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Abstract

For a graph H, define σ̄2(H) = min{d(u) + d(v)| uv ∈ E(H)}. Let H be
a 2-connected claw-free simple graph of order n with δ(H) ≥ 3. In [J. Graph
Theory 86 (2017) 193–212], Chen proved that if σ̄2(H) ≥ n

2
− 1 and n is

sufficiently large, then H is Hamiltonian with two families of exceptions. In
this paper, we refine the result. We focus on the condition σ̄2(H) ≥ 2n

5
− 1,

and characterize non-Hamiltonian 2-connected claw-free graphs H of order
n sufficiently large with σ̄2(H) ≥ 2n

5
− 1. As byproducts, we prove that

there are exactly six graphs in the family of 2-edge-connected triangle-free
graphs of order at most seven that have no spanning closed trail and give an
improvement of a result of Veldman in [Discrete Math. 124 (1994) 229–239].
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1. Introduction

1.1. Terminology and known results

For graph-theoretic notation not explained in this paper, we refer the reader
to [1]. We consider only finite and loopless graphs in this paper. A graph is
called multigraph if it contains multiple edges. A graph without multiple edges
is called a simple graph or simply a graph. For a vertex x of G, NG(x) is the
neighborhood of x in G, and dG(x) or d(x) is the degree of x in G. A graph
G is Hamiltonian if it has a Hamilton cycle, i.e., a spanning cycle. A graph is
claw-free if it has no induced subgraph isomorphic to K1,3. Similarly, a graph is
triangle-free if it has no K3. As in [1], κ′(G) denotes the edge-connectivity of G.
Define Di(G) = {v ∈ V (G) | dG(v) = i} and D(G) = D1(G) ∪ D2(G). An edge
cut X of G is essential if G−X has at least two non-trivial components. For an
integer k > 0, a graph G is essentially k-edge-connected if G does not have an
essential edge-cut X with |X| < k. An edge e = uv ∈ E(G) is called a pendant

edge of G if min{d(u), d(v)} = 1. The circumference of G, denoted by c(G), is the
length of a longest cycle of G. Let Cn denote a cycle of order n. The length of a
path is the number of its edges. A path of length k is called a k-path. A connected
graph Q is a closed trail if the degree of each vertex in Q is even. A closed trail
Q is called a spanning closed trail (SCT) in G if V (G) = V (Q), and is called a
dominating closed trail (DCT) if E(G − V (Q)) = ∅. A graph is supereulerian if
it contains an SCT. The family of supereulerian graphs is denoted by SL.

The line graph of a graph G, denoted by L(G), has E(G) as its vertex set,
where two vertices in L(G) are adjacent if and only if the corresponding edges
in G have a vertex in common. The following theorem shows the relationship
between a graph and its line graph.

Theorem 1 (Harary and Nash-Williams [9]). The line graph H = L(G) of a

graph G with at least three edges is Hamiltonian if and only if G has a DCT.

Ryjáček [14] introduced the line graph closure operation of a claw-free graph
G, which becomes a very useful tool in investigating the Hamiltonicity in claw-
free graphs. A vertex v ∈ V (G) is locally connected if the neighborhood of v
induces a connected subgraph in G. Particularly, we say v is simplicial if the
subgraph induced by NG(v) is complete. For v ∈ V (G), the graph G′

v obtained
from G by adding the edges {uw |u,w ∈ NG(v) and uw /∈ E(G)} is called the
local completion of G at v. The closure of a claw-free graph G, denoted by
cl(G), is obtained from G by recursively performing local completions at locally
connected vertices with non-complete neighborhoods, as long as it is possible.
The closure cl(G) remains a claw-free graph and its connectivity is no less than
the connectivity of G. A graph G is said to be closed if G = cl(G).
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The following theorem translates claw-free graphs to line graphs when we
consider the Hamiltonicity of claw-free graphs. Note that a graph G is essentially
k-edge-connected if and only if L(G) is k-connected or complete.

Theorem 2 (Ryjáček [14]). Let H be a claw-free graph and cl(H) its closure.

Then

(i) cl(H) is well-defined, and κ(cl(H)) ≥ κ(H);

(ii) there is a triangle-free graph G such that cl(H) = L(G);

(iii) both graphs H and cl(H) have the same circumference.

For a graph H, let Ω(H, t) = {δ(H), σ2(H), σ̄2(H), σt(H), δF (H)}, where

δ(H) = min{d(v)| v ∈ V (H)} (Dirac-type);

σ2(H) = min{d(u) + d(v)| uv /∈ E(H)} (Ore-type);

σ̄2(H) = min{d(u) + d(v)| uv ∈ E(H)};

σt(H) = min{Σt
i=1d(vi)| {v1, v2, . . . , vt} is independent in H (t ≥ 2)};

δF (H) = min{max{d(u), d(v)}| u, v ∈ V (H) with dist(u, v) = 2} (Fan-type).

For the Hamiltonicity of a graph or a claw-free graph, a lot of research has
focused on the conditions of the parameters in Ω(H, t) (see the surveys [6, 8]).

Theorem 3 (Ore [13]). If H is a graph of order n such that σ2(H) ≥ n, then H
is Hamiltonian.

The following result extended the above result.

Theorem 4 (Fan [5]). If H is a 2-connected graph of order n ≥ 3 with δF (H) ≥
n
2 , then H is Hamiltonian.

For claw-free graphs, Matthews and Sumner [12] proved the following.

Theorem 5 (Matthews and Sumner [12]). If H is a 2-connected claw-free graph

of order n such that δ(H) ≥ n−2
3 , then H is Hamiltonian.

In [17], Zhang improved the above result as follows.

Theorem 6 (Zhang [17]). If H is a k-connected claw-free graph of order n with

σk+1(H) ≥ n− k, then H is Hamiltonian.

The graphs G3, G
1
4, G

2
4, G

1
5, G

2
5, . . . , G

7
5 are shown in Figure 1 (where the

circular and elliptical parts represent cliques of appropriate order containing at
least one simplicial vertex). Let G̃3 (G̃4 or G̃5) be the set of all spanning subgraphs
of G3 (G1

4 and G2
4 or G1

5, G
2
5, . . . , G

7
5, respectively).

In [11], Li et al. improved Theorem 5 and get the following result.
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Figure 1. Ten classes of graphs which have no Hamiltonian cycles.

Theorem 7 (Li et al. [11]). If H is a 2-connected claw-free graph of order n
with δ(H) ≥ n+5

5 , then either H is Hamiltonian or H ∈ G̃3 ∪ G̃4.

In [7], Favaron et al. improved Theorem 7 and got the following two results.

Theorem 8 (Favaron et al. [7]). Let H be a 2-connected claw-free graph with

n ≥ 77 vertices such that δ(H) ≥ 14 and σ6(H) > n + 19. Then either H is

Hamiltonian or H ∈ G̃3 ∪ G̃4 ∪ G̃5.

Theorem 9 (Favaron et al. [7]). Let H be a 2-connected claw-free graph of con-

nectivity κ(H) = 2 with n ≥ 78 vertices satisfying δ(H) > n+16
6 . Then either H

is Hamiltonian or H ∈ G̃3 ∪ G̃4 ∪ G̃5.

Degree conditions for Hamiltonicity in claw-free graphs were studied further
in [10]; the authors gave a general algorithm that allows to generate all classes of
exceptions, roughly speaking, a degree condition of form σp(H) ≥ n+constant(p)(
or, as a corollary, δ(H) ≥ n+constant(p)

p

)
, for arbitrary positive integer p. In [10],

with the help of a computer, the computation was performed for p = 8, Kovář́ık
et al. obtained a result for σ8(H) > n+39 with an exception family that contains
318 infinite classes.

These conditions above are all related to degrees of non-adjacent vertices.
However, the degree conditions of non-adjacent vertices exclude many Hamilto-
nian graphs. For example, let H be the claw-free graph of order n = s1+s2+s3+
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Figure 2. The Hamiltonian graph H.

s4+2 (min{s1, s2, s3, s4} ≥ n
5 , n ≥ 35) depicted in Figure 2, where each cycle rep-

resents a complete graph Ksi , and δ(H) = 4, σ2(H) = 8, n
5 − 1 ≤ δF (H) ≤ n

4 − 1
and σ̄2(H) ≥ n

5 + 5. The graph H is Hamiltonian but it does not satisfy any
existing Dirac-type, Ore-type or Fan-type degree conditions for the existence of
Hamiltonian cycles in graphs. Obviously, this family of graphs could be large.

Let G be a connected multigraph. For X ⊆ E(G), the contraction G/X is
the graph obtained from G by identifying the two ends of each edge e ∈ X and
deleting the resulting loops. Even if G is simple, G/X may not be simple. If Γ
is a connected subgraph of G, then we write G/Γ for G/E(Γ) and use vΓ for the
vertex in G/Γ to which Γ is contracted, and vΓ is called a contracted vertex if
Γ 6= K1.

For a K2,3, let D2(K2,3) = {v1, v2, v3}, D3(K2,3) = {u1, u2}. Let K2,3(s1, s2,
s3, s, r) be the family of essentially 2-edge-connected graphs in which each graph
is obtained from a K2,3 by replacing each vi ∈ D2(K2,3) by a triangle-free graph
of size si and replacing the two vertices u1 and u2 by a triangle-free graph of
size s and r, respectively. Note that each graph in K2,3(s1, s2, s3, s, r) may be
contractible to a K2,3.

Let Q2,3(s1, s2, s3, s, r) be the set of 2-connected claw-free graphs H whose
Ryjáček’s closure is the line graph of a graphG in K2,3(s1, s2, s3, s, r), i.e., cl(H) =
L(G).

In [4], Chen proved that a claw-free graph H of order n with large σ2(H) in
terms of n has a Hamiltonian cycle while its minimum degree or Ore-type degrees
may be small and Fan-type degree may be less than n

2 .

Theorem 10 (Chen [4]). Let H be a 2-connected claw-free simple graph of order

n with δ(H) ≥ 3. If σ2(H) ≥ 2n−4
4 and n is sufficiently large, then one of the

following holds:

(a) H is Hamiltonian;

(b) H ∈ Q2,3(s1, s2, s3, s, 0) and 2n−4
4 ≤ σ2(H) ≤ 2n−2

4 , where min{s1, s2, s3} ≥
n−6
4 , s ≥ n−10

4 and s1 + s2 + s3 + s+ 6 = n; or
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(c) H ∈ Q2,3(s1, s2, s3, 0, 0) and 2n−4
4 ≤ σ2(H) ≤ 2n−6

3 , where min{s1, s2, s3} ≥
n−6
4 and s1 + s2 + s3 + 6 = n.

Our main goal of this paper is to give an extension of Theorem 10. As
a byproduct, we can also get an extension (Corollary 17) of Theorem 7 while
Theorem 10 is not an extension of Theorem 7. One of our results (Theorem 20)
is also an improvement of the following result of Veldman.

Theorem 11 (Veldman [16]). Let G be an essentially 2-edge-connected simple

graph of order n such that σ2(G) > 2
(⌊

n
7

⌋
− 1

)
. If n is sufficiently large, then

either L(G) is Hamiltonian or G is contractible to a K2,3 such that all vertices

of degree 2 in K2,3 are nontrivial.

1.2. Main results of this paper

In this paper, K2,3, C5,2,W
∗
3 , C6,2, C6,3,K2,5 are depicted in Figure 3 and we get

the following results.

Figure 3. The graphs K2,3, C5,2,W
∗
3
, C6,2, C6,3 and K2,5.

Theorem 12. If G is a 2-edge-connected triangle-free simple graph of order at

most 7 which has no SCT, then G ∈ {K2,3, C5,2,W
∗
3 , C6,2, C6,3,K2,5}.

Let K△
2,3 be the set of graphs which are contractible to a K2,3 by contracting

exactly a triangle. The graphs in K△
2,3 are depicted in Figure 4. (Obviously, none

of the graphs in K△
2,3 has an SCT.)

Theorem 13. If G is a 2-edge-connected simple graph of order at most 7 which

has no SCT, then G ∈ {K2,3, C5,2,W
∗
3 , C6,2, C6,3,K2,5} ∪ K△

2,3.
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Figure 4. The five graphs in K△

2,3
.

Let Q0(r, k) be the family of k-edge-connected triangle-free graphs of order
at most r and without an SCT. Then, by Theorem 12, Q0(7, 2) = {K2,3, C5,2,W

∗
3 ,

C6,2, C6,3,K2,5}. In [4], Chen proved the following.

Theorem 14 (Chen [4]). Let p > 0 be a given integer and ǫ be a given number and

k ∈ {2, 3}. Let H be a k-connected claw-free simple graph of order n and δ(H) ≥
3. If σ2(H) ≥ 2n+ǫ

p
and n is sufficiently large, then either H is Hamiltonian or

cl(H) = L(G), where G is an essentially k-edge-connected triangle-free graph that

can be contracted to a graph in Q0(5p− 10, k) and p ≥ 3.

For a C5,2, let D2(C5,2) = {v1, v2, v3, v4} and D3(C5,2) = {u1, u2}. Let
C5,2(s1, s2, s3, s4, s) be the family of essentially 2-edge-connected graphs in which
each graph is obtained from a C5,2 by replacing each vi ∈ D2(C5,2) by a triangle-
free graph of size si and by replacing exactly one vertex ui ∈ D3(C5,2) by a
triangle-free graph of size s. Note that each graph in C5,2(s1, s2, s3, s4, s) may be
contractible to a C5,2.

For a W ∗
3 , let D2(W

∗
3 ) = {v1, v2, v3} and D3(W

∗
3 ) = {u1, u2, u3, v}, where v

is a vertex of degree three and NW ∗

3
(v) = {u1, u2, u3}. Let W∗

3 (s1, s2, s3, s, r) be
the family of essentially 2-edge-connected graphs in which each graph is obtained
from a W ∗

3 by replacing each vi ∈ D2(W
∗
3 ) by a triangle-free graph of size si

and replacing the vertex v and one vertex ui ∈ D3(W
∗
3 ) by a triangle-free graph

of size s and r, respectively. Note that each graph in W∗
3 (s1, s2, s3, s, r) may be

contractible to a W ∗
3 .

Let Q5,2(s1, s2, s3, s4, s) and Q3(s1, s2, s3, s, r) be the set of 2-connected claw-
free graphs H whose Ryjáček’s closure is the line graph of a graph G in C5,2(s1,
s2, s3, s4, s) and W∗

3 (s1, s2, s3, s, r), respectively (i.e., cl(H) = L(G)).

In this paper, by using Theorem 14, we improve Theorem 10 and get the
following result.
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Theorem 15. Let H be a 2-connected claw-free simple graph of order n with

δ(H) ≥ 3. If σ2(H) ≥ 2n−5
5 and n is sufficiently large, then one of the following

holds:

(a) H is Hamiltonian;

(b) H ∈ Q2,3(s1, s2, s3, 0, 0) and 2n−5
5 ≤ σ2(H) ≤ 2n−6

3 , where min{s1, s2, s3} ≥
2n−15

10 , s1 + s2 + s3 + 6 = n; or

(c) H ∈ Q2,3(s1, s2, s3, s, 0) and 2n−5
5 ≤ σ2(H) ≤ 2n−2

4 , where min{s1, s2, s3} ≥
2n−15

10 , s ≥ 2n−25
10 and s1 + s2 + s3 + s+ 6 = n; or

(d) H ∈ Q5,2(s1, s2, s3, s4, 0) and
2n−5

5 ≤ σ2(H) ≤ 2n−6
4 , where min{s1, s2, s3, s4}

≥ 2n−15
10 and s1 + s2 + s3 + s4 + 7 = n; or

(e) H ∈ Q3(s1, s2, s3, s, 0) and 2n−5
5 ≤ σ2(H) ≤ 2n−8

4 , where min{s1, s2, s3} ≥
2n−15

10 , s ≥ 2n−25
10 and s1 + s2 + s3 + s+ 9 = n; or

(f) H ∈ Q2,3(s1, s2, s3, s, r) and 2n−5
5 ≤ σ2(H) ≤ 2n+2

5 , where min{s1, s2, s3} ≥
2n−15

10 , s, r ≥ 2n−25
10 and s1 + s2 + s3 + s+ r + 6 = n; or

(g) H ∈ Q5,2(s1, s2, s3, s4, s) and
2n−5

5 ≤ σ2(H) ≤ 2n−2
5 , where min{s1, s2, s3, s4}

≥ 2n−15
10 , s ≥ 2n−25

10 and s1 + s2 + s3 + s4 + s+ 7 = n; or

(h) H ∈ Q3(s1, s2, s3, s, r) and 2n−5
5 ≤ σ2(H) ≤ 2n−4

5 , where min{s1, s2, s3} ≥
2n−15

10 , s, r ≥ 2n−25
10 and s1 + s2 + s3 + s+ r + 9 = n.

Figure 5. The graph G∗ with σ2(L(G
∗)) = 2n−10

5
.

Let G∗ be the graph obtained from a K2,5 by adding l ≥ 2 pendant edges at
each vertex of degree 2 in K2,5, which is depicted in Figure 5.

Remark 16. Since G∗ has no DCT, by Theorem 1, L(G∗) is non-Hamiltonian.
The line graph L(G∗) of order n = 5l + 10 (n ≥ 20) is 2-connected with
σ2(L(G

∗)) = 2l + 2 = 2n−10
5 < 2n−5

5 , δ(L(G∗)) ≥ 3 and L(G∗) /∈ Q2,3(s1, s2, s3,
s, r) ∪ Q5,2(s1, s2, s3, s4, s) ∪ Q3(s1, s2, s3, s, r). This example shows that the
bound in Theorem 15 is asymptotically sharp.

Let G̃′
5 be the set of all spanning subgraphs of G1

5 and G2
5. By Theorem 15,

we have the following result.
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Corollary 17. If H is a 2-connected claw-free graph of order n with δ(H) ≥ 2n−5
10 ,

then for n sufficiently large, either H is Hamiltonian or H ∈ G̃3 ∪ G̃4 ∪ G̃′
5.

Obviously, Corollary 17 is not the best known result about δ(H), it follows
from Theorems 8 and 9, and the results in [10]. Since Corollary 17 slightly
improves Theorem 7 when n is sufficiently large and G̃′

5 ⊂ G̃5, it is still worth to
be presented in this paper. The following result can be deduced from Theorem
15 immediately.

Theorem 18. Let H be a 2-connected claw-free simple graph of order n with

δ(H) ≥ 3. If σ2(H) ≥ 2n−5
5 and n is sufficiently large, then either H is Hamil-

tonian or cl(H) = L(G), where G is an essentially 2-edge-connected triangle-free

graph which can be contracted to a K2,3 or W ∗
3 such that all vertices of degree 2

in K2,3 or W ∗
3 are nontrivial.

By Theorem 18, we have the following result immediately.

Corollary 19. Let H be a 2-connected claw-free simple graph of order n. If

δ(H) ≥ 2n−5
10 and n is sufficiently large, then either H is Hamiltonian or cl(H) =

L(G), where G is an essentially 2-edge-connected triangle-free graph which can

be contracted to a K2,3 or W ∗
3 such that all vertices of degree 2 in K2,3 or W ∗

3

are nontrivial.

As an application of Theorem 12, we get the following result, which is an
extension of Theorem 11.

Theorem 20. Let G be an essentially 2-edge-connected graph of order n such that

σ2(G) ≥ 2
(⌊

n
7

⌋
− 1

)
. If n is sufficiently large, then either L(G) is Hamiltonian

or G is contractible to a K2,3 or K2,5 or W ∗
3 such that all vertices of degree 2 in

K2,3 or K2,5 or W ∗
3 are nontrivial.

Remark 21. Although in [16] Veldman stated the following: there exist infinitely
many essentially 2-edge-connected simple graphs with σ2(G) = 2

(⌊
n
7

⌋
− 1

)
such

that L(G) is nonhamiltonian and G is not contractible to K2,3 and examples of
such graphs can be found among the graphs contractible to K2,5 or the 3-cubic
minus a vertex (W ∗

3 ). In Theorem 20, we give a more precise answer for the case
σ2(G) = 2

(⌊
n
7

⌋
− 1

)
.

By Theorem 20, we have the following result immediately.

Corollary 22. Let G be an essentially 2-edge-connected simple graph of order n
such that δ(G) ≥

⌊
n
7

⌋
− 1. If n is sufficiently large, then either L(G) is Hamilto-

nian or G is contractible to a K2,3 or K2,5 or W ∗
3 such that all vertices of degree

2 in K2,3 or K2,5 or W ∗
3 are nontrivial.
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The remainder of this paper is organized as follows. In Section 2, we give a
brief discussion of Catlin’s reduction and present some auxiliary results, and also
give proofs of Theorems 12 and 13. In Section 3, we give a brief discussion of
the reduction of the core of essentially 2-edge-connected graphs and Veldman’s
reduction method, and we also present some useful results. In Section 4, proofs
of Theorems 15, 18, 20 and Corollary 17 are given.

2. Preliminaries and Auxiliary Results

2.1. Catlin’s reduction method

Let O(G) be the set of vertices of odd degree in G. A graph G is collapsible if
for every even subset R ⊆ V (G), there is a spanning connected subgraph ΓR of
G with O(ΓR) = R. The graph K1 is regarded as a collapsible and supereulerian
graph.

In [2], Catlin showed that every multigraph G has a unique collection of maxi-
mal collapsible subgraphs Γ1,Γ2, . . . ,Γc. The reduction ofG isG′ = G/

(⋃c
i=1 Γi

)
,

the graph obtained from G by contracting each Γi into a single vertex vi (1 ≤
i ≤ c). For a vertex v ∈ V (G′), there is a unique maximal collapsible subgraph
Γ0(v) such that v is the contraction image of Γ0(v) and Γ0(v) is the preimage of
v and v is a contracted vertex if Γ0(v) 6= K1. A graph G is reduced if G′ = G.

Theorem 23 (Catlin et al. [2, 3]). Let G be a connected graph and let G′ be the

reduction of G.

(a) G is collapsible if and only if G′ = K1, and G ∈ SL if and only if G′ ∈ SL.

(b) G has a DCT if and only if G′ has a DCT containing all the contracted

vertices of G′.

(c) If G is a reduced graph, then G is simple and triangle-free with δ(G) ≤ 3. For
any subgraph H of G, H is reduced and either H ∈ {K1,K2,K2,t (t ≥ 2)}
or |E(H)| ≤ 2|V (H)| − 5.

The following result is obvious.

Lemma 24. Let G be a graph and F be a spanning subgraph of G. If F has an

SCT, then G has an SCT.

2.2. Proofs of Theorems 12 and 13

In this section, we shall present the proofs of Theorems 12 and 13. Let G be a
2-connected simple graph and C = v0v1v2 · · · vc(G)−1v0 be a longest cycle of G,
where the subscripts are taken modulo c(G) in the following. Then any compo-
nent of G−C has at least two different neighbors on C. Denote by dC(vi, vj) the

distance between vi, vj ∈ V (C) (vi 6= vj) on C. Obviously, 1 ≤ dC(vi, vj) ≤
⌊
|C|
2

⌋
.
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Proof of Theorem 12. Suppose that κ(G) = 1. Let B1, B2, . . . , Bt (t ≥ 2) be
the blocks of G. Since G is triangle-free, |V (Bi)| ≥ 4. Since B1 and Bt have at
most one vertex in common, 7 ≥ |V (G)| ≥ |V (B1)|+ |V (Bt)| − 1 ≥ 4+4− 1 = 7.
Then |V (G)| = 7, and the equality holds only if t = 2 and |V (B1)| = |V (B2)| = 4.
Since G is triangle-free, G[V (B1)] = G[V (B2)] = C4. Since B1 and B2 have a
vertex in common, G has an SCT, a contradiction. Hence G is 2-connected.

Since G /∈ SL, 5 ≤ |V (G)| ≤ 7. If |V (G)| = 5, then since G is triangle-free
and by G /∈ SL, G = K2,3. Therefore, in the following, we only need to consider
the cases |V (G)| = 6 and 7. Let C = v0v1v2 · · · vc(G)−1v0 be a longest cycle of G,
where the subscripts are taken modulo c(G) in the following.

Case 1. |V (G)| = 6. Then 4 ≤ c(G) ≤ 5, otherwise, G has an SCT, a
contradiction.

Subcase 1.1. c(G) = 4. Since |V (G)| = 6 and |V (C)| = 4, G − C = 2K1 or
K2. Let V (G− C) = {x, y}. Since G is 2-connected and G /∈ SL, we can find a
cycle containing vertices x and y with length more than 4, a contradiction.

Subcase 1.2. c(G) = 5. Then C has no chords, otherwise, G has a triangle,
a contradiction. Since |V (G)| = 6 and |V (C)| = 5, G − C = K1. Let V (G −
C) = {x}. Since G is 2-connected and triangle-free, |NG(x) ∩ V (C)| = 2 and
dC(vi, vj) = 2, where vi, vj ∈ NG(x)∩V (C) (vi 6= vj). Without loss of generality,
let NG(x) = {vi, vi+2}, then G is isomorphic to C5,2, which is depicted in Figure 3.

Case 2. |V (G)| = 7. Then 4 ≤ c(G) ≤ 6, otherwise, G has an SCT, a
contradiction.

Subcase 2.1. c(G) = 4. Since |V (G)| = 7 and |V (C)| = 4, G − C = 3K1

or K2 ∪ K1 or K1,2. Suppose that G − C = K2 ∪ K1 or K1,2. Since G is 2-
connected and triangle-free, there exists a path x1 · · ·xk (k = 2 or 3) in G − C
with vi ∈ NG(x1) ∩ V (C), vj ∈ NG(xk) ∩ V (C) (vi 6= vj). But now we can find
a cycle containing vertices x1, . . . , xk with length more than 4, a contradiction.
Then G− C = 3K1. Let V (G− C) = {x, y, z}.

Since G is 2-connected and triangle-free, |NG(x)∩V (C)| = 2 and dC(vi, vj) =
2, where vi, vj ∈ NG(x)∩V (C) (vi 6= vj). Without loss of generality, let NG(x) =
{vi, vi+2}. By symmetry, we have NG(y) = {vi, vi+2} or NG(y) = {vi+1, vi+3}. If
NG(y) = {vi+1, vi+3}, then vixvi+2vi+1yvi+3vi is a cycle of length 6, a contradic-
tion. So NG(y) = {vi, vi+2}. Similarly, we have NG(z) = {vi, vi+2}. Then G is
isomorphic to K2,5, which is depicted in Figure 3.

Subcase 2.2. c(G) = 5. Then C has no chords, otherwise, G has a triangle, a
contradiction. Since |V (G)| = 7 and |V (C)| = 5, G − C = 2K1 or K2. Suppose
that G− C = K2. Since G is 2-connected and triangle-free, there exists an edge
xy in G − C with vi ∈ NG(x) ∩ V (C), vj ∈ NG(y) ∩ V (C) (vi 6= vj), and we



96 T. Tian and L. Xiong

can find a cycle containing vertices x, y with length more than 5, a contradiction.
Then G− C = 2K1. Let V (G− C) = {x, y}.

Since G is 2-connected and triangle-free, |NG(x)∩V (C)| = |NG(y)∩V (C)| =
2. Without loss of generality, let NG(x) = {vi, vi+2}. Suppose that vi ∈ NG(y)
(by symmetry, it is similar for vi+2 ∈ NG(y)). Since G is triangle-free and
|NG(y) ∩ V (C)| = 2, either NG(y) = {vi, vi+2} or NG(y) = {vi, vi+3}. Then
vixvi+2yvivi+1vi+2vi+3vi+4vi or vivi+1vi+2xvivi+4vi+3yvi is an SCT of G, a con-
tradiction. Hence, vi, vi+2 /∈ NG(y). Then NG(y) ⊂ {vi+1, vi+3, vi+4}. Since
G is triangle-free and |NG(y) ∩ V (C)| = 2, NG(y) = {vi+1, vi+3} or NG(y) =
{vi+1, vi+4}. Then vixvi+2vi+1yvi+3vi+4vi or vivi+1yvi+4vi+3vi+2xvi is an SCT of
G, a contradiction.

Subcase 2.3. c(G) = 6. By deleting all the chords of C in G, the resulting
2-connected graph G0 is a spanning subgraph of G. Obviously, C is also a longest
cycle of G0. By Lemma 24, if G0 has an SCT, then G has an SCT. Therefore
G0 has no SCT. Note that if we add the deleted chords of C to G0 one by one,
at each step we obtain at most one spanning subgraph of G which has no SCT.
Without loss of generality, we first assume that C is an induced cycle of G, namely
G = G0.

Since |V (G)| = 7 and |V (C)| = 6, G− C = K1. Let V (G− C) = {x}. Since
G is 2-connected triangle-free, 2 ≤ |NG(x) ∩ V (C)| ≤ 3.

Suppose that |NG(x) ∩ V (C)| = 2. Let vi, vj ∈ NG(x) (vi 6= vj). Since G is
triangle-free, 2 ≤ dC(vi, vj) ≤ 3. If dC(vi, vj) = 2, then G is isomorphic to C6,2,
which is depicted in Figure 3. If dC(vi, vj) = 3, then G is isomorphic to C6,3,
which is depicted in Figure 3.

Suppose that |NG(x) ∩ V (C)| = 3. Since G is triangle-free, without loss of
generality, let NG(x) = {vi, vi+2, vi+4}. Then G is isomorphic to W ∗

3 , which is
depicted in Figure 3.

Note that connecting any two nonadjacent vertices of C6,2 will result in a
triangle or a W ∗

3 or an SCT of the new graph. Connecting any two nonadjacent
vertices of C6,3 or W

∗
3 will result in a triangle or an SCT of the new graph. Hence,

G ∈ {C6,2, C6,3,W
∗
3 }. The proof is completed.

Proof of Theorem 13. If G is a reduced graph, then by Theorem 23(c), G is
triangle-free. Then by Theorem 12, G ∈ {K2,3, C5,2,W

∗
3 , C6,2, C6,3,K2,5}. Note

that G is a simple graph. If G has a collapsible subgraph Γ, then |V (Γ)| ≥ 3. Let
G′ be the reduction of G. Since |V (G)| ≤ 7 and by |V (Γ)| ≥ 3, |V (G′)| ≤ 5. Note
that, by the same argument as in the first paragraph of the proof of Theorem 12,
G′ must be 2-edge-connected. Hence Theorem 12 applies to G′. Then either G′

has an SCT or G′ = K2,3. For the first case, by Theorem 23(a), G has an SCT, a
contradiction. For the second case, G′ must be obtained from G by contracting
exactly a triangle. Then G ∈ K△

2,3. The proof is completed.
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3. Two Different Reduction Methods of a Graph and a Technical

Lemma

3.1. The reduction of the core of a graph

Let G be an essentially 2-edge-connected graph with σ2(G) ≥ 5. Then D1(G) ∪
D2(G) is an independent set. Let E1 be the set of pendant edges in G. For each
x ∈ D2(G), there are two edges e1x and e2x incident with x. Let X2(G) =

{
e1x |x ∈

D2(G)
}
. Define

G0 = G/(E1 ∪X2(G)).

In other words, G0 is obtained from G by deleting the vertices in D1(G) and
replacing each path of length 2 whose internal vertex is a vertex in D2(G) by an
edge. Note that G0 may not be simple.

The vertex set V (G0) is regarded as a subset of V (G). A vertex in G0 is
nontrivial if it is obtained by contracting some edges in E1∪X2(G) or it is adjacent
to a vertex in D2(G) in G. For instance, if v ∈ D2(G) and NG(v) = {x, y}, and
if xv is a vertex in G0 obtained by contracting the edge xv, then both xv and y
are nontrivial in G0 (although xv is a contracted vertex and y is not a contracted
vertex in G0). Since σ2(G) ≥ 5, all vertices in D2(G0) are nontrivial.

Let X = D1(G) ∪ D2(G). In [16], G0 is denoted by IX(G). In [15], Shao
defined G0 for essentially 3-edge-connected graphs G. Following [15], we call G0

the core of G.
Let G′

0 be the reduction of G0. For a vertex v ∈ V (G′
0), let Γ0(v) be the

maximum collapsible preimage of v in G0 and let Γ(v) be the preimage of v in
G. Note that Γ(v) is the graph induced by edges in E(Γ0(v)) and some edges
in E1 ∪ X2(G), for an example, see Figure 6. A vertex v in G′

0 is a nontrivial

vertex if v is a contracted vertex (i.e., |V (Γ(v))| > 1) or v is adjacent to a vertex
in D2(G).

Figure 6. A process to obtain G′
0
from G and the preimages of its vertices in G and G0.

Using Theorem 23, Veldman [16] and Shao [15] proved the following.

Theorem 25. Let G be a connected and essentially k-edge-connected graph with

σ2(G) ≥ 5 where k ∈ {2, 3} and L(G) is not complete. Let G0 be the core of G.

Let G′
0 be the reduction of G0. Then each of the following holds:
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(a) G0 is well-defined, nontrivial and δ(G0) ≥ κ′(G0) ≥ k and so κ′(G′
0) ≥

κ′(G0) ≥ k.

(b) (Lemma 5 [16]) G has a DCT if and only if G′
0 has a DCT containing all

the nontrivial vertices.

In the following, let H = L(G) and assume that H is not complete. Then
|V (H)| = |E(G)| and σ2(G) = δ(H) + 2. If H = L(G) is a k-connected graph of
order n with δ(H) ≥ 3, then G is essentially k-edge-connected with size n and
σ2(G) ≥ 5. For each v ∈ V (H), there is an edge xy in G corresponding to v and
dH(v) = dG(x) + dG(y)− 2. For each edge uv in H, there is a 2-path, P2 = xyz
in G such that xy is corresponding to the vertex u and edge yz is corresponding
to the vertex v in H. Then dH(u) + dH(v) = dG(x) + 2dG(y) + dG(z)− 4.

For any 2-path P2 = xyz in G, define dG(P2) = dG(x) + 2dG(y) + dG(z).
Define

δ2(G) = min{dG(P2)| P2 is a 2-path in G}.

Thus, for a graph H = L(G),

(3.1) δ2(G) = σ2(H) + 4.

For given integer p > 0 and ǫ, if σ2(H) ≥ 2n+ǫ
p

, then the preimage G of
H = L(G) has

(3.2) δ2(G) ≥
2n+ ǫ

p
+ 4.

3.2. More notation and a technical lemma

Let G, G0 and G′
0 be the same as in previous definitions. For convenience, we

use the following notation:

⋄ V ∗ = {v ∈ V (G′
0)| |V (Γ(v))| ≥ 3};

⋄ V1 = {v ∈ V (G′
0)| |V (Γ(v))| = 1 and v is not adjacent to any vertices in

D1(G) ∪D2(G)};

⋄ V2 = {v ∈ V (G′
0)− V ∗| |V (Γ(v))| = 2 or |V (Γ(v))| = 1 and v is adjacent to a

vertex in D2(G)};
(Note that V ∗ ∪ V2 is the set of all nontrivial vertices in G′

0.)

⋄ Φ = G′
0[V1], the subgraph induced by V1 in G′

0 if V1 6= ∅;

⋄ EΦ = E(Φ), which is a matching under the conditions of Lemma 26 (see
below);

⋄ VΦ = {v ∈ V1| v is incident with an edge in EΦ};

⋄ V 0
Φ = V1 − VΦ;

⋄ NΦ,2 =
⋃

v∈VΦ∪V2
(NG′

0
(v) ∩ V ∗) if VΦ ∪ V2 6= ∅ (otherwise, NΦ,2 = ∅).
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Figure 7. Decomposition of V (G′
0
) = V ∗ ∪ V1 ∪ V2 = V ∗ ∪ (VΦ ∪ V 0

Φ
) ∪ V2.

In the following, for given integer p > 0 and ǫ, we use “n ≫ p” for “n is
sufficiently large related to p and ǫ”.

Lemma 26 (Chen [4]). Let G be an essentially 2-edge-connected triangle-free

graph and G 6= K1,t with size n and σ2(G) ≥ 5, and satisfying (3.2) and n ≫ p.
Assume that G′

0 /∈ SL. For V ∗, NΦ,2, V1, V2,Φ, EΦ, VΦ, and V 0
Φ defined above, we

have the following.

(a) For each v ∈ V ∗, |V (Γ(v))| ≥ δ2(G)
2 − dG′

0
(v) and |E(Γ(v))| ≥ δ2(G)

2 −
dG′

0
(v)− 1.

(b) D2(G
′
0) ⊆ V ∗ and so dG′

0
(v) ≥ 3 for v ∈ V1 ∪ V2.

(c) If EΦ 6= ∅, for each xy ∈ EΦ, (NG′

0
(x) − {y}) ∪ (NG′

0
(y) − {x}) ⊆ NΦ,2 and

so EΦ is a matching.

(d) For each vertex v in V 0
Φ ∪V2, NG′

0
(v) ⊆ V ∗, and so V 0

Φ ∪V2 is an independent

set.

(e) If |V1 ∪ V2| ≥ 3, then |V 0
Φ ∪ V2| +

|VΦ|
2 ≤ 2|V ∗| − 5. If |V2| ≥ 3 or VΦ 6= ∅,

then |V2|+
|VΦ|
2 ≤ 2|NΦ,2| − 5.

(f) |V ∗| ≤ p. Furthermore, if |V ∗| = p and G′
0 6= K2,t (t ≥ 2), then |V (G′

0)| ≤
2p− 5− ǫ

2 .

(g) For v ∈ NΦ,2, |E(Γ(v))| ≥ δ2(G)− 5p− 3 and |V ∗|+ |NΦ,2| ≤ p.

(h) If V2 6= ∅, then |NΦ,2| ≥ 3. If VΦ 6= ∅, then |NΦ,2| ≥ 4. Thus, |NΦ,2| ≥ 3 if

|V2 ∪ VΦ| 6= 0.

The following lemma will be needed for the proofs of Theorems 15, 18 and
Corollary 17.

Lemma 27. Let H be a 2-connected claw-free simple graph of order n with

δ(H) ≥ 3. If σ2(H) ≥ 2n−5
5 and n is sufficiently large, then either H is Hamilto-

nian, or cl(H) = L(G), where G is an essentially 2-edge-connected triangle-free

graph and G′
0 ∈ {K2,3, C5,2,W

∗
3 } and V (G′

0) = V ∗ ∪ V 0
Φ .

Proof. This is an improvement of a special case of Theorem 14 with p = 5, ǫ = −5
and k = 2, since it narrows down Q0(15, 2) to a subset of Q0(7, 2). By Theorem



100 T. Tian and L. Xiong

2, there is an essentially 2-edge-connected triangle-free graph G such that the
closure cl(H) = L(G). Then |E(G)| = |V (H)| = n. Since δ(H) ≥ 3, σ2(G) ≥ 5.
Since σ2(H) ≥ 2n−5

5 and by (3.1), δ2(G) ≥ 2n−5
5 + 4.

Suppose that H is not Hamiltonian. Then G 6= K1,t, otherwise, by Theorem
2, H is Hamiltonian, a contradiction. Then G′

0 has no DCT containing all the
nontrivial vertices of G′

0, otherwise, by Theorem 25(b) and Theorem 1, H is
Hamiltonian, a contradiction. Then G′

0 /∈ SL. By Theorem 25(a), G′
0 is 2-edge-

connected. By Theorem 23(c), G′
0 is triangle-free. Since G′

0 /∈ SL and G′
0 is

triangle-free, |V (G′
0)| ≥ 5.

By Lemma 26(g), 2|NΦ,2| ≤ |V ∗| + |NΦ,2| ≤ 5 and so |NΦ,2| ≤ 2. Then by
Lemma 26(h), |VΦ∪V2| = 0. Therefore, NΦ,2 = ∅, V 0

Φ = V1 and V (G
′

0) = V ∗∪V 0
Φ .

By Lemma 26(f), |V ∗| ≤ 5.

Case 1. |V ∗| ≤ 4. Then |V 0
Φ | ≤ 3, otherwise, by Lemma 26(e), |V ∗| ≥ 5,

a contradiction. Then |V (G′
0)| ≤ |V 0

Φ | + |V ∗| ≤ 7. Since G′
0 /∈ SL and by

Theorem 12, G′
0 ∈ {K2,3, C5,2,W

∗
3 , C6,2, C6,3,K2,5}. If G′

0 ∈ {C6,3, C6,2,K2,5},
then |D2(G

′
0)| = 5. Then by Lemma 26(b), |V ∗| ≥ 5, a contradiction. Hence,

G′
0 ∈

{
K2,3, C5,2,W

∗
3

}
.

Case 2. |V ∗| = 5. Suppose that G′
0 = K2,t. Then t is odd, otherwise, G′

0

has an SCT, a contradiction. By Lemma 26(b), D2(G
′
0) ⊆ V ∗. Then t ≤ 5,

otherwise, |V ∗| ≥ 6, a contradiction. Since t (t ≤ 5) is odd and by |V (G′
0)| ≥ 5,

G′
0 = K2,3 or K2,5. If G′

0 = K2,5, then by D2(K2,5) ⊆ V ∗ and by |V ∗| = 5,
D2(K2,5) = V ∗. Let V ∗ = {v1, v2, v3, v4, v5}. Then dG′

0
(vi) = 2. By Lemma

26(a) and δ2(G) ≥ 2n−5
5 + 4, si = |E(Γ(vi))| ≥

δ2(G)
2 − 3 ≥ 2n−15

10 . Since n =

10 +
∑5

i=1 si ≥ 10 + 5
(
δ2(G)

2 − 3
)

= 5
2δ2(G) − 5, δ2(G) ≤ 2n+10

5 , contrary to

δ2(G) ≥ 2n+15
5 . Hence, G′

0 = K2,3.

In the following, we assume that G′
0 6= K2,t for any integer t. Then by Lemma

26(f) with p = 5 and ǫ = −5, |V (G′
0)| ≤ 2p − 5 − ǫ

2 ≤ 7.5. Then |V (G′
0)| ≤ 7.

Since G′
0 /∈ SL

(
G′

0 6= K2,t

)
and by Theorem 12, G′

0 ∈
{
C5,2,W

∗
3 , C6,2, C6,3

}
.

Suppose that G′
0 = C6,2 or C6,3. By Lemma 26(b), D2(G

′
0) ⊆ V ∗. Then

by |V ∗| = 5, V ∗ = D2(C6,2) or D2(C6,3). Let V ∗ = {v1, v2, v3, v4, v5}. Then

dG′

0
(vi) = 2. By Lemma 26(a) and δ2(G) ≥ 2n−5

5 +4, si = |E(Γ(vi))| ≥
δ2(G)

2 −3 ≥

2n−15
10 . Since n = 8 +

∑5
i=1 si ≥ 8 + 5

(
δ2(G)

2 − 3
)
= 5

2δ2(G)− 7, δ2(G) ≤ 2n+14
5 ,

contrary to δ2(G) ≥ 2n+15
5 . Then G′

0 6= C6,2 and G′
0 6= C6,3.

Hence, G′
0 ∈ {K2,3, C5,2,W

∗
3 }. The proof is completed.

3.3. Veldman’s reduction method

For an independent subset X of D(G), define IX(G) as the graph obtained from
G by deleting the vertices in X of degree 1 and replacing each path of length 2
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whose internal vertex is in D2(G) ∩X by an edge. Note that IX(G) may not be
simple. We call G X-collapsible if IX(G) is collapsible. A subgraph H of G is
an X-subgraph of G if dH(x) = dG(x) for all x ∈ X ∩ V (H). An X-subgraph
H of G is called X-collapsible if H is (X ∩ V (H))-collapsible. Let R(X) be
the set of vertices in X that are not contained in an X-collapsible X-subgraph
of G. Since IX(G) has a unique collection of pairwise vertex-disjoint maximal
collapsible subgraphs L1, . . . , Lk such that

⋃k
i=1 V (Li) = V (IX(G)), the graph

G has a unique collection of pairwise vertex-disjoint maximal X-collapsible X-
subgraphsH1, . . . , Hk such that

(⋃k
i=1 V (Hi)

)
∪R(X) = V (G). TheX-reduction

of G is the graph obtained from G by contracting H1, . . . , Hk. Let G
′′ be the X-

reduction of G and v ∈ V (G′′). Then the preimage of v is denoted by θ−1(v). A
vertex v of G′′ is called nontrivial if θ−1(v) is not a vertex and trivial otherwise.
The graph G is X-reduced if there exists a graph G∗ and an independent subset
X∗ of D(G∗) such that X = R(X∗) and G is the X∗-reduction of G∗. An X-
subgraph H of G is called X-reduced if H is (X ∩ V (H))-reduced.

Remark 28. If X = ∅, then the refinement method (∅-reduction) is just the
reduction method of Catlin. Let G be an essentially 2-edge-connected graph
with σ2(G) ≥ 5. Then D(G) is an independent set. For the D(G)-reduction of
G, if R(D(G)) = ∅, then the refinement method of the reduction of the core of
the graph G is just the D(G)-reduction method of Veldman.

In [16], Veldman obtained the following result.

Theorem 29 (Veldman [16]). Let G be a connected simple graph of order n and

p ≥ 2 an integer such that

(3.3) σ2(G) ≥ 2
(
⌊n/p⌋ − 1

)
.

If n is sufficiently large relative to p, then

(3.4)
∣∣V

(
G′′

)∣∣ ≤ max

{
p,

3

2
p− 4

}
,

where G′′ is the D(G)-reduction of G. Moreover, for p ≤ 7, (3.4) holds with

equality only if (3.3) holds with equality.

4. Proofs of Theorems 15, 18, 20 and Corollary 17

In this section, we shall present the proofs of Theorems 15, 18, 20 and Corol-
lary 17.

Proof of Theorem 15. Suppose that H is not Hamiltonian. By Lemma 27,
there is an essentially 2-edge-connected triangle-free graphG such that the closure
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cl(H) = L(G) and G′
0 ∈ {K2,3, C5,2,W

∗
3 } and V (G′

0) = V ∗ ∪ V 0
Φ . Since σ2(H) ≥

2n−5
5 and by (3.1), δ2(G) ≥ 2n−5

5 +4. By Lemma 26(f), |V ∗| ≤ 5. In the following,
we label the vertices of K2,3, C5,2 and W ∗

3 as the graphs in Figure 3.

Case 1. |V ∗| ≤ 4. Then |V 0
Φ | ≤ 3, otherwise, by Lemma 26(e), |V ∗| ≥ 5, a

contradiction.

Case 1.1. G′
0 = K2,3. By Lemma 26(b), D2(G

′
0) ⊆ V ∗. Then 3 ≤ |V ∗| ≤ 4.

Suppose that |V ∗| = 3. Then V ∗ = D2(G
′
0). Let V ∗ = {v1, v2, v3}. Then

dG′

0
(vi) = 2. By Lemma 26(a) and δ2(G) ≥ 2n−5

5 +4, si = |E(Γ(vi))| ≥
δ2(G)

2 −3 ≥
2n−15

10 . Thus, G ∈ K2,3(s1, s2, s3, 0, 0). Furthermore, since n = s1 + s2 + s3 + 6 ≥

3
(
δ2(G)

2 − 3
)
+6 = 3

2δ2(G)−3, δ2(G) ≤ 2n+6
3 . By (3.1), σ2(H) ≤ 2n−6

3 . Theorem

15(b) holds.
Suppose that |V ∗| = 4. Since D2(G

′
0) ⊆ V ∗ and by |D2(G

′
0)| = 3, without

loss of generality, let V ∗ = {v1, v2, v3, u1}. Then dG′

0
(vi) = 2, dG′

0
(u1) = 3. By

Lemma 26(a) and δ2(G) ≥ 2n−5
5 + 4, si = |E(Γ(vi))| ≥

δ2(G)
2 − 3 ≥ 2n−15

10 and

s = |E(Γ(u1))| ≥
δ2(G)

2 −4 ≥ 2n−25
10 . Thus, G ∈ K2,3(s1, s2, s3, s, 0). Furthermore,

since n = s1 + s2 + s3 + s + 6 ≥ 3
(
δ2(G)

2 − 3
)
+

(
δ2(G)

2 − 4
)
+ 6 = 2δ2(G) − 7,

δ2(G) ≤ n+7
2 . By (3.1), σ2(H) ≤ n−1

2 . Theorem 15(c) holds.

Case 1.2. G′
0 = C5,2. By Lemma 26(b), D2(G

′
0) ⊆ V ∗. Then |V ∗| = 4. Let

V ∗ = {v1, v2, v3, v4}. Then d
G

′

0

(vi) = 2. By Lemma 26(a) and δ2(G) ≥ 2n−5
5 + 4,

si = |E(Γ(vi))| ≥
δ2(G)

2 −3 ≥ 2n−15
10 . Thus, G ∈ C5,2(s1, s2, s3, s4, 0). Furthermore,

since n = s1 + s2 + s3 + s4 + 7 ≥ 4
(
δ2(G)

2 − 3
)
+ 7 = 2δ2(G) − 5, δ2(G) ≤ n+5

2 .

By (3.1), σ2(H) ≤ 2n−6
4 . Theorem 15(d) holds.

Case 1.3. G′
0 = W ∗

3 . By Lemma 26(b), D2(G
′
0) ⊆ V ∗. Then 3 ≤ |V ∗| ≤ 4.

Suppose that |V ∗| = 3. Then 7 = |V (G
′

0)| = |V ∗| + |V 0
Φ | ≤ 3 + 3 = 6, a

contradiction. Then |V ∗| = 4. Since V 0
Φ is an independent set and by |V ∗| = 4,

V ∗ = {v1, v2, v3, v}. Then dG′

0
(vi) = 2, dG′

0
(v) = 3. By Lemma 26(a) and δ2(G) ≥

2n−5
5 + 4, si = |E(Γ(vi))| ≥

δ2(G)
2 − 3 ≥ 2n−15

10 and s = |E(Γ(v))| ≥ δ2(G)
2 − 4 ≥

2n−25
10 . Thus, G ∈ W∗

3 (s1, s2, s3, s, 0). Furthermore, since n = s1 + s2 + s3 +

s + 9 ≥ 3
(
δ2(G)

2 − 3
)
+

(
δ2(G)

2 − 4
)
+ 9 = 2δ2(G) − 4, δ2(G) ≤ n+4

2 . By (3.1),

σ2(H) ≤ n−4
2 . Theorem 15(e) holds.

Case 2. |V ∗| = 5.

Case 2.1. G′
0 = K2,3. Since |V ∗| = 5 and by |V (G′

0)| = 5, V (G′
0) = V ∗. Let

V ∗ = {v1, v2, v3, u1, u2}. Then dG′

0
(vi) = 2, dG′

0
(ui) = 3. By Lemma 26(a) and

δ2(G) ≥ 2n−5
5 + 4, si = |E(Γ(vi))| ≥

δ2(G)
2 − 3 ≥ 2n−15

10 , s = |E(Γ(u1))| ≥
δ2(G)

2 −

4 ≥ 2n−25
10 and r = |E(Γ(u2))| ≥

δ2(G)
2 −4 ≥ 2n−25

10 . Thus, G ∈ K2,3(s1, s2, s3, s, r).
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Furthermore, since n = s1+s2+s3+s+r+6 ≥ 3
(
δ2(G)

2 − 3
)
+2

(
δ2(G)

2 − 4
)
+6 =

5
2δ2(G)− 11, δ2(G) ≤ 2n+22

5 . By (3.1), σ2(H) ≤ 2n+2
5 . Theorem 15(f) holds.

Case 2.2. G′
0 = C5,2. By Lemma 26(b), D2(G

′
0) ⊆ V ∗. Since |V ∗| = 5

and by |D2(C5,2)| = 4, there exists exactly one vertex ui ∈ D3(C5,2) such that
ui ∈ V ∗. Without loss of generality, let V ∗ = D2(G

′
0)∪{u1} = {v1, v2, v3, v4, u1}.

Then dG′

0
(vi) = 2, d

G
′

0

(u1) = 3. By Lemma 26(a) and δ2(G) ≥ 2n−5
5 + 4, si =

|E(Γ(vi))| ≥
δ2(G)

2 − 3 ≥ 2n−15
10 and s = |E(Γ(u1))| ≥

δ2(G)
2 − 4 ≥ 2n−25

10 . Thus,
G ∈ C5,2(s1, s2, s3, s4, s). Furthermore, since n = s1 + s2 + s3 + s4 + s + 7 ≥

4
(
δ2(G)

2 − 3
)
+
(
δ2(G)

2 − 4
)
+7 = 5

2δ2(G)− 9, δ2(G) ≤ 2n+18
5 . By (3.1), σ2(H) ≤

2n−2
5 . Theorem 15(g) holds.

Case 2.3. G′
0 = W ∗

3 . By Lemma 26(b), D2(G
′
0) ⊆ V ∗. By Lemma 26(d),

V 0
Φ is an independent set. Since V (G′

0) = V ∗ ∪ V 0
Φ and by the fact |V ∗| = 5

and |D2(W
∗
3 )| = 3, there exist exactly two vertex x, y ∈ D3(W

∗
3 ) such that

x, y ∈ V ∗. Since V 0
Φ is an independent set, without loss of generality, let V ∗ =

{v1, v2, v3, v, u1}. Then dG′

0
(vi) = 2, dG′

0
(v) = dG′

0
(u1) = 3. By Lemma 26(a) and

δ2(G) ≥ 2n−5
5 +4, si = |E(Γ(vi))| ≥

δ2(G)
2 −3 ≥ 2n−15

10 , s = |E(Γ(v))| ≥ δ2(G)
2 −4 ≥

2n−25
10 and r = |E(Γ(u1))| ≥

δ2(G)
2 − 4 ≥ 2n−25

10 . Thus, G ∈ W∗
3 (s1, s2, s3, s, r).

Furthermore, since n = s1+s2+s3+s+r+9 ≥ 3
(
δ2(G)

2 − 3
)
+2

(
δ2(G)

2 − 4
)
+9 =

5
2δ2(G)− 8, δ2(G) ≤ 2n+16

5 . By (3.1), σ2(H) ≤ 2n−4
5 . Theorem 15(h) holds. The

proof is completed.

Proof of Corollary 17. Since δ(H) ≥ 2n−5
10 , σ2(H) ≥ 2n−5

5 . Since n is suf-
ficiently large, δ(H) ≥ 3. By Lemma 27, either H is Hamiltonian, or cl(H) =
L(G), where G is an essentially 2-edge-connected triangle-free graph and G′

0 ∈
{K2,3, C5,2,W

∗
3 } and V (G′

0) = V ∗ ∪ V 0
Φ . Note that D2(G

′
0) ⊆ V ∗ and V 0

Φ is an
independent set. Obviously, C5,2 can be contracted to a K2,3 by contracting one
edge of C5,2. Suppose that G can be contracted to a K2,3. If K2,3 has three

nontrivial vertices, then cl(H) ∈ G̃3. If K2,3 has four nontrivial vertices, then

cl(H) ∈ G̃4. If all vertices of K2,3 are nontrivial, then cl(H) ∈ G̃′
5. Suppose

that G′
0 = W ∗

3 . Then |V ∗| ≥ 4. Then by Lemma 26(f), 4 ≤ |V ∗| ≤ 5. Then

cl(H) ∈ G̃4 ∪ G̃′
5. Hence, cl(H) ∈ G̃3 ∪ G̃4 ∪ G̃′

5. Since H is a spanning subgraph

of cl(H), H ∈ G̃3 ∪ G̃4 ∪ G̃′
5. The proof is completed.

Proof of Theorem 18. By Lemma 27, we have either H is Hamiltonian or
cl(H) = L(G), where G is an essentially 2-edge-connected triangle-free graph
and G′

0 ∈ {K2,3, C5,2,W
∗
3 }. Obviously, C5,2 can be contracted to a K2,3 by

contracting one edge of C5,2. By the definition of G′
0, each vertex in D2(G

′
0) is

nontrivial. Then G can be contracted such that each vertex of degree 2 in the
resulting K2,3 or W ∗

3 is nontrivial. The proof is completed.
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Proof of Theorem 20. Because σ2(G) ≥ 2
(⌊

n
7

⌋
− 1

)
, if n ≥ 28, then σ2(G) ≥ 6

and D(G) is an independent set. Let G′′ be the D(G)-reduction of G. By (3.4),
|V (G′′)| ≤ 7. Let G0 be the core of G, G′

0 be the reduction of G0. Since G′
0 is

a refinement of the D(G)-reduction of G, |V (G′
0)| ≤ |V (G′′)| ≤ 7. If G′

0 has a
DCT containing all the nontrivial vertices, then by Theorem 25(b), G has a DCT.
Then by Theorem 1, L(G) is Hamiltonian. Therefore, in the following, we can
assume that G′

0 has no DCT containing all the nontrivial vertices. Then G′
0 has

no SCT. By Theorem 25(a), G′
0 is 2-edge-connected. Since G′

0 is the reduction of
G0, by Theorem 23(c), G′

0 is a triangle-free graph. Then by Theorem 12, G′
0 ∈

{K2,3, C5,2,W
∗
3 , C6,2, C6,3,K2,5}. Note that each graph in {C5,2, C6,2, C6,3} can be

contracted to a K2,3. Then G′
0 can be contracted to a graph in {K2,3,K2,5,W

∗
3 }.

By the definition of G′
0, each vertex in D2(G

′
0) is nontrivial. Then G can be

contracted such that each vertex of degree 2 in the resulting K2,3 or K2,5 or W ∗
3

is nontrivial. The proof is completed.

5. Concluding Remark

In this paper, we mainly focused on the Hamiltonicity of 2-connected claw-free
graphs. In [4], Chen considered the Hamiltonicity of 2-connected claw-free graphs
for a special case of Theorem 14 where p = 4. In this paper, our result (Theorem
18 for p = 5) is also a special case of Theorem 14. Obviously, Theorem 15
and Corollary 17 extend Theorems 7 and 10 while Theorem 10 does not imply
Theorem 7.

Although the authors in [10], with the help of a computer, have considered the
Hamiltonicity of 2-connected claw-free graphs of order n ≥ 153 with δ(H) ≥ n+39

8
and the corresponding family of exceptions contains 318 infinite classes, their
result also could not imply our results (Theorems 15 and 18).

In order to prove our main results, we characterized all 2-edge-connected
simple graphs of order at most 7 which have no spanning closed trail. For p ≥ 6,
we may need to consider all 2-edge-connected simple graphs of order at most 10
(or more than 10) which have no spanning closed trail. Therefore, if one wants to
deal with the case for p ≥ 6 of Theorem 14, it would become very complicated.
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