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Abstract

Let P be a property of a graph. A graph G is said to be locally P, if
the subgraph induced by the open neighbourhood of every vertex in G has
property P. Ryjáček conjectures that every connected, locally connected
graph is weakly pancyclic. Motivated by the above conjecture, van Aardt
et al. [S.A.van Aardt, M. Frick, O.R. Oellermann and J.P.de Wet, Global

cycle properties in locally connected, locally traceable and locally Hamiltonian

graphs, Discrete Appl. Math. 205 (2016) 171–179] investigated the global
cycle structures in connected, locally traceable/Hamiltonian graphs. Among
other results, they proved that a connected, locally Hamiltonian graph G
with maximum degree at least |V (G)| − 5 is weakly pancyclic. In this note,
we improve this result by showing that such a graph with maximum degree at
least |V (G)|−6 is weakly pancyclic. Furthermore, we show that a connected,
locally Hamilton-connected graph with maximum degree at most 7 is fully
cycle extendable.
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1. Introduction

For definitions and notation we follow [2]. Let G = (V,E) be a simple, undirected
and connected graph. The order of G is denoted by n(G), and let δ(G) and ∆(G)
denote the minimum and maximum degree of G, respectively. If G is clear from
the context we use n, δ and ∆, to denote these respective quantities. The open

neighbourhood N(v) of a vertex v of G is the set of all vertices adjacent to v. If
X ⊆ V (G), the subgraph induced by X is denoted by 〈X〉.

A Hamilton cycle (path) of a graph G is a spanning cycle (spanning path) of
it, i.e., a cycle (path) that contains every vertex of G. A graph G is Hamiltonian

(traceable) if it has a Hamilton cycle (path), and G is Hamilton-connected if there
exists a Hamilton path between any two distinct vertices of G. A graph G is said
to be pancyclic if G has a cycle of length m for every integer 3 ≤ m ≤ n . The
girth (respectively, circumference) of a graph G, denoted by g(G) (respectively,
c(G)), is defined as the length of a shortest (respectively, longest) cycle in G.
A graph G that is not necessarily Hamiltonian but has cycles of every possible
length from g(G) to c(G) is said to be weakly pancyclic. An even stronger notion
than pancyclicity is that of “full cycle extendability”, introduced by Hendry [8].
A cycle C in a graph G is extendable if there exists a cycle C ′ in G that contains
all the vertices of C plus a single new vertex. A graph G is cycle extendable if
every non-Hamiltonian cycle of G is extendable. If, in addition, every vertex of
G belongs to a triangle, then G is fully cycle extendable.

For a given graph property P, we call a graph G locally P if 〈N(v)〉 has
property P for every v ∈ V (G). The notion of locally Hamiltonian graphs was
introduced by Skupień in 1965 [12], and in 1971 Chartrand and Pippert intro-
duced locally connected graphs [5]. Note that many classical conditions that
guarantee the existence of some specified structures in graphs can be expressed
as local properties of graphs. For example, Dirac’s minimum degree condition
“δ(G) ≥ n(G)

2 ” may be written as “|N(v)| ≥ n(G)
2 ” for every vertex v of G, and

G is claw-free if and only if “α(〈N(v)〉) ≤ 2” for every vertex v of G, where
α(G) denotes the independence number of G. The properties of locally con-
nected/traceable/Hamiltonian/isometric graphs have been extensively studied,
for the details see, for example, [1, 3–6, 9–14]. The following conjecture is pro-
posed by Ryjáček (see [15]).

Conjecture 1. Every locally connected graph is weakly pancyclic.

In [14], the authors studied the global cycle properties of connected, locally
traceable and locally Hamiltonian graphs and proposed the following two weaker
conjectures.

Conjecture 2. Every locally traceable graph is weakly pancyclic.

Conjecture 3. Every locally Hamiltonian graph is weakly pancyclic.



A Note on Cycles in Locally Hamiltonian... 79

Ryjáček’s conjecture seems very difficult to settle. However, some progress
has been made for graphs with small maximum degree. The following result is
obtained in [14].

Theorem 4 (Theorem 3.5 in [14]). If G is a locally connected graph with ∆(G) ≤
5, then G is weakly pancyclic.

In [14], the authors confirmed Conjectures 2 and 3 for graphs with small
maximum degree by giving stronger results, and confirmed Conjecture 3 for large
maximum degree. For k ≥ 3, the magwheel Mk is the graph obtained from the
wheel Wk by adding, for each edge e on the rim of Wk, a vertex ve and joining it
to the two ends of the edge e (see [14]).

Theorem 5 (Theorem 4.1 in [14]). Suppose G is a connected, locally traceable

graph with n(G) ≥ 3 and ∆(G) ≤ 5. Then G is fully cycle extendable if and only

if G /∈ {M3,M4,M5}.

Theorem 6 (Theorem 5.1 in [14]). Let G be a connected, locally Hamiltonian

graph with n(G) ≥ 3 and ∆(G) ≤ 6. Then G is fully cycle extendable.

Theorem 7 (Theorem 6.3 in [14]). If G is a connected, locally Hamiltonian graph

of order n with ∆(G) ≥ n− 5, then G is weakly pancyclic.

For our purpose here, we have just listed some results relevant to our results
obtained in this paper. For more complete researches in this direction we refer
the reader to the literature mentioned above. In this note, we improve Theorem 7
by proving that a connected locally Hamiltonian graph G with ∆(G) ≥ n(G)− 6
is weakly pancyclic. Furthermore, we show that a connected locally Hamilton-
connected graph G with ∆(G) ≤ 7 is fully cycle extendable.

Theorem 8. If G is a connected, locally Hamiltonian graph of order n with

∆(G) ≥ n− 6, then G is weakly pancyclic.

Theorem 9. Let G be a connected, locally Hamilton-connected graph of order

n ≥ 3 with ∆(G) ≤ 7. Then G is fully cycle extendable.

2. Proof of Theorem 8

We first cite two useful lemmas from [14].

Lemma 10 (Lemma 6.1 in [14]). If G is a locally Hamiltonian graph and uv ∈
E(G), then |N(u) ∩N(v)| ≥ 2.

Lemma 11 (Lemma 6.2 in [14]). If G is a connected, locally Hamiltonian graph

of order n and maximum degree ∆, then G has cycles of length k for every k such

that 3 ≤ k ≤ min{∆+ 2, n}.
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Proof of Theorem 8. By Theorem 7, we only need to consider the case ∆ =
n − 6. If n ≤ 12, then ∆ = n − 6 ≤ 6, and the result holds from Theorem 6.
Now assume n ≥ 13. Note that by Lemma 11, G has cycles of length k for every
k with 3 ≤ k ≤ n − 4. It suffices to show that if G has an (n − i)-cycle, then G
also has an (n− i− 1)-cycle for i = 0, 1, 2, respectively. Here we only prove that
if G has an (n− 2)-cycle, then G also has an (n− 3)-cycle. The other two cases
(for i = 0, 1) can be proved by a similar approach and we omit the proofs.

Now suppose that G has an (n − 2)-cycle C = v0v1v2 · · · vn−3v0, but G has
no (n − 3)-cycle. Then C has no short chords (edges of the form vivi+2) for
i ∈ {0, 1, 2, . . . , n− 3}, where the subscripts are taken modulo n− 2. For 0 ≤ i <
j ≤ n− 3, we use vi

−→
Cvj and vi

←−
Cvj to denote respectively the paths vivi+1 · · · vj

and vivi−1 · · · vj , where again the subscripts are taken modulo n− 2.

Let x and y be the vertices of G not on C. Since G has no (n − 3)-cycle,
we have that if xvl ∈ E(G), then xvl+3 /∈ E(G), where subscripts are expressed
modulo n− 2, and this in turn implies that if d(x) = n− 6 or d(y) = n− 6, then
n− 2 = |C| ≥ 2n− 14, but it is impossible since n ≥ 13. So we may assume that
C has a vertex of degree n− 6, say, d(v0) = n− 6.

We state the following two observations before considering different cases.
The proof of the Observation is straightforward.

Observation.

(1) If vi ∈ N(v1) ∩N(v2) for vi ∈ {v5, . . . , vn−4}, then neither vi−1 nor vi−2 is

a neighbour of v0.

(2) If vj ∈ N(vn−4) ∩ N(vn−3) for vj ∈ {v2, . . . , vn−7}, then neither vj+1 nor

vj+2 is a neighbour of v0.

Case 1. {x, y}∩N(v1)∩N(v2) 6= ∅ or {x, y}∩N(vn−4)∩N(vn−3) 6= ∅. Without
loss of generality, we may assume that x ∈ N(v1) ∩ N(v2). Then, since G has
no (n − 3)-cycle, vn−5 /∈ N(v0). Also {x, v1, v0, vn−7, vn−6, vn−5} ∩ N(vn−4) ∩
N(vn−3) = ∅. Hence, by Lemma 10, vi ∈ N(vn−4) ∩ N(vn−3) for some vi ∈
{v2, v3, . . . , vn−8}. Then, by Observation (2), V (G) \N(v0) = {v0, v2, vi+1, vi+2,
vn−5, vn−4}. Thus, if i 6= n − 8, then vi+3 ∈ N(v0), but then G contains an
(n−3)-cycle v0vi+3

−→
Cvn−3vi

←−
Cv2xv1v0. This proves that vn−8 is the only common

neighbour of vn−4 and vn−3 on C, so by Lemma 10, y ∈ N(vn−4)∩N(vn−3). But
then again G has an (n− 3)-cycle vn−3yvn−4vn−8

←−
Cv2xv1v0vn−3.

Case 2. {x, y} ∩ N(v1) ∩ N(v2) = ∅ and {x, y} ∩ N(vn−4) ∩ N(vn−3) =
∅. It follows from Lemma 10 that N(v1) ∩ N(v2) has at least two vertices in
{v5, . . . , vn−4}, and N(vn−4)∩N(vn−3) has at least two vertices in {v2, . . . , vn−7}.
It therefore follows from Observation (1) and (2) that v0 has three consecutive
non-neighbours vi−1, vi, vi+1 on C with 4 ≤ i ≤ n − 6, and N(v1) ∩ N(v2) =
{vi+1, vi+2}, while N(vn−4) ∩ N(vn−3) = {vi−2, vi−1}. Thus, V (G) \ N(v0) =
{v0, v2, vi−1, vi, vi+1, vn−4}. Now, if i ≥ 5, then v0vi−2 ∈ E(G), but then G has
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an (n − 3)-cycle v0vi−2
←−
Cv1vi+1

−→
Cvn−4vi−1vn−3v0. If i = 4, then G also has an

(n−3)-cycle vn−4v3v2vn−3v0v1v5
−→
Cvn−4. This completes the proof of Theorem 8.

3. Proof of Theorem 9

Proof of Theorem 9. Let C = v0v1v2 · · · vt−1v0 be a t-cycle in a graph G. As
in the previous section, for i < j, we use vi

−→
Cvj and vi

←−
Cvj to denote the paths

vivi+1 · · · vj and vivi−1 · · · vj , respectively, where the subscripts are taken modulo
t. A vertex on C is called an attachment vertex if it is adjacent to some vertex in
V (G) \ V (C). The following observation on non-extendable cycles in G is quite
useful.

Lemma 12 [14]. Let C = v0v1 · · · vt−1v0 be a non-extendable cycle in a graph

G. Suppose vi and vj(i < j) are two attachment vertices of C such that they are

adjacent to a common off-cycle vertex. Then the following holds.

(1) j 6= i+ 1.

(2) Neither vi+1vj+1 nor vi−1vj−1 is in E(G).

(3) If vi−1vi+1 ∈ E(G), then neither vj−1vi nor vj+1vi is in E(G).

(4) If j = i + 2, then vi+1 does not have two neighbours vk, vk+1 on the path

vi+2 · · · vi.

The following lemma gives some basic properties of a Hamilton-connected
graph, the proof is straightforward.

Lemma 13. Let G be a Hamilton-connected graph of order n ≥ 4. Then the

following holds.

(1) δ(G) ≥ κ(G) ≥ 3.

(2) ω(G − S) ≤ |S| − 1 for each S ⊆ V with |S| ≥ 2, where ω(G − S) is the

number of components of G− S.

(3) α(G) < n
2 , where α(G) is the independence number of G.

(4) If n is odd and I is an independent set with |I| = n−1
2 , then each vertex in

V \ I is adjacent to at least two vertices in I.

If ∆(G) ≤ 6, then the result follows from Theorem 6. So suppose that
∆(G) = 7.

Obviously, each vertex of G lies on a triangle, and so it suffices to show that
every non-Hamiltonian cycle of G is extendable. Assume, to the contrary, that G
contains a non-extendable cycle C = v0v1· · ·vt−1v0 where t < n. We may assume
that v0 has an off-cycle neighbour x. Then neither v1 nor vt−1 is in N(x). Next
we show the following claim.
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Claim. Let vi ∈ V (C) with 1 < i < t− 1. If v0 and vi have a common off-cycle

neighbour, then the following holds.

(1) If i 6= 2, then viv1 /∈ E(G).

(2) If i 6= t− 2, then vivt−1 /∈ E(G).

Proof. Note that (1) and (2) are symmetric statements. Hence, we only prove
(1). Suppose, to the contrary, that i 6= 2 and viv1 ∈ E(G). Since C is non-
extendable, x is not adjacent to any of v1, vt−1, vi−1 and vi+1. By Lemma 12(3),
vi+1vi−1 /∈ E(G). Thus Ii = {vi+1, vi−1, x} is an independent set in 〈N(vi)〉.
By Lemma 13(3),(4), we know that d(vi) =7 and v1 is adjacent to at least two
vertices in Ii. Since v1x /∈ E(G), we have v1vi+1 ∈ E(G) and v1vi−1 ∈ E(G).
This is contrary to Lemma 12(2). The Claim is proved.

Since 〈N(v0)〉 is Hamilton-connected, it follows from Lemma 13(1) that x
and v1 each have at least 3 neighbours in N(v0). As |N(v0)| ≤ 7 and x and
v1 are not neighbours of each other, we infer that v1 and x have at least one
common neighbour in N(v0). But v1 and x have no common off-cycle neighbour,
so it follows from Claim (1) that N(v0) ∩ N(v1) ∩ N(x) = {v2}. Thus |N(v0) ∩
(N(v1) ∪ N(x))| ≥ 5 and by Lemma 12(2), vt−1 /∈ N(v1). This implies that
|N(v0)∩ (N(v1)∪N(x)∪{v1, vt−1, x})| ≥ 8, contradicting that |N(v0)| ≤ 7. This
completes the proof of Theorem 9.

4. Concluding Remark

In this paper, we prove that a connected, locally Hamiltonian graph G with
∆(G) ≥ n(G)−6 is weakly pancyclic, this is an improvement of the result obtained
in [14]. Furthermore, we show that a connected, locally Hamilton-connected
graph of order at least 3 and maximum degree at most 7 is fully cycle extendable.
As we have mentioned, a lot of work has been done on the global cycle structures
of connected, locally connected/traceable/Hamiltonian graphs, but we have not
seen any research on the global cycle structures of connected, locally Hamilton-
connected graphs. Since Hamilton-connectedness is a stronger graphical property,
one could expect some stronger results on the global cycle structures of this kind
of graphs.

Reference [10] by Pareek contains a theorem that states that if a connected,
locally Hamiltonian graph has maximum degree 7, then the graph is Hamilto-
nian. Since locally Hamilton-connected graphs are locally Hamiltonian, that is
a stronger result than Theorem 9 (although it does not establish that the graph
is necessarily fully cycle extendable). However, in [7], it is shown that Pareek’s
proof is not valid. Therefore, Theorem 9 is a new result.
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[13] Z. Skupień, Locally Hamiltonian and planar graphs , Fund. Math. 58 (1966) 193–200.
doi:10.4064/fm-58-2-193-200

http://dx.doi.org/10.1007/s00373-016-1686-y
http://dx.doi.org/10.1016/j.dam.2016.01.026
http://dx.doi.org/10.1016/j.disc.2016.11.035
http://dx.doi.org/10.1016/j.dam.2017.10.030
http://dx.doi.org/10.1016/0012-365X\(90\)90163-C
http://dx.doi.org/10.1002/jgt.3190030405
http://dx.doi.org/10.4064/fm-58-2-193-200


84 L. Tang and E. Vumar

[14] S.A. van Aardt, M. Frick, O.R. Oellermann and J.P. de Wet, Global cycle properties

in locally connected, locally traceable and locally Hamiltonian graphs , Discrete Appl.
Math. 205 (2016) 171–179.
doi:10.1016/j.dam.2015.09.022

[15] D.B. West, Research problems , Discrete Math. 272 (2003) 301–306.
doi:10.1016/S0012-365X(03)00207-3

Received 22 June 2017
Revised 5 February 2018

Accepted 5 February 2018

Powered by TCPDF (www.tcpdf.org)

http://dx.doi.org/10.1016/j.dam.2015.09.022
http://dx.doi.org/10.1016/S0012-365X\(03\)00207-3
http://www.tcpdf.org

