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Abstract

A kite factorization of a multipartite graph is said to be gregarious if
every kite in the factorization has all its vertices in different partite sets.
In this paper, we show that there exists a gregarious kite factorization of
K,, x K, if and only if mn = 0 (mod 4) and (m — 1)(n — 1) = 0 (mod 2),
where x denotes the tensor product of graphs.
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1. INTRODUCTION

A latin square of order n is an n X n array such that each row and each column
of the array contains each of the symbols from {1,2,...,n} exactly once. Two
latin squares Lj and Lo of order n are said to be orthogonal if for each (x,y) €
{1,2,...,n} x {1,2,...,n} there is exactly one cell (¢,5) in which L; contains
the symbol z and Lo contains the symbol y. In other words, if L1 and Lo are


http://dx.doi.org/10.7151/dmgt.2126

8 A. TAMIL ELAKKIYA AND A. MUTHUSAMY

superimposed, the resulting set of n? ordered pairs are distinct. The latin squares
L1, Lo, ..., L of order n are said to be mutually orthogonal (MOLS(n)) if for
1<a#b<t L, and L are orthogonal. N(n) denotes the maximum number
of MOLS (n).

Partition of G into subgraphs G1, G, ..., G, such that E(G;)NE(G;) = 0 for
i#j,1,5€{1,2,...,r} and E(G) = J;_, E(G;) is called decomposition of G; in
this case we write G as G = G1HG2B - - -G, where @ denotes edge-disjoint sum
of subgraphs. If G; 2 H, 1 <14 < r, then we say that H-decomposes G; in notation
H | G. A spanning subgraph of G such that each component of it is isomorphic
to some graph H is called an H-factor of G. A partition of G into edge-disjoint
H-factors is called an H-factorization of G; in notation H || G. Let Cj, K} and
Iy, respectively denote a cycle, a complete graph and a null graph on k vertices.
A k-regular spanning subgraph of G is called a k-factor of G. A Cy-factor of G is
a 2-factor in which each component is a Cj. Decomposition of GG into Cy-factors
is called a Cy-factorization of G. A cycle containing all the vertices of G is called
a Hamilton cycle. We say that G has a Hamilton cycle decomposition if its edge
set can be partitioned into edge-disjoint Hamilton cycles. For an integer A\, AG
denotes a graph with A components each isomorphic to G.

The tensor product G x H and the wreath product G® H of two simple graphs
G and H are defined as follows: V(Gx H) =V(G®H) = {(u,v) |u € V(G),v €
V(H)}. E(Gx H) ={(u,v)(x,y) |ur € E(G) andvy € E(H)} and E(G® H) =
{(u,v)(z,y) |u =2 and vy € E(H), or ux € E(G)}. It is well known that tensor
product is commutative and distributive over an edge-disjoint union of subgraphs,
that is, if G=G1®G2®- - -BG,, then GXH = (G1 xH)®(Gex H)®- - -®(Gyr x H).
A graph G having partite sets V1, Va, ..., V,, with | V; |=n, 1 <i < n, and E(G)
={ww | v € V; and v € Vj,i # j} is called complete m-partite graph and is
denoted by K,,(n). Note that K,,(n) is same as the K, ® [,.

A kite is a graph which is obtained by attaching an edge to a vertex of
the triangle, see Figure 1. We denote the kite with edge set {ab, be, ca, cd} by
(a,b,c;cd).

b
Figure 1. The kite graph.

A subgraph of a multipartite graph G is said to be gregarious if each of its
vertices lies in different partite sets of G. A kite factorization of a multipartite
graph is said to be gregarious if each kite in the factorization has its vertices in
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four different partite sets.

The study of kite-design is not new. Bermond and Schonheim [3] proved that
a kite-design of order n exists if and only if n = 0,1 (mod 8). Wang and Chang
[18, 19] considered the existence of (K3+e¢) and (K3+e, A)-group divisible designs
of type g'ul. Wang [17] has shown that the obvious necessary conditions for the
existence of resolvable (K3+e)-group divisible design of type g* are also sufficient.
Fu et al. [5] have shown that there exists a gregarious kite decomposition of
K, (n) if and only if n = 0,1 (mod 8) for odd m or n > 4 for even m. Gionfriddo
and Milici [6] considered the existence of uniformly resolvable decompositions
of K, and K, — I into paths and kites. For more results on kite designs, see
[4,7,9, 11, 12).

In this direction, in [15] we have shown that the necessary conditions for the
existence of a gregarious kite decomposition of tensor product of complete graphs
are also sufficient. Further, in this paper, we show that there exists a gregarious
kite factorization of K, x K, if and only if mn = 0 (mod 4) and (m —1)(n —1)
= 0(mod 2).

We require the following to prove our main results.

2. PRELIMINARY RESULTS

Theorem 1 [10]. There exists a pair of mutually orthogonal latin squares
(MOLS(n)) of order n for every n # 2,6.

Theorem 2 [1]. If n = p? is a prime power, then N(n) =n — 1.

Corrolary 3 [2]. Ifn = p'p5? - pi, where each number p; is a distinct prime
number and o; > 1,1 =1,2,...,t, then N(n) > min{p{" |i=1,2,...,t}.

Theorem 4 [8]. Let G be a graph with chromatic number x(G). Then
(i) G|G® I, if x(G) < N(n)+2 and
(i) G||GaI, if x(G) < N(n)+1.

Theorem 5 [17]. The necessary conditions for the existence of a kite factoriza-
tion of K;,(n), namely, m > 3, n(m — 1) = 0 (mod 2), mn = 0(mod 4) are also
sufficient.

Theorem 6 [13]. Cs || Ky, if and only if m = 3 (mod 6).

Note 7. Let G = v1v2030405 - - - Vp—10pv1, G2 = V1V3V5 - - - UpU2VsaV6 - - - Vp—3Up—101
and G3 = v1U5Vg - - - Up_1U3V7V11 - - - Up—30U1 be three cycles of length p (p is odd).
Now consider two graphs G = G1 ©& G2 and H = G; ® G2 ® G5 as shown in
Figures 2 and 3.
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i V; \% V, A\ Vp__]_‘ Vp

Figure 2. G = G; ® Gs.

Figure 3. H = G1 & G2 & Gs.

Remark 8 [16]. Let V(K,) = {v1,v2,...,vp}, pis a prime. For 1 < i < (p —
1)/2, let Hi = 010(24.(i-1))V(3+{2(i—1)]) V(a+[3~1))) UG+ AG—1)]) ** Vp-H(p—1)(i~1)]) V15
where the subscripts are taken modulo p with residues 1,2,3,...,p. Note that
each H; is a Hamilton cycle of K;, and {H1, Ha, ..., Hy_1)/2} gives a Hamilton
cycle decomposition of K, p is a prime. Further, {Hi, Ha, ... H(,_1)/2} can be
partitioned into sets of 2 or 3 cycles such that the sum of the cycles of each set
is isomorphic to G or H, respectively.

3. GREGARIOUS KITE FACTORIZATION OF K,, X K,

Lemma 9. There exists a gregarious kite factorization of K4 X Kj.

Proof. Let V(K4) = {1,2,3,4} and V(K3) = {1,2,3}. Then V(K4 x K3) =
U?:l Vi, where V; = {i; | 1 < j < 3}. Now we construct a gregarious kite factor-
ization of K4 x K3 as follows: For 0 < s < 2, let Fl= {1114,2245,4315; 43163145 };
F52 = {21+87 4345, 32+s; 32—}—5134—5}; F53 = {31+57 2945, 13455 13—}—541—1—5}7 where the
subscripts are taken modulo 3 with residues 1,2,3. Clearly each F; = Ui:o FY
1 <4 < 3, is a gregarious kite factor of K4 x K3 and {Fy, F», F3} gives a gregarious
kite factorization of Ky x K3. [ |

Lemma 10. For n =3 (mod 6), there exists a gregarious kite factorization of
K4 X Kn.

Proof. By Theorem 6, we have a K3-factorization of K,,,n = 6s+3,s > 1 (since
the case s = 0 follows from Lemma 9). Since tensor product is distributive over an
edge-disjoint union of subgraphs, corresponding to each Kjs-factor of K,,, we have
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a (K4 x K3)-factor of K4 x K,,. Hence a K3-factorization of K, gives a (K4 x K3)-
factorization of Ky x K,. By Lemma 9, we have a gregarious kite factorization

of K4 x K3. Thus combining all these we get a gregarious kite factorization of
Ky x K,,. |

Lemma 11. For |V(G)| = p, p > 5 is a prime, there exists a gregarious kite
factorization of K4 X G, where G is described as in Note 7.

Proof. Let V(K4) ={1,2,3,4} and V(G) = {1,2,...,p}, p > 5. Then V(K4 xG)
= U?Zl Vi, where V; = {i; | 1 < j < p}. Now we construct a gregarious kite
factorization of K4 x G as follows: For 0 < s <p—1, let

Fsl = {31+s, 2p+sa 1p71+s; 1p71+s41+s}; F52 = {31+sa 42+s, 234s; 23+511+s};
F53 = {33+s’ 12+87 41+s; 41+s2p71+s}; Fs4 = {31+5a 22+57 13+s; 13+s41+s};
FE = {31+s’ 4p+s: 2p—1+s; 2p—1+511+8}; Ff = {3p+57 11+57 42—1—3; 42+s24+s}-

In all the above constructions the subscripts are taken modulo p with residues
1,2,...,p. Clearly each F; = Ui’;é F! 1 <4 <6, is a gregarious kite factor of
Ky x G and {Fy, Fs,. .., Fg} gives a gregarious kite factorization of K4y x G. m

Lemma 12. There exists a gregarious kite factorization of K4 x K.

Proof. Let V(K,) = {1,2,3,4} and V(K7) = {1,2,...,7}. Then V(K4 x K7)
= Uj‘zl Vi, where V; = {i; | 1 < j < 7}. Now we construct a gregarious kite
factorization of K4 x K7 as follows: For 0 < s < 6, let

F = {3115, 2045 Lotsi Lorsdors )i Y = {4145, 2245, 37453 Br4slats i
F2 = {1145, 304, 47453 47152045 1 Fi = {3145, 2048, 1343 Lasdigs b
F? = {3146, 4546, 20453 20451645} FO = {1145, 2400, 37455 Brpsdos s
FJ = {4145, 2415 L1 1rpsBars}s Fy = {114 234 455 45453615 13
F? = {2115, 3345, 46451 D615 1445}

In all the above constructions the subscripts are taken modulo 7 with residues
1,2,...,7. Clearly each F; = US:O Fi 1 <i <9, is a gregarious kite factor of
Ky x K7 and {Fy, Fy, ..., Fy} gives a gregarious kite factorization of K4y x K7. m

Lemma 13. For |V(H)| = p, p > 11 is a prime, there exists a gregarious kite
factorization of K4 x H, where H is described as in Note 7.

Proof. Let V(K4) ={1,2,3,4} and V(H) = {1,2,...,p}, p > 11. Then V(K4 x
H) = Ui, Vi, where V; = {i; | 1 < j < p}. Now we construct a gregarious kite
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factorization of K4 x H as follows: For 0 < s <p—1, let

Ff = {4p—115 Lpts: 21453 214835451 o = {dots, 33455 Lis; 1142545}

F? = {1prs, 4015314431462 051 Fit = {1310 20— 145 3145 3146454}

F2 = {2p 146, Lp—gps, d1os; 14835461 FE = {4p—14s, 2prs, L1l Lt s350s )5
FI = {3215, 134, 21461 2146854611 o = {2345, 4p—14, 31455 31451545 )5

F) = {215, 3p— 145 4145 41451545}

In all the above constructions the subscripts are taken modulo p with residues
1,2,...,p. Clearly each F; = U’S’;é Fi 1 <i<9,is a gregarious kite factor of
Ky x H and {F}, Fy, ..., Fy} gives a gregarious kite factorization of Ky x H. =

Lemma 14. For all odd prime p, there exists a gregarious kite factorization of
K4 X Kp.

Proof. By Remark 8, we have a factorization of K, into graphs isomorphic to
G or H. A gregarious kite factorization of K4 x K, follows from Lemmas 9, 11,
12 and 13. [

Lemma 15. For all odd prime p and s > 1, there exists a gregarious kite factor-
ization of Ky X Kps.

Proof. For s > 1, Ky x Ky = Ky x [pKps-1 @ Kp(p* )] = p (Ky x Kps-1) @
(K4 x Kp(p*™1)] (since the case s =1 follows from Lemma 14).

For s = 2, K4 x K = p(Ky x Kp) @ [Ky x Kp(p)]. By Lemma 14, we
have a gregarious kite factorization of p (K4 x Kj,). By Theorem 4, we have a
K -factorization of K,(p). Corresponding to each K,-factor of K,(p), we have
a (K4 x Kp)-factor of K4 x Kp(p). Hence a K,-factorization of K,(p) implies a
(K4 x Kp)-factorization of K4 x K,(p). Now the existence of a gregarious kite
factorization of (K4 x K),) follows from Lemma 14.

Fors =3, KyxK,s =p (K4 X Kp2)EB [K4 X Kp(pQ)] . Now the gregarious kite
factorization of p (K4 X sz) follows from the case s = 2. By Theorem 4, we have
a K,-factorization of K,(p*). Corresponding to each K,-factor of K,(p?), we have
a (K4 x Kp)-factor of K4 x K,(p?). Hence a K-factorization of K,(p?) implies a
(K4 x K,)-factorization of K, x K,(p*). Now the existence of a gregarious kite
factorization of (K4 x Kj,) follows from Lemma 14.

For s > 1, Ky x Kps = p (K4 X Kps—l) @ [K4 X Kp(ps_l)} . By the induction
hypothesis on s, we have a gregarious kite factorization of p (K4 X Kps—l) . By
Theorem 4, we have a K)-factorization of K,(p*~!). Corresponding to each K-
factor of K, (p*~!), we have a (Ky x Kp)-factor of Ky x K, (p*~'). Thus a K-
factorization of K, (ps_l) implies a (K4 x K)p)-factorization of Ky x K, (ps_l) )
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Now the existence of a gregarious kite factorization of (K4 x K),) follows from
Lemma 14. Hence combining all the above we have a gregarious kite factorization
of K4 x Kps, for all s > 1. [

Lemma 16. For all odd primes p,q (p < q) and all integers s,t > 1, there exists
a gregarious kite factorization of Kq X Kpsgt.

Proof. For s,t > 1 and p < q, K4 X Kpsgt = K4y X K,
K, (ps_lqt)] =p [K4 X Kps—lqt] @ [K4 x Ky(p*~lq )] .

Casel. (a)Fors =1, t =1, Kyx Kpqg = K4 X (pKq ® K,(q)) = p [K4 X Kq]®
[K4 x K,(q)]. By Theorem 4, we have a K-factorization of K,(q). Corresponding
to each Kjp-factor of K,(q), we have a (K4 x K,)-factor of K4 x K,(q). Thus a
K ,-factorization of K,(q) implies a (K4 x K,)-factorization of K4 x K,(q). Now
the existence of a gregarious kite factorization of K4 x K, and p (K4 x K,) follows
from Lemma 14.

(b) For s = 1,t =2, K4y x K2 = K4 [qua @ Kp(q2)] =p [K4 X qu] &)
[K4 X Kp(qz)] . By Theorem 4, we have a K -factorization of K,(q?). Correspond-
ing to each K,-factor of K,(q?), we have a (K4 x Kj)-factor of K4 x K,(q?). Thus
a Kp-factorization of K,(q?) implies a (K4 x Kj)-factorization of K4 x K,(q?).
Now the existence of a gregarious kite factorization of K4 x K, and p (K4 x K q2)
follows from Lemmas 14 and 15, respectively.

(c) For s =1,t >3, Ky X Ky = Ky x [pKgp ® Kp(q')] = p [Ka x K| @
(K4 x Kp(¢")] . By Theorem 4, we have a K,-factorization of K,(g"). Correspond-
ing to each K)-factor of K,(q"), we have a (K4 x K,)-factor of K4 x K,(g"). Thus
a K,-factorization of K,(q") implies a (K4 x K),)-factorization of Ky x K,(q').
Now the existence of a gregarious kite factorization of K4 x K, and p (K4 x K qt)
follows from Lemmas 14 and 15, respectively.

Case2. (a) For s =2,t =1, Ky x K2, = Ky X K pqg = Kq X [pKpq @ Kp(pq)]
= p[Ky x Kpy] & [K4 x Kp(pq)]. By Theorem 4, we have a Kj-factorization
of Kp(pg). Corresponding to each K,-factor of K,(pq), we have a (K4 x Kp)-
factor of K4 x Kp(pq). Thus a K,-factorization of K,(pg) implies a (K4 x Kp)-
factorization of K4 x K,(pq). Now the existence of a gregarious kite factorization
of K4 x K}, and p [K4 x K| follows from Lemma 14 and Case 1(a), respectively.

(b) For s =2, t =2, Ky x K22 = Ky x K2 = Ky x [pKp2 ® Kp(pg?))
= [K4 X quz] @ [K4 X Kp(pq2)] . By Theorem 4, we have a Kj-factorization
of K,(pg*). Corresponding to each K,-factor of K,(pq?), we have a (K4 x K,)-
factor of K4 x K,(pg®). Thus a K,-factorization of K,(pg*) implies a (K4 x K,)-
factorization of K4 x K, (pg?). Now the existence of a gregarious kite factorization
of Ky x K, and p [K4 x K,z2] follows from Lemma 14 and Case 1(b), respectively.

(c) For s = 2,t > 3, Ky x Koyt = Ky X Kt = Ky x [pKpgt ® Kp(pq')]
=9 [K4 X qut] S [K4 X Kp(pqt)] . By Theorem 4, we have a K,-factorization

s—lgt = Ky x [prs—lqt@
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of K,(pq'). Corresponding to each K,-factor of K,(pq'), we have a (K4 x Kp)-
factor of K4 x K,(pq'). Thus a K,-factorization of K,(pq') implies a (K4 x Kj,)-
factorization of Ky x Kp(pq'). Now the existence of a gregarious kite factorization
of K4 x Kp, and p [K4 x K] follows from Lemma 14 and Case 1(c), respectively.

(d) For s, > 1, Kyx Kps g =p [K4 X Kps14t|®[ Ky x Kp(p*~1¢")]. By induc-
tion hypothesis on s, we have a gregarious kite factorization of p [K4 X Kpsflqt] .
By Theorem 4, we have a Kp-factorization of K, (ps_lqt). Corresponding to
each K,-factor of K, (ps_lqt) , we have a (K4 x Kjp)-factor of K4 x K, (ps_lq ) :
Thus a K-factorization of K, (ps_lqt) implies a (K4 x Kj)-factorization of K4 x
K, (ps_lqt) . Now the existence of a gregarious kite factorization of K4 x K, fol-
lows from Lemma 14. Hence combining all the above we have a gregarious kite
factorization of Ky x Kps,t, for all s,¢ > 1 and p < gq. |

Lemma 17. For all odd n > 1, there exists a gregarious kite factorization of
K4 X Kn.

Proof. By fundamental theorem of arithmetic, any integer n > 1 can be uniquely
written as prime powers or product of prime powers. Consider n = p{'p5?---pi*,
where each p; is a distinct odd prime and o; > 1,4 =1,2,...,t. Fix p{* < pj? <

.o < p®. Now,

Ky x Ky =Kq X Ko joa jor = Ky X [p?le;*?pr...pgt O Ky (py°p5® - 'p?t)]
:p‘lxl |:K4 X Kp32pg3~-p?t] D |:K4 X Kp;:q (pgngg .. .p?t)] .

It is enough to show that there exists a gregarious kite factorization of Ky x
Ke1(py®ps® -+ pi") and pi’! {K4 X Kp;2p;3_,‘p?t:| .
Case 1. Consider Ky x Kpiq (p3?ps® -+ -py*). By Theorem 4, we have a

g, Q3

K pflxl—factorization of Ko (p32ps® - - - pi*). Corresponding to each Kpclxl—factor of

s, a3

Kp(;l (p32ps? -+ - p), we have a <K4 X Kptlxl)—factor of Ky x Kp‘fl (pS2ps? -+ - pit).
Now the existence of a gregarious kite factorization of K4 x Kp?q follows from
Lemma 15.

Case 2. Consider pi" [K4 X Kp;2p§3,,,p§1t] . We write

Pyt [K4 x Kpgapgs...pgt} =i’ {K4 X [pSQKpgg,,,p?t @ Kpgg (ps? - - .p?t):| }

= p(lll {ng [Kzl X Kp§3_._p?ti| ©® [K4 X Kpgz (p§3 e ‘ptat)] }

= p(l)élpgé2 [K4 X Kpgg’---p?t} @p?l [K4 XKpgtz (pgs o 'p?t)} .
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Now we have to show the existence of gregarious kite factorization of p{p5?

[K4 X Kpgg,,,p?t} and p}* [K4 X K o (pgi” . 'pf‘t)] . The existence of gregarious

kite factorization of pi" [K4 x K az( - py )} is similar to Case 1.

Now we can write
Py ps* [K4 X Kpga...pgt] —p‘f‘lpS‘Q{sz X [p§3Kpg4 et @ K (- ] )} }
= pi'p5°rs® [KA: X K o ]
D5 | Ka x Koo (05" -+ 0)] -

The existence of gregarious kite factorization of the second term pi*p5?

[K4 X Ko (pg*-- -pf“)} is similar to Case 1.

Now we consider the first term p{p52p5* [K4 X Kpjzl_up?t} and repeat the

a1, Qo

above process until we end up with p{"'p5? - - - ;1" [K4 X Kp:‘ti| epps? - prty’

[K4 X K ot (ptat)} . Now the existence of a gregarious kite factorization of Ky x
t—1

Kp?t and hence the first term follows from Lemma 15 and the existence of grega-
rious kite factorization of K4 x K ol (py*) and hence the second term is similar
to Case 1. Thus we have a gregarious kite factorization of p* [K4 x K po2pl3 .0t

Hence from Cases 1 and 2, we have a gregarious kite factorlzatlon of Ky x
Kp?lp;@ B oct = Ky x K,,. |

Lemma 18. There exists a gregarious kite factorization of Kg x Ks.

Proof. Let V(Kg) = {1,2,...,8} and V(K3) = {1,2,3}. Then V(K35 x K3)
= Ule Vi, where V; = {i; | 1 < j < 3}. Now we construct a gregarious kite
factorization of Kg x K3 as follows: For 0 < s < 2, let

Fy ={(1145, 231432153 32466144) (Bt B3, 42153 A2 T3

?

F = { 11+s, 53+57 72+s; 72+523+s 31+Sa 62+s, 43+s; 43+s81+s

?

{ 41+87 23+57 12-1—5; 12+531+5 51+s; 83+s’ 62+5; 62+s71+s

)

%
h
%
%
= {(21455 5315562163621 s1145) (3145, 8345, T24s; T24543+5) }3
= {(114s, 8245, 73455 T31:56215) (2145, 4345, 52453 D2163345) }3

?

) ( )

( ) ( )
( ) ( )
= {(61+5, 2245, 83453 83+511+s) (T14s5 D345, 32453 B2+543+5)
( ) ( )
( ) ( )
( ) ( )

F = { 61+57 43+87 12-1—5; 12+s53+s B1+s, 33+57 22—}—5; 22+573+s }

In all the above constructions the subscripts are taken modulo 3 with residues
1,2, 3. Clearly each F; = US o Fe, 1 <4 <7, is a gregarious kite factor of Kg x K3
and {F1, Fy, ..., F7} gives a gregarlous kite factorization of Kg x Kj. |
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Lemma 19. For n =3 (mod 6), there exists a gregarious kite factorization of
Kg X Kn

Proof. By Theorem 6, we have a Ks-factorization of K,, n = 6s+ 3, s > 1
(since the case s = 0 follows from Lemma 18). Corresponding to each K3-factor
of K, we have a (Kg x K3)-factor of Kg x K,. Hence a Ks-factorization of K,
implies a (Kg x K3)-factorization of Kg x K,,. By Lemma 18, we have a gregarious
kite factorization of Kg x K3. Thus combining all these we get a gregarious kite
factorization of Kg x K,, n =6s+ 3, s > 1. [

Lemma 20. For |V(G)| = p, p > 5 is a prime, there exists a gregarious kite
factorization of Kg x G, where G is described as in Note 7.

Proof. Let V(K3) ={1,2,...,8} and V(G) = {1,2,...,p}, p > 5. Then V(Kg x
G) = U;g:l Vi, where V; = {i; | 1 < j < p}. Now we construct a gregarious kite
factorization of Kg x G as follows: For 0 < s <p—1, let

F} = {(214s, 3215 Lptsl LpssTots) (814s: D3sy doys; do1s6445) }5
F2 = {(1145, 5315, Tors; To4s241s) (Bars, Oppss d14si d14s8p—144) )3
F2 = {(1315, 4245, 21455 214583+5) (3245, D345, 61155 6115T344) };
F = {(13+5, 6245, 81455 814+523+5) (3345, 51455 12455 T2+s4pts) 3
= {(2145, 53455 62455 624 s Lats) (4145, T2+5, 83+55 83+53145) }3
F = {(L245,83+s) T14s; T1+563+5) (51455 4245, 23455 23+535+5) };
FY = {(Lo4s, 514s: 43455 43452145) (6215, T35, 31455 31458p—145) 1
Fy = {3245 43+ Litsi LitsTp-1+4s) (2245, 511, 83455 83+56145) };
FY = {(1345, 2214 31155 31456315) (5145, 8245, T34 Tarsdsis) 13
F}O = {(2345, 6245, 41153 4115 1345) (8245, D3ty 3143 3148 Tp—14s) 13
Fi' = {(1345, 3246, 51183 B1tsdp1+s) (6115, 8215, 23455 2345 T54) };
F}? = {(5245, 6315, Litsi Li+52345) (3140, A34ss Toss Tors8pts) 15
F? = {(124s, 814, 63453 634-545+5) (71455 D3tss 22455 22453p+s) 15
FI* = {(2145, Tots 63155 631 55145) (4145, 3345, 82461 B2t lpis) -

In all the above constructions the subscripts are taken modulo p with residues
1,2,...,p. Clearly each F; = [ J/_, ! F! 1 <i < 14, is a gregarious kite factor of
Kg x G and {Fy, Fs,..., F14} gives a gregarious kite factorization of Kg x G. m

Lemma 21. There exists a gregarious kite factorization of Kg x K7.

Proof. Let V(Kg) = {1,2,...,8} and V(K7) = {1,2,...,7}. Then V(Kg x Kr)
= Ule Vi, where V; = {i; | 1 < j < 7}. Now we construct a gregarious kite
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factorization of Kg x K7 as follows: For 0 < s < 6, let

= {(61+5: 2555 33453 3345 L6+s) (8145, T3+55 45455 d5455145) 3

= {(83455 45155 2145 214654+45) (T14s, 6445, Lo4s; Lo4s324s) ]

= {(81+55 24455 36453 36+553+5) (41455 6315, T5455 Tots114s) }

= {(41+5, 12455 26455 26+582+5) (71455 3345, 65455 65455145) };

= {(214s) 4455 T6455 T64+553+5) (81455 33+, 66455 6645 1345) }3

= {(41+5) L3+s, 85455 85+552+5) (2145, 65455 T3+55 T3+537+5) }3

= {11455 2345, To455 T64+582+5) (5145, 63+5, 46+55 46+532+5) }3

= {(22+s, 33455 Li4s5 Li456545) (8145, 42455 53455 5345 T745) }3

F = {(T24s: 53455 Lits5 Li4s24+5) (41455 32+, 66455 664+583+5) }3

FI%={(1145, 8615 67155671 s4a15) (T14s, 5745, 32443 32452645) 13

Fi'={(8144, 15t 23155 231 s4a1s) (6145, 5345, 32443 3245 T61s) 13
F{? = {(2144,6215, 5315 53 1s1715) (414, Tags, 8314 8313740) 15
FP = {(T14s, Lots, 83455 8345674s) (514s, 23455 42453 d21536+5) 3
Ft = {(5146, 4345 L2465 1o4586+5) (B2, Tats 31455 31452445) }3
FY% = {(1145, 3245, 43155 43456215) (5145, 8345, 22453 2245 T64s) 13
FY% = {(3145, 2245, 13453 I3464745) (825, T34s5 D155 D145644s) 5
7 = {(6945, 2315, 41453 4145Tat5) (31455 8245, 53453 Datslors) };
FI® = {(1345, 3245 51455 D14sdars) (6145, 2345, 824 8245T544) i
FY? = {(1145,6315, 52155 524 52515) (T24s, 4345, 314 31458544) 13
F2% = {(8115, 6345, Io1s; Loy sdsts) (Tits, 2245, 53155 534.6374) 15
F2' = {(2145,6315, Torsi Tarslers) (4118, 334, 824i 821sD54s) -

In all the above constructions the subscripts are taken modulo 7 with residues

1,2,...,7. Clearly each F; = U oo Fs, 1 <1 <21, is a gregarious kite factor of

Kg x K7 and {F1, Fy, ..., Fy} glves a gregarious klte factorization of Kg x K7.
|

Lemma 22. For |V(H)| = p, p > 11 is a prime, there exists a gregarious kite
factorization of Kg x H, where H is described as in Note 7.

Proof. Let V(Kg) = {1,2,...,8} and V(H) = {1,2,...,p}, p > 11. Then
V(Kgx H) = J>_, Vi, where V; = {i; | 1 < j < p}. Now we construct a gregarious
kite factorization of Kg x H as follows: For 0 < s <p—1, let

Fsl = {(73+87 45+57 11—1—5; 11+525+s) (5p—1+Sa 8p+57 61+s; 61+335+5)};
F2 = {(4315: 2245, Litsi lits35+s) (831, 6245, 5145 5145 T545) };
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F —{( p—1+ss dp+s, Li+si LitsTo4s) (Op—1+s: 2pts, 31453 314+585+s) 5
{(81) 34551 p— 1+5721+s,21+s35+5)(7p—1+876p+8751+s§51+s45+s)}§
{(13+57 2945, 31+s5 31+s75+s) (42+57 9345, 81+s; 81+565+s)}'

F6 = {(T2+5: 4345, 21453 2145 15+5) (8p—1+s, Sptss 31453 31450545) 15
= { (3245, Lpts; 6145 61454515) (T14s, 23455 85455 85455145) }5
= {(13+s5 72455 51455 514535+5) (2245, 63+55 41455 414585+5) }5

F = {(6p+s55 52455 21455 2145 T545) (Spts 42455 31455 3145 1545) 3

F1% = {(8pts: 2p—14s Litsi 111 sP545) (B31s, d54s, T1si T14s6p—34s) i

F = {(1345, 6545, 4145 41453545) (73455 85455 21155 21455545) 13

F12 {(83+s’ p— 1+s;41+sa41+s p— 3+8) (13+s,74+5a55+s;55+s31+s)};

FJ? = {(2345, 5145, 65453 6545T145) (82455 Ipts, B14s; B14sd545) }5

FY* = {(Tors, 5ptss ditss A14s1sps) (6315, 2p— 146, 31483 31468p—34s) };

F15 {(21) 14s,0 p— 3+5751+8751+515+5) (3p—1+5,7p+5,81+5;81+545+5)};

FL% = {(1346,8p- 14 Tirs; Ti4s554s) (6148, 3345, 25445 254s4144) i

FT = {(8245, 2315, 4145; 41458515) (3215, 6315, Tis Tivslogs) };

FYS = {(1pts, 6p—145, 81461 814.655+5) (73455 dp—14s: B14s3 B1462545) };

FY = {(5245,3p+s Lits) Lits854s) (dp—1-+ss Optss T1si T1452545) 15

F2% = {(4p—1453pts, 51461 514625+5) (345, 8p—14s, 6141 6145 1545) };

F2' = {(4215, 5pter Titss 14s654s) (2215, 8pts, Tis; Ti4s354s) -

In all the above constructions the subscripts are taken modulo p with residues
1,2,...,p. Clearly each F; = Ug;é F! 1 <4 <21, is a gregarious kite factor of
Kg x H and {F}, Fy, ..., Fy} gives a gregarious kite factorization of Kg x H. m

Lemma 23. For all odd prime p, there exists a gregarious kite factorization of
Kg X Kp.

Proof. By Remark 8, K, has a factorization into graphs isomorphic to G or H.
Hence a gregarious kite factorization of Kg x K, follows from Lemmas 18, 20, 21
and 22. [

Lemma 24. For all odd prime p and s > 1, there exists a gregarious kite factor-
ization of Kg x Kps

Proof. For s > 1, Kg X Ky = Kg X [pKps—1 ® Kp(p*™!)] = p(Kg X Kps-1) @
[Ks x Kp(p*~1)] (since the case s = 1 follows from Lemma 23).

For s = 2, Kg x K2 = p(Kg x K,) @ [Kg x Kp(p)]. By Lemma 23, we
have a gregarious kite factorization of p(Kg x K). By Theorem 4, we have a
K ,-factorization of K,(p). Corresponding to each K,-factor of K,(p), we have
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a (Kg x Kp)-factor of Kg x Kp(p). Thus a Kj-factorization of K,(p) implies a
(Kg x Kp)-factorization of Kg x K,(p). Now the existence of a gregarious kite
factorization of (Kyg x K),) follows from Lemma 23.

For s = 3, Kg x K3 = p(Kg x K,2) ® [Ks x K,(p®)] . Then the gregarious
kite factorization of p(Kg x K,2) follows from the case s = 2. By Theorem 4, we
have a Kj-factorization of K,(p?). Corresponding to each K,-factor of K,(p?), we
have a (K x K,)-factor of Kgx K,(p?). Thus a K,-factorization of K,(p?) implies
a (Ks x K,)-factorization of Kg x K,(p?). Now the existence of a gregarious kite
factorization of (Kg x Kj,) follows from Lemma 23.

For s > 1, Kg x Kps = p(Kg x Kps-1) ® [Kg x Kp(p*~!)] . By the induction
hypothesis on s, we have a gregarious kite factorization of p(Kg x K,:-1). By
Theorem 4, we have a K)-factorization of K,(p*~!). Corresponding to each K-
factor of K,(p*~1), we have a (Kg x K,)-factor of Kg x K,(p*~!). Thus a K-
factorization of K,(p*~!) implies a (Kg x Kp)-factorization of Kg x K,(p*™!).
Now the existence of a gregarious kite factorization of (Kg x K,,) follows from
Lemma 23. Hence combining all the above we have a gregarious kite factorization
of Kg x Kps, for all s > 1. [

Lemma 25. There exists a gregarious kite factorization of Kgx Kpsgt for all odd
primes p,q (p < q) and all integers s, t > 1.

Proof. For s,t > 1 and p < g,

Kg X Kyt = Ks % Ky o1 = Ky x [pE 10 © Kp(p* ")
=p [Kg X Kpsflqt] @ [Kg X Kp(ps_lq )] .

Casel. (a) Fors =1,t =1, Kgx Kpq = Kgx [pK,; & Kp(q)] = p[Ks x K&
[Ks x Kp(q)] . By Theorem 4, we have a K)-factorization of K,(q). Corresponding
to each Kp-factor of K,(q), we have a (Kg x K,)-factor of Kg x K,(q). Thus a
K ,-factorization of K,(q) implies a (Kg x Kp)-factorization of Kg x K,(q). Now
the existence of a gregarious kite factorization of Ky x K, and p(Kjg x K) follows
from Lemma 23.

(b) For s = 1,t = 2, Kg x K,;» = Kg x [quz @Kp(qQ)] =p [KS X qu} &)
[Ks x Kp(q?)] . By Theorem 4, we have a K,-factorization of K(¢*). Correspond-
ing to each K)-factor of K,(g?), we have a (K3 x Kj,)-factor of Kg x K,(¢?). Thus
a K,-factorization of K,(¢?) implies a (Kg x K,)-factorization of Kg x K,(¢?).
Now the existence of a gregarious kite factorization of Kg x K, and p(Kg x K 2)
follows from Lemmas 23 and 24, respectively.

(c) For s =1, ¢ >3, Kg x Ky = Kg x [pKg ® Kp(q')] = p [Kg x K| @
[Ks x Kp(q")] . By Theorem 4, we have a K)-factorization of K,(g"). Correspond-
ing to each K,-factor of K,(q"), we have a (Kg x Kj)-factor of Kg x K,(q"). Thus
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a K-factorization of K,(q") implies a (Kg x K))-factorization of Kg x K,(q").
Now the existence of a gregarious kite factorization of Kg x K, and p(Kg x K)
follows from Lemmas 23 and 24, respectively.

Case 2. (a) For s =2,t =1, Kg x K}p, = Kg X Kp g = Kg X [pKpq © K;(pq)]
= p[Kg x Kpq| ® [Kg x K,(pq)]. By Theorem 4, we have a K,-factorization of
K, (pq). Corresponding to each K ,-factor of K,(pq), we have a (Kg x K)-factor of
Kg x K,(pq). Thus a Kp-factorization of K, (pq) implies a (Kg x K, )-factorization
of Kg x Kp(pq). Now the existence of a gregarious kite factorization of Kg x K,
and p [Kg x Kp,] follows from Lemma 23 and Case 1(a), respectively.

(b) For s =2, t =2, Kg X K22 = Kg x K, 2 = Kg x [pK,2 ® Kp(pg?)]
= p [Ks x K,2] ® [Ks X Kp(pg?®)] . By Theorem 4, we have a K,-factorization
of K,(pg*). Corresponding to each K,-factor of K,(pq?), we have a (Kg x K,)-
factor of Kg x Kp(pg?). Thus a K-factorization of K,(pg®) implies a (Kg x K,)-
factorization of Kg x K,(pq?). Now the existence of a gregarious kite factorization
of Kgx K and p [K g X quz] follows from Lemma 23 and Case 1(b), respectively.

(c) For s =2,t >3, Kg x Kpopo = Kg X K, pt = Kg X [pK,pt ® Kp(pq')]
=p [Kg X qut] @ [KS X Kp(pqt)] . By Theorem 4, we have a K,-factorization
of K,(pq'). Corresponding to each K,-factor of K,(pq'), we have a (Kg x K),)-
factor of Kg x K,(pg'). Thus a K,-factorization of K,(pq") implies a (Kg x Kp)-
factorization of Kg x K,(pq"). Now the existence of a gregarious kite factorization
of Kg x K, and p [Kg x K] follows from Lemma 23 and Case 1(c), respectively.

For s,t > 1, Kg X Kpsgt = p [Kg X Kpsflqt] &) [Kg X Kp(psflqt)] . By the in-
duction hypothesis on s, we have a gregarious kite factorization of p [K 8 X Kps—1 qt} .
By Theorem 4, we have a K,-factorization of K,(p*~'¢'). Corresponding to
each Kp-factor of K,(p*~!q'), we have a (Kg x K,)-factor of Kg x K,(p*~1q").
Thus a Kp-factorization of K,(p* 1¢') implies a (Kg x K, )-factorization of Kg x
K,(p*"1q"). Now the existence of a gregarious kite factorization of Kg x K, fol-
lows from Lemma 23. Hence combining all the above we have a gregarious kite

factorization of Kg x Kps,t, for all s, > 1 and p < gq. [

Lemma 26. There exists a gregarious kite factorization of Kg x K, for all odd
n > 1.

Proof. By fundamental theorem of arithmetic, any integer n > 1 can be uniquely
written as prime powers or product of prime powers.

Consider n = p{'py?---pi**, where each p; is a distinct odd prime and a; >
1,i=1,2,...,t. Fix p{* < p3? < --- < p}*. Now,

Kg x K, = Kg X Kp‘lllpgz. oy = Kg X [p‘flK 02pa3..pit ® Kptlaq (ngPgi” .. .p?t)}

Py P27 P3

= p‘lll Kg x Kpgxzp;g_”p?t} &) [Kg X Kp,lll (p32p§3 .. .p?t)i| )
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It is enough to show that there exists a gregarious kite factorization of Kg x
Ko (p2p5* ... pf") and p{* | Kg X Kjozp0n ot

Case 1. Consider Kg X Kp‘fl (p52p5® - --pi*). By Theorem 4, we have a
K p;xl—factorization of K o1 (p52p5?® - - - pit). Corresponding to each Kpixl—factor of
Kp;u (P?Pg?i i), we have a (K3 >< Kp‘lll)'fc‘:icto.r of Kg x Kp«lxl (p52p32 - - - p&).
Now the existence of a gregarious kite factorization of Kg x Kp‘lll follows from
Lemma 24.

Case 2. Consider p*! [Kg X Kpgngs,,,p?t] . We write
plt | Kz % Kpgngs...pft} = pi* {KS X [ngKp?...pgt & Kpgz (p3® - - 'ptat)} }

= pi* {pg‘Q [Kg X Kpg@,..p?t] ® {Ks X K oz (p5° - 'p?t)] }

— p‘lllpém |:K8 X Kpg?"'-p?t] @p?l [Kg X Kpgg (p§3 .. -p?t)} .

Now we have to show the existence of gregarious kite factorization of p{*p5?

[Kg X Kpgs.“p?t} and p{? [Kg X Kpgg (pg® - -pf‘t)] . The existence of gregarious

kite factorization of p{" |Kg x Kpgg (pg® -+ -pf‘t)] is similar to Case 1. Now we

can write

0 (Ko x Koo e | =002 { Ko [p5° Ko ppe @ Koga 0620}

= D57 | K x Kpoa. o

t

& pitps? [Kg X Koo (pg* - ~p§”)} )
The existence of gregarious kite factorization of second term  pi™ p5? [Kg X
Kp§3 (pg* - -pf“)} is similar to Case 1.

Now we consider the first term pi™p5?p5* [Kg X Kpjzl_upgt} and repeat the

a1, Q2 Qt—2

above process until we end up with p{'p5? - - - p'7" [Kg X Kp?t]@p(fl P52 Dy

Kg x Kpat—l (ptat)} . Now the existence of a gregarious kite factorization of Kg X
t—1

K ot and hence the first term follows from Lemma 24 and the existence of gregar-

ious kite factorization of Kgx K ot (py*) and hence the second term is similar to
t—1

Case 1. Thus we have a gregarious kite factorization of p{! [Kg XKP;Q oSl |-

Hence from Cases 1 and 2, we have a gregarious kite factorization of Kg X
Kp?lp;Q---pft = Kg x K,,. |
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Lemma 27. For all odd n > 1, there exists a gregarious kite factorization of
K x K, where K is a kite.

Proof. Let V(K) = {1,2,3,4} and V(K,) = {1,2,...,n}. Then V(K x K,)
= UL, Vi, where V; = {i; | 1 < j < n}. Now we construct a gregarious
kite factorization of K x K, as follows: For 0 < s < n — 2, let F; = @?;01
{1144, 224 544 33+25+i; 33+2s+id4+3s+i |, where the subscripts are taken modulo n
with residues 1,2, ..., n. Clearly each Fs, 0 < s < n—2 is a gregarious kite factor
of K x K,, and all together gives a gregarious kite factorization of K x K,,. m

Theorem 28. There exists a gregarious kite factorization of K, x K, if and
only if m =0 (mod 4) and n is any odd integer greater than 1.

Proof. Necessity. It follows by 4|mn, {(m — 1)(n — 1)}/2 € N (respectively, the
size of a kite factor and the number of factors in a kite factorization of the graph
K, x Ky).

Sufficiency. Let m = 4s, s > 1 and n is odd. The case s = 1,2 follows from
Lemmas 17 and 26, respectively. Then for s > 3, K45 X K, = [sKy ® K(4)] x K,
= s(Ky x K;) ® (Ks(4) x K;,). Now the existence of a gregarious kite factor-
ization of s (K4 x K,,) follows from Lemma 17. By Theorem 5, we have a kite
factorization of K4(4),s > 3. Corresponding to each kite factor of K(4), we have
a (K x K,)-factor of (Ks(4) x K,,), where K is a kite. Thus a kite factorization
of K4(4) implies a (K x K,)-factorization of (K(4) x K,,). Further, the exis-
tence of a gregarious kite factorization of K x K, follows from Lemma 27. Hence
combining all these results we have a gregarious kite factorization of K,, x K,.

|

Conclusion. In this paper, we give a complete solution for the existence of a
gregarious kite factorization of K,, x K.

Acknowledgment

The second author thanks DST, New Delhi, for their support through Grant No.
SR/S4/MS: 828/13 and UGC-SAP through Grant No. 510/7/DRS-1/2016(SAP-

1).

REFERENCES

[1] I. Anderson, Combinatorial Designs and Tournaments (Oxford University Press Inc.,
New York, 1997).

[2] R.J.R. Abel, C.J. Colbourn and J.H. Dinitz, Mutually orthogonal latin squares
(MOLS), chapter in The Handbook of Combinatorial Designs, Second Edition, C.J.
Colbourn and J.H. Dinitz, Eds., Discrete Math. Appl. (Chapman & Hall/CRC Press,
Boca Raton, New York, 2007) 160-163.



GREGARIOUS KITE FACTORIZATION OF TENSOR PrRODUCT OF COMPLETE ...23

3]

[15]

[16]

J.C. Bermond and J. Schénheim, G-decompositions of K,,, where G has four vertices
or less, Discrete Math. 19 (1977) 113-120.
doi:10.1016,/0012-365X(77)90027-9

C.J. Colbourn, A.C.H. Ling and G.Quattrocchi, Embedding path designs into kite
systems, Discrete Math. 297 (2005) 38—48.
doi:10.1016/j.disc.2005.04.014

C.M. Fu, Y.F. Hsu, S.W. Lo and W.C. Huang, Some gregarious kite decompositions
of complete equipartite graphs, Discrete Math. 313 (2013) 726-732.
doi:10.1016/j.disc.2012.10.017

M. Gionfriddo and S. Milici, On the ezistence of uniformly resolvable decompositions
of K, and K, — I into paths and kites, Discrete Math. 313 (2013) 2830-2834.
doi:10.1016/j.disc.2013.08.023

L. Gionfriddo and C.C. Lindner, Nesting kite and 4-cycle systems, Australas. J.
Combin. 33 (2005) 247-254.

R. Haggkvist, Decompositions of complete bipartite graphs, in: Surveys in Combi-
natorics, Lond. Math. Soc. Lecture Note Ser. 141 (1989) 115-147.
doi:10.1017/CB09781107359949.007

S. Kucukcifci and C.C. Lindner, The metamorphosis of A-fold block designs with
block size four into A-fold kite systems, J. Combin. Math. Combin. Comput. 40
(2002) 241-252.

C.C. Lindner and C.A. Rodger, Design Theory (Chapman & Hall/CRC Press, Taylor
& Francis Group, Boca Raton, 2009).

G. Lo Faro and A. Tripodi, The Doyen-Wilson theorem for kite systems, Discrete
Math. 306 (2006) 2695—-2701.
doi:10.1016/j.disc.2006.03.074

G. Ragusa, Complete simultaneous metamorphosis of A-fold kite systems, J. Combin.
Math. Combin. Comput. 73 (2010) 159-180.

D.K. Ray-Chaudhuri and R.M. Wilson, Solution of Kirkman’s schoolgirl problem,
Combinatorics, Proc. Symp. Pure Math., Amer. Math. Soc. 19 (1971) 187-204.
doi:10.1090/pspum,/019/9959

A. Tamil Elakkiya and A. Muthusamy, Ps-factorization of triangulated Cartesian
product of complete graphs, Discrete Math. Algorithms Appl. 7 (2015) ID:1450066.
doi:10.1142/51793830914500669

A. Tamil Elakkiya and A. Muthusamy, Gregarious kite decomposition of tensor prod-
uct of complete graphs, Electron. Notes Discrete Math. 53 (2016) 83-96.
doi:10.1016/j.endm.2016.05.008

A. Tamil Elakkiya and A. Muthusamy, Ps-factorization of triangulated Cartesian
product of complete graph of odd order, S. Arumugam et al. (Eds.), ICTCSDM
2016, Lecture Notes in Comput. Sci. 10398 (2017) 425-434.
doi:10.1007/978-3-319-64419-6_54


http://dx.doi.org/10.1016/0012-365X\(77\)90027-9
http://dx.doi.org/10.1016/j.disc.2005.04.014
http://dx.doi.org/10.1016/j.disc.2012.10.017
http://dx.doi.org/10.1016/j.disc.2013.08.023
http://dx.doi.org/10.1017/CBO9781107359949.007
http://dx.doi.org/10.1016/j.disc.2006.03.074
http://dx.doi.org/10.1090/pspum/019/9959
http://dx.doi.org/10.1142/S1793830914500669
http://dx.doi.org/10.1016/j.endm.2016.05.008
http://dx.doi.org/10.1007/978-3-319-64419-6_54

24 A. TAMIL ELAKKIYA AND A. MUTHUSAMY

[17] L. Wang, On the existence of resolvable (K3 + e)-group divisible designs, Graphs
Combin. 26 (2010) 879-889.
doi:10.1007/s00373-010-0954-5

[18] H. Wang and Y. Chang, Kite-group divisible designs of type g'u', Graphs Combin.
22 (2006) 545-571.
doi:10.1007/s00373-006-0681-0

[19] H. Wang and Y. Chang, (K3+e, \)-group divisible designs of type g'u', Ars Combin.
89 (2008) 6388,

Received 13 March 2017
Revised 14 November 2017
Accepted 19 December 2017


http://dx.doi.org/10.1007/s00373-010-0954-5
http://dx.doi.org/10.1007/s00373-006-0681-0
http://www.tcpdf.org

