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Abstract

A kite factorization of a multipartite graph is said to be gregarious if
every kite in the factorization has all its vertices in different partite sets.
In this paper, we show that there exists a gregarious kite factorization of
Km ×Kn if and only if mn ≡ 0 (mod 4) and (m − 1)(n − 1) ≡ 0 (mod 2),
where × denotes the tensor product of graphs.
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1. Introduction

A latin square of order n is an n× n array such that each row and each column
of the array contains each of the symbols from {1, 2, . . . , n} exactly once. Two
latin squares L1 and L2 of order n are said to be orthogonal if for each (x, y) ∈
{1, 2, . . . , n} × {1, 2, . . . , n} there is exactly one cell (i, j) in which L1 contains
the symbol x and L2 contains the symbol y. In other words, if L1 and L2 are
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superimposed, the resulting set of n2 ordered pairs are distinct. The latin squares
L1, L2, . . . , Lt of order n are said to be mutually orthogonal (MOLS(n)) if for
1 ≤ a 6= b ≤ t, La and Lb are orthogonal. N(n) denotes the maximum number
of MOLS(n).

Partition of G into subgraphs G1, G2, . . . , Gr such that E(Gi)∩E(Gj) = ∅ for
i 6= j, i, j ∈ {1, 2, . . . , r} and E(G) =

⋃r
i=1E(Gi) is called decomposition of G; in

this case we write G as G = G1⊕G2⊕· · ·⊕Gr, where ⊕ denotes edge-disjoint sum
of subgraphs. If Gi

∼= H, 1 ≤ i ≤ r, then we say thatH-decomposes G; in notation
H | G. A spanning subgraph of G such that each component of it is isomorphic
to some graph H is called an H-factor of G. A partition of G into edge-disjoint
H-factors is called an H-factorization of G; in notation H ‖ G. Let Ck, Kk and
Ik, respectively denote a cycle, a complete graph and a null graph on k vertices.
A k-regular spanning subgraph of G is called a k-factor of G. A Ck-factor of G is
a 2-factor in which each component is a Ck. Decomposition of G into Ck-factors
is called a Ck-factorization of G. A cycle containing all the vertices of G is called
a Hamilton cycle. We say that G has a Hamilton cycle decomposition if its edge
set can be partitioned into edge-disjoint Hamilton cycles. For an integer λ, λG
denotes a graph with λ components each isomorphic to G.

The tensor product G×H and the wreath product G⊗H of two simple graphs
G and H are defined as follows: V (G×H) = V (G⊗H) = {(u, v) | u ∈ V (G), v ∈
V (H)}. E(G×H) = {(u, v)(x, y) | ux ∈ E(G) and vy ∈ E(H)} and E(G⊗H) =
{(u, v)(x, y) | u = x and vy ∈ E(H), or ux ∈ E(G)}. It is well known that tensor
product is commutative and distributive over an edge-disjoint union of subgraphs,
that is, if G=G1⊕G2⊕· · ·⊕Gr, then G×H = (G1×H)⊕(G2×H)⊕· · ·⊕(Gr×H).
A graph G having partite sets V1, V2, . . . , Vm with | Vi |= n, 1 ≤ i ≤ n, and E(G)
= {uv | u ∈ Vi and v ∈ Vj , i 6= j} is called complete m-partite graph and is
denoted by Km(n). Note that Km(n) is same as the Km ⊗ In.

A kite is a graph which is obtained by attaching an edge to a vertex of
the triangle, see Figure 1. We denote the kite with edge set {ab, bc, ca, cd} by
(a, b, c; cd).

b

b

b b

a

b

c d

Figure 1. The kite graph.

A subgraph of a multipartite graph G is said to be gregarious if each of its
vertices lies in different partite sets of G. A kite factorization of a multipartite
graph is said to be gregarious if each kite in the factorization has its vertices in



Gregarious Kite Factorization of Tensor Product of Complete ...9

four different partite sets.

The study of kite-design is not new. Bermond and Schonheim [3] proved that
a kite-design of order n exists if and only if n ≡ 0, 1 (mod 8). Wang and Chang
[18, 19] considered the existence of (K3+e) and (K3+e, λ)-group divisible designs
of type gtu1. Wang [17] has shown that the obvious necessary conditions for the
existence of resolvable (K3+e)-group divisible design of type gu are also sufficient.
Fu et al. [5] have shown that there exists a gregarious kite decomposition of
Km(n) if and only if n ≡ 0, 1 (mod 8) for odd m or n ≥ 4 for even m. Gionfriddo
and Milici [6] considered the existence of uniformly resolvable decompositions
of Kv and Kv − I into paths and kites. For more results on kite designs, see
[4, 7, 9, 11, 12].

In this direction, in [15] we have shown that the necessary conditions for the
existence of a gregarious kite decomposition of tensor product of complete graphs
are also sufficient. Further, in this paper, we show that there exists a gregarious
kite factorization of Km ×Kn if and only if mn ≡ 0 (mod 4) and (m− 1)(n− 1)
≡ 0 (mod 2).

We require the following to prove our main results.

2. Preliminary Results

Theorem 1 [10]. There exists a pair of mutually orthogonal latin squares

(MOLS(n)) of order n for every n 6= 2, 6.

Theorem 2 [1]. If n = pd is a prime power, then N(n) = n− 1.

Corrolary 3 [2]. If n = pα1

1 pα2

2 · · · pαt

t , where each number pi is a distinct prime

number and αi ≥ 1, i = 1, 2, . . . , t, then N(n) ≥ min{pαi

i | i = 1, 2, . . . , t}.

Theorem 4 [8]. Let G be a graph with chromatic number χ(G). Then

(i) G | G⊗ In if χ(G) ≤ N(n) + 2 and

(ii) G ‖ G⊗ In if χ(G) ≤ N(n) + 1.

Theorem 5 [17]. The necessary conditions for the existence of a kite factoriza-

tion of Km(n), namely, m ≥ 3, n(m− 1) ≡ 0 (mod 2), mn ≡ 0 (mod 4) are also

sufficient.

Theorem 6 [13]. C3 ‖ Km if and only if m ≡ 3 (mod 6).

Note 7. LetG1 = v1v2v3v4v5 · · · vp−1vpv1, G2 = v1v3v5 · · · vpv2v4v6 · · · vp−3vp−1v1
and G3 = v1v5v9 · · · vp−1v3v7v11 · · · vp−3v1 be three cycles of length p (p is odd).
Now consider two graphs G = G1 ⊕ G2 and H = G1 ⊕ G2 ⊕ G3 as shown in
Figures 2 and 3.
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b b b b b b b b b b

v1 v2 v3 v4 v5 vp−1 vp

Figure 2. G = G1 ⊕G2.

b b b b b b b

v1 v2 v3 v4 v5 vp−1 vp

b b b bb b b

v6 v7 vp−3 vp−2

Figure 3. H = G1 ⊕G2 ⊕G3.

Remark 8 [16]. Let V (Kp) = {v1, v2, . . . , vp}, p is a prime. For 1 ≤ i ≤ (p −
1)/2, let Hi = v1v(2+(i−1))v(3+[2(i−1)])v(4+[3(i−1)])v(5+[4(i−1)]) · · · v(p+[(p−1)(i−1)])v1,
where the subscripts are taken modulo p with residues 1, 2, 3, . . . , p. Note that
each Hi is a Hamilton cycle of Kp and {H1, H2, . . . , H(p−1)/2} gives a Hamilton
cycle decomposition of Kp, p is a prime. Further, {H1, H2, . . . H(p−1)/2} can be
partitioned into sets of 2 or 3 cycles such that the sum of the cycles of each set
is isomorphic to G or H, respectively.

3. Gregarious Kite Factorization of Km ×Kn

Lemma 9. There exists a gregarious kite factorization of K4 ×K3.

Proof. Let V (K4) = {1, 2, 3, 4} and V (K3) = {1, 2, 3}. Then V (K4 × K3) =
⋃4

i=1 Vi, where Vi = {ij | 1 ≤ j ≤ 3}. Now we construct a gregarious kite factor-
ization of K4×K3 as follows: For 0 ≤ s ≤ 2, let F 1

s= {11+s, 22+s, 43+s; 43+s31+s};
F 2
s = {21+s, 43+s, 32+s; 32+s13+s}; F

3
s = {31+s, 22+s, 13+s; 13+s41+s}, where the

subscripts are taken modulo 3 with residues 1, 2, 3. Clearly each Fi =
⋃2

s=0 F
i
s ,

1 ≤ i ≤ 3, is a gregarious kite factor ofK4×K3 and {F1, F2, F3} gives a gregarious
kite factorization of K4 ×K3.

Lemma 10. For n ≡ 3 (mod 6), there exists a gregarious kite factorization of

K4 ×Kn.

Proof. By Theorem 6, we have a K3-factorization of Kn, n = 6s+3, s ≥ 1 (since
the case s = 0 follows from Lemma 9). Since tensor product is distributive over an
edge-disjoint union of subgraphs, corresponding to each K3-factor of Kn, we have
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a (K4×K3)-factor of K4×Kn. Hence a K3-factorization of Kn gives a (K4×K3)-
factorization of K4 × Kn. By Lemma 9, we have a gregarious kite factorization
of K4 × K3. Thus combining all these we get a gregarious kite factorization of
K4 ×Kn.

Lemma 11. For |V (G)| = p, p ≥ 5 is a prime, there exists a gregarious kite

factorization of K4 ×G, where G is described as in Note 7.

Proof. Let V (K4) = {1, 2, 3, 4} and V (G) = {1, 2, . . . , p}, p ≥ 5. Then V (K4×G)
=

⋃4
i=1 Vi, where Vi = {ij | 1 ≤ j ≤ p}. Now we construct a gregarious kite

factorization of K4 ×G as follows: For 0 ≤ s ≤ p− 1, let

F 1
s = {31+s, 2p+s, 1p−1+s; 1p−1+s41+s};F

2
s = {31+s, 42+s, 23+s; 23+s11+s};

F 3
s = {33+s, 12+s, 41+s; 41+s2p−1+s};F

4
s = {31+s, 22+s, 13+s; 13+s41+s};

F 5
s = {31+s, 4p+s, 2p−1+s; 2p−1+s11+s};F

6
s = {3p+s, 11+s, 42+s; 42+s24+s}.

In all the above constructions the subscripts are taken modulo p with residues
1, 2, . . . , p. Clearly each Fi =

⋃p−1
s=0 F

i
s , 1 ≤ i ≤ 6, is a gregarious kite factor of

K4 ×G and {F1, F2, . . . , F6} gives a gregarious kite factorization of K4 ×G.

Lemma 12. There exists a gregarious kite factorization of K4 ×K7.

Proof. Let V (K4) = {1, 2, 3, 4} and V (K7) = {1, 2, . . . , 7}. Then V (K4 × K7)
=

⋃4
i=1 Vi, where Vi = {ij | 1 ≤ j ≤ 7}. Now we construct a gregarious kite

factorization of K4 ×K7 as follows: For 0 ≤ s ≤ 6, let

F 1
s = {31+s, 27+s, 16+s; 16+s42+s};F

2
s = {41+s, 22+s, 37+s; 37+s14+s};

F 3
s = {11+s, 32+s, 47+s; 47+s24+s};F

4
s = {31+s, 22+s, 13+s; 13+s41+s};

F 5
s = {31+s, 45+s, 24+s; 24+s16+s};F

6
s = {11+s, 24+s, 37+s; 37+s42+s};

F 7
s = {41+s, 24+s, 17+s; 17+s34+s}; F

8
s = {11+s, 23+s, 45+s; 45+s36+s};

F 9
s = {21+s, 33+s, 46+s; 46+s14+s}.

In all the above constructions the subscripts are taken modulo 7 with residues
1, 2, . . . , 7. Clearly each Fi =

⋃6
s=0 F

i
s , 1 ≤ i ≤ 9, is a gregarious kite factor of

K4 ×K7 and {F1, F2, . . . , F9} gives a gregarious kite factorization of K4 ×K7.

Lemma 13. For |V (H)| = p, p ≥ 11 is a prime, there exists a gregarious kite

factorization of K4 ×H, where H is described as in Note 7.

Proof. Let V (K4) = {1, 2, 3, 4} and V (H) = {1, 2, . . . , p}, p ≥ 11. Then V (K4×
H) =

⋃4
i=1 Vi, where Vi = {ij | 1 ≤ j ≤ p}. Now we construct a gregarious kite
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factorization of K4 ×H as follows: For 0 ≤ s ≤ p− 1, let

F 1
s = {4p−1+s, 1p+s, 21+s; 21+s35+s};F

2
s = {42+s, 33+s, 11+s; 11+s25+s};

F 3
s = {1p+s, 42+s, 31+s; 31+s25+s};F

4
s = {13+s, 2p−1+s, 31+s; 31+s45+s};

F 5
s = {2p−1+s, 1p−3+s, 41+s; 41+s35+s};F

6
s = {4p−1+s, 2p+s, 11+s; 11+s35+s};

F 7
s = {32+s, 13+s, 21+s; 21+s45+s};F

8
s = {23+s, 4p−1+s, 31+s; 31+s15+s};

F 9
s = {2p+s, 3p−1+s, 41+s; 41+s15+s}.

In all the above constructions the subscripts are taken modulo p with residues
1, 2, . . . , p. Clearly each Fi =

⋃p−1
s=0 F

i
s , 1 ≤ i ≤ 9, is a gregarious kite factor of

K4 ×H and {F1, F2, . . . , F9} gives a gregarious kite factorization of K4 ×H.

Lemma 14. For all odd prime p, there exists a gregarious kite factorization of

K4 ×Kp.

Proof. By Remark 8, we have a factorization of Kp into graphs isomorphic to
G or H. A gregarious kite factorization of K4 ×Kp follows from Lemmas 9, 11,
12 and 13.

Lemma 15. For all odd prime p and s > 1, there exists a gregarious kite factor-

ization of K4 ×Kps .

Proof. For s > 1, K4 × Kps = K4 ×
[

pKps−1 ⊕Kp(p
s−1)

]

= p
(

K4 ×Kps−1

)

⊕
[

K4 ×Kp(p
s−1)

]

(since the case s = 1 follows from Lemma 14).

For s = 2, K4 × Kp2 = p (K4 ×Kp) ⊕ [K4 ×Kp(p)] . By Lemma 14, we
have a gregarious kite factorization of p (K4 ×Kp) . By Theorem 4, we have a
Kp-factorization of Kp(p). Corresponding to each Kp-factor of Kp(p), we have
a (K4 ×Kp)-factor of K4 × Kp(p). Hence a Kp-factorization of Kp(p) implies a
(K4 ×Kp)-factorization of K4 × Kp(p). Now the existence of a gregarious kite
factorization of (K4 ×Kp) follows from Lemma 14.

For s = 3, K4×Kp3 = p
(

K4 ×Kp2
)

⊕
[

K4 ×Kp(p
2)
]

. Now the gregarious kite
factorization of p

(

K4 ×Kp2
)

follows from the case s = 2. By Theorem 4, we have
a Kp-factorization of Kp(p

2). Corresponding to each Kp-factor of Kp(p
2), we have

a (K4 ×Kp)-factor of K4×Kp(p
2). Hence a Kp-factorization of Kp(p

2) implies a
(K4 ×Kp)-factorization of K4 × Kp(p

2). Now the existence of a gregarious kite
factorization of (K4 ×Kp) follows from Lemma 14.

For s > 1, K4 ×Kps = p
(

K4 ×Kps−1

)

⊕
[

K4 ×Kp(p
s−1)

]

. By the induction
hypothesis on s, we have a gregarious kite factorization of p

(

K4 ×Kps−1

)

. By
Theorem 4, we have a Kp-factorization of Kp(p

s−1). Corresponding to each Kp-
factor of Kp

(

ps−1
)

, we have a (K4 ×Kp)-factor of K4 ×Kp

(

ps−1
)

. Thus a Kp-
factorization of Kp

(

ps−1
)

implies a (K4 ×Kp)-factorization of K4 ×Kp

(

ps−1
)

.
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Now the existence of a gregarious kite factorization of (K4 ×Kp) follows from
Lemma 14. Hence combining all the above we have a gregarious kite factorization
of K4 ×Kps , for all s > 1.

Lemma 16. For all odd primes p, q (p < q) and all integers s, t ≥ 1, there exists

a gregarious kite factorization of K4 ×Kpsqt .

Proof. For s, t ≥ 1 and p < q, K4 ×Kpsqt = K4 ×Kp.ps−1qt = K4 ×
[

pKps−1qt⊕
Kp

(

ps−1qt
)]

= p
[

K4 ×Kps−1qt
]

⊕
[

K4 ×Kp(p
s−1qt)

]

.

Case 1. (a) For s = 1, t = 1, K4×Kpq = K4×(pKq ⊕Kp(q)) = p [K4 ×Kq]⊕
[K4 ×Kp(q)] . By Theorem 4, we have aKp-factorization ofKp(q). Corresponding
to each Kp-factor of Kp(q), we have a (K4 ×Kp)-factor of K4 × Kp(q). Thus a
Kp-factorization of Kp(q) implies a (K4 ×Kp)-factorization of K4 ×Kp(q). Now
the existence of a gregarious kite factorization of K4×Kp and p (K4 ×Kq) follows
from Lemma 14.

(b) For s = 1, t = 2, K4 ×Kpq2 = K4 ×
[

pKq2 ⊕Kp(q
2)
]

= p
[

K4 ×Kq2
]

⊕
[

K4 ×Kp(q
2)
]

. By Theorem 4, we have aKp-factorization ofKp(q
2). Correspond-

ing to each Kp-factor of Kp(q
2), we have a (K4 ×Kp)-factor of K4×Kp(q

2). Thus
a Kp-factorization of Kp(q

2) implies a (K4 ×Kp)-factorization of K4 × Kp(q
2).

Now the existence of a gregarious kite factorization of K4×Kp and p
(

K4 ×Kq2
)

follows from Lemmas 14 and 15, respectively.

(c) For s = 1, t ≥ 3, K4 ×Kpqt = K4 ×
[

pKqt ⊕Kp(q
t)
]

= p
[

K4 ×Kqt
]

⊕
[

K4 ×Kp(q
t)
]

. By Theorem 4, we have aKp-factorization ofKp(q
t). Correspond-

ing to each Kp-factor of Kp(q
t), we have a (K4 ×Kp)-factor of K4×Kp(q

t). Thus
a Kp-factorization of Kp(q

t) implies a (K4 ×Kp)-factorization of K4 × Kp(q
t).

Now the existence of a gregarious kite factorization of K4×Kp and p
(

K4 ×Kqt
)

follows from Lemmas 14 and 15, respectively.

Case 2. (a) For s = 2, t = 1, K4×Kp2q = K4×Kp.pq = K4× [pKpq ⊕Kp(pq)]
= p [K4 ×Kpq] ⊕ [K4 ×Kp(pq)] . By Theorem 4, we have a Kp-factorization
of Kp(pq). Corresponding to each Kp-factor of Kp(pq), we have a (K4 ×Kp)-
factor of K4 × Kp(pq). Thus a Kp-factorization of Kp(pq) implies a (K4 ×Kp)-
factorization of K4×Kp(pq). Now the existence of a gregarious kite factorization
of K4×Kp and p [K4 ×Kpq] follows from Lemma 14 and Case 1(a), respectively.

(b) For s = 2, t = 2, K4 ×Kp2q2 = K4 ×Kp.pq2 = K4 ×
[

pKpq2 ⊕Kp(pq
2)
]

= p
[

K4 ×Kpq2
]

⊕
[

K4 ×Kp(pq
2)
]

. By Theorem 4, we have a Kp-factorization
of Kp(pq

2). Corresponding to each Kp-factor of Kp(pq
2), we have a (K4 ×Kp)-

factor of K4×Kp(pq
2). Thus a Kp-factorization of Kp(pq

2) implies a (K4 ×Kp)-
factorization of K4×Kp(pq

2). Now the existence of a gregarious kite factorization
of K4×Kp and p

[

K4 ×Kpq2
]

follows from Lemma 14 and Case 1(b), respectively.

(c) For s = 2, t ≥ 3, K4 × Kp2qt = K4 × Kp.pqt = K4 ×
[

pKpqt ⊕Kp(pq
t)
]

= p
[

K4 ×Kpqt
]

⊕
[

K4 ×Kp(pq
t)
]

. By Theorem 4, we have a Kp-factorization
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of Kp(pq
t). Corresponding to each Kp-factor of Kp(pq

t), we have a (K4 ×Kp)-
factor of K4 ×Kp(pq

t). Thus a Kp-factorization of Kp(pq
t) implies a (K4 ×Kp)-

factorization of K4×Kp(pq
t). Now the existence of a gregarious kite factorization

of K4×Kp and p
[

K4 ×Kpqt
]

follows from Lemma 14 and Case 1(c), respectively.

(d) For s, t ≥ 1,K4×Kpsqt =p
[

K4 ×Kps−1qt
]

⊕
[

K4 ×Kp(p
s−1qt)

]

. By induc-
tion hypothesis on s, we have a gregarious kite factorization of p

[

K4 ×Kps−1qt
]

.
By Theorem 4, we have a Kp-factorization of Kp

(

ps−1qt
)

. Corresponding to
each Kp-factor of Kp

(

ps−1qt
)

, we have a (K4 ×Kp)-factor of K4 ×Kp

(

ps−1qt
)

.
Thus a Kp-factorization of Kp

(

ps−1qt
)

implies a (K4 ×Kp)-factorization of K4×
Kp

(

ps−1qt
)

. Now the existence of a gregarious kite factorization of K4 ×Kp fol-
lows from Lemma 14. Hence combining all the above we have a gregarious kite
factorization of K4 ×Kpsqt , for all s, t ≥ 1 and p < q.

Lemma 17. For all odd n > 1, there exists a gregarious kite factorization of

K4 ×Kn.

Proof. By fundamental theorem of arithmetic, any integer n > 1 can be uniquely
written as prime powers or product of prime powers. Consider n = pα1

1 pα2

2 · · · pαt

t ,
where each pi is a distinct odd prime and αi ≥ 1, i = 1, 2, . . . , t. Fix pα1

1 < pα2

2 <
· · · < pαt

t . Now,

K4 ×Kn =K4 ×Kp
α1

1
p
α2

2
···p

αt

t

= K4 ×
[

pα1

1 Kp
α2

2
p
α3

3
···p

αt

t

⊕Kp
α1

1

(pα2

2 pα3

3 · · · pαt

t )
]

= pα1

1

[

K4 ×Kp
α2

2
p
α3

3
···p

αt

t

]

⊕
[

K4 ×Kp
α1

1

(pα2

2 pα3

3 · · · pαt

t )
]

.

It is enough to show that there exists a gregarious kite factorization of K4 ×

Kp
α1

1

(pα2

2 pα3

3 · · · pαt

t ) and pα1

1

[

K4 ×Kp
α2

2
p
α3

3
···p

αt

t

]

.

Case 1. Consider K4 × Kp
α1

1

(pα2

2 pα3

3 · · · pαt

t ). By Theorem 4, we have a

Kp
α1

1

-factorization of Kp
α1

1

(pα2

2 pα3

3 · · · pαt

t ). Corresponding to each Kp
α1

1

-factor of

Kp
α1

1

(pα2

2 pα3

3 · · · pαt

t ), we have a
(

K4 ×Kp
α1

1

)

-factor of K4×Kp
α1

1

(pα2

2 pα3

3 · · · pαt

t ).

Now the existence of a gregarious kite factorization of K4 × Kp
α1

1

follows from
Lemma 15.

Case 2. Consider pα1

1

[

K4 ×Kp
α2

2
p
α3

3
···p

αt

t

]

. We write

pα1

1

[

K4 ×Kp
α2

2
p
α3

3
···p

αt

t

]

= pα1

1

{

K4×
[

pα2

2 Kp
α3

3
···p

αt

t

⊕Kp
α2

2

(pα3

3 · · · pαt

t )
]

}

= pα1

1

{

pα2

2

[

K4×Kp
α3

3
···p

αt

t

]

⊕
[

K4 ×Kp
α2

2

(pα3

3 · · · pαt

t )
]

}

= pα1

1 pα2

2

[

K4 ×Kp
α3

3
···p

αt

t

]

⊕ pα1

1

[

K4×Kp
α2

2

(pα3

3 · · · pαt

t )
]

.
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Now we have to show the existence of gregarious kite factorization of pα1

1 pα2

2
[

K4 ×Kp
α3

3
···p

αt

t

]

and pα1

1

[

K4 ×Kp
α2

2

(pα3

3 · · · pαt

t )
]

. The existence of gregarious

kite factorization of pα1

1

[

K4 ×Kp
α2

2

(pα3

3 · · · pαt

t )
]

is similar to Case 1.

Now we can write

pα1

1 pα2

2

[

K4 ×Kp
α3

3
···p

αt

t

]

= pα1

1 pα2

2

{

K4 ×
[

pα3

3 Kp
α4

4
···p

αt

t

⊕Kp
α3

3

(pα4

4 · · · pαt

t )
]

}

= pα1

1 pα2

2 pα3

3

[

K4 ×Kp
α4

4
···p

αt

t

]

⊕ pα1

1 pα2

2

[

K4 ×Kp
α3

3

(pα4

4 · · · pαt

t )
]

.

The existence of gregarious kite factorization of the second term pα1

1 pα2

2
[

K4 ×Kp
α3

3

(pα4

4 · · · pαt

t )
]

is similar to Case 1.

Now we consider the first term pα1

1 pα2

2 pα3

3

[

K4 ×Kp
α4

4
···p

αt

t

]

and repeat the

above process until we end up with pα1

1 pα2

2 · · · p
αt−1

t−1

[

K4 ×Kp
αt

t

]

⊕pα1

1 pα2

2 · · · p
αt−2

t−2
[

K4 ×K
p
αt−1

t−1

(pαt

t )
]

. Now the existence of a gregarious kite factorization of K4×

Kp
αt

t

and hence the first term follows from Lemma 15 and the existence of grega-

rious kite factorization of K4 ×K
p
αt−1

t−1

(pαt

t ) and hence the second term is similar

to Case 1. Thus we have a gregarious kite factorization of pα1

1

[

K4×Kp
α2

2
p
α3

3
···p

αt

t

]

.

Hence from Cases 1 and 2, we have a gregarious kite factorization of K4 ×
Kp

α1

1
p
α2

2
···p

αt

t

= K4 ×Kn.

Lemma 18. There exists a gregarious kite factorization of K8 ×K3.

Proof. Let V (K8) = {1, 2, . . . , 8} and V (K3) = {1, 2, 3}. Then V (K8 × K3)
=

⋃8
i=1 Vi, where Vi = {ij | 1 ≤ j ≤ 3}. Now we construct a gregarious kite

factorization of K8 ×K3 as follows: For 0 ≤ s ≤ 2, let

F 1
s = {(11+s, 23+s, 32+s; 32+s61+s) (81+s, 53+s, 42+s; 42+s73+s)};

F 2
s = {(11+s, 53+s, 72+s; 72+s23+s) (31+s, 62+s, 43+s; 43+s81+s)};

F 3
s = {(41+s, 23+s, 12+s; 12+s31+s) (51+s, 83+s, 62+s; 62+s71+s)};

F 4
s = {(61+s, 22+s, 83+s; 83+s11+s) (71+s, 53+s, 32+s; 32+s43+s)};

F 5
s = {(21+s, 53+s, 62+s; 62+s11+s) (31+s, 83+s, 72+s; 72+s43+s)};

F 6
s = {(11+s, 82+s, 73+s; 73+s62+s) (21+s, 43+s, 52+s; 52+s33+s)};

F 7
s = {(61+s, 43+s, 12+s; 12+s53+s) (81+s, 33+s, 22+s; 22+s73+s)}.

In all the above constructions the subscripts are taken modulo 3 with residues
1, 2, 3. Clearly each Fi =

⋃2
s=0 F

i
s , 1 ≤ i ≤ 7, is a gregarious kite factor of K8×K3

and {F1, F2, . . . , F7} gives a gregarious kite factorization of K8 ×K3.
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Lemma 19. For n ≡ 3 (mod 6), there exists a gregarious kite factorization of

K8 ×Kn.

Proof. By Theorem 6, we have a K3-factorization of Kn, n = 6s + 3, s ≥ 1
(since the case s = 0 follows from Lemma 18). Corresponding to each K3-factor
of Kn, we have a (K8 ×K3)-factor of K8 ×Kn. Hence a K3-factorization of Kn

implies a (K8×K3)-factorization of K8×Kn. By Lemma 18, we have a gregarious
kite factorization of K8 ×K3. Thus combining all these we get a gregarious kite
factorization of K8 ×Kn, n = 6s+ 3, s ≥ 1.

Lemma 20. For |V (G)| = p, p ≥ 5 is a prime, there exists a gregarious kite

factorization of K8 ×G, where G is described as in Note 7.

Proof. Let V (K8) = {1, 2, . . . , 8} and V (G) = {1, 2, . . . , p}, p ≥ 5. Then V (K8×
G) =

⋃8
i=1 Vi, where Vi = {ij | 1 ≤ j ≤ p}. Now we construct a gregarious kite

factorization of K8 ×G as follows: For 0 ≤ s ≤ p− 1, let

F 1
s = {(21+s, 32+s, 1p+s; 1p+s72+s) (81+s, 53+s, 42+s; 42+s64+s)};

F 2
s = {(11+s, 53+s, 72+s; 72+s24+s) (32+s, 6p+s, 41+s; 41+s8p−1+s)};

F 3
s = {(13+s, 42+s, 21+s; 21+s83+s) (32+s, 53+s, 61+s; 61+s73+s)};

F 4
s = {(13+s, 62+s, 81+s; 81+s23+s) (33+s, 51+s, 72+s; 72+s4p+s)};

F 5
s = {(21+s, 53+s, 62+s; 62+s14+s) (41+s, 72+s, 83+s; 83+s31+s)};

F 6
s = {(12+s, 83+s, 71+s; 71+s63+s) (51+s, 42+s, 23+s; 23+s35+s)};

F 7
s = {(12+s, 51+s, 43+s; 43+s21+s) (62+s, 73+s, 31+s; 31+s8p−1+s)};

F 8
s = {(32+s, 43+s, 11+s; 11+s7p−1+s) (22+s, 51+s, 83+s; 83+s61+s)};

F 9
s = {(13+s, 22+s, 31+s; 31+s63+s) (51+s, 82+s, 73+s; 73+s45+s)};

F 10
s = {(23+s, 62+s, 41+s; 41+s13+s) (82+s, 53+s, 31+s; 31+s7p−1+s)};

F 11
s = {(13+s, 32+s, 51+s; 51+s4p−1+s) (61+s, 82+s, 23+s; 23+s75+s)};

F 12
s = {(52+s, 63+s, 11+s; 11+s23+s) (31+s, 43+s, 72+s; 72+s8p+s)};

F 13
s = {(12+s, 81+s, 63+s; 63+s45+s) (71+s, 53+s, 22+s; 22+s3p+s)};

F 14
s = {(21+s, 72+s, 63+s; 63+s51+s) (41+s, 33+s, 82+s; 82+s1p+s)}.

In all the above constructions the subscripts are taken modulo p with residues
1, 2, . . . , p. Clearly each Fi =

⋃p−1
s=0 F

i
s , 1 ≤ i ≤ 14, is a gregarious kite factor of

K8 ×G and {F1, F2, . . . , F14} gives a gregarious kite factorization of K8 ×G.

Lemma 21. There exists a gregarious kite factorization of K8 ×K7.

Proof. Let V (K8) = {1, 2, . . . , 8} and V (K7) = {1, 2, . . . , 7}. Then V (K8 ×K7)
=

⋃8
i=1 Vi, where Vi = {ij | 1 ≤ j ≤ 7}. Now we construct a gregarious kite



Gregarious Kite Factorization of Tensor Product of Complete ...17

factorization of K8 ×K7 as follows: For 0 ≤ s ≤ 6, let

F 1
s = {(61+s, 25+s, 33+s; 33+s16+s) (81+s, 73+s, 45+s; 45+s51+s)};

F 2
s = {(83+s, 45+s, 21+s; 21+s54+s) (71+s, 64+s, 16+s; 16+s32+s)};

F 3
s = {(81+s, 24+s, 36+s; 36+s53+s) (41+s, 63+s, 75+s; 75+s11+s)};

F 4
s = {(41+s, 12+s, 26+s; 26+s82+s) (71+s, 33+s, 65+s; 65+s51+s)};

F 5
s = {(21+s, 44+s, 76+s; 76+s53+s) (81+s, 33+s, 66+s; 66+s13+s)};

F 6
s = {(41+s, 13+s, 85+s; 85+s52+s) (21+s, 65+s, 73+s; 73+s37+s)};

F 7
s = {(11+s, 23+s, 76+s; 76+s82+s) (51+s, 63+s, 46+s; 46+s32+s)};

F 8
s = {(22+s, 33+s, 11+s; 11+s65+s) (81+s, 42+s, 53+s; 53+s77+s)};

F 9
s = {(72+s, 53+s, 11+s; 11+s24+s) (41+s, 32+s, 66+s; 66+s83+s)};

F 10
s = {(11+s, 86+s, 67+s; 67+s44+s) (71+s, 57+s, 32+s; 32+s26+s)};

F 11
s = {(81+s, 15+s, 23+s; 23+s44+s) (61+s, 53+s, 32+s; 32+s76+s)};

F 12
s = {(21+s, 62+s, 53+s; 53+s17+s) (41+s, 72+s, 83+s; 83+s37+s)};

F 13
s = {(71+s, 12+s, 83+s; 83+s67+s) (51+s, 23+s, 42+s; 42+s36+s)};

F 14
s = {(51+s, 43+s, 12+s; 12+s86+s) (62+s, 73+s, 31+s; 31+s24+s)};

F 15
s = {(11+s, 32+s, 43+s; 43+s62+s) (51+s, 83+s, 22+s; 22+s76+s)};

F 16
s = {(31+s, 22+s, 13+s; 13+s47+s) (82+s, 73+s, 51+s; 51+s64+s)};

F 17
s = {(62+s, 23+s, 41+s; 41+s74+s) (31+s, 82+s, 53+s; 53+s16+s)};

F 18
s = {(13+s, 32+s, 51+s; 51+s44+s) (61+s, 23+s, 82+s; 82+s75+s)};

F 19
s = {(11+s, 63+s, 52+s; 52+s25+s) (72+s, 43+s, 31+s; 31+s85+s)};

F 20
s = {(81+s, 63+s, 12+s; 12+s45+s) (71+s, 22+s, 53+s; 53+s37+s)};

F 21
s = {(21+s, 63+s, 72+s; 72+s16+s) (41+s, 33+s, 82+s; 82+s55+s)}.

In all the above constructions the subscripts are taken modulo 7 with residues
1, 2, . . . , 7. Clearly each Fi =

⋃6
s=0 F

i
s , 1 ≤ i ≤ 21, is a gregarious kite factor of

K8 ×K7 and {F1, F2, . . . , F21} gives a gregarious kite factorization of K8 ×K7.

Lemma 22. For |V (H)| = p, p ≥ 11 is a prime, there exists a gregarious kite

factorization of K8 ×H, where H is described as in Note 7.

Proof. Let V (K8) = {1, 2, . . . , 8} and V (H) = {1, 2, . . . , p}, p ≥ 11. Then
V (K8×H) =

⋃8
i=1 Vi, where Vi = {ij | 1 ≤ j ≤ p}. Now we construct a gregarious

kite factorization of K8 ×H as follows: For 0 ≤ s ≤ p− 1, let

F 1
s = {(73+s, 45+s, 11+s; 11+s25+s) (5p−1+s, 8p+s, 61+s; 61+s35+s)};

F 2
s = {(43+s, 22+s, 11+s; 11+s35+s) (83+s, 62+s, 51+s; 51+s75+s)};
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F 3
s = {(6p−1+s, 4p+s, 11+s; 11+s75+s) (5p−1+s, 2p+s, 31+s; 31+s85+s)};

F 4
s = {(8p−3+s, 1p−1+s, 21+s; 21+s35+s) (7p−1+s, 6p+s, 51+s; 51+s45+s)};

F 5
s = {(13+s, 22+s, 31+s; 31+s75+s) (42+s, 53+s, 81+s; 81+s65+s)};

F 6
s = {(72+s, 43+s, 21+s; 21+s15+s) (8p−1+s, 5p+s, 31+s; 31+s65+s)};

F 7
s = {(32+s, 1p+s, 61+s; 61+s45+s) (71+s, 23+s, 85+s; 85+s51+s)};

F 8
s = {(13+s, 72+s, 51+s; 51+s35+s) (22+s, 63+s, 41+s; 41+s85+s)};

F 9
s = {(6p+s, 52+s, 21+s; 21+s75+s) (8p+s, 42+s, 31+s; 31+s15+s)};

F 10
s = {(8p+s, 2p−1+s, 11+s; 11+s55+s) (33+s, 45+s, 71+s; 71+s6p−3+s)};

F 11
s = {(13+s, 65+s, 41+s; 41+s35+s) (73+s, 85+s, 21+s; 21+s55+s)};

F 12
s = {(83+s, 6p−1+s, 41+s; 41+s2p−3+s) (13+s, 74+s, 55+s; 55+s31+s)};

F 13
s = {(23+s, 51+s, 65+s; 65+s71+s) (82+s, 1p+s, 31+s; 31+s45+s)};

F 14
s = {(72+s, 5p+s, 41+s; 41+s15+s) (63+s, 2p−1+s, 31+s; 31+s8p−3+s)};

F 15
s = {(2p−1+s, 6p−3+s, 51+s; 51+s15+s) (3p−1+s, 7p+s, 81+s; 81+s45+s)};

F 16
s = {(13+s, 8p−1+s, 71+s; 71+s55+s) (61+s, 33+s, 25+s; 25+s41+s)};

F 17
s = {(82+s, 23+s, 41+s; 41+s55+s) (32+s, 63+s, 71+s; 71+s15+s)};

F 18
s = {(1p+s, 6p−1+s, 81+s; 81+s55+s) (73+s, 4p−1+s, 31+s; 31+s25+s)};

F 19
s = {(52+s, 3p+s, 11+s; 11+s85+s) (4p−1+s, 6p+s, 71+s; 71+s25+s)};

F 20
s = {(4p−1+s, 3p+s, 51+s; 51+s25+s) (73+s, 8p−1+s, 61+s; 61+s15+s)};

F 21
s = {(42+s, 5p+s, 11+s; 11+s65+s) (22+s, 8p+s, 71+s; 71+s35+s)}.

In all the above constructions the subscripts are taken modulo p with residues
1, 2, . . . , p. Clearly each Fi =

⋃p−1
s=0 F

i
s , 1 ≤ i ≤ 21, is a gregarious kite factor of

K8 ×H and {F1, F2, . . . , F21} gives a gregarious kite factorization of K8 ×H.

Lemma 23. For all odd prime p, there exists a gregarious kite factorization of

K8 ×Kp.

Proof. By Remark 8, Kp has a factorization into graphs isomorphic to G or H.
Hence a gregarious kite factorization of K8 ×Kp follows from Lemmas 18, 20, 21
and 22.

Lemma 24. For all odd prime p and s > 1, there exists a gregarious kite factor-

ization of K8 ×Kps .

Proof. For s > 1, K8 × Kps = K8 ×
[

pKps−1 ⊕Kp(p
s−1)

]

= p(K8 × Kps−1) ⊕
[

K8 ×Kp(p
s−1)

]

(since the case s = 1 follows from Lemma 23).

For s = 2, K8 × Kp2 = p(K8 × Kp) ⊕ [K8 ×Kp(p)] . By Lemma 23, we
have a gregarious kite factorization of p(K8 × Kp). By Theorem 4, we have a
Kp-factorization of Kp(p). Corresponding to each Kp-factor of Kp(p), we have
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a (K8 × Kp)-factor of K8 × Kp(p). Thus a Kp-factorization of Kp(p) implies a
(K8 × Kp)-factorization of K8 × Kp(p). Now the existence of a gregarious kite
factorization of (K8 ×Kp) follows from Lemma 23.

For s = 3, K8 ×Kp3 = p(K8 ×Kp2) ⊕
[

K8 ×Kp(p
2)
]

. Then the gregarious
kite factorization of p(K8 ×Kp2) follows from the case s = 2. By Theorem 4, we
have a Kp-factorization of Kp(p

2). Corresponding to each Kp-factor of Kp(p
2), we

have a (K8×Kp)-factor of K8×Kp(p
2). Thus a Kp-factorization of Kp(p

2) implies
a (K8 ×Kp)-factorization of K8 ×Kp(p

2). Now the existence of a gregarious kite
factorization of (K8 ×Kp) follows from Lemma 23.

For s > 1, K8 ×Kps = p(K8 ×Kps−1)⊕
[

K8 ×Kp(p
s−1)

]

. By the induction
hypothesis on s, we have a gregarious kite factorization of p(K8 × Kps−1). By
Theorem 4, we have a Kp-factorization of Kp(p

s−1). Corresponding to each Kp-
factor of Kp(p

s−1), we have a (K8 × Kp)-factor of K8 × Kp(p
s−1). Thus a Kp-

factorization of Kp(p
s−1) implies a (K8 × Kp)-factorization of K8 × Kp(p

s−1).
Now the existence of a gregarious kite factorization of (K8 × Kp) follows from
Lemma 23. Hence combining all the above we have a gregarious kite factorization
of K8 ×Kps , for all s > 1.

Lemma 25. There exists a gregarious kite factorization of K8×Kpsqt for all odd

primes p, q (p < q) and all integers s, t ≥ 1.

Proof. For s, t ≥ 1 and p < q,

K8 ×Kpsqt =K8 ×Kp.ps−1qt = K8 ×
[

pKps−1qt ⊕Kp(p
s−1qt)

]

= p
[

K8 ×Kps−1qt
]

⊕
[

K8 ×Kp(p
s−1qt)

]

.

Case 1. (a) For s = 1, t = 1, K8×Kpq = K8× [pKq ⊕Kp(q)] = p [K8 ×Kq]⊕
[K8 ×Kp(q)] . By Theorem 4, we have aKp-factorization ofKp(q). Corresponding
to each Kp-factor of Kp(q), we have a (K8 × Kp)-factor of K8 × Kp(q). Thus a
Kp-factorization of Kp(q) implies a (K8 ×Kp)-factorization of K8 ×Kp(q). Now
the existence of a gregarious kite factorization of K8×Kp and p(K8×Kq) follows
from Lemma 23.

(b) For s = 1, t = 2, K8 ×Kpq2 = K8 ×
[

pKq2 ⊕Kp(q
2)
]

= p
[

K8 ×Kq2
]

⊕
[

K8 ×Kp(q
2)
]

. By Theorem 4, we have aKp-factorization ofKp(q
2). Correspond-

ing to each Kp-factor of Kp(q
2), we have a (K8×Kp)-factor of K8×Kp(q

2). Thus
a Kp-factorization of Kp(q

2) implies a (K8 × Kp)-factorization of K8 × Kp(q
2).

Now the existence of a gregarious kite factorization of K8 ×Kp and p(K8 ×Kq2)
follows from Lemmas 23 and 24, respectively.

(c) For s = 1, t ≥ 3, K8 ×Kpqt = K8 ×
[

pKqt ⊕Kp(q
t)
]

= p
[

K8 ×Kqt
]

⊕
[

K8 ×Kp(q
t)
]

. By Theorem 4, we have aKp-factorization ofKp(q
t). Correspond-

ing to each Kp-factor of Kp(q
t), we have a (K8×Kp)-factor of K8×Kp(q

t). Thus
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a Kp-factorization of Kp(q
t) implies a (K8 × Kp)-factorization of K8 × Kp(q

t).
Now the existence of a gregarious kite factorization of K8 ×Kp and p(K8 ×Kqt)
follows from Lemmas 23 and 24, respectively.

Case 2. (a) For s = 2, t = 1, K8×Kp2q=K8×Kp.pq = K8× [pKpq ⊕Kp(pq)]
= p [K8 ×Kpq] ⊕ [K8 ×Kp(pq)] . By Theorem 4, we have a Kp-factorization of
Kp(pq). Corresponding to each Kp-factor of Kp(pq), we have a (K8×Kp)-factor of
K8×Kp(pq). Thus a Kp-factorization of Kp(pq) implies a (K8×Kp)-factorization
of K8 ×Kp(pq). Now the existence of a gregarious kite factorization of K8 ×Kp

and p [K8 ×Kpq] follows from Lemma 23 and Case 1(a), respectively.

(b) For s = 2, t = 2, K8 ×Kp2q2 = K8 ×Kp.pq2 = K8 ×
[

pKpq2 ⊕Kp(pq
2)
]

= p
[

K8 ×Kpq2
]

⊕
[

K8 ×Kp(pq
2)
]

. By Theorem 4, we have a Kp-factorization
of Kp(pq

2). Corresponding to each Kp-factor of Kp(pq
2), we have a (K8 ×Kp)-

factor of K8 ×Kp(pq
2). Thus a Kp-factorization of Kp(pq

2) implies a (K8 ×Kp)-
factorization of K8×Kp(pq

2). Now the existence of a gregarious kite factorization
of K8×Kp and p

[

K8 ×Kpq2
]

follows from Lemma 23 and Case 1(b), respectively.

(c) For s = 2, t ≥ 3, K8 × Kp2qt = K8 × Kp.pqt = K8 ×
[

pKpqt ⊕Kp(pq
t)
]

= p
[

K8 ×Kpqt
]

⊕
[

K8 ×Kp(pq
t)
]

. By Theorem 4, we have a Kp-factorization
of Kp(pq

t). Corresponding to each Kp-factor of Kp(pq
t), we have a (K8 × Kp)-

factor of K8 ×Kp(pq
t). Thus a Kp-factorization of Kp(pq

t) implies a (K8 ×Kp)-
factorization of K8×Kp(pq

t). Now the existence of a gregarious kite factorization
of K8×Kp and p

[

K8 ×Kpqt
]

follows from Lemma 23 and Case 1(c), respectively.

For s, t ≥ 1, K8 ×Kpsqt = p
[

K8 ×Kps−1qt
]

⊕
[

K8 ×Kp(p
s−1qt)

]

. By the in-
duction hypothesis on s, we have a gregarious kite factorization of p

[

K8 ×Kps−1qt
]

.
By Theorem 4, we have a Kp-factorization of Kp(p

s−1qt). Corresponding to
each Kp-factor of Kp(p

s−1qt), we have a (K8 × Kp)-factor of K8 × Kp(p
s−1qt).

Thus a Kp-factorization of Kp(p
s−1qt) implies a (K8 ×Kp)-factorization of K8 ×

Kp(p
s−1qt). Now the existence of a gregarious kite factorization of K8 ×Kp fol-

lows from Lemma 23. Hence combining all the above we have a gregarious kite
factorization of K8 ×Kpsqt , for all s, t ≥ 1 and p < q.

Lemma 26. There exists a gregarious kite factorization of K8 ×Kn for all odd

n > 1.

Proof. By fundamental theorem of arithmetic, any integer n > 1 can be uniquely
written as prime powers or product of prime powers.

Consider n = pα1

1 pα2

2 · · · pαt

t , where each pi is a distinct odd prime and αi ≥
1, i = 1, 2, . . . , t. Fix pα1

1 < pα2

2 < · · · < pαt

t . Now,

K8 ×Kn =K8 ×Kp
α1

1
p
α2

2
···p

αt

t

= K8 ×
[

pα1

1 Kp
α2

2
p
α3

3
···p

αt

t

⊕Kp
α1

1

(pα2

2 pα3

3 · · · pαt

t )
]

= pα1

1

[

K8 ×Kp
α2

2
p
α3

3
···p

αt

t

]

⊕
[

K8 ×Kp
α1

1

(pα2

2 pα3

3 · · · pαt

t )
]

.
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It is enough to show that there exists a gregarious kite factorization of K8 ×

Kp
α1

1

(pα2

2 pα3

3 . . . pαt

t ) and pα1

1

[

K8 ×Kp
α2

2
p
α3

3
...p

αt

t

]

.

Case 1. Consider K8 × Kp
α1

1

(pα2

2 pα3

3 · · · pαt

t ). By Theorem 4, we have a

Kp
α1

1

-factorization of Kp
α1

1

(pα2

2 pα3

3 · · · pαt

t ). Corresponding to each Kp
α1

1

-factor of

Kp
α1

1

(pα2

2 pα3

3 · · · pαt

t ), we have a (K8 ×Kp
α1

1

)-factor of K8 ×Kp
α1

1

(pα2

2 pα3

3 · · · pαt

t ).
Now the existence of a gregarious kite factorization of K8 × Kp

α1

1

follows from
Lemma 24.

Case 2. Consider pα1

1

[

K8 ×Kp
α2

2
p
α3

3
···p

αt

t

]

. We write

pα1

1

[

K8×Kp
α2

2
p
α3

3
···p

αt

t

]

= pα1

1

{

K8 ×
[

pα2

2 Kp
α3

3
···p

αt

t

⊕Kp
α2

2

(pα3

3 · · · pαt

t )
]

}

= pα1

1

{

pα2

2

[

K8 ×Kp
α3

3
···p

αt

t

]

⊕
[

K8 ×Kp
α2

2

(pα3

3 · · · pαt

t )
]

}

= pα1

1 pα2

2

[

K8 ×Kp
α3

3
···p

αt

t

]

⊕pα1

1

[

K8 ×Kp
α2

2

(pα3

3 · · · pαt

t )
]

.

Now we have to show the existence of gregarious kite factorization of pα1

1 pα2

2
[

K8 ×Kp
α3

3
···p

αt

t

]

and pα1

1

[

K8 ×Kp
α2

2

(pα3

3 · · · pαt

t )
]

. The existence of gregarious

kite factorization of pα1

1

[

K8 ×Kp
α2

2

(pα3

3 · · · pαt

t )
]

is similar to Case 1. Now we

can write

pα1

1 pα2

2

[

K8 ×Kp
α3

3
···p

αt

t

]

= pα1

1 pα2

2

{

K8 ×
[

pα3

3 Kp
α4

4
···p

αt

t

⊕Kp
α3

3

(pα4

4 · · · pαt

t )
]}

= pα1

1 pα2

2 pα3

3

[

K8 ×Kp
α4

4
···p

αt

t

]

⊕ pα1

1 pα2

2

[

K8 ×Kp
α3

3

(pα4

4 · · · pαt

t )
]

.

The existence of gregarious kite factorization of second term pα1

1 pα2

2

[

K8×

Kp
α3

3

(pα4

4 · · · pαt

t )

]

is similar to Case 1.

Now we consider the first term pα1

1 pα2

2 pα3

3

[

K8 ×Kp
α4

4
···p

αt

t

]

and repeat the

above process until we end up with pα1

1 pα2

2 · · · p
αt−1

t−1

[

K8 ×Kp
αt

t

]

⊕pα1

1 pα2

2 · · · p
αt−2

t−2
[

K8 ×K
p
αt−1

t−1

(pαt

t )
]

. Now the existence of a gregarious kite factorization of K8×

Kp
αt

t

and hence the first term follows from Lemma 24 and the existence of gregar-

ious kite factorization of K8×K
p
αt−1

t−1

(pαt

t ) and hence the second term is similar to

Case 1. Thus we have a gregarious kite factorization of pα1

1

[

K8×Kp
α2

2
p
α3

3
···p

αt

t

]

.

Hence from Cases 1 and 2, we have a gregarious kite factorization of K8 ×
Kp

α1

1
p
α2

2
···p

αt

t

= K8 ×Kn.
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Lemma 27. For all odd n > 1, there exists a gregarious kite factorization of

K ×Kn, where K is a kite.

Proof. Let V (K) = {1, 2, 3, 4} and V (Kn) = {1, 2, . . . , n}. Then V (K × Kn)
=

⋃4
i=1 Vi, where Vi = {ij | 1 ≤ j ≤ n}. Now we construct a gregarious

kite factorization of K × Kn as follows: For 0 ≤ s ≤ n − 2, let Fs =
⊕n−1

i=0

{11+i, 22+s+i, 33+2s+i; 33+2s+i44+3s+i}, where the subscripts are taken modulo n
with residues 1, 2, . . . , n. Clearly each Fs, 0 ≤ s ≤ n−2 is a gregarious kite factor
of K ×Kn and all together gives a gregarious kite factorization of K ×Kn.

Theorem 28. There exists a gregarious kite factorization of Km × Kn if and

only if m ≡ 0 (mod 4) and n is any odd integer greater than 1.

Proof. Necessity. It follows by 4|mn, {(m− 1)(n− 1)}/2 ∈ N (respectively, the
size of a kite factor and the number of factors in a kite factorization of the graph
Km ×Kn).

Sufficiency. Let m = 4s, s ≥ 1 and n is odd. The case s = 1, 2 follows from
Lemmas 17 and 26, respectively. Then for s ≥ 3, K4s×Kn = [sK4 ⊕Ks(4)]×Kn

= s(K4 × Kn) ⊕ (Ks(4)×Kn) . Now the existence of a gregarious kite factor-
ization of s (K4 ×Kn) follows from Lemma 17. By Theorem 5, we have a kite
factorization of Ks(4), s ≥ 3. Corresponding to each kite factor of Ks(4), we have
a (K ×Kn)-factor of (Ks(4)×Kn), where K is a kite. Thus a kite factorization
of Ks(4) implies a (K ×Kn)-factorization of (Ks(4)×Kn) . Further, the exis-
tence of a gregarious kite factorization of K×Kn follows from Lemma 27. Hence
combining all these results we have a gregarious kite factorization of Km ×Kn.

Conclusion. In this paper, we give a complete solution for the existence of a
gregarious kite factorization of Km ×Kn.
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