 1_{1+s} 6_{5+s}\right)\left(2_{2+s}, 8_{p+s}, 7_{1+s} ; 7_{1+s} 3_{5+s}\right)\right\} .
\end{aligned}
$$

In all the above constructions the subscripts are taken modulo p with residues $1,2, \ldots, p$. Clearly each $F_{i}=\bigcup_{s=0}^{p-1} F_{s}^{i}, 1 \leq i \leq 21$, is a gregarious kite factor of $K_{8} \times H$ and $\left\{F_{1}, F_{2}, \ldots, F_{21}\right\}$ gives a gregarious kite factorization of $K_{8} \times H$.

Lemma 23. For all odd prime p, there exists a gregarious kite factorization of $K_{8} \times K_{p}$.
Proof. By Remark $8, K_{p}$ has a factorization into graphs isomorphic to G or H. Hence a gregarious kite factorization of $K_{8} \times K_{p}$ follows from Lemmas 18, 20, 21 and 22 .

Lemma 24. For all odd prime p and $s>1$, there exists a gregarious kite factorization of $K_{8} \times K_{p^{s}}$.

Proof. For $s>1, K_{8} \times K_{p^{s}}=K_{8} \times\left[p K_{p^{s-1}} \oplus K_{p}\left(p^{s-1}\right)\right]=p\left(K_{8} \times K_{p^{s-1}}\right) \oplus$ [$K_{8} \times K_{p}\left(p^{s-1}\right)$] (since the case $s=1$ follows from Lemma 23).

For $s=2, K_{8} \times K_{p^{2}}=p\left(K_{8} \times K_{p}\right) \oplus\left[K_{8} \times K_{p}(p)\right]$. By Lemma 23, we have a gregarious kite factorization of $p\left(K_{8} \times K_{p}\right)$. By Theorem 4, we have a K_{p}-factorization of $K_{p}(p)$. Corresponding to each K_{p}-factor of $K_{p}(p)$, we have
a ($K_{8} \times K_{p}$)-factor of $K_{8} \times K_{p}(p)$. Thus a K_{p}-factorization of $K_{p}(p)$ implies a ($K_{8} \times K_{p}$)-factorization of $K_{8} \times K_{p}(p)$. Now the existence of a gregarious kite factorization of ($K_{8} \times K_{p}$) follows from Lemma 23.

For $s=3, K_{8} \times K_{p^{3}}=p\left(K_{8} \times K_{p^{2}}\right) \oplus\left[K_{8} \times K_{p}\left(p^{2}\right)\right]$. Then the gregarious kite factorization of $p\left(K_{8} \times K_{p^{2}}\right)$ follows from the case $s=2$. By Theorem 4, we have a K_{p}-factorization of $K_{p}\left(p^{2}\right)$. Corresponding to each K_{p}-factor of $K_{p}\left(p^{2}\right)$, we have a ($K_{8} \times K_{p}$)-factor of $K_{8} \times K_{p}\left(p^{2}\right)$. Thus a K_{p}-factorization of $K_{p}\left(p^{2}\right)$ implies a ($K_{8} \times K_{p}$)-factorization of $K_{8} \times K_{p}\left(p^{2}\right)$. Now the existence of a gregarious kite factorization of ($K_{8} \times K_{p}$) follows from Lemma 23.

For $s>1, K_{8} \times K_{p^{s}}=p\left(K_{8} \times K_{p^{s-1}}\right) \oplus\left[K_{8} \times K_{p}\left(p^{s-1}\right)\right]$. By the induction hypothesis on s, we have a gregarious kite factorization of $p\left(K_{8} \times K_{p^{s-1}}\right)$. By Theorem 4, we have a K_{p}-factorization of $K_{p}\left(p^{s-1}\right)$. Corresponding to each $K_{p^{-}}$ factor of $K_{p}\left(p^{s-1}\right)$, we have a ($K_{8} \times K_{p}$)-factor of $K_{8} \times K_{p}\left(p^{s-1}\right)$. Thus a $K_{p^{-}}$ factorization of $K_{p}\left(p^{s-1}\right)$ implies a ($K_{8} \times K_{p}$)-factorization of $K_{8} \times K_{p}\left(p^{s-1}\right)$. Now the existence of a gregarious kite factorization of ($K_{8} \times K_{p}$) follows from Lemma 23. Hence combining all the above we have a gregarious kite factorization of $K_{8} \times K_{p^{s}}$, for all $s>1$.

Lemma 25. There exists a gregarious kite factorization of $K_{8} \times K_{p^{s} q^{t}}$ for all odd primes $p, q(p<q)$ and all integers $s, t \geq 1$.

Proof. For $s, t \geq 1$ and $p<q$,

$$
\begin{aligned}
K_{8} \times K_{p^{s} q^{t}} & =K_{8} \times K_{p \cdot p^{s-1} q^{t}}=K_{8} \times\left[p K_{p^{s-1} q^{t}} \oplus K_{p}\left(p^{s-1} q^{t}\right)\right] \\
& =p\left[K_{8} \times K_{p^{s-1} q^{t}}\right] \oplus\left[K_{8} \times K_{p}\left(p^{s-1} q^{t}\right)\right] .
\end{aligned}
$$

Case 1. (a) For $s=1, t=1, K_{8} \times K_{p q}=K_{8} \times\left[p K_{q} \oplus K_{p}(q)\right]=p\left[K_{8} \times K_{q}\right] \oplus$ [$K_{8} \times K_{p}(q)$]. By Theorem 4, we have a K_{p}-factorization of $K_{p}(q)$. Corresponding to each K_{p}-factor of $K_{p}(q)$, we have a $\left(K_{8} \times K_{p}\right)$-factor of $K_{8} \times K_{p}(q)$. Thus a K_{p}-factorization of $K_{p}(q)$ implies a ($K_{8} \times K_{p}$)-factorization of $K_{8} \times K_{p}(q)$. Now the existence of a gregarious kite factorization of $K_{8} \times K_{p}$ and $p\left(K_{8} \times K_{q}\right)$ follows from Lemma 23.
(b) For $s=1, t=2, K_{8} \times K_{p q^{2}}=K_{8} \times\left[p K_{q^{2}} \oplus K_{p}\left(q^{2}\right)\right]=p\left[K_{8} \times K_{q^{2}}\right] \oplus$ [$\left.K_{8} \times K_{p}\left(q^{2}\right)\right]$. By Theorem 4, we have a K_{p}-factorization of $K_{p}\left(q^{2}\right)$. Corresponding to each K_{p}-factor of $K_{p}\left(q^{2}\right)$, we have a $\left(K_{8} \times K_{p}\right)$-factor of $K_{8} \times K_{p}\left(q^{2}\right)$. Thus a K_{p}-factorization of $K_{p}\left(q^{2}\right)$ implies a $\left(K_{8} \times K_{p}\right)$-factorization of $K_{8} \times K_{p}\left(q^{2}\right)$. Now the existence of a gregarious kite factorization of $K_{8} \times K_{p}$ and $p\left(K_{8} \times K_{q^{2}}\right)$ follows from Lemmas 23 and 24, respectively.
(c) For $s=1, t \geq 3, K_{8} \times K_{p q^{t}}=K_{8} \times\left[p K_{q^{t}} \oplus K_{p}\left(q^{t}\right)\right]=p\left[K_{8} \times K_{q^{t}}\right] \oplus$ [$\left.K_{8} \times K_{p}\left(q^{t}\right)\right]$. By Theorem 4, we have a K_{p}-factorization of $K_{p}\left(q^{t}\right)$. Corresponding to each K_{p}-factor of $K_{p}\left(q^{t}\right)$, we have a $\left(K_{8} \times K_{p}\right)$-factor of $K_{8} \times K_{p}\left(q^{t}\right)$. Thus
a K_{p}-factorization of $K_{p}\left(q^{t}\right)$ implies a $\left(K_{8} \times K_{p}\right)$-factorization of $K_{8} \times K_{p}\left(q^{t}\right)$. Now the existence of a gregarious kite factorization of $K_{8} \times K_{p}$ and $p\left(K_{8} \times K_{q^{t}}\right)$ follows from Lemmas 23 and 24, respectively.

Case 2. (a) For $s=2, t=1, K_{8} \times K_{p^{2} q}=K_{8} \times K_{p . p q}=K_{8} \times\left[p K_{p q} \oplus K_{p}(p q)\right]$ $=p\left[K_{8} \times K_{p q}\right] \oplus\left[K_{8} \times K_{p}(p q)\right]$. By Theorem 4, we have a K_{p}-factorization of $K_{p}(p q)$. Corresponding to each K_{p}-factor of $K_{p}(p q)$, we have a ($K_{8} \times K_{p}$) -factor of $K_{8} \times K_{p}(p q)$. Thus a K_{p}-factorization of $K_{p}(p q)$ implies a $\left(K_{8} \times K_{p}\right)$-factorization of $K_{8} \times K_{p}(p q)$. Now the existence of a gregarious kite factorization of $K_{8} \times K_{p}$ and $p\left[K_{8} \times K_{p q}\right]$ follows from Lemma 23 and Case 1(a), respectively.
(b) For $s=2, t=2, K_{8} \times K_{p^{2} q^{2}}=K_{8} \times K_{p . p q^{2}}=K_{8} \times\left[p K_{p q^{2}} \oplus K_{p}\left(p q^{2}\right)\right]$ $=p\left[K_{8} \times K_{p q^{2}}\right] \oplus\left[K_{8} \times K_{p}\left(p q^{2}\right)\right]$. By Theorem 4, we have a K_{p}-factorization of $K_{p}\left(p q^{2}\right)$. Corresponding to each K_{p}-factor of $K_{p}\left(p q^{2}\right)$, we have a $\left(K_{8} \times K_{p}\right)$ factor of $K_{8} \times K_{p}\left(p q^{2}\right)$. Thus a K_{p}-factorization of $K_{p}\left(p q^{2}\right)$ implies a $\left(K_{8} \times K_{p}\right)$ factorization of $K_{8} \times K_{p}\left(p q^{2}\right)$. Now the existence of a gregarious kite factorization of $K_{8} \times K_{p}$ and p [$\left.K_{8} \times K_{p q^{2}}\right]$ follows from Lemma 23 and Case 1(b), respectively.
(c) For $s=2, t \geq 3, K_{8} \times K_{p^{2} q^{t}}=K_{8} \times K_{p . p q^{t}}=K_{8} \times\left[p K_{p q^{t}} \oplus K_{p}\left(p q^{t}\right)\right]$ $=p\left[K_{8} \times K_{p q^{t}}\right] \oplus\left[K_{8} \times K_{p}\left(p q^{t}\right)\right]$. By Theorem 4, we have a K_{p}-factorization of $K_{p}\left(p q^{t}\right)$. Corresponding to each K_{p}-factor of $K_{p}\left(p q^{t}\right)$, we have a $\left(K_{8} \times K_{p}\right)$ factor of $K_{8} \times K_{p}\left(p q^{t}\right)$. Thus a K_{p}-factorization of $K_{p}\left(p q^{t}\right)$ implies a ($K_{8} \times K_{p}$)factorization of $K_{8} \times K_{p}\left(p q^{t}\right)$. Now the existence of a gregarious kite factorization of $K_{8} \times K_{p}$ and $p\left[K_{8} \times K_{p q^{t}}\right]$ follows from Lemma 23 and Case 1(c), respectively.

For $s, t \geq 1, K_{8} \times K_{p^{s} q^{t}}=p\left[K_{8} \times K_{p^{s-1} q^{t}}\right] \oplus\left[K_{8} \times K_{p}\left(p^{s-1} q^{t}\right)\right]$. By the induction hypothesis on s, we have a gregarious kite factorization of $p\left[K_{8} \times K_{p^{s-1} q^{t}}\right]$. By Theorem 4, we have a K_{p}-factorization of $K_{p}\left(p^{s-1} q^{t}\right)$. Corresponding to each K_{p}-factor of $K_{p}\left(p^{s-1} q^{t}\right)$, we have a ($K_{8} \times K_{p}$)-factor of $K_{8} \times K_{p}\left(p^{s-1} q^{t}\right)$. Thus a K_{p}-factorization of $K_{p}\left(p^{s-1} q^{t}\right)$ implies a $\left(K_{8} \times K_{p}\right)$-factorization of $K_{8} \times$ $K_{p}\left(p^{s-1} q^{t}\right)$. Now the existence of a gregarious kite factorization of $K_{8} \times K_{p}$ follows from Lemma 23. Hence combining all the above we have a gregarious kite factorization of $K_{8} \times K_{p^{s} q^{t}}$, for all $s, t \geq 1$ and $p<q$.

Lemma 26. There exists a gregarious kite factorization of $K_{8} \times K_{n}$ for all odd $n>1$.

Proof. By fundamental theorem of arithmetic, any integer $n>1$ can be uniquely written as prime powers or product of prime powers.

Consider $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}}$, where each p_{i} is a distinct odd prime and $\alpha_{i} \geq$ $1, i=1,2, \ldots, t$. Fix $p_{1}^{\alpha_{1}}<p_{2}^{\alpha_{2}}<\cdots<p_{t}^{\alpha_{t}}$. Now,

$$
\begin{aligned}
K_{8} \times K_{n} & =K_{8} \times K_{p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2} \ldots p_{t}^{\alpha_{t}}}=K_{8} \times\left[p_{1}^{\alpha_{1}} K_{\left.p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3} \ldots p_{t}^{\alpha_{t}}} \oplus K_{p_{1}^{\alpha_{1}}}\left(p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}} \cdots p_{t}^{\alpha_{t}}\right)\right]}\right.}=p_{1}^{\alpha_{1}}\left[K_{8} \times K_{p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}} \ldots p_{t}^{\alpha_{t}}}\right] \oplus\left[K_{8} \times K_{\left.p_{1}^{\alpha_{1}}\left(p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}} \cdots p_{t}^{\alpha_{t}}\right)\right] .} .\right.
\end{aligned}
$$

It is enough to show that there exists a gregarious kite factorization of $K_{8} \times$ $K_{p_{1}^{\alpha_{1}}}\left(p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}} \ldots p_{t}^{\alpha_{t}}\right)$ and $p_{1}^{\alpha_{1}}\left[K_{8} \times K_{\left.p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}} \ldots p_{t}^{\alpha_{t}}\right] \text {. }}^{\text {. }}\right.$

Case 1. Consider $K_{8} \times K_{p_{1}^{\alpha_{1}}}\left(p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}} \cdots p_{t}^{\alpha_{t}}\right)$. By Theorem 4, we have a $K_{p_{1}^{\alpha_{1}}}$-factorization of $K_{p_{1}^{\alpha_{1}}}\left(p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}} \cdots p_{t}^{\alpha_{t}}\right)$. Corresponding to each $K_{p_{1}^{\alpha_{1}}-\text { factor of }}$
 Now the existence of a gregarious kite factorization of $K_{8} \times K_{p_{1}}^{\alpha_{1}}$ follows from Lemma 24.

Case 2. Consider $p_{1}^{\alpha_{1}}\left[K_{8} \times K_{p_{2}^{\alpha_{2}}}^{\alpha_{3}^{\alpha_{3}} \ldots p_{t}^{\alpha_{t}}}\right]$. We write

$$
\begin{aligned}
p_{1}^{\alpha_{1}}\left[K_{8} \times K_{p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}} \ldots p_{t}^{\alpha_{t}}}\right] & =p_{1}^{\alpha_{1}}\left\{K_{8} \times\left[p_{2}^{\alpha_{2}} K_{p_{3}^{\alpha_{3}} \ldots p_{t}^{\alpha_{t}}} \oplus K_{p_{2}^{\alpha_{2}}}\left(p_{3}^{\alpha_{3}} \cdots p_{t}^{\alpha_{t}}\right)\right]\right\} \\
& =p_{1}^{\alpha_{1}}\left\{p _ { 2 } ^ { \alpha _ { 2 } } [K _ { 8 } \times K _ { p _ { 3 } ^ { \alpha _ { 3 } \ldots p _ { t } ^ { \alpha _ { t } } } }] \oplus \left[K_{8} \times K_{\left.\left.p_{2}^{\alpha_{2}}\left(p_{3}^{\alpha_{3}} \cdots p_{t}^{\alpha_{t}}\right)\right]\right\}}\right.\right. \\
& =p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}\left[K_{8} \times K_{p_{3}^{\alpha_{3}} \ldots p_{t}^{\alpha_{t}}}\right] \oplus p_{1}^{\alpha_{1}}\left[K_{8} \times K_{p_{2}^{\alpha_{2}}}\left(p_{3}^{\alpha_{3}} \cdots p_{t}^{\alpha_{t}}\right)\right] .
\end{aligned}
$$

Now we have to show the existence of gregarious kite factorization of $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}$ $\left[K_{8} \times K_{p_{3}^{\alpha_{3}} \ldots p_{t}^{\alpha_{t}}}\right]$ and $p_{1}^{\alpha_{1}}\left[K_{8} \times K_{p_{2}^{\alpha_{2}}}\left(p_{3}^{\alpha_{3}} \cdots p_{t}^{\alpha_{t}}\right)\right]$. The existence of gregarious kite factorization of $p_{1}^{\alpha_{1}}\left[K_{8} \times K_{p_{2}^{\alpha_{2}}}\left(p_{3}^{\alpha_{3}} \cdots p_{t}^{\alpha_{t}}\right)\right]$ is similar to Case 1. Now we can write

$$
\begin{aligned}
p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}\left[K_{8} \times K_{p_{3}^{\alpha_{3}} \ldots p_{t}^{\alpha_{t}}}\right] & =p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}\left\{K_{8} \times\left[p_{3}^{\alpha_{3}} K_{p_{4}^{\alpha_{4} \ldots p_{t}^{\alpha_{t}}} \oplus} \oplus K_{p_{3}^{\alpha_{3}}}\left(p_{4}^{\alpha_{4}} \cdots p_{t}^{\alpha_{t}}\right)\right]\right\} \\
& =p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}}\left[K_{8} \times K_{p_{4}^{\alpha_{4}} \ldots p_{t}^{\alpha_{t}}}\right] \\
& \oplus p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}\left[K_{8} \times K_{p_{3}^{\alpha_{3}}}\left(p_{4}^{\alpha_{4}} \cdots p_{t}^{\alpha_{t}}\right)\right] .
\end{aligned}
$$

The existence of gregarious kite factorization of second term $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}\left[K_{8} \times\right.$ $\left.K_{p_{3}^{\alpha_{3}}}\left(p_{4}^{\alpha_{4}} \cdots p_{t}^{\alpha_{t}}\right)\right]$ is similar to Case 1.

Now we consider the first term $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}}\left[K_{8} \times K_{p_{4}^{\alpha_{4}} \ldots p_{t}^{\alpha_{t}}}\right]$ and repeat the above process until we end up with $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{t-1}^{\alpha_{t-1}}\left[K_{8} \times K_{p_{t}^{\alpha_{t}}}\right] \oplus p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{t-2}^{\alpha_{t-2}}$ $\left[K_{8} \times K_{p_{t-1}^{\alpha_{t-1}}}\left(p_{t}^{\alpha_{t}}\right)\right]$. Now the existence of a gregarious kite factorization of $K_{8} \times$ $K_{p_{t}^{\alpha_{t}}}$ and hence the first term follows from Lemma 24 and the existence of gregarious kite factorization of $K_{8} \times K_{p_{t-1}^{\alpha_{t-1}}}\left(p_{t}^{\alpha_{t}}\right)$ and hence the second term is similar to Case 1. Thus we have a gregarious kite factorization of $p_{1}^{\alpha_{1}}\left[K_{8} \times K_{p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}} \ldots p_{t}^{\alpha_{t}}}\right]$.

Hence from Cases 1 and 2, we have a gregarious kite factorization of $K_{8} \times$ $K_{p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2} \ldots p_{t}}{ }^{\alpha_{t}}=K_{8} \times K_{n} \text {. } \quad . \quad \text {. }}$

Lemma 27. For all odd $n>1$, there exists a gregarious kite factorization of $K \times K_{n}$, where K is a kite.

Proof. Let $V(K)=\{1,2,3,4\}$ and $V\left(K_{n}\right)=\{1,2, \ldots, n\}$. Then $V\left(K \times K_{n}\right)$ $=\bigcup_{i=1}^{4} V_{i}$, where $V_{i}=\left\{i_{j} \mid 1 \leq j \leq n\right\}$. Now we construct a gregarious kite factorization of $K \times K_{n}$ as follows: For $0 \leq s \leq n-2$, let $F_{s}=\bigoplus_{i=0}^{n-1}$ $\left\{1_{1+i}, 2_{2+s+i}, 3_{3+2 s+i} ; 3_{3+2 s+i} 4_{4+3 s+i}\right\}$, where the subscripts are taken modulo n with residues $1,2, \ldots, n$. Clearly each $F_{s}, 0 \leq s \leq n-2$ is a gregarious kite factor of $K \times K_{n}$ and all together gives a gregarious kite factorization of $K \times K_{n}$.

Theorem 28. There exists a gregarious kite factorization of $K_{m} \times K_{n}$ if and only if $m \equiv 0(\bmod 4)$ and n is any odd integer greater than 1 .

Proof. Necessity. It follows by $4 \mid m n,\{(m-1)(n-1)\} / 2 \in \mathbb{N}$ (respectively, the size of a kite factor and the number of factors in a kite factorization of the graph $\left.K_{m} \times K_{n}\right)$.

Sufficiency. Let $m=4 s, s \geq 1$ and n is odd. The case $s=1,2$ follows from Lemmas 17 and 26, respectively. Then for $s \geq 3, K_{4 s} \times K_{n}=\left[s K_{4} \oplus K_{s}(4)\right] \times K_{n}$ $=s\left(K_{4} \times K_{n}\right) \oplus\left(K_{s}(4) \times K_{n}\right)$. Now the existence of a gregarious kite factorization of $s\left(K_{4} \times K_{n}\right)$ follows from Lemma 17. By Theorem 5, we have a kite factorization of $K_{s}(4), s \geq 3$. Corresponding to each kite factor of $K_{s}(4)$, we have a ($K \times K_{n}$)-factor of $\left(K_{s}(4) \times K_{n}\right)$, where K is a kite. Thus a kite factorization of $K_{s}(4)$ implies a $\left(K \times K_{n}\right)$-factorization of $\left(K_{s}(4) \times K_{n}\right)$. Further, the existence of a gregarious kite factorization of $K \times K_{n}$ follows from Lemma 27. Hence combining all these results we have a gregarious kite factorization of $K_{m} \times K_{n}$.

Conclusion. In this paper, we give a complete solution for the existence of a gregarious kite factorization of $K_{m} \times K_{n}$.

Acknowledgment

The second author thanks DST, New Delhi, for their support through Grant No. SR/S4/MS: 828/13 and UGC-SAP through Grant No. 510/7/DRS-1/2016(SAP1).

References

[1] I. Anderson, Combinatorial Designs and Tournaments (Oxford University Press Inc., New York, 1997).
[2] R.J.R. Abel, C.J. Colbourn and J.H. Dinitz, Mutually orthogonal latin squares ($M O L S$), chapter in The Handbook of Combinatorial Designs, Second Edition, C.J. Colbourn and J.H. Dinitz, Eds., Discrete Math. Appl. (Chapman \& Hall/CRC Press, Boca Raton, New York, 2007) 160-163.
[3] J.C. Bermond and J. Schönheim, G-decompositions of K_{n}, where G has four vertices or less, Discrete Math. 19 (1977) 113-120. doi:10.1016/0012-365X(77)90027-9
[4] C.J. Colbourn, A.C.H. Ling and G.Quattrocchi, Embedding path designs into kite systems, Discrete Math. 297 (2005) 38-48. doi:10.1016/j.disc.2005.04.014
[5] C.M. Fu, Y.F. Hsu, S.W. Lo and W.C. Huang, Some gregarious kite decompositions of complete equipartite graphs, Discrete Math. 313 (2013) 726-732. doi:10.1016/j.disc.2012.10.017
[6] M. Gionfriddo and S. Milici, On the existence of uniformly resolvable decompositions of K_{v} and $K_{v}-I$ into paths and kites, Discrete Math. 313 (2013) 2830-2834. doi:10.1016/j.disc.2013.08.023
[7] L. Gionfriddo and C.C. Lindner, Nesting kite and 4-cycle systems, Australas. J. Combin. 33 (2005) 247-254.
[8] R. Häggkvist, Decompositions of complete bipartite graphs, in: Surveys in Combinatorics, Lond. Math. Soc. Lecture Note Ser. 141 (1989) 115-147. doi:10.1017/CBO9781107359949.007
[9] S. Kucukcifci and C.C. Lindner, The metamorphosis of λ-fold block designs with block size four into λ-fold kite systems, J. Combin. Math. Combin. Comput. 40 (2002) 241-252.
[10] C.C. Lindner and C.A. Rodger, Design Theory (Chapman \& Hall/CRC Press, Taylor \& Francis Group, Boca Raton, 2009).
[11] G. Lo Faro and A. Tripodi, The Doyen-Wilson theorem for kite systems, Discrete Math. 306 (2006) 2695-2701. doi:10.1016/j.disc.2006.03.074
[12] G. Ragusa, Complete simultaneous metamorphosis of λ-fold kite systems, J. Combin. Math. Combin. Comput. 73 (2010) 159-180.
[13] D.K. Ray-Chaudhuri and R.M. Wilson, Solution of Kirkman's schoolgirl problem, Combinatorics, Proc. Symp. Pure Math., Amer. Math. Soc. 19 (1971) 187-204. doi:10.1090/pspum/019/9959
[14] A. Tamil Elakkiya and A. Muthusamy, P_{3}-factorization of triangulated Cartesian product of complete graphs, Discrete Math. Algorithms Appl. 7 (2015) ID:1450066. doi:10.1142/S1793830914500669
[15] A. Tamil Elakkiya and A. Muthusamy, Gregarious kite decomposition of tensor product of complete graphs, Electron. Notes Discrete Math. 53 (2016) 83-96. doi:10.1016/j.endm.2016.05.008
[16] A. Tamil Elakkiya and A. Muthusamy, P_{3}-factorization of triangulated Cartesian product of complete graph of odd order, S. Arumugam et al. (Eds.), ICTCSDM 2016, Lecture Notes in Comput. Sci. 10398 (2017) 425-434.
doi:10.1007/978-3-319-64419-6_54
[17] L. Wang, On the existence of resolvable $\left(K_{3}+e\right)$-group divisible designs, Graphs Combin. 26 (2010) 879-889.
doi:10.1007/s00373-010-0954-5
[18] H. Wang and Y. Chang, Kite-group divisible designs of type $g^{t} u^{1}$, Graphs Combin. 22 (2006) 545-571.
doi:10.1007/s00373-006-0681-0
[19] H. Wang and Y. Chang, $\left(K_{3}+e, \lambda\right)$-group divisible designs of type $g^{t} u^{1}$, Ars Combin. 89 (2008) 63-88.

