Discussiones Mathematicae Graph Theory 40 (2020) 7–24 doi:10.7151/dmgt.2126

GREGARIOUS KITE FACTORIZATION OF TENSOR PRODUCT OF COMPLETE GRAPHS

A. TAMIL ELAKKIYA

Department of Mathematics Gobi Arts & Science College, Erode Tamil Nadu, India e-mail: elakki.1@gmail.com

AND

A. MUTHUSAMY

Department of Mathematics Periyar University, Salem Tamil Nadu, India

e-mail: ambdu@yahoo.com

Abstract

A kite factorization of a multipartite graph is said to be gregarious if every kite in the factorization has all its vertices in different partite sets. In this paper, we show that there exists a gregarious kite factorization of $K_m \times K_n$ if and only if $mn \equiv 0 \pmod{4}$ and $(m-1)(n-1) \equiv 0 \pmod{2}$, where \times denotes the tensor product of graphs.

Keywords: tensor product, kite, decomposition, gregarious factor, factorization.

2010 Mathematics Subject Classification: 05C70.

1. INTRODUCTION

A latin square of order n is an $n \times n$ array such that each row and each column of the array contains each of the symbols from $\{1, 2, ..., n\}$ exactly once. Two latin squares L_1 and L_2 of order n are said to be *orthogonal* if for each $(x, y) \in$ $\{1, 2, ..., n\} \times \{1, 2, ..., n\}$ there is exactly one cell (i, j) in which L_1 contains the symbol x and L_2 contains the symbol y. In other words, if L_1 and L_2 are superimposed, the resulting set of n^2 ordered pairs are distinct. The latin squares L_1, L_2, \ldots, L_t of order n are said to be *mutually orthogonal* (MOLS(n)) if for $1 \le a \ne b \le t$, L_a and L_b are orthogonal. N(n) denotes the maximum number of MOLS(n).

Partition of G into subgraphs G_1, G_2, \ldots, G_r such that $E(G_i) \cap E(G_j) = \emptyset$ for $i \neq j, i, j \in \{1, 2, \ldots, r\}$ and $E(G) = \bigcup_{i=1}^r E(G_i)$ is called *decomposition* of G; in this case we write G as $G = G_1 \oplus G_2 \oplus \cdots \oplus G_r$, where \oplus denotes edge-disjoint sum of subgraphs. If $G_i \cong H, 1 \leq i \leq r$, then we say that H-decomposes G; in notation $H \mid G$. A spanning subgraph of G such that each component of it is isomorphic to some graph H is called an H-factor of G. A partition of G into edge-disjoint H-factors is called an H-factorization of G; in notation $H \parallel G$. Let C_k, K_k and I_k , respectively denote a cycle, a complete graph and a null graph on k vertices. A k-regular spanning subgraph of G is called a k-factor of G. A C_k -factor of G is a 2-factor in which each component is a C_k . Decomposition of G into C_k -factors is called a Hamilton cycle. We say that G has a Hamilton cycle decomposition if its edge set can be partitioned into edge-disjoint Hamilton cycles. For an integer $\lambda, \lambda G$ denotes a graph with λ components each isomorphic to G.

The tensor product $G \times H$ and the wreath product $G \otimes H$ of two simple graphs G and H are defined as follows: $V(G \times H) = V(G \otimes H) = \{(u, v) \mid u \in V(G), v \in V(H)\}$. $E(G \times H) = \{(u, v)(x, y) \mid ux \in E(G) \text{ and } vy \in E(H)\}$ and $E(G \otimes H) = \{(u, v)(x, y) \mid u = x \text{ and } vy \in E(H), \text{ or } ux \in E(G)\}$. It is well known that tensor product is commutative and distributive over an edge-disjoint union of subgraphs, that is, if $G = G_1 \oplus G_2 \oplus \cdots \oplus G_r$, then $G \times H = (G_1 \times H) \oplus (G_2 \times H) \oplus \cdots \oplus (G_r \times H)$. A graph G having partite sets V_1, V_2, \ldots, V_m with $|V_i| = n, 1 \leq i \leq n, \text{ and } E(G) = \{uv \mid u \in V_i \text{ and } v \in V_j, i \neq j\}$ is called *complete m-partite graph* and is denoted by $K_m(n)$. Note that $K_m(n)$ is same as the $K_m \otimes I_n$.

A kite is a graph which is obtained by attaching an edge to a vertex of the triangle, see Figure 1. We denote the kite with edge set $\{ab, bc, ca, cd\}$ by (a, b, c; cd).

Figure 1. The kite graph.

A subgraph of a multipartite graph G is said to be *gregarious* if each of its vertices lies in different partite sets of G. A kite factorization of a multipartite graph is said to be *gregarious* if each kite in the factorization has its vertices in

GREGARIOUS KITE FACTORIZATION OF TENSOR PRODUCT OF COMPLETE ...9

four different partite sets.

The study of kite-design is not new. Bermond and Schonheim [3] proved that a kite-design of order n exists if and only if $n \equiv 0, 1 \pmod{8}$. Wang and Chang [18, 19] considered the existence of (K_3+e) and (K_3+e, λ) -group divisible designs of type $g^t u^1$. Wang [17] has shown that the obvious necessary conditions for the existence of resolvable (K_3+e) -group divisible design of type g^u are also sufficient. Fu *et al.* [5] have shown that there exists a gregarious kite decomposition of $K_m(n)$ if and only if $n \equiv 0, 1 \pmod{8}$ for odd m or $n \geq 4$ for even m. Gionfriddo and Milici [6] considered the existence of uniformly resolvable decompositions of K_v and $K_v - I$ into paths and kites. For more results on kite designs, see [4, 7, 9, 11, 12].

In this direction, in [15] we have shown that the necessary conditions for the existence of a gregarious kite decomposition of tensor product of complete graphs are also sufficient. Further, in this paper, we show that there exists a gregarious kite factorization of $K_m \times K_n$ if and only if $mn \equiv 0 \pmod{4}$ and $(m-1)(n-1) \equiv 0 \pmod{2}$.

We require the following to prove our main results.

2. Preliminary Results

Theorem 1 [10]. There exists a pair of mutually orthogonal latin squares (MOLS(n)) of order n for every $n \neq 2, 6$.

Theorem 2 [1]. If $n = p^d$ is a prime power, then N(n) = n - 1.

Corrolary 3 [2]. If $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t}$, where each number p_i is a distinct prime number and $\alpha_i \geq 1, i = 1, 2, \dots, t$, then $N(n) \geq \min\{p_i^{\alpha_i} \mid i = 1, 2, \dots, t\}$.

Theorem 4 [8]. Let G be a graph with chromatic number $\chi(G)$. Then

- (i) $G \mid G \otimes I_n$ if $\chi(G) \leq N(n) + 2$ and
- (ii) $G \parallel G \otimes I_n$ if $\chi(G) \leq N(n) + 1$.

Theorem 5 [17]. The necessary conditions for the existence of a kite factorization of $K_m(n)$, namely, $m \ge 3$, $n(m-1) \equiv 0 \pmod{2}$, $mn \equiv 0 \pmod{4}$ are also sufficient.

Theorem 6 [13]. $C_3 \parallel K_m$ if and only if $m \equiv 3 \pmod{6}$.

Note 7. Let $G_1 = v_1 v_2 v_3 v_4 v_5 \cdots v_{p-1} v_p v_1$, $G_2 = v_1 v_3 v_5 \cdots v_p v_2 v_4 v_6 \cdots v_{p-3} v_{p-1} v_1$ and $G_3 = v_1 v_5 v_9 \cdots v_{p-1} v_3 v_7 v_{11} \cdots v_{p-3} v_1$ be three cycles of length p (p is odd). Now consider two graphs $G = G_1 \oplus G_2$ and $H = G_1 \oplus G_2 \oplus G_3$ as shown in Figures 2 and 3.

Figure 2. $G = G_1 \oplus G_2$.

Figure 3. $H = G_1 \oplus G_2 \oplus G_3$.

Remark 8 [16]. Let $V(K_p) = \{v_1, v_2, \ldots, v_p\}$, p is a prime. For $1 \le i \le (p-1)/2$, let $H_i = v_1 v_{(2+(i-1))} v_{(3+[2(i-1)])} v_{(4+[3(i-1)])} v_{(5+[4(i-1)])} \cdots v_{(p+[(p-1)(i-1)])} v_1$, where the subscripts are taken modulo p with residues $1, 2, 3, \ldots, p$. Note that each H_i is a Hamilton cycle of K_p and $\{H_1, H_2, \ldots, H_{(p-1)/2}\}$ gives a Hamilton cycle decomposition of K_p , p is a prime. Further, $\{H_1, H_2, \ldots, H_{(p-1)/2}\}$ can be partitioned into sets of 2 or 3 cycles such that the sum of the cycles of each set is isomorphic to G or H, respectively.

3. Gregarious Kite Factorization of $K_m \times K_n$

Lemma 9. There exists a gregarious kite factorization of $K_4 \times K_3$.

Proof. Let $V(K_4) = \{1, 2, 3, 4\}$ and $V(K_3) = \{1, 2, 3\}$. Then $V(K_4 \times K_3) = \bigcup_{i=1}^{4} V_i$, where $V_i = \{i_j \mid 1 \le j \le 3\}$. Now we construct a gregarious kite factorization of $K_4 \times K_3$ as follows: For $0 \le s \le 2$, let $F_s^1 = \{1_{1+s}, 2_{2+s}, 4_{3+s}; 4_{3+s}3_{1+s}\}$; $F_s^2 = \{2_{1+s}, 4_{3+s}, 3_{2+s}; 3_{2+s}1_{3+s}\}$; $F_s^3 = \{3_{1+s}, 2_{2+s}, 1_{3+s}; 1_{3+s}4_{1+s}\}$, where the subscripts are taken modulo 3 with residues 1, 2, 3. Clearly each $F_i = \bigcup_{s=0}^2 F_s^i$, $1 \le i \le 3$, is a gregarious kite factor of $K_4 \times K_3$ and $\{F_1, F_2, F_3\}$ gives a gregarious kite factorization of $K_4 \times K_3$.

Lemma 10. For $n \equiv 3 \pmod{6}$, there exists a gregarious kite factorization of $K_4 \times K_n$.

Proof. By Theorem 6, we have a K_3 -factorization of K_n , n = 6s + 3, $s \ge 1$ (since the case s = 0 follows from Lemma 9). Since tensor product is distributive over an edge-disjoint union of subgraphs, corresponding to each K_3 -factor of K_n , we have

GREGARIOUS KITE FACTORIZATION OF TENSOR PRODUCT OF COMPLETE ...11

a $(K_4 \times K_3)$ -factor of $K_4 \times K_n$. Hence a K_3 -factorization of K_n gives a $(K_4 \times K_3)$ -factorization of $K_4 \times K_n$. By Lemma 9, we have a gregarious kite factorization of $K_4 \times K_3$. Thus combining all these we get a gregarious kite factorization of $K_4 \times K_n$.

Lemma 11. For |V(G)| = p, $p \ge 5$ is a prime, there exists a gregarious kite factorization of $K_4 \times G$, where G is described as in Note 7.

Proof. Let $V(K_4) = \{1, 2, 3, 4\}$ and $V(G) = \{1, 2, \ldots, p\}, p \ge 5$. Then $V(K_4 \times G) = \bigcup_{i=1}^{4} V_i$, where $V_i = \{i_j \mid 1 \le j \le p\}$. Now we construct a gregarious kite factorization of $K_4 \times G$ as follows: For $0 \le s \le p-1$, let

$$F_s^1 = \{3_{1+s}, 2_{p+s}, 1_{p-1+s}; 1_{p-1+s}4_{1+s}\}; F_s^2 = \{3_{1+s}, 4_{2+s}, 2_{3+s}; 2_{3+s}1_{1+s}\};$$

$$F_s^3 = \{3_{3+s}, 1_{2+s}, 4_{1+s}; 4_{1+s}2_{p-1+s}\}; F_s^4 = \{3_{1+s}, 2_{2+s}, 1_{3+s}; 1_{3+s}4_{1+s}\};$$

$$F_s^5 = \{3_{1+s}, 4_{p+s}, 2_{p-1+s}; 2_{p-1+s}1_{1+s}\}; F_s^6 = \{3_{p+s}, 1_{1+s}, 4_{2+s}; 4_{2+s}2_{4+s}\}.$$

In all the above constructions the subscripts are taken modulo p with residues $1, 2, \ldots, p$. Clearly each $F_i = \bigcup_{s=0}^{p-1} F_s^i$, $1 \le i \le 6$, is a gregarious kite factor of $K_4 \times G$ and $\{F_1, F_2, \ldots, F_6\}$ gives a gregarious kite factorization of $K_4 \times G$.

Lemma 12. There exists a gregarious kite factorization of $K_4 \times K_7$.

Proof. Let $V(K_4) = \{1, 2, 3, 4\}$ and $V(K_7) = \{1, 2, \dots, 7\}$. Then $V(K_4 \times K_7) = \bigcup_{i=1}^4 V_i$, where $V_i = \{i_j \mid 1 \leq j \leq 7\}$. Now we construct a gregarious kite factorization of $K_4 \times K_7$ as follows: For $0 \leq s \leq 6$, let

$$\begin{split} F_s^1 &= \{3_{1+s}, 2_{7+s}, 1_{6+s}; 1_{6+s}4_{2+s}\}; F_s^2 = \{4_{1+s}, 2_{2+s}, 3_{7+s}; 3_{7+s}1_{4+s}\}; \\ F_s^3 &= \{1_{1+s}, 3_{2+s}, 4_{7+s}; 4_{7+s}2_{4+s}\}; F_s^4 = \{3_{1+s}, 2_{2+s}, 1_{3+s}; 1_{3+s}4_{1+s}\}; \\ F_s^5 &= \{3_{1+s}, 4_{5+s}, 2_{4+s}; 2_{4+s}1_{6+s}\}; F_s^6 = \{1_{1+s}, 2_{4+s}, 3_{7+s}; 3_{7+s}4_{2+s}\}; \\ F_s^7 &= \{4_{1+s}, 2_{4+s}, 1_{7+s}; 1_{7+s}3_{4+s}\}; F_s^8 = \{1_{1+s}, 2_{3+s}, 4_{5+s}; 4_{5+s}3_{6+s}\}; \\ F_s^9 &= \{2_{1+s}, 3_{3+s}, 4_{6+s}; 4_{6+s}1_{4+s}\}. \end{split}$$

In all the above constructions the subscripts are taken modulo 7 with residues $1, 2, \ldots, 7$. Clearly each $F_i = \bigcup_{s=0}^6 F_s^i$, $1 \le i \le 9$, is a gregarious kite factor of $K_4 \times K_7$ and $\{F_1, F_2, \ldots, F_9\}$ gives a gregarious kite factorization of $K_4 \times K_7$.

Lemma 13. For |V(H)| = p, $p \ge 11$ is a prime, there exists a gregarious kite factorization of $K_4 \times H$, where H is described as in Note 7.

Proof. Let $V(K_4) = \{1, 2, 3, 4\}$ and $V(H) = \{1, 2, ..., p\}, p \ge 11$. Then $V(K_4 \times H) = \bigcup_{i=1}^{4} V_i$, where $V_i = \{i_j \mid 1 \le j \le p\}$. Now we construct a gregarious kite

factorization of $K_4 \times H$ as follows: For $0 \leq s \leq p-1$, let

$$\begin{split} F_s^1 &= \{4_{p-1+s}, 1_{p+s}, 2_{1+s}; 2_{1+s}3_{5+s}\}; F_s^2 = \{4_{2+s}, 3_{3+s}, 1_{1+s}; 1_{1+s}2_{5+s}\}; \\ F_s^3 &= \{1_{p+s}, 4_{2+s}, 3_{1+s}; 3_{1+s}2_{5+s}\}; F_s^4 = \{1_{3+s}, 2_{p-1+s}, 3_{1+s}; 3_{1+s}4_{5+s}\}; \\ F_s^5 &= \{2_{p-1+s}, 1_{p-3+s}, 4_{1+s}; 4_{1+s}3_{5+s}\}; F_s^6 = \{4_{p-1+s}, 2_{p+s}, 1_{1+s}; 1_{1+s}3_{5+s}\}; \\ F_s^7 &= \{3_{2+s}, 1_{3+s}, 2_{1+s}; 2_{1+s}4_{5+s}\}; F_s^8 = \{2_{3+s}, 4_{p-1+s}, 3_{1+s}; 3_{1+s}1_{5+s}\}; \\ F_s^9 &= \{2_{p+s}, 3_{p-1+s}, 4_{1+s}; 4_{1+s}1_{5+s}\}. \end{split}$$

In all the above constructions the subscripts are taken modulo p with residues $1, 2, \ldots, p$. Clearly each $F_i = \bigcup_{s=0}^{p-1} F_s^i$, $1 \le i \le 9$, is a gregarious kite factor of $K_4 \times H$ and $\{F_1, F_2, \ldots, F_9\}$ gives a gregarious kite factorization of $K_4 \times H$.

Lemma 14. For all odd prime p, there exists a gregarious kite factorization of $K_4 \times K_p$.

Proof. By Remark 8, we have a factorization of K_p into graphs isomorphic to G or H. A gregarious kite factorization of $K_4 \times K_p$ follows from Lemmas 9, 11, 12 and 13.

Lemma 15. For all odd prime p and s > 1, there exists a gregarious kite factorization of $K_4 \times K_{p^s}$.

Proof. For s > 1, $K_4 \times K_{p^s} = K_4 \times [pK_{p^{s-1}} \oplus K_p(p^{s-1})] = p(K_4 \times K_{p^{s-1}}) \oplus [K_4 \times K_p(p^{s-1})]$ (since the case s = 1 follows from Lemma 14).

For s = 2, $K_4 \times K_{p^2} = p(K_4 \times K_p) \oplus [K_4 \times K_p(p)]$. By Lemma 14, we have a gregarious kite factorization of $p(K_4 \times K_p)$. By Theorem 4, we have a K_p -factorization of $K_p(p)$. Corresponding to each K_p -factor of $K_p(p)$, we have a $(K_4 \times K_p)$ -factor of $K_4 \times K_p(p)$. Hence a K_p -factorization of $K_p(p)$ implies a $(K_4 \times K_p)$ -factorization of $K_4 \times K_p(p)$. Now the existence of a gregarious kite factorization of $(K_4 \times K_p)$ follows from Lemma 14.

For s = 3, $K_4 \times K_{p^3} = p (K_4 \times K_{p^2}) \oplus [K_4 \times K_p(p^2)]$. Now the gregarious kite factorization of $p (K_4 \times K_{p^2})$ follows from the case s = 2. By Theorem 4, we have a K_p -factorization of $K_p(p^2)$. Corresponding to each K_p -factor of $K_p(p^2)$, we have a $(K_4 \times K_p)$ -factor of $K_4 \times K_p(p^2)$. Hence a K_p -factorization of $K_p(p^2)$ implies a $(K_4 \times K_p)$ -factorization of $K_4 \times K_p(p^2)$. Now the existence of a gregarious kite factorization of $(K_4 \times K_p)$ follows from Lemma 14.

For s > 1, $K_4 \times K_{p^s} = p\left(K_4 \times K_{p^{s-1}}\right) \oplus \left[K_4 \times K_p(p^{s-1})\right]$. By the induction hypothesis on s, we have a gregarious kite factorization of $p\left(K_4 \times K_{p^{s-1}}\right)$. By Theorem 4, we have a K_p -factorization of $K_p(p^{s-1})$. Corresponding to each K_p factor of $K_p\left(p^{s-1}\right)$, we have a $(K_4 \times K_p)$ -factor of $K_4 \times K_p\left(p^{s-1}\right)$. Thus a K_p factorization of $K_p\left(p^{s-1}\right)$ implies a $(K_4 \times K_p)$ -factorization of $K_4 \times K_p\left(p^{s-1}\right)$. Now the existence of a gregarious kite factorization of $(K_4 \times K_p)$ follows from Lemma 14. Hence combining all the above we have a gregarious kite factorization of $K_4 \times K_{p^s}$, for all s > 1.

Lemma 16. For all odd primes p, q (p < q) and all integers $s, t \ge 1$, there exists a gregarious kite factorization of $K_4 \times K_{p^s q^t}$.

Proof. For $s, t \ge 1$ and p < q, $K_4 \times K_{p^s q^t} = K_4 \times K_{p.p^{s-1}q^t} = K_4 \times \left[pK_{p^{s-1}q^t} \oplus K_p \left(p^{s-1}q^t \right) \right] = p \left[K_4 \times K_{p^{s-1}q^t} \right] \oplus \left[K_4 \times K_p (p^{s-1}q^t) \right].$

Case 1. (a) For s = 1, t = 1, $K_4 \times K_{pq} = K_4 \times (pK_q \oplus K_p(q)) = p[K_4 \times K_q] \oplus [K_4 \times K_p(q)]$. By Theorem 4, we have a K_p -factorization of $K_p(q)$. Corresponding to each K_p -factor of $K_p(q)$, we have a $(K_4 \times K_p)$ -factor of $K_4 \times K_p(q)$. Thus a K_p -factorization of $K_p(q)$ implies a $(K_4 \times K_p)$ -factorization of $K_4 \times K_p(q)$. Now the existence of a gregarious kite factorization of $K_4 \times K_p$ and $p(K_4 \times K_q)$ follows from Lemma 14.

(b) For s = 1, t = 2, $K_4 \times K_{pq^2} = K_4 \times [pK_{q^2} \oplus K_p(q^2)] = p[K_4 \times K_{q^2}] \oplus [K_4 \times K_p(q^2)]$. By Theorem 4, we have a K_p -factorization of $K_p(q^2)$. Corresponding to each K_p -factor of $K_p(q^2)$, we have a $(K_4 \times K_p)$ -factor of $K_4 \times K_p(q^2)$. Thus a K_p -factorization of $K_p(q^2)$ implies a $(K_4 \times K_p)$ -factorization of $K_4 \times K_p(q^2)$. Now the existence of a gregarious kite factorization of $K_4 \times K_p$ and $p(K_4 \times K_{q^2})$ follows from Lemmas 14 and 15, respectively.

(c) For $s = 1, t \ge 3, K_4 \times K_{pq^t} = K_4 \times [pK_{q^t} \oplus K_p(q^t)] = p[K_4 \times K_{q^t}] \oplus [K_4 \times K_p(q^t)]$. By Theorem 4, we have a K_p -factorization of $K_p(q^t)$. Corresponding to each K_p -factor of $K_p(q^t)$, we have a $(K_4 \times K_p)$ -factor of $K_4 \times K_p(q^t)$. Thus a K_p -factorization of $K_p(q^t)$ implies a $(K_4 \times K_p)$ -factorization of $K_4 \times K_p(q^t)$. Now the existence of a gregarious kite factorization of $K_4 \times K_p$ and $p(K_4 \times K_{q^t})$ follows from Lemmas 14 and 15, respectively.

Case 2. (a) For s = 2, t = 1, $K_4 \times K_{p^2q} = K_4 \times K_{p.pq} = K_4 \times [pK_{pq} \oplus K_p(pq)]$ = $p[K_4 \times K_{pq}] \oplus [K_4 \times K_p(pq)]$. By Theorem 4, we have a K_p -factorization of $K_p(pq)$. Corresponding to each K_p -factor of $K_p(pq)$, we have a $(K_4 \times K_p)$ -factor of $K_4 \times K_p(pq)$. Thus a K_p -factorization of $K_p(pq)$ implies a $(K_4 \times K_p)$ -factorization of $K_4 \times K_p(pq)$. Now the existence of a gregarious kite factorization of $K_4 \times K_p$ and $p[K_4 \times K_{pq}]$ follows from Lemma 14 and Case 1(a), respectively.

(b) For s = 2, t = 2, $K_4 \times K_{p^2q^2} = K_4 \times K_{p.pq^2} = K_4 \times \left[pK_{pq^2} \oplus K_p(pq^2) \right]$ = $p \left[K_4 \times K_{pq^2} \right] \oplus \left[K_4 \times K_p(pq^2) \right]$. By Theorem 4, we have a K_p -factorization of $K_p(pq^2)$. Corresponding to each K_p -factor of $K_p(pq^2)$, we have a $(K_4 \times K_p)$ -factor of $K_4 \times K_p(pq^2)$. Thus a K_p -factorization of $K_p(pq^2)$ implies a $(K_4 \times K_p)$ -factorization of $K_4 \times K_p(pq^2)$. Now the existence of a gregarious kite factorization of $K_4 \times K_p$ and $p \left[K_4 \times K_{pq^2} \right]$ follows from Lemma 14 and Case 1(b), respectively.

(c) For $s = 2, t \ge 3$, $K_4 \times K_{p^2q^t} = K_4 \times K_{p,pq^t} = K_4 \times \left[pK_{pq^t} \oplus K_p(pq^t) \right]$ = $p \left[K_4 \times K_{pq^t} \right] \oplus \left[K_4 \times K_p(pq^t) \right]$. By Theorem 4, we have a K_p -factorization of $K_p(pq^t)$. Corresponding to each K_p -factor of $K_p(pq^t)$, we have a $(K_4 \times K_p)$ -factor of $K_4 \times K_p(pq^t)$. Thus a K_p -factorization of $K_p(pq^t)$ implies a $(K_4 \times K_p)$ -factorization of $K_4 \times K_p(pq^t)$. Now the existence of a gregarious kite factorization of $K_4 \times K_p$ and $p \left[K_4 \times K_{pqt} \right]$ follows from Lemma 14 and Case 1(c), respectively.

(d) For $s, t \geq 1$, $K_4 \times K_{p^sq^t} = p \left[K_4 \times K_{p^{s-1}q^t} \right] \oplus \left[K_4 \times K_p(p^{s-1}q^t) \right]$. By induction hypothesis on s, we have a gregarious kite factorization of $p \left[K_4 \times K_{p^{s-1}q^t} \right]$. By Theorem 4, we have a K_p -factorization of $K_p \left(p^{s-1}q^t \right)$. Corresponding to each K_p -factor of $K_p \left(p^{s-1}q^t \right)$, we have a $(K_4 \times K_p)$ -factor of $K_4 \times K_p \left(p^{s-1}q^t \right)$. Thus a K_p -factorization of $K_p \left(p^{s-1}q^t \right)$ implies a $(K_4 \times K_p)$ -factorization of $K_4 \times K_p$ follows from Lemma 14. Hence combining all the above we have a gregarious kite factorization of $K_4 \times K_p^{sq^t}$, for all $s, t \geq 1$ and p < q.

Lemma 17. For all odd n > 1, there exists a gregarious kite factorization of $K_4 \times K_n$.

Proof. By fundamental theorem of arithmetic, any integer n > 1 can be uniquely written as prime powers or product of prime powers. Consider $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t}$, where each p_i is a distinct odd prime and $\alpha_i \ge 1, i = 1, 2, \ldots, t$. Fix $p_1^{\alpha_1} < p_2^{\alpha_2} < \cdots < p_t^{\alpha_t}$. Now,

$$K_{4} \times K_{n} = K_{4} \times K_{p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}}} = K_{4} \times \left[p_{1}^{\alpha_{1}} K_{p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}} \cdots p_{t}^{\alpha_{t}}} \oplus K_{p_{1}^{\alpha_{1}}} (p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}} \cdots p_{t}^{\alpha_{t}}) \right]$$
$$= p_{1}^{\alpha_{1}} \left[K_{4} \times K_{p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}} \cdots p_{t}^{\alpha_{t}}} \right] \oplus \left[K_{4} \times K_{p_{1}^{\alpha_{1}}} (p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}} \cdots p_{t}^{\alpha_{t}}) \right].$$

It is enough to show that there exists a gregarious kite factorization of $K_4 \times K_{p_1^{\alpha_1}}(p_2^{\alpha_2}p_3^{\alpha_3}\cdots p_t^{\alpha_t})$ and $p_1^{\alpha_1}\left[K_4 \times K_{p_2^{\alpha_2}p_3^{\alpha_3}\cdots p_t^{\alpha_t}}\right]$.

Case 1. Consider $K_4 \times K_{p_1^{\alpha_1}}(p_2^{\alpha_2}p_3^{\alpha_3}\cdots p_t^{\alpha_t})$. By Theorem 4, we have a $K_{p_1^{\alpha_1}}$ -factorization of $K_{p_1^{\alpha_1}}(p_2^{\alpha_2}p_3^{\alpha_3}\cdots p_t^{\alpha_t})$. Corresponding to each $K_{p_1^{\alpha_1}}$ -factor of $K_{p_1^{\alpha_1}}(p_2^{\alpha_2}p_3^{\alpha_3}\cdots p_t^{\alpha_t})$, we have a $\left(K_4 \times K_{p_1^{\alpha_1}}\right)$ -factor of $K_4 \times K_{p_1^{\alpha_1}}(p_2^{\alpha_2}p_3^{\alpha_3}\cdots p_t^{\alpha_t})$. Now the existence of a gregarious kite factorization of $K_4 \times K_{p_1^{\alpha_1}}$ follows from Lemma 15.

Case 2. Consider
$$p_1^{\alpha_1} \left[K_4 \times K_{p_2^{\alpha_2} p_3^{\alpha_3} \cdots p_t^{\alpha_t}} \right]$$
. We write

$$p_{1}^{\alpha_{1}}\left[K_{4} \times K_{p_{2}^{\alpha_{2}}p_{3}^{\alpha_{3}}\cdots p_{t}^{\alpha_{t}}}\right] = p_{1}^{\alpha_{1}}\left\{K_{4} \times \left[p_{2}^{\alpha_{2}}K_{p_{3}^{\alpha_{3}}\cdots p_{t}^{\alpha_{t}}} \oplus K_{p_{2}^{\alpha_{2}}}(p_{3}^{\alpha_{3}}\cdots p_{t}^{\alpha_{t}})\right]\right\}$$
$$= p_{1}^{\alpha_{1}}\left\{p_{2}^{\alpha_{2}}\left[K_{4} \times K_{p_{3}^{\alpha_{3}}\cdots p_{t}^{\alpha_{t}}}\right] \oplus \left[K_{4} \times K_{p_{2}^{\alpha_{2}}}(p_{3}^{\alpha_{3}}\cdots p_{t}^{\alpha_{t}})\right]\right\}$$
$$= p_{1}^{\alpha_{1}}p_{2}^{\alpha_{2}}\left[K_{4} \times K_{p_{3}^{\alpha_{3}}\cdots p_{t}^{\alpha_{t}}}\right] \oplus p_{1}^{\alpha_{1}}\left[K_{4} \times K_{p_{2}^{\alpha_{2}}}(p_{3}^{\alpha_{3}}\cdots p_{t}^{\alpha_{t}})\right].$$

Now we have to show the existence of gregarious kite factorization of $p_1^{\alpha_1} p_2^{\alpha_2} \left[K_4 \times K_{p_3^{\alpha_3} \cdots p_t^{\alpha_t}} \right]$ and $p_1^{\alpha_1} \left[K_4 \times K_{p_2^{\alpha_2}} (p_3^{\alpha_3} \cdots p_t^{\alpha_t}) \right]$. The existence of gregarious kite factorization of $p_1^{\alpha_1} \left[K_4 \times K_{p_2^{\alpha_2}} (p_3^{\alpha_3} \cdots p_t^{\alpha_t}) \right]$ is similar to Case 1.

Now we can write

$$p_{1}^{\alpha_{1}}p_{2}^{\alpha_{2}}\left[K_{4}\times K_{p_{3}^{\alpha_{3}}\cdots p_{t}^{\alpha_{t}}}\right] = p_{1}^{\alpha_{1}}p_{2}^{\alpha_{2}}\left\{K_{4}\times \left[p_{3}^{\alpha_{3}}K_{p_{4}^{\alpha_{4}}\cdots p_{t}^{\alpha_{t}}}\oplus K_{p_{3}^{\alpha_{3}}}(p_{4}^{\alpha_{4}}\cdots p_{t}^{\alpha_{t}})\right]\right\}$$
$$= p_{1}^{\alpha_{1}}p_{2}^{\alpha_{2}}p_{3}^{\alpha_{3}}\left[K_{4}\times K_{p_{4}^{\alpha_{4}}\cdots p_{t}^{\alpha_{t}}}\right]$$
$$\oplus p_{1}^{\alpha_{1}}p_{2}^{\alpha_{2}}\left[K_{4}\times K_{p_{3}^{\alpha_{3}}}(p_{4}^{\alpha_{4}}\cdots p_{t}^{\alpha_{t}})\right].$$

The existence of gregarious kite factorization of the second term $p_1^{\alpha_1} p_2^{\alpha_2} \left[K_4 \times K_{p_3^{\alpha_3}}(p_4^{\alpha_4} \cdots p_t^{\alpha_t}) \right]$ is similar to Case 1.

Now we consider the first term $p_1^{\alpha_1} p_2^{\alpha_2} p_3^{\alpha_3} \left[K_4 \times K_{p_4^{\alpha_4} \dots p_t^{\alpha_t}} \right]$ and repeat the above process until we end up with $p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_{t-1}^{\alpha_{t-1}} \left[K_4 \times K_{p_t^{\alpha_t}} \right] \oplus p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_{t-2}^{\alpha_{t-2}} \left[K_4 \times K_{p_{t-1}^{\alpha_{t-1}}}(p_t^{\alpha_t}) \right]$. Now the existence of a gregarious kite factorization of $K_4 \times K_{p_t^{\alpha_t}}$ and hence the first term follows from Lemma 15 and the existence of gregarious kite factorization of $K_4 \times K_{p_{t-1}^{\alpha_t}}(p_t^{\alpha_t})$ and hence the second term is similar to Creat 1. Thus are here a memory bits for termination of $m_1^{\alpha_1} \times K_{p_{t-1}^{\alpha_{t-1}}}(p_t^{\alpha_t})$

to Case 1. Thus we have a gregarious kite factorization of $p_1^{\alpha_1} \left[K_4 \times K_{p_2^{\alpha_2} p_3^{\alpha_3} \dots p_t^{\alpha_t}} \right]$. Hence from Cases 1 and 2, we have a gregarious kite factorization of $K_4 \times K_{p_1^{\alpha_1} p_2^{\alpha_2} \dots p_t^{\alpha_t}} = K_4 \times K_n$.

Lemma 18. There exists a gregarious kite factorization of $K_8 \times K_3$.

Proof. Let $V(K_8) = \{1, 2, ..., 8\}$ and $V(K_3) = \{1, 2, 3\}$. Then $V(K_8 \times K_3) = \bigcup_{i=1}^8 V_i$, where $V_i = \{i_j \mid 1 \leq j \leq 3\}$. Now we construct a gregarious kite factorization of $K_8 \times K_3$ as follows: For $0 \leq s \leq 2$, let

$$\begin{split} F_s^1 &= \{ (1_{1+s}, 2_{3+s}, 3_{2+s}; 3_{2+s} 6_{1+s}) \ (8_{1+s}, 5_{3+s}, 4_{2+s}; 4_{2+s} 7_{3+s}) \}; \\ F_s^2 &= \{ (1_{1+s}, 5_{3+s}, 7_{2+s}; 7_{2+s} 2_{3+s}) \ (3_{1+s}, 6_{2+s}, 4_{3+s}; 4_{3+s} 8_{1+s}) \}; \\ F_s^3 &= \{ (4_{1+s}, 2_{3+s}, 1_{2+s}; 1_{2+s} 3_{1+s}) \ (5_{1+s}, 8_{3+s}, 6_{2+s}; 6_{2+s} 7_{1+s}) \}; \\ F_s^4 &= \{ (6_{1+s}, 2_{2+s}, 8_{3+s}; 8_{3+s} 1_{1+s}) \ (7_{1+s}, 5_{3+s}, 3_{2+s}; 3_{2+s} 4_{3+s}) \}; \\ F_s^5 &= \{ (2_{1+s}, 5_{3+s}, 6_{2+s}; 6_{2+s} 1_{1+s}) \ (3_{1+s}, 8_{3+s}, 7_{2+s}; 7_{2+s} 4_{3+s}) \}; \\ F_s^6 &= \{ (1_{1+s}, 8_{2+s}, 7_{3+s}; 7_{3+s} 6_{2+s}) \ (2_{1+s}, 4_{3+s}, 5_{2+s}; 5_{2+s} 3_{3+s}) \}; \\ F_s^7 &= \{ (6_{1+s}, 4_{3+s}, 1_{2+s}; 1_{2+s} 5_{3+s}) \ (8_{1+s}, 3_{3+s}, 2_{2+s}; 2_{2+s} 7_{3+s}) \}. \end{split}$$

In all the above constructions the subscripts are taken modulo 3 with residues 1, 2, 3. Clearly each $F_i = \bigcup_{s=0}^2 F_s^i$, $1 \le i \le 7$, is a gregarious kite factor of $K_8 \times K_3$ and $\{F_1, F_2, \ldots, F_7\}$ gives a gregarious kite factorization of $K_8 \times K_3$.

Lemma 19. For $n \equiv 3 \pmod{6}$, there exists a gregarious kite factorization of $K_8 \times K_n$.

Proof. By Theorem 6, we have a K_3 -factorization of K_n , n = 6s + 3, $s \ge 1$ (since the case s = 0 follows from Lemma 18). Corresponding to each K_3 -factor of K_n , we have a $(K_8 \times K_3)$ -factor of $K_8 \times K_n$. Hence a K_3 -factorization of K_n implies a $(K_8 \times K_3)$ -factorization of $K_8 \times K_n$. By Lemma 18, we have a gregarious kite factorization of $K_8 \times K_3$. Thus combining all these we get a gregarious kite factorization of $K_8 \times K_n$, n = 6s + 3, $s \ge 1$.

Lemma 20. For |V(G)| = p, $p \ge 5$ is a prime, there exists a gregarious kite factorization of $K_8 \times G$, where G is described as in Note 7.

Proof. Let $V(K_8) = \{1, 2, ..., 8\}$ and $V(G) = \{1, 2, ..., p\}$, $p \ge 5$. Then $V(K_8 \times G) = \bigcup_{i=1}^{8} V_i$, where $V_i = \{i_j \mid 1 \le j \le p\}$. Now we construct a gregarious kite factorization of $K_8 \times G$ as follows: For $0 \le s \le p - 1$, let

$$\begin{split} F_s^1 &= \{(2_{1+s}, 3_{2+s}, 1_{p+s}; 1_{p+s}7_{2+s}) \ (8_{1+s}, 5_{3+s}, 4_{2+s}; 4_{2+s}6_{4+s})\}; \\ F_s^2 &= \{(1_{1+s}, 5_{3+s}, 7_{2+s}; 7_{2+s}2_{4+s}) \ (3_{2+s}, 6_{p+s}, 4_{1+s}; 4_{1+s}8_{p-1+s})\}; \\ F_s^3 &= \{(1_{3+s}, 4_{2+s}, 2_{1+s}; 2_{1+s}8_{3+s}) \ (3_{2+s}, 5_{3+s}, 6_{1+s}; 6_{1+s}7_{3+s})\}; \\ F_s^4 &= \{(1_{3+s}, 6_{2+s}, 8_{1+s}; 8_{1+s}2_{3+s}) \ (3_{3+s}, 5_{1+s}, 7_{2+s}; 7_{2+s}4_{p+s})\}; \\ F_s^5 &= \{(2_{1+s}, 5_{3+s}, 6_{2+s}; 6_{2+s}1_{4+s}) \ (4_{1+s}, 7_{2+s}, 8_{3+s}; 8_{3+s}3_{1+s})\}; \\ F_s^6 &= \{(1_{2+s}, 8_{3+s}, 7_{1+s}; 7_{1+s}6_{3+s}) \ (5_{1+s}, 4_{2+s}, 2_{3+s}; 2_{3+s}3_{5+s})\}; \\ F_s^7 &= \{(1_{2+s}, 5_{1+s}, 4_{3+s}; 4_{3+s}2_{1+s}) \ (6_{2+s}, 7_{3+s}, 3_{1+s}; 3_{1+s}8_{p-1+s})\}; \\ F_s^8 &= \{(3_{2+s}, 4_{3+s}, 1_{1+s}; 1_{1+s}7_{p-1+s}) \ (2_{2+s}, 5_{1+s}, 8_{3+s}; 8_{3+s}6_{1+s})\}; \\ F_s^{10} &= \{(2_{3+s}, 6_{2+s}, 4_{1+s}; 4_{1+s}1_{3+s}) \ (8_{2+s}, 5_{3+s}, 3_{1+s}; 3_{1+s}7_{p-1+s})\}; \\ F_s^{11} &= \{(1_{3+s}, 3_{2+s}, 5_{1+s}; 5_{1+s}4_{p-1+s}) \ (6_{1+s}, 8_{2+s}, 2_{3+s}; 2_{3+s}7_{5+s})\}; \\ F_s^{12} &= \{(5_{2+s}, 6_{3+s}, 1_{1+s}; 1_{1+s}2_{3+s}) \ (3_{1+s}, 4_{3+s}, 7_{2+s}; 7_{2+s}8_{p+s})\}; \\ F_s^{13} &= \{(1_{2+s}, 8_{1+s}, 6_{3+s}; 6_{3+s}4_{5+s}) \ (7_{1+s}, 5_{3+s}, 2_{2+s}; 2_{2+s}3_{p+s})\}; \\ F_s^{14} &= \{(2_{1+s}, 7_{2+s}, 6_{3+s}; 6_{3+s}5_{1+s}) \ (4_{1+s}, 3_{3+s}, 8_{2+s}; 8_{2+s}1_{p+s})\}. \end{split}$$

In all the above constructions the subscripts are taken modulo p with residues $1, 2, \ldots, p$. Clearly each $F_i = \bigcup_{s=0}^{p-1} F_s^i$, $1 \le i \le 14$, is a gregarious kite factor of $K_8 \times G$ and $\{F_1, F_2, \ldots, F_{14}\}$ gives a gregarious kite factorization of $K_8 \times G$.

Lemma 21. There exists a gregarious kite factorization of $K_8 \times K_7$.

Proof. Let $V(K_8) = \{1, 2, ..., 8\}$ and $V(K_7) = \{1, 2, ..., 7\}$. Then $V(K_8 \times K_7) = \bigcup_{i=1}^8 V_i$, where $V_i = \{i_j \mid 1 \le j \le 7\}$. Now we construct a gregarious kite

factorization of $K_8 \times K_7$ as follows: For $0 \le s \le 6$, let

$$\begin{split} F_s^1 &= \{(6_{1+s}, 2_{5+s}, 3_{3+s}; 3_{3+s}, 1_{6+s}) (8_{1+s}, 7_{3+s}, 4_{5+s}; 4_{5+s}, 5_{1+s})\}; \\ F_s^2 &= \{(8_{3+s}, 4_{5+s}, 2_{1+s}; 2_{1+s}, 5_{4+s}) (7_{1+s}, 6_{4+s}, 1_{6+s}; 1_{6+s}, 3_{2+s})\}; \\ F_s^3 &= \{(8_{1+s}, 2_{4+s}, 3_{6+s}; 3_{6+s}, 5_{3+s}) (4_{1+s}, 6_{3+s}, 7_{5+s}; 7_{5+s}, 1_{1+s})\}; \\ F_s^4 &= \{(4_{1+s}, 1_{2+s}, 2_{6+s}; 2_{6+s}, 8_{2+s}) (7_{1+s}, 3_{3+s}, 6_{5+s}; 6_{5+s}, 5_{1+s})\}; \\ F_s^5 &= \{(2_{1+s}, 4_{4+s}, 7_{6+s}; 7_{6+s}, 5_{3+s}) (8_{1+s}, 3_{3+s}, 6_{6+s}; 6_{6+s}, 1_{3+s})\}; \\ F_s^6 &= \{(4_{1+s}, 1_{3+s}, 8_{5+s}; 8_{5+s}, 5_{2+s}) (2_{1+s}, 6_{5+s}, 7_{3+s}; 7_{3+s}, 3_{7+s})\}; \\ F_s^7 &= \{(1_{1+s}, 2_{3+s}, 7_{6+s}; 7_{6+s}, 8_{2+s}) (5_{1+s}, 6_{3+s}, 4_{6+s}; 4_{6+s}, 3_{2+s})\}; \\ F_s^8 &= \{(2_{2+s}, 3_{3+s}, 1_{1+s}; 1_{1+s}, 6_{5+s}) (8_{1+s}, 4_{2+s}, 5_{3+s}; 5_{3+s}, 7_{7+s})\}; \\ F_s^9 &= \{(7_{2+s}, 5_{3+s}, 1_{1+s}; 1_{1+s}, 2_{4+s}) (4_{1+s}, 3_{2+s}, 6_{6+s}; 6_{6+s}, 8_{3+s})\}; \\ F_s^{10} &= \{(1_{1+s}, 8_{6+s}, 6_{7+s}; 6_{7+s}, 4_{4+s}) (7_{1+s}, 5_{7+s}, 3_{2+s}; 3_{2+s}, 2_{6+s})\}; \\ F_s^{11} &= \{(8_{1+s}, 1_{5+s}, 2_{3+s}; 2_{3+s}, 4_{4+s}) (6_{1+s}, 5_{3+s}, 3_{2+s}; 3_{2+s}, 7_{6+s})\}; \\ F_s^{12} &= \{(2_{1+s}, 6_{2+s}, 5_{3+s}; 5_{3+s}, 1_{7+s}) (4_{1+s}, 7_{2+s}, 8_{3+s}; 8_{3+s}, 3_{7+s})\}; \\ F_s^{13} &= \{(7_{1+s}, 1_{2+s}, 8_{3+s}; 8_{3+s}, 6_{7+s}) (5_{1+s}, 2_{3+s}, 4_{2+s}; 4_{2+s}, 3_{6+s})\}; \\ F_s^{13} &= \{(1_{1+s}, 3_{2+s}, 1_{3+s}; 1_{3+s}, 4_{7+s}) (8_{2+s}, 7_{3+s}, 3_{1+s}; 3_{1+s}, 2_{4+s})\}; \\ F_s^{14} &= \{(5_{1+s}, 4_{3+s}, 1_{2+s}; 1_{2+s}, 8_{6+s}) (5_{1+s}, 8_{3+s}, 2_{2+s}; 2_{2+s}, 7_{6+s})\}; \\ F_s^{16} &= \{(1_{1+s}, 3_{2+s}, 4_{1+s}; 4_{1+s}, 7_{4+s}) (3_{1+s}, 8_{2+s}, 5_{3+s}; 5_{3+s}, 1_{6+s})\}; \\ F_s^{18} &= \{(1_{3+s}, 3_{2+s}, 5_{1+s}; 5_{1+s}, 4_{4+s}) (6_{1+s}, 2_{3+s}, 8_{2+s}; 8_{2+s}, 7_{5+s})\}; \\ F_s^{19} &= \{(1_{1+s}, 6_{3+s}, 5_{2+s}; 5_{2+s}, 2_{5+s}) (7_{2+s}, 4_{3+s}, 3_{1+s}; 3_{1+s}, 8_{5+s})\}; \\ F_s^{21} &= \{(2_{1+s}, 6_{3+s}, 7_{2+s}; 7_{2+s}, 1_{6+s}) (4_{1+s}, 3_{3+s}, 8_{2+s}; 8_{2+s}, 5_{5+s})\}.$$

In all the above constructions the subscripts are taken modulo 7 with residues $1, 2, \ldots, 7$. Clearly each $F_i = \bigcup_{s=0}^6 F_s^i$, $1 \le i \le 21$, is a gregarious kite factor of $K_8 \times K_7$ and $\{F_1, F_2, \ldots, F_{21}\}$ gives a gregarious kite factorization of $K_8 \times K_7$.

Lemma 22. For |V(H)| = p, $p \ge 11$ is a prime, there exists a gregarious kite factorization of $K_8 \times H$, where H is described as in Note 7.

Proof. Let $V(K_8) = \{1, 2, ..., 8\}$ and $V(H) = \{1, 2, ..., p\}$, $p \ge 11$. Then $V(K_8 \times H) = \bigcup_{i=1}^8 V_i$, where $V_i = \{i_j \mid 1 \le j \le p\}$. Now we construct a gregarious kite factorization of $K_8 \times H$ as follows: For $0 \le s \le p-1$, let

$$F_s^1 = \{ (7_{3+s}, 4_{5+s}, 1_{1+s}; 1_{1+s}2_{5+s}) (5_{p-1+s}, 8_{p+s}, 6_{1+s}; 6_{1+s}3_{5+s}) \}; F_s^2 = \{ (4_{3+s}, 2_{2+s}, 1_{1+s}; 1_{1+s}3_{5+s}) (8_{3+s}, 6_{2+s}, 5_{1+s}; 5_{1+s}7_{5+s}) \};$$

$$\begin{split} F_s^3 &= \{(6_{p-1+s}, 4_{p+s}, 1_{1+s}; 1_{1+s}7_{5+s}) (5_{p-1+s}, 2_{p+s}, 3_{1+s}; 3_{1+s}8_{5+s})\}; \\ F_s^4 &= \{(8_{p-3+s}, 1_{p-1+s}, 2_{1+s}; 2_{1+s}3_{5+s}) (7_{p-1+s}, 6_{p+s}, 5_{1+s}; 5_{1+s}4_{5+s})\}; \\ F_s^5 &= \{(1_{3+s}, 2_{2+s}, 3_{1+s}; 3_{1+s}7_{5+s}) (4_{2+s}, 5_{3+s}, 8_{1+s}; 8_{1+s}6_{5+s})\}; \\ F_s^6 &= \{(7_{2+s}, 4_{3+s}, 2_{1+s}; 2_{1+s}1_{5+s}) (8_{p-1+s}, 5_{p+s}, 3_{1+s}; 3_{1+s}6_{5+s})\}; \\ F_s^7 &= \{(3_{2+s}, 1_{p+s}, 6_{1+s}; 6_{1+s}4_{5+s}) (7_{1+s}, 2_{3+s}, 8_{5+s}; 8_{5+s}5_{1+s})\}; \\ F_s^8 &= \{(1_{3+s}, 7_{2+s}, 5_{1+s}; 5_{1+s}3_{5+s}) (2_{2+s}, 6_{3+s}, 4_{1+s}; 4_{1+s}8_{5+s})\}; \\ F_s^8 &= \{(6_{p+s}, 5_{2+s}, 2_{1+s}; 2_{1+s}7_{5+s}) (8_{p+s}, 4_{2+s}, 3_{1+s}; 3_{1+s}1_{5+s})\}; \\ F_s^{10} &= \{(8_{p+s}, 2_{p-1+s}, 1_{1+s}; 1_{1+s}5_{5+s}) (3_{3+s}, 4_{5+s}, 7_{1+s}; 7_{1+s}6_{p-3+s})\}; \\ F_s^{11} &= \{(1_{3+s}, 6_{5+s}, 4_{1+s}; 4_{1+s}3_{5+s}) (7_{3+s}, 8_{5+s}, 2_{1+s}; 2_{1+s}5_{5+s})\}; \\ F_s^{12} &= \{(8_{3+s}, 6_{p-1+s}, 4_{1+s}; 4_{1+s}3_{5+s}) (1_{3+s}, 7_{4+s}, 5_{5+s}; 5_{5+s}3_{1+s})\}; \\ F_s^{13} &= \{(2_{2+s}, 5_{p+s}, 4_{1+s}; 4_{1+s}3_{5+s}) (3_{2+s}, 1_{p+s}, 3_{1+s}; 3_{1+s}4_{5+s})\}; \\ F_s^{14} &= \{(7_{2+s}, 5_{p+s}, 4_{1+s}; 4_{1+s}1_{5+s}) (6_{3+s}, 2_{p-1+s}, 3_{1+s}; 3_{1+s}4_{5+s})\}; \\ F_s^{16} &= \{(1_{3+s}, 8_{p-1+s}, 7_{1+s}; 7_{1+s}5_{5+s}) (6_{1+s}, 3_{3+s}, 2_{5+s}; 2_{5+s}4_{1+s})\}; \\ F_s^{16} &= \{(1_{3+s}, 8_{p-1+s}, 7_{1+s}; 7_{1+s}5_{5+s}) (6_{1+s}, 3_{3+s}, 2_{5+s}; 2_{5+s}4_{1+s})\}; \\ F_s^{17} &= \{(8_{2+s}, 2_{3+s}, 4_{1+s}; 4_{1+s}5_{5+s}) (7_{3+s}, 4_{p-1+s}, 3_{1+s}; 3_{1+s}2_{5+s})\}; \\ F_s^{18} &= \{(1_{p+s}, 6_{p-1+s}, 8_{1+s}; 8_{1+s}5_{5+s}) (7_{3+s}, 4_{p-1+s}, 3_{1+s}; 3_{1+s}2_{5+s})\}; \\ F_s^{19} &= \{(4_{2+s}, 5_{p+s}, 1_{1+s}; 1_{1+s}6_{5+s}) (2_{2+s}, 8_{p+s}, 7_{1+s}; 7_{1+s}3_{5+s})\}; \\ F_s^{21} &= \{(4_{2+s}, 5_{p+s}, 1_{1+s}; 1_{1+s}6_{5+s}) (2_{2+s}, 8_{p+s}, 7_{1+s}; 7_{1+s}3_{5+s})\}. \\ \end{cases}$$

In all the above constructions the subscripts are taken modulo p with residues $1, 2, \ldots, p$. Clearly each $F_i = \bigcup_{s=0}^{p-1} F_s^i$, $1 \le i \le 21$, is a gregarious kite factor of $K_8 \times H$ and $\{F_1, F_2, \ldots, F_{21}\}$ gives a gregarious kite factorization of $K_8 \times H$.

Lemma 23. For all odd prime p, there exists a gregarious kite factorization of $K_8 \times K_p$.

Proof. By Remark 8, K_p has a factorization into graphs isomorphic to G or H. Hence a gregarious kite factorization of $K_8 \times K_p$ follows from Lemmas 18, 20, 21 and 22.

Lemma 24. For all odd prime p and s > 1, there exists a gregarious kite factorization of $K_8 \times K_{p^s}$.

Proof. For s > 1, $K_8 \times K_{p^s} = K_8 \times [pK_{p^{s-1}} \oplus K_p(p^{s-1})] = p(K_8 \times K_{p^{s-1}}) \oplus [K_8 \times K_p(p^{s-1})]$ (since the case s = 1 follows from Lemma 23).

For s = 2, $K_8 \times K_{p^2} = p(K_8 \times K_p) \oplus [K_8 \times K_p(p)]$. By Lemma 23, we have a gregarious kite factorization of $p(K_8 \times K_p)$. By Theorem 4, we have a K_p -factorization of $K_p(p)$. Corresponding to each K_p -factor of $K_p(p)$, we have

a $(K_8 \times K_p)$ -factor of $K_8 \times K_p(p)$. Thus a K_p -factorization of $K_p(p)$ implies a $(K_8 \times K_p)$ -factorization of $K_8 \times K_p(p)$. Now the existence of a gregarious kite factorization of $(K_8 \times K_p)$ follows from Lemma 23.

For s = 3, $K_8 \times K_{p^3} = p(K_8 \times K_{p^2}) \oplus [K_8 \times K_p(p^2)]$. Then the gregarious kite factorization of $p(K_8 \times K_{p^2})$ follows from the case s = 2. By Theorem 4, we have a K_p -factorization of $K_p(p^2)$. Corresponding to each K_p -factor of $K_p(p^2)$, we have a $(K_8 \times K_p)$ -factor of $K_8 \times K_p(p^2)$. Thus a K_p -factorization of $K_p(p^2)$ implies a $(K_8 \times K_p)$ -factorization of $K_8 \times K_p(p^2)$. Now the existence of a gregarious kite factorization of $(K_8 \times K_p)$ follows from Lemma 23.

For s > 1, $K_8 \times K_{p^s} = p(K_8 \times K_{p^{s-1}}) \oplus [K_8 \times K_p(p^{s-1})]$. By the induction hypothesis on s, we have a gregarious kite factorization of $p(K_8 \times K_{p^{s-1}})$. By Theorem 4, we have a K_p -factorization of $K_p(p^{s-1})$. Corresponding to each K_p factor of $K_p(p^{s-1})$, we have a $(K_8 \times K_p)$ -factor of $K_8 \times K_p(p^{s-1})$. Thus a K_p factorization of $K_p(p^{s-1})$ implies a $(K_8 \times K_p)$ -factorization of $K_8 \times K_p(p^{s-1})$. Now the existence of a gregarious kite factorization of $(K_8 \times K_p)$ follows from Lemma 23. Hence combining all the above we have a gregarious kite factorization of $K_8 \times K_{p^s}$, for all s > 1.

Lemma 25. There exists a gregarious kite factorization of $K_8 \times K_{p^sq^t}$ for all odd primes $p, q \ (p < q)$ and all integers $s, t \ge 1$.

Proof. For $s, t \ge 1$ and p < q,

$$K_8 \times K_{p^s q^t} = K_8 \times K_{p \cdot p^{s-1} q^t} = K_8 \times \left[p K_{p^{s-1} q^t} \oplus K_p (p^{s-1} q^t) \right]$$

= $p \left[K_8 \times K_{p^{s-1} q^t} \right] \oplus \left[K_8 \times K_p (p^{s-1} q^t) \right].$

Case 1. (a) For s = 1, t = 1, $K_8 \times K_{pq} = K_8 \times [pK_q \oplus K_p(q)] = p[K_8 \times K_q] \oplus [K_8 \times K_p(q)]$. By Theorem 4, we have a K_p -factorization of $K_p(q)$. Corresponding to each K_p -factor of $K_p(q)$, we have a $(K_8 \times K_p)$ -factor of $K_8 \times K_p(q)$. Thus a K_p -factorization of $K_p(q)$ implies a $(K_8 \times K_p)$ -factorization of $K_8 \times K_p(q)$. Now the existence of a gregarious kite factorization of $K_8 \times K_p$ and $p(K_8 \times K_q)$ follows from Lemma 23.

(b) For s = 1, t = 2, $K_8 \times K_{pq^2} = K_8 \times [pK_{q^2} \oplus K_p(q^2)] = p[K_8 \times K_{q^2}] \oplus [K_8 \times K_p(q^2)]$. By Theorem 4, we have a K_p -factorization of $K_p(q^2)$. Corresponding to each K_p -factor of $K_p(q^2)$, we have a $(K_8 \times K_p)$ -factor of $K_8 \times K_p(q^2)$. Thus a K_p -factorization of $K_p(q^2)$ implies a $(K_8 \times K_p)$ -factorization of $K_8 \times K_p(q^2)$. Now the existence of a gregarious kite factorization of $K_8 \times K_p$ and $p(K_8 \times K_{q^2})$ follows from Lemmas 23 and 24, respectively.

(c) For $s = 1, t \ge 3, K_8 \times K_{pq^t} = K_8 \times [pK_{q^t} \oplus K_p(q^t)] = p[K_8 \times K_{q^t}] \oplus [K_8 \times K_p(q^t)]$. By Theorem 4, we have a K_p -factorization of $K_p(q^t)$. Corresponding to each K_p -factor of $K_p(q^t)$, we have a $(K_8 \times K_p)$ -factor of $K_8 \times K_p(q^t)$. Thus

a K_p -factorization of $K_p(q^t)$ implies a $(K_8 \times K_p)$ -factorization of $K_8 \times K_p(q^t)$. Now the existence of a gregarious kite factorization of $K_8 \times K_p$ and $p(K_8 \times K_{q^t})$ follows from Lemmas 23 and 24, respectively.

Case 2. (a) For s = 2, t = 1, $K_8 \times K_{p^2q} = K_8 \times K_{p.pq} = K_8 \times [pK_{pq} \oplus K_p(pq)]$ = $p[K_8 \times K_{pq}] \oplus [K_8 \times K_p(pq)]$. By Theorem 4, we have a K_p -factorization of $K_p(pq)$. Corresponding to each K_p -factor of $K_p(pq)$, we have a $(K_8 \times K_p)$ -factor of $K_8 \times K_p(pq)$. Thus a K_p -factorization of $K_p(pq)$ implies a $(K_8 \times K_p)$ -factorization of $K_8 \times K_p(pq)$. Now the existence of a gregarious kite factorization of $K_8 \times K_p$ and $p[K_8 \times K_{pq}]$ follows from Lemma 23 and Case 1(a), respectively.

(b) For s = 2, t = 2, $K_8 \times K_{p^2q^2} = K_8 \times K_{p.pq^2} = K_8 \times \left[pK_{pq^2} \oplus K_p(pq^2) \right]$ = $p \left[K_8 \times K_{pq^2} \right] \oplus \left[K_8 \times K_p(pq^2) \right]$. By Theorem 4, we have a K_p -factorization of $K_p(pq^2)$. Corresponding to each K_p -factor of $K_p(pq^2)$, we have a $(K_8 \times K_p)$ -factor of $K_8 \times K_p(pq^2)$. Thus a K_p -factorization of $K_p(pq^2)$ implies a $(K_8 \times K_p)$ -factorization of $K_8 \times K_p(pq^2)$. Now the existence of a gregarious kite factorization of $K_8 \times K_p$ and $p \left[K_8 \times K_{pq^2} \right]$ follows from Lemma 23 and Case 1(b), respectively.

(c) For $s = 2, t \ge 3, K_8 \times K_{p^2q^t} = K_8 \times K_{p.pq^t} = K_8 \times \left[pK_{pq^t} \oplus K_p(pq^t)\right]$ = $p\left[K_8 \times K_{pq^t}\right] \oplus \left[K_8 \times K_p(pq^t)\right]$. By Theorem 4, we have a K_p -factorization of $K_p(pq^t)$. Corresponding to each K_p -factor of $K_p(pq^t)$, we have a $(K_8 \times K_p)$ -factor of $K_8 \times K_p(pq^t)$. Thus a K_p -factorization of $K_p(pq^t)$ implies a $(K_8 \times K_p)$ -factorization of $K_8 \times K_p(pq^t)$. Now the existence of a gregarious kite factorization of $K_8 \times K_p$ and $p\left[K_8 \times K_{pq^t}\right]$ follows from Lemma 23 and Case 1(c), respectively.

For $s, t \ge 1$, $K_8 \times K_{p^sq^t} = p \left[K_8 \times K_{p^{s-1}q^t} \right] \oplus \left[K_8 \times K_p(p^{s-1}q^t) \right]$. By the induction hypothesis on s, we have a gregarious kite factorization of $p \left[K_8 \times K_{p^{s-1}q^t} \right]$ By Theorem 4, we have a K_p -factorization of $K_p(p^{s-1}q^t)$. Corresponding to each K_p -factor of $K_p(p^{s-1}q^t)$, we have a $(K_8 \times K_p)$ -factor of $K_8 \times K_p(p^{s-1}q^t)$. Thus a K_p -factorization of $K_p(p^{s-1}q^t)$ implies a $(K_8 \times K_p)$ -factorization of $K_8 \times K_p(p^{s-1}q^t)$. Thus a K_p -factorization of $K_p(p^{s-1}q^t)$ implies a $(K_8 \times K_p)$ -factorization of $K_8 \times K_p(p^{s-1}q^t)$. Now the existence of a gregarious kite factorization of $K_8 \times K_p$ follows from Lemma 23. Hence combining all the above we have a gregarious kite factorization of $K_8 \times K_{p^sq^t}$, for all $s, t \ge 1$ and p < q.

Lemma 26. There exists a gregarious kite factorization of $K_8 \times K_n$ for all odd n > 1.

Proof. By fundamental theorem of arithmetic, any integer n > 1 can be uniquely written as prime powers or product of prime powers.

Consider $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t}$, where each p_i is a distinct odd prime and $\alpha_i \ge 1, i = 1, 2, \ldots, t$. Fix $p_1^{\alpha_1} < p_2^{\alpha_2} < \cdots < p_t^{\alpha_t}$. Now,

$$K_{8} \times K_{n} = K_{8} \times K_{p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}}} = K_{8} \times \left[p_{1}^{\alpha_{1}} K_{p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}} \cdots p_{t}^{\alpha_{t}}} \oplus K_{p_{1}^{\alpha_{1}}} (p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}} \cdots p_{t}^{\alpha_{t}}) \right]$$

$$= p_{1}^{\alpha_{1}} \left[K_{8} \times K_{p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}} \cdots p_{t}^{\alpha_{t}}} \right] \oplus \left[K_{8} \times K_{p_{1}^{\alpha_{1}}} (p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}} \cdots p_{t}^{\alpha_{t}}) \right].$$

It is enough to show that there exists a gregarious kite factorization of $K_8 \times K_{p_1^{\alpha_1}}(p_2^{\alpha_2}p_3^{\alpha_3}\dots p_t^{\alpha_t})$ and $p_1^{\alpha_1}\left[K_8 \times K_{p_2^{\alpha_2}p_3^{\alpha_3}\dots p_t^{\alpha_t}}\right]$.

Case 1. Consider $K_8 \times K_{p_1^{\alpha_1}}(p_2^{\alpha_2}p_3^{\alpha_3}\cdots p_t^{\alpha_t})$. By Theorem 4, we have a $K_{p_1^{\alpha_1}}$ -factorization of $K_{p_1^{\alpha_1}}(p_2^{\alpha_2}p_3^{\alpha_3}\cdots p_t^{\alpha_t})$. Corresponding to each $K_{p_1^{\alpha_1}}$ -factor of $K_{p_1^{\alpha_1}}(p_2^{\alpha_2}p_3^{\alpha_3}\cdots p_t^{\alpha_t})$, we have a $(K_8 \times K_{p_1^{\alpha_1}})$ -factor of $K_8 \times K_{p_1^{\alpha_1}}(p_2^{\alpha_2}p_3^{\alpha_3}\cdots p_t^{\alpha_t})$. Now the existence of a gregarious kite factorization of $K_8 \times K_{p_1^{\alpha_1}}$ follows from Lemma 24.

$$\begin{aligned} Case \ 2. \ \text{Consider} \ p_1^{\alpha_1} \left[K_8 \times K_{p_2^{\alpha_2} p_3^{\alpha_3} \cdots p_t^{\alpha_t}} \right] \cdot \text{We write} \\ p_1^{\alpha_1} \left[K_8 \times K_{p_2^{\alpha_2} p_3^{\alpha_3} \cdots p_t^{\alpha_t}} \right] &= p_1^{\alpha_1} \left\{ K_8 \times \left[p_2^{\alpha_2} K_{p_3^{\alpha_3} \cdots p_t^{\alpha_t}} \oplus K_{p_2^{\alpha_2}} (p_3^{\alpha_3} \cdots p_t^{\alpha_t}) \right] \right\} \\ &= p_1^{\alpha_1} \left\{ p_2^{\alpha_2} \left[K_8 \times K_{p_3^{\alpha_3} \cdots p_t^{\alpha_t}} \right] \oplus \left[K_8 \times K_{p_2^{\alpha_2}} (p_3^{\alpha_3} \cdots p_t^{\alpha_t}) \right] \right\} \\ &= p_1^{\alpha_1} p_2^{\alpha_2} \left[K_8 \times K_{p_3^{\alpha_3} \cdots p_t^{\alpha_t}} \right] \oplus p_1^{\alpha_1} \left[K_8 \times K_{p_2^{\alpha_2}} (p_3^{\alpha_3} \cdots p_t^{\alpha_t}) \right] \end{aligned}$$

Now we have to show the existence of gregarious kite factorization of $p_1^{\alpha_1} p_2^{\alpha_2} \left[K_8 \times K_{p_3^{\alpha_3} \cdots p_t^{\alpha_t}} \right]$ and $p_1^{\alpha_1} \left[K_8 \times K_{p_2^{\alpha_2}} (p_3^{\alpha_3} \cdots p_t^{\alpha_t}) \right]$. The existence of gregarious kite factorization of $p_1^{\alpha_1} \left[K_8 \times K_{p_2^{\alpha_2}} (p_3^{\alpha_3} \cdots p_t^{\alpha_t}) \right]$ is similar to Case 1. Now we can write

$$p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \left[K_{8} \times K_{p_{3}^{\alpha_{3}} \cdots p_{t}^{\alpha_{t}}} \right] = p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \left\{ K_{8} \times \left[p_{3}^{\alpha_{3}} K_{p_{4}^{\alpha_{4}} \cdots p_{t}^{\alpha_{t}}} \oplus K_{p_{3}^{\alpha_{3}}} (p_{4}^{\alpha_{4}} \cdots p_{t}^{\alpha_{t}}) \right] \right\}$$
$$= p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}} \left[K_{8} \times K_{p_{4}^{\alpha_{4}} \cdots p_{t}^{\alpha_{t}}} \right]$$
$$\oplus p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \left[K_{8} \times K_{p_{3}^{\alpha_{3}}} (p_{4}^{\alpha_{4}} \cdots p_{t}^{\alpha_{t}}) \right].$$

The existence of gregarious kite factorization of second term $p_1^{\alpha_1} p_2^{\alpha_2} \left[K_8 \times K_{p_3^{\alpha_3}}(p_4^{\alpha_4} \cdots p_t^{\alpha_t}) \right]$ is similar to Case 1.

Now we consider the first term $p_1^{\alpha_1} p_2^{\alpha_2} p_3^{\alpha_3} \left[K_8 \times K_{p_4^{\alpha_4} \dots p_t^{\alpha_t}} \right]$ and repeat the above process until we end up with $p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_{t-1}^{\alpha_{t-1}} \left[K_8 \times K_{p_t^{\alpha_t}} \right] \oplus p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_{t-2}^{\alpha_{t-2}} \left[K_8 \times K_{p_{t-1}^{\alpha_t}}(p_t^{\alpha_t}) \right]$. Now the existence of a gregarious kite factorization of $K_8 \times K_{p_t^{\alpha_t}}$ and hence the first term follows from Lemma 24 and the existence of gregarious kite factorization of $K_8 \times K_{p_{t-1}^{\alpha_t}}(p_t^{\alpha_t})$ and hence the second term is similar to Case 1. Thus we have a gregarious kite factorization of $p_1^{\alpha_1} \left[K_8 \times K_{p_2^{\alpha_2} p_3^{\alpha_3} \dots p_t^{\alpha_t}} \right]$. Hence from Cases 1 and 2, we have a gregarious kite factorization of $K_8 \times K_{p_1^{\alpha_1} p_2^{\alpha_2} \dots p_t^{\alpha_t}} = K_8 \times K_n$.

Lemma 27. For all odd n > 1, there exists a gregarious kite factorization of $K \times K_n$, where K is a kite.

Proof. Let $V(K) = \{1, 2, 3, 4\}$ and $V(K_n) = \{1, 2, ..., n\}$. Then $V(K \times K_n) = \bigcup_{i=1}^{4} V_i$, where $V_i = \{i_j \mid 1 \leq j \leq n\}$. Now we construct a gregarious kite factorization of $K \times K_n$ as follows: For $0 \leq s \leq n-2$, let $F_s = \bigoplus_{i=0}^{n-1} \{1_{1+i}, 2_{2+s+i}, 3_{3+2s+i}; 3_{3+2s+i}, 4_{4+3s+i}\}$, where the subscripts are taken modulo n with residues $1, 2, \ldots, n$. Clearly each $F_s, 0 \leq s \leq n-2$ is a gregarious kite factor of $K \times K_n$ and all together gives a gregarious kite factorization of $K \times K_n$.

Theorem 28. There exists a gregarious kite factorization of $K_m \times K_n$ if and only if $m \equiv 0 \pmod{4}$ and n is any odd integer greater than 1.

Proof. Necessity. It follows by 4|mn, $\{(m-1)(n-1)\}/2 \in \mathbb{N}$ (respectively, the size of a kite factor and the number of factors in a kite factorization of the graph $K_m \times K_n$).

Sufficiency. Let m = 4s, $s \ge 1$ and n is odd. The case s = 1, 2 follows from Lemmas 17 and 26, respectively. Then for $s \ge 3$, $K_{4s} \times K_n = [sK_4 \oplus K_s(4)] \times K_n$ $= s(K_4 \times K_n) \oplus (K_s(4) \times K_n)$. Now the existence of a gregarious kite factorization of $s(K_4 \times K_n)$ follows from Lemma 17. By Theorem 5, we have a kite factorization of $K_s(4), s \ge 3$. Corresponding to each kite factor of $K_s(4)$, we have a $(K \times K_n)$ -factor of $(K_s(4) \times K_n)$, where K is a kite. Thus a kite factorization of $K_s(4)$ implies a $(K \times K_n)$ -factorization of $(K_s(4) \times K_n)$. Further, the existence of a gregarious kite factorization of $K \times K_n$ follows from Lemma 27. Hence combining all these results we have a gregarious kite factorization of $K_m \times K_n$.

Conclusion. In this paper, we give a complete solution for the existence of a gregarious kite factorization of $K_m \times K_n$.

Acknowledgment

The second author thanks DST, New Delhi, for their support through Grant No. SR/S4/MS: 828/13 and UGC-SAP through Grant No. 510/7/DRS-1/2016(SAP-1).

References

- I. Anderson, Combinatorial Designs and Tournaments (Oxford University Press Inc., New York, 1997).
- [2] R.J.R. Abel, C.J. Colbourn and J.H. Dinitz, Mutually orthogonal latin squares (MOLS), chapter in The Handbook of Combinatorial Designs, Second Edition, C.J. Colbourn and J.H. Dinitz, Eds., Discrete Math. Appl. (Chapman & Hall/CRC Press, Boca Raton, New York, 2007) 160–163.

GREGARIOUS KITE FACTORIZATION OF TENSOR PRODUCT OF COMPLETE ...23

- J.C. Bermond and J. Schönheim, G-decompositions of K_n, where G has four vertices or less, Discrete Math. 19 (1977) 113–120. doi:10.1016/0012-365X(77)90027-9
- [4] C.J. Colbourn, A.C.H. Ling and G.Quattrocchi, Embedding path designs into kite systems, Discrete Math. 297 (2005) 38–48. doi:10.1016/j.disc.2005.04.014
- C.M. Fu, Y.F. Hsu, S.W. Lo and W.C. Huang, Some gregarious kite decompositions of complete equipartite graphs, Discrete Math. **313** (2013) 726–732. doi:10.1016/j.disc.2012.10.017
- [6] M. Gionfriddo and S. Milici, On the existence of uniformly resolvable decompositions of K_v and K_v - I into paths and kites, Discrete Math. **313** (2013) 2830–2834. doi:10.1016/j.disc.2013.08.023
- [7] L. Gionfriddo and C.C. Lindner, Nesting kite and 4-cycle systems, Australas. J. Combin. 33 (2005) 247–254.
- [8] R. Häggkvist, Decompositions of complete bipartite graphs, in: Surveys in Combinatorics, Lond. Math. Soc. Lecture Note Ser. 141 (1989) 115–147. doi:10.1017/CBO9781107359949.007
- [9] S. Kucukcifci and C.C. Lindner, The metamorphosis of λ-fold block designs with block size four into λ-fold kite systems, J. Combin. Math. Combin. Comput. 40 (2002) 241–252.
- [10] C.C. Lindner and C.A. Rodger, Design Theory (Chapman & Hall/CRC Press, Taylor & Francis Group, Boca Raton, 2009).
- [11] G. Lo Faro and A. Tripodi, The Doyen-Wilson theorem for kite systems, Discrete Math. 306 (2006) 2695–2701. doi:10.1016/j.disc.2006.03.074
- [12] G. Ragusa, Complete simultaneous metamorphosis of λ -fold kite systems, J. Combin. Math. Combin. Comput. **73** (2010) 159–180.
- [13] D.K. Ray-Chaudhuri and R.M. Wilson, Solution of Kirkman's schoolgirl problem, Combinatorics, Proc. Symp. Pure Math., Amer. Math. Soc. 19 (1971) 187–204. doi:10.1090/pspum/019/9959
- [14] A. Tamil Elakkiya and A. Muthusamy, P₃-factorization of triangulated Cartesian product of complete graphs, Discrete Math. Algorithms Appl. 7 (2015) ID:1450066. doi:10.1142/S1793830914500669
- [15] A. Tamil Elakkiya and A. Muthusamy, Gregarious kite decomposition of tensor product of complete graphs, Electron. Notes Discrete Math. 53 (2016) 83–96. doi:10.1016/j.endm.2016.05.008
- [16] A. Tamil Elakkiya and A. Muthusamy, P₃-factorization of triangulated Cartesian product of complete graph of odd order, S. Arumugam et al. (Eds.), ICTCSDM 2016, Lecture Notes in Comput. Sci. **10398** (2017) 425–434. doi:10.1007/978-3-319-64419-6_54

- [17] L. Wang, On the existence of resolvable $(K_3 + e)$ -group divisible designs, Graphs Combin. **26** (2010) 879–889. doi:10.1007/s00373-010-0954-5
- [18] H. Wang and Y. Chang, Kite-group divisible designs of type $g^t u^1$, Graphs Combin. 22 (2006) 545–571. doi:10.1007/s00373-006-0681-0
- [19] H. Wang and Y. Chang, $(K_3 + e, \lambda)$ -group divisible designs of type $g^t u^1$, Ars Combin. 89 (2008) 63–88.

Received 13 March 2017 Revised 14 November 2017 Accepted 19 December 2017